JP5951019B2 - 放電加工用電極の交換判定装置および交換判定方法 - Google Patents

放電加工用電極の交換判定装置および交換判定方法 Download PDF

Info

Publication number
JP5951019B2
JP5951019B2 JP2014527879A JP2014527879A JP5951019B2 JP 5951019 B2 JP5951019 B2 JP 5951019B2 JP 2014527879 A JP2014527879 A JP 2014527879A JP 2014527879 A JP2014527879 A JP 2014527879A JP 5951019 B2 JP5951019 B2 JP 5951019B2
Authority
JP
Japan
Prior art keywords
electrode
length
detecting
workpiece
electric discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014527879A
Other languages
English (en)
Other versions
JPWO2014020709A1 (ja
Inventor
恭一 浜田
恭一 浜田
伸明 伊木
伸明 伊木
博史 羽染
博史 羽染
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Publication of JPWO2014020709A1 publication Critical patent/JPWO2014020709A1/ja
Application granted granted Critical
Publication of JP5951019B2 publication Critical patent/JP5951019B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H11/00Auxiliary apparatus or details, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/14Electric circuits specially adapted therefor, e.g. power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/14Electric circuits specially adapted therefor, e.g. power supply
    • B23H7/20Electric circuits specially adapted therefor, e.g. power supply for programme-control, e.g. adaptive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/14Making holes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53022Means to assemble or disassemble with means to test work or product

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

本発明は、放電加工機に用いられる電極の交換の要否を判定する放電加工用電極の交換判定装置および交換判定方法に関する。
従来より、放電加工機によりワークに細孔を加工する際に、放電加工用電極の消耗比と加工深さ(ワークの板厚)とを考慮して、電極の交換の要否を判定するようにした装置が知られている(例えば特許文献1参照)。この特許文献1記載の装置では、予め設定された電極の消耗比と加工深さとから加工に必要とされる必要電極長を算出するとともに、電極長検出手段により現在の電極長さを検出し、必要電極長が電極長さよりも長い場合に、電極の交換が必要であるとして、放電加工工程への移行を停止する。
しかしながら、タービンブレード等をワークとして用いる場合、加工箇所におけるワークの板厚は一定であるとは限らない。したがって、上記特許文献1記載の装置のように予め設定された加工深さに基づいて必要電極長を算出したのでは、電極交換の要否を精度よく判定することができない。また、安全をみて電極の消耗比を大きめに設定し、まだ電極が使えるのに交換してしまうという無駄もあった。
特許第3007911号公報
本発明は、ワークに連続して複数の貫通孔を順次放電加工する際に、電極の交換の要否を判定する放電加工用電極の交換判定装置であって、電極の残存長さを検出する電極長検出手段と、貫通穴を形成する作業において放電が開始したことを検出し、放電が開始した時の電極の位置である放電開始位置を検出する放電開始位置検出手段と、貫通穴を形成する作業において電極がワークを貫通したことを検出し、電極がワークを貫通した時の電極の位置である貫通位置を検出する貫通位置検出手段と、放電開始位置検出手段により検出された直近の放電開始位置と貫通位置検出手段により検出された直近の貫通位置との差である前記電極の消耗量を含んだ実質送り量に基づき、次の貫通孔の加工に必要な電極の必要長さを設定する必要長設定手段と、電極長検出手段により検出された残存長さと必要長設定手段により設定された必要長さとを比較して、電極交換の要否を判定する判定手段とを備えることを特徴とする。
また、本発明は、ワークに連続して複数の貫通孔を順次放電加工する際に、電極の交換の要否を判定する放電加工用電極の交換判定方法であって、電極の残存長さを検出し、貫通穴を形成する工程において放電が開始したことを検出し、放電が開始した時の電極の位置である放電開始位置を検出し、貫通穴を形成する工程において電極がワークを貫通したことを検出し、電極がワークを貫通した時の電極の位置である貫通位置を検出し、検出された直近の放電開始位置と検出された直近の貫通位置との差である前記電極の消耗量を含んだ実質送り量に基づき、次の貫通孔の加工に必要な電極の必要長さを設定し、検出された残存長さと設定された必要長さとを比較して、電極交換の要否を判定することを特徴とする。
本発明の第1の実施形態に係る電極交換判定装置を有する放電加工機の要部構成を概略的に示す正面図である。 本発明が適用されるワークの一例であるタービンブレードの斜視図である。 図2のIII-III線断面図である。 図1の放電加工機によるワークの加工動作を示す図である。 図4の要部拡大図である。 本発明の第1の実施形態に係る電極交換判定装置の構成を示すブロック図である。 本発明の第1の実施形態に係る電極交換判定装置を構成する制御部で実行される処理の一例を示すフローチャートである。 パイプ電極が下降を開始してからの経過時間とパイプ電極とワークとの間の平均加工電圧との関係を示す図である。 本発明の第1の実施形態に係る電極交換判定装置による効果を説明する図である。 本発明の第2の実施形態に係る電極交換判定装置を構成する制御部で実行される主要な処理の一例を示すフローチャートである。
−第1の実施形態−
以下、図1〜図9を参照して、本発明による放電加工用電極の交換判定装置の第1の実施形態を説明する。図1は、本発明の第1の実施形態に係る電極交換判定装置を有する放電加工機100の要部構成を概略的に示す正面図である。なお、以下では、便宜上、図示のように直交3軸方向(X軸方向,Y軸方向,Z軸軸方向)を、それぞれ左右方向、前後方向、上下方向と定義し、この定義に従い各部の構成を説明する。
図1において、基台となるベッド1の後部にはコラム2が立設されている。コラム2の上面には、Xスライダ3がX軸方向(左右方向)に移動可能に支持されている。Xスライダ3の上面には、ラム4がY軸方向(前後方向)に移動可能に支持されている。ラム4の前面には、主軸頭5がZ軸方向(上下方向)に移動可能に支持されている。主軸頭5の底面には回転主軸6の先端部が突出され、回転主軸6の下部に電極ホルダ7が装着されている。電極ホルダ7の鉛直方向下方には、電極ガイド8が配置され、電極ガイド8は、把持アーム9の下端部に支持されている。把持アーム9は、ラム4の右側面に設けられたブラケット4aに、上下方向に移動可能に支持されている。この把持アーム9の上下移動軸をW軸とする。
電極ホルダ7と電極ガイド8との間には、電極ホルダ7と電極ガイド8の中心を通る上下方向の軸線CL0に沿って電極10が延在している。電極10は、円筒形状のパイプ電極であり、その上端部は電極ホルダ7に保持されている。パイプ電極10の下端部は、電極ガイド8を上下方向に貫通している。パイプ電極10は、その外周面が電極ガイド8により支持され、前後左右方向の移動(振れ)を拘束されながら、電極ガイド8内を上下方向に摺動可能となっている。パイプ電極10の内部には、例えば水などの加工液が供給され、パイプ電極10の先端部(下端部)から加工液が噴射される。なお、加工液には、油を用いることもできる。
ベッド1の上面には、コラム2よりも前方にテーブル11が配置されている。テーブル11の上面には、傾斜回転テーブル装置12が搭載されている。傾斜回転テーブル装置12は、テーブル11の上面から上方に突設された前後一対の支持部材13と、前後の支持部材13の間に、Y軸方向に延在する旋回軸CLbを中心としてB軸方向に旋回可能に支持された傾斜部材14と、傾斜部材14の左端面に、旋回軸CLbに垂直な回転軸CLaを中心としてA軸方向に回転可能に支持された回転テーブル15とを有する。回転テーブル15にはチャック16が設けられ、チャック16にワーク20が支持されている。テーブル11の周囲には、テーブル11および傾斜回転テーブル装置12の全体を囲うように昇降可能に加工槽17が設けられている。なお、図1の1点鎖線は、加工槽17が上昇した加工状態である。
図示は省略するが、図1の放電加工機100は、Xスライダ3を左右方向に移動するX軸用駆動部と、ラム4を前後方向に移動するY軸用駆動部と、主軸頭5を上下方向に移動するZ軸用駆動部と、軸線CL0を中心に回転主軸6を回転する主軸駆動部と、把持アーム9を上下方向に移動するアーム駆動部と、揺動軸CLbを介して旋回部材14を傾斜させるB軸用駆動部と、回転軸CLaを介して回転テーブル15を回転するA軸用駆動部とをそれぞれ有する。X軸用駆動部、Y軸用駆動部、Z軸用駆動部およびアーム駆動部は、例えばボールねじとボールねじを回転駆動するサーボモータにより構成され、主軸駆動部は、例えばスピンドルモータにより構成され、B軸用駆動部およびA軸用駆動部は、例えばDD(ダイレクトドライブ)サーボモータにより構成されている。以上のX軸用駆動部、Y軸用駆動部、Z軸用駆動部、アーム駆動部、主軸駆動部、B軸用駆動部およびA軸用駆動部をまとめて単に駆動部35(図6)と呼ぶこともある。駆動部35は、制御部30(図6)により制御される。
以上の構成により、電極ホルダ7と電極ガイド8がワーク20に対してX軸方向、Y軸方向およびZ軸方向に相対移動可能となり、かつB軸方向およびA軸方向に相対移動可能となる。したがって、ワーク20を所望の3次元形状に加工することができる。また、アーム駆動部による把持アーム9の昇降により、電極ホルダ7と電極ガイド8との間隔が調整可能となり、パイプ電極10の消耗によるパイプ電極10の長さ変化に拘わらず、加工中、常に電極ホルダ7と電極ガイド8とでパイプ電極10の上下端部を支持することができる。
ラム4の前面には、主軸頭5の上下方向のZ軸位置を検出するリニアスケールなどの位置検出器31が設けられている。位置検出器31からの信号により、電極ホルダ7の位置、すなわちパイプ電極10の上端部の位置を検出することができる。把持アーム9のブラケット4aには、ラム4に対する把持アーム9の上下方向のW軸位置を検出する位置検出器32が設けられている。位置検出器32からの信号によりラム4に対する電極ガイド8の位置を検出することができる。Z軸位置とW軸位置との間には機械固有のある一定の関係(既知の値)があるので、位置検出器31,32からの信号により、電極ホルダ7の下端部と電極ガイド8の上端部との間隔Dを算出することができる。なお、図示は省略するが、アーム9の側方には電極マガジンが設けられている。電極マガジンには、初期長さL0(既知)を有する交換用の複数のパイプ電極10が保持され、主軸6と工具マガジンとの間で、不図示の交換手段によりパイプ電極10を交換可能となっている。
ワーク20は、例えばガスタービンやジェットエンジン等に適用されるタービンブレードやベーンである。タービンブレードは、1000℃〜1500℃程度の高温ガスに曝されるため、耐熱性の高いニッケル合金が構成材として用いられる。このタービンブレードの表面には、タービンブレードの表面を冷却するために、冷却空気を流す冷却孔が加工される。
図2は、ワーク20(タービンブレード)の斜視図であり、図3は、図2のIII-III線断面図である。タービンブレード20の一端部には、例えばクリスマスツリー形状の支持部20aが設けられている。エンジンの組立状態において、支持部20aは回転可能なロータの周面に取り付けられる。
図2、3に示すように、タービンブレード20は、例えばロストワックス鋳造法によって形成され、翼部21の内側に、中空部25が形成されている。翼部21は、中空部25に面した内表面21aと、高温ガスに曝される外表面21bとを有する。翼部21には、翼部21を貫通した冷却孔22が、翼部21の周方向複数個所にかつ翼部21の高さ方向(図2の矢印A方向)に沿って多数形成されている。冷却孔22の中心軸線CL1に沿った翼部21の板厚tは一定ではなく、図3に示すように場所によって異なる。中空部25には、ロータ側から冷却空気が供給され、冷却空気は各冷却孔22から流出する。これにより外表面21bに沿ってフィルム状の冷却空気が流れ、翼部21が冷却される。
タービンブレードを構成するニッケル合金は難削材であり、ドリル等により冷却孔22を穿設することは困難である。このため、本実施形態では、放電加工機100を用いてタービンブレードに複数の冷却孔22を加工する。冷却孔22の加工は1箇所ずつ行う。図2における1つの冷却孔22aの加工が終了すると、この冷却孔22aに隣接する別の冷却孔22b、あるいは冷却孔22aに最も近い別の冷却孔22cを加工する。
図4は、冷却孔22の加工動作を示す図であり、図5は、図4の要部拡大図である。図4,5に示すように、冷却孔22を加工する際には、冷却孔22の中心軸線CL1が上下方向を向くような加工姿勢で傾斜回転テーブル装置12によりワーク20を保持する。さらに、電極ガイド8の下端面8aが加工開始点Pから所定距離D1だけ上方の電極支持位置Aに位置するように、加工プログラムによってW軸を指令する。そして、電極ホルダ7と電極ガイド8との相対位置を固定したまま電極ホルダ7を移動する。このとき、電極ガイド8の下端面から突出するパイプ電極10の下端面10aの突出量が所定値D2(<D1)に設定される。
なお、所定値D2は、0でもよく、0より小さくてもよい。所定値D2が0より小さい場合、パイプ電極10の下端面10aが電極ガイド8の下端面8aよりも上方に位置するが、その場合には、電極ガイド8からパイプ電極10が抜けないように下端面8a,10a間の距離が電極ガイド8の長さD3よりも小さければよい。以上の状態を、加工準備状態と呼ぶ。
次に、加工準備状態から電極ホルダ7を下方に移動してパイプ電極10を下降し、パイプ電極10の先端部でワーク20を放電加工する(図4,5の点線)。加工中は、電極ホルダ7の下方への移動に拘わらず電極ガイド8が電極支持位置Aに保持されるように、ラム4に対して把持アーム9を固定させる。これによりワーク20の上方でパイプ電極10の上下端部が支持され、加工中のパイプ電極10の振れを抑制できる。放電加工時には、冷却孔22の加工に伴いパイプ電極10は消耗するので、適切なタイミングでパイプ電極10を交換する必要がある。この交換時期を判定するため、本実施形態では、以下のように電極交換判定装置を構成する。
図6は、第1の実施形態に係る電極交換判定装置の構成を示すブロック図である。図6の制御部30は、CPU,ROM,RAM,その他の周辺回路などを有する演算処理装置を含んで構成される。制御部30には、電極ホルダ7のZ軸位置を検出する位置検出器31(図1)と、電極ガイド8のW軸位置を検出する位置検出器32(図1)と、加工プログラムや各種設定値が入力される入力部33と、パイプ電極10とワーク20との間の極間電圧を検出する電圧検出部34と、ワーク20に対して主軸6を相対移動する駆動部35(X軸用駆動部、Y軸用駆動部、Z軸用駆動部、アーム駆動部、主軸駆動部、B軸用駆動部およびA軸用駆動部)と、電極交換判定に関する各種情報を表示する表示部36とが接続されている。制御部30は、位置検出器31、32と入力部33と電圧検出器34からの信号に基づき所定の処理を実行し、駆動部35および表示部36に制御信号を出力する。
図7は、第1の実施形態に係る制御部30で実行される処理の一例を示すフローチャートである。このフローチャートに示す処理は、例えば入力部33の操作により、加工開始指令が入力されると開始され、個々の冷却孔22を加工する度に繰り返される。すなわち、図6は単一の冷却孔22の加工に対応しており、図7の処理を繰り返すことで、互いに隣接する冷却孔22が順次加工される。
ステップS1では、加工プログラムに従い駆動部35に制御信号を出力し、ワーク20の位置姿勢、電極ホルダ7の位置、および電極ガイド8の位置を加工準備状態(図4,5)にセットする。すなわち、ワーク20を加工姿勢に保持するとともに、電極ガイド8とワーク20間の距離を一定に保ったまま、パイプ電極10の上下端部を保持した状態で、電極ガイド8の下端面8aが加工開始点Pから所定距離D1だけ上方の電極支持位置Aに位置するように電極ホルダ7と電極ガイド8を一体に移動する。
ステップS2では、パイプ電極10にパルス電圧を印加するとともに、駆動部35(Z軸用駆動部、アーム駆動部、主軸用駆動部)に制御信号を出力し、電極ガイド8を電極支持位置Aに保持したまま、パイプ電極10を所定回転数で回転させながら加工開始点Pに向けて下降させる。併せて、パイプ電極10の先端部から加工液を噴出させる。
ステップS3では、パイプ電極10とワーク20との間で放電が開始したか否かを判定する。この判定は、電圧検出部34によって検出された極間電圧の平均値(平均加工電圧V)が、予め定められた閾値V1よりも小さくなったか否かを判定することにより行う。この場合、制御部30が電圧検出部34からの信号を例えば2msec毎に読み込み、直近の所定時間(例えば1秒)内のデータを平均化し、これを平均加工電圧Vとする。ステップS3が肯定されるとステップS4に進み、否定されるとステップS2に戻る。
ステップS4では、位置検出器31からの信号を読み込み、放電開始と判定された時点における電極ホルダ7のZ軸位置を、放電開始位置としてメモリに記憶する。
ステップS5では、電極長さL1を設定する。回転主軸6には、最初、既知の初期長さL0(例えば300mm)を有する新品のパイプ電極10が手動または電極交換装置によって装着される。電極長さL1は、電極ホルダ7の下端からパイプ電極10の下端面10aまでの距離である。この電極長さL1は、最初は、初期長さL0に設定される。新品のパイプ電極10を用いてn個目の冷却孔22を加工するときの電極長さL1の設定は、以下のようにして行う。すなわち、前回の処理においてn−1個目の冷却孔22を加工したときの放電開始位置がZn−1であり、今回の処理でn個目の冷却孔22を加工するときの放電開始位置がZであるとき、放電開始位置の変化量ΔZはZ−Zn−1となる。この変化量ΔZを、前回の処理で求めた電極長さL1から減算し(L1−ΔZ)、これを新たな電極長さL1として設定する。なお、新品のパイプ電極10を用いて初めて冷却孔22を加工したときの放電開始位置(初期放電開始位置Z1)をメモリに記憶しておき、n個目の冷却孔22を加工するときの放電開始位置Zと初期放電開始位置Z1との差ΔZ(=Z1−Z)を、パイプ電極10の所期長さL0から減算し(L0−ΔZ)、これを新たな電極長さL1として設定するようにしてもよい。
ステップS6では、加工プログラムに従って駆動部35を制御し、ワーク20に所望の形状の冷却孔22を加工する。冷却孔22の加工時には、パイプ電極10が徐々に下降する。
ステップS7では、パイプ電極10がワーク20を貫通したか否かを判定する。この判定は、電圧検出部34によって検出された極間電圧の平均値(平均加工電圧V)が、予め定められた閾値V2よりも大きくなったか否かを判定することにより行う。ステップS7が肯定されるとステップS8に進み、否定されるとステップS6に戻る。なお、以下では、便宜上、閾値V2が閾値V1と同一の値であるとして説明するが、V2とV1が互いに異なった値であってもよい。V1とV2は実験により予め適正値を求めておく。
ステップS8では、駆動部35に制御信号を出力し、パイプ電極10の下降を停止する。本実施形態では、電圧検出部34からの信号を短い周期(2sec毎)で取り込んでいるため、ワーク20(翼部21)の貫通後、即座にパイプ電極10を停止することができ、翼部21の内表面21aからのパイプ電極10の突出量を最小限に抑えることができる。
ステップS9では、位置検出器31からの信号を読み込み、ワーク貫通と判定された時点における電極ホルダ7のZ軸位置を、貫通位置(放電終了位置)としてメモリに記憶する。
ステップS10では、メモリに記憶された放電開始位置(ステップS4)から貫通位置(ステップS9)を減算して、放電開始から放電終了までに要したパイプ電極10の送り量E(これを実質送り量Eと呼ぶ)を算出する。実質送り量Eには、ワーク20の板厚tと、パイプ電極10の消耗量F(電極消耗量)とが含まれる。電極消耗量Fは、板厚tと予め定めた電極消耗比αとを乗じることによって求まり、実質送り量Eは次式(I)で表される。
E=t(1+α) (I)
なお、厳密にいうと、実質送り量Eには、ワーク貫通位置からのパイプ電極10の送り量、すなわち内表面21aからのパイプ電極10の突出量も含まれるが、本実施形態では、貫通検知後にパイプ電極10の下降をすぐに停止させるため(ステップS8)、これを0とみなすことができる。電極消耗比αは、種々の条件によって変化するが、本実施形態では、実験的に求めた平均的な値を予め設定しておく。
ステップS11では、ステップS5の電極長さL1から電極消耗量F(=tα)を減算し、パイプ電極10の残存長さLaを算出する。この場合、まず、上式(I)から板厚tを求め、その板厚tに電極消耗比αを乗じて電極消耗量Fを算出する。次いで、電極長さL1から電極消耗量Fを減算し、残存長さLaを算出する。
ステップS12では、パイプ電極10がワーク20の加工開始点Pよりも余裕をもって上方に位置するように駆動部35(Z軸用駆動部)に制御信号を出力し、電極ホルダ7、つまりパイプ電極10を上昇させる。電極ホルダ7の上昇量を、実質送り量Eよりも電極消耗量F分だけ小さくする。これにより、図5の実線に示すようにパイプ電極10は電極ガイド8の下端面8aから所定量D2だけ突出する。
ステップS13では、次の冷却孔22を加工するのに必要なパイプ電極10の長さ(必要長さLb)を算出する。必要長さLbは、電極ホルダ7と電極ガイド8とが干渉せずにパイプ電極10を安定的に保持するのに最低限必要なパイプ電極10の長さ(最小必要長さ)を予め定めておき、この最小必要長さにステップS10の実質送り量Eを加算することによって求められる。実質送り量Eを用いて必要長さLbを求めるのは、今回加工した冷却孔22と次回加工する冷却孔22とは隣接しており、板厚tの変化は小さいと考えられ、次の冷却孔22を加工する際にも今回と同一の実質送り量Eが必要になると仮定するためである。なお、パイプ電極10の最小必要長さを、所定のマージンを含むような値に設定してもよい。パイプ電極10の最小必要長さは、電極ホルダ7と電極ガイド8との最小間隔(例えば5mm)と、電極ガイド8の長さD3(例えば30mm)と、電極ガイド8からの突出量D2(例えば10mm)の和(例えば45mm)である。
ステップS14では、パイプ電極10の残存長さLaが、パイプ電極10の必要長さLb以上(La≧Lb)であるか否かを判定する。ステップS14が肯定されるとステップS15に進み、否定されるとステップS16に進む。
ステップS15では、パイプ電極10が次の冷却孔22を加工するのに十分な長さを有しているとして、次の冷却孔22の加工を許可する。この場合、次の冷却孔22の加工開始点Pに対し、上述したのと同様の処理を繰り返す。一方、ステップS16では、パイプ電極10の長さが十分ではなく、電極交換が必要であるとして、次の冷却孔22の加工を禁止する。この場合、工具マガジンから新品のパイプ電極10を取り出して回転主軸6に付け替える処理(電極交換処理)を行う。
第1の実施形態の動作をまとめると次のようになる。以下では、図2の冷却孔22aを加工した後、これに隣接する冷却孔22bを加工する動作について説明する。まず、長さが既知の新品のパイプ電極10を冷却孔22aの加工開始点P(第1の加工開始点)の上方に位置させるとともに、電極ガイド8を電極支持位置Aに移動する(ステップS1)。次いで、パイプ電極10にパルス電圧を印加しながらパイプ電極10を下降し、パイプ電極10をワーク表面の加工開始点Pに接近させる(ステップS2)。
図8は、パイプ電極10が下降を開始してからの経過時間Tと平均加工電圧Vとの関係を示す図である。時点T0でパイプ電極10が下降を開始してから放電が開始されるまでは、平均加工電圧Vは閾値V1よりも大きい。時点T1で放電が開始されると、平均加工電圧Vは閾値V1よりも小さくなり、以降、放電が終了するまでV<V1の状態が続く。このときの電極ホルダ7のZ軸位置(放電開始位置)は、メモリに記憶され(ステップS4)、この放電開始位置を用いて電極長さL1が求められ、設定される(ステップS5)。なお、新品のパイプ電極10を用いてn個目の冷却孔22を加工するときには、ステップS5で、n−1個目の冷却孔22を加工したときの放電開始位置Zn−1と今回の放電開始位置Zとの差ΔZ(=Z−Zn−1)を、n−1個目の冷却孔22を加工したときに求められた電極長さL1から減算し(L1−ΔZ)、これを新たな電極長さL1として設定する。
その後、時点T2でパイプ電極10がワーク20を貫通すると、平均加工電圧Vは閾値V2(=V1)よりも大きくなり、V>V2が検出されるとパイプ電極10の下降が停止する(ステップS8)。このときの電極ホルダ7のZ軸位置(貫通位置)は、メモリに記憶される(ステップS9)。この場合、電圧検出部34からの信号は短い周期(2msec)で読み込まれるため、パイプ電極10はワーク貫通後に即座に停止することができる。したがって、図9に示すように、パイプ電極10に対向するワーク20の中空部側の内表面21a(A部)が誤って放電加工されることを防止できる。
パイプ電極10がワーク20を貫通すると、パイプ電極10は加工開始点Pよりも上方に移動する(ステップS12)。このとき、放電開始位置から貫通位置を減算した実質送り量Eが算出される(ステップS10)とともに、実質送り量Eから電極消耗量Fが算出され、加工開始時の電極長さL1から電極消耗量Fを減算したパイプ電極10の残存長さLaが算出される(ステップS11)。さらに、次の冷却孔22bの加工のために実質送り量Eと同一のパイプ電極10の送り量が必要であると仮定し、冷却孔22bの加工に必要なパイプ電極10の必要長さLbが算出される(ステップS13)。残存長さLaが必要長さLb以上であるときは、パイプ電極10の長さが十分であるとして、次の冷却孔22bの加工動作に移行する(ステップS15)。残存長さLaが必要長さLb未満であるときは、パイプ電極10の長さが不足するとして、次の冷却孔22bの加工動作に移行せずに、パイプ電極10を交換する。
以上の第1の実施形態によれば、電圧検出部34からの信号によりパイプ電極10の放電開始位置と貫通位置をそれぞれ検出するとともに(ステップS4,ステップS9)、放電加工開始時の電極長さL1から電極消耗量Fを減算してパイプ電極10の残存長さLaを検出するようにした(ステップS11)。さらに、放電開始位置と貫通位置との差(実質送り量E)に基づき、次の貫通孔22の加工に必要なパイプ電極10の必要長さLbを設定し(ステップS13)、残存長さLaと必要長さLbとを比較して、パイプ電極10の交換の要否を判定するようにした(ステップS14)。すなわち、次の冷却孔22を加工する場合に今回と同一の実質送り量Eが必要であるとしてパイプ電極10の必要長さLbを算出し、この必要長さLbに基づき、パイプ電極10の交換の要否を判定するようにした。したがって、実質送り量Eはワーク20の板厚tに拘わらずに求められるため、ワーク20の板厚tが変化する場合であっても、電極交換の要否を精度よく判定することができる。
−第2の実施形態−
図10を参照して本発明の第2の実施形態について説明する。なお、以下では第1の実施形態との相違点を主に説明する。第2の実施形態が第1の実施形態と異なるのは、制御部30における処理である。すなわち、第1の実施形態では、ワーク20の貫通を検出するまでパイプ電極10を下降するようにしたが、第2の実施形態では、電極ホルダ7と電極ガイド8との間隔D(図1)が所定値D0以下になると、パイプ電極10の下降動作を停止させる。
図10は、第2の実施形態に係る制御部30で実行される処理の一例を示すフローチャートであり、図7と相違する部分を主に示している。なお、図10において、図7と同一の処理については同一の符号を付している。図10に示すように、ステップS6で冷却孔22の加工の処理を開始すると、ステップS21に進み、位置検出器31,32からの信号に基づき、電極ホルダ7と電極ガイド8の間隔Dを算出する。ステップS22では、算出された間隔Dが予め定めた所定値D0以下か否かを判定する。この判定は、電極ホルダ7と電極ガイド8との干渉(衝突)の有無を判定するものであり、所定値D0は少なくとも0より大きい値、例えば5mmに設定される。ステップS22が否定されるとステップS7に進み、以降、図7と同様の処理を行う。
一方、ステップS22が肯定されるとステップS23に進み、駆動部35に制御信号を出力し、パイプ電極10の下降を停止する。ステップS24では、パイプ電極10がワーク20の加工開始点Pよりも上方に位置するように駆動部35(Z軸用駆動部)に制御信号を出力し、電極ホルダ7を上昇させる。次いで、ステップS16で、パイプ電極10の長さが十分ではなく、電極交換が必要であるとして、次の冷却孔22の加工を禁止する。
第2の実施形態では、電極ホルダ7と電極ガイド8の間隔Dが所定値D0以下になると、電極ホルダ7の下降を停止するようにしたので、加工開始点Pにおけるワーク20の板厚tが急激に増加した場合等においても、電極ホルダ7と電極ガイド8の衝突を防止することができる。すなわち、前回の加工時におけるワーク20の板厚tよりも今回の加工時におけるワーク20の板厚tが急激に増加すると、ワーク貫通までに要するパイプ電極20の実質送り量Eが増大し、ワーク貫通を検出する前に、電極ホルダ7と電極ガイド8とが衝突するおそれがある。この点、本実施形態では、両者の間隔Dが所定値D0以下になると電極ホルダ7の下降を強制的に停止するので、電極ホルダ7と電極ガイド8との衝突を防止できる。
−変形例−
上記実施形態では、電圧検出部34により検出された極間電圧Vに応じて放電開始位置と貫通位置を検出するようにしたが、放電開始位置検出手段および貫通位置検出手段の構成はこれに限らない。例えば、極間電圧Vはパイプ電極10の送り速度と相関関係を有するため、送り速度を検出することで放電開始位置および貫通位置を検出することもできる。上記実施形態では、制御部30での処理により、放電加工開始時の電極長さL1から電極消耗量Fを減算してパイプ電極10の残存長さLaを求めるようにしたが、電極長検出手段の構成はこれに限らない。
放電開始位置と貫通位置との差(実質送り量E)に基づいて、次の貫通孔22の加工に必要なパイプ電極10の必要長さLbを求めるのであれば、必要長設定手段(制御部30)の構成はいかなるものでもよい。例えば、直前の冷却孔22の加工時に得られた実質送り量Eの値を用いる代わりに、直近の複数個(例えば5個)の冷却孔22の加工時にそれぞれ得られた実質送り量Eの平均値を用いるようにしてもよい。制御部30での処理により、パイプ電極10の残存長さLaと必要長さLbとの大小に応じて電極交換の要否を判定するようにしたが、残存長さLaと必要長さLbとを比較するのであれば、判定手段による判定は、単純な大小の判定でなくてもよい。
上記実施形態では、パイプ電極10の基端部を電極ホルダ7で保持し、パイプ電極10の先端部を、電極ホルダ7に対してパイプ電極10の長さ方向に相対移動可能な電極ガイド8で保持するようにしたが、第1保持部および第2保持部の構成はこれに限らない。位置検出器31,32により電極ホルダ7と電極ガイド8の間隔を算出するようにしたが、間隔検出手段はいかなるものでもよい。放電開始後に、電極ホルダ7と電極ガイド8の間隔Dが所定値D0以下になると、制御部30での処理により、電極ホルダ7の下降を停止するようにしたが、放電加工動作を停止させるための放電停止手段の構成は上述したものに限らない。
上記実施形態では、パイプ電極10の残存長さLaと必要長さLbとの比較により電極交換が必要と判定されると、制御部30での処理により次の冷却孔を加工する工程(次加工工程)への移行を禁止するようにしたが、放電制御手段の構成はこれに限らない。例えば次加工工程への移行を禁止する際に、表示部36に警報を出力するようにしてもよい。上記実施形態では、パイプ形状の電極10を用いたが、長手方向に延在する電極の形状はパイプ形状以外であってもよい。電加工機100の構成も上述したものに限らない。上記実施形態では、ワーク20の一例としてタービンブレードを用いたが、複数の貫通孔22を加工することが必要なワークであれば、他のワークを加工する場合にも本発明による交換判定装置を適用することができる。また、貫通孔を1つだけ加工するワークが複数個あり、ワークを次々に交換して貫通孔を順次放電加工する場合にも、本発明による交換判定装置を適用することができる。
上記実施の形態では、ワーク20に複数の貫通孔22を順次放電加工する電極(パイプ電極)10の交換の要否を判定する放電加工用電極の交換判定方法について説明した。すなわち、電極10の残存長さLaを検出し、放電開始時の電極10の位置である放電開始位置を検出し、ワーク貫通時の電極10の位置である貫通位置を検出し、検出された放電開始位置と検出された貫通位置との差に基づき、次の貫通孔22の加工に必要な電極10の必要長さLbを設定し、検出された残存長さLaと設定された必要長さLbとを比較して、電極交換の要否を判定するようにした。この場合、電極10の位置には、電極10と相関関係を有するもの(電極ホルダ7等)の位置も含む。
本発明によれば、直近の貫通孔の実データである放電開始位置と貫通位置との差に基づいて次の貫通孔の加工に必要な電極の必要長さを設定し、この必要長さを用いて電極交換の要否を判定するようにしたので、ワークの板厚の変化に拘わらず、電極交換の要否を精度よく判定することができる。特に、加工状態(安定、不安定の程度)、加工深さ、加工液圧によって通常は電極消耗量が変化するが、本発明は直近のデータを用いているので、これらの諸条件がほぼ同一であり、電極交換の要否を精度よく無駄なく判定することができる。また、1つの貫通孔の加工前と加工後に電極長さを測定して電極消耗量を検出する方法と比べ、サイクル時間を大幅に短縮することができる。
7 電極ホルダ
8 電極ガイド
10 パイプ電極
20 ワーク(タービンブレード)
22 冷却孔
30 制御部
31,32 位置検出器
34 電圧検出部
35 駆動部
La 残存長さ
Lb 必要長さ

Claims (5)

  1. ワークに連続して複数の貫通孔を順次放電加工する際に、電極の交換の要否を判定する放電加工用電極の交換判定装置であって、
    前記電極の残存長さを検出する電極長検出手段と、
    貫通穴を形成する作業において放電が開始したことを検出し、放電が開始した時の前記電極の位置である放電開始位置を検出する放電開始位置検出手段と、
    貫通穴を形成する作業において前記電極がワークを貫通したことを検出し、前記電極がワークを貫通した時の前記電極の位置である貫通位置を検出する貫通位置検出手段と、
    前記放電開始位置検出手段により検出された直近の放電開始位置と前記貫通位置検出手段により検出された直近の貫通位置との差である前記電極の消耗量を含んだ実質送り量に基づき、次の貫通孔の加工に必要な前記電極の必要長さを設定する必要長設定手段と、
    前記電極長検出手段により検出された残存長さと前記必要長設定手段により設定された必要長さとを比較して、電極交換の要否を判定する判定手段とを備えることを特徴とする放電加工用電極の交換判定装置。
  2. 請求項1に記載の放電加工用電極の交換判定装置において、
    前記電極の基端部を保持する第1保持部と、
    前記第1保持部に対して前記電極の長さ方向に相対移動可能に設けられ、前記電極の先端部を保持する第2保持部と、
    前記第1保持部と前記第2保持部との間隔を検出する間隔検出手段と、
    放電開始後に、前記間隔検出手段により検出された間隔が所定値以下になると、放電加工動作を停止させる放電停止手段とをさらに備える放電加工用電極の交換判定装置。
  3. 請求項1または2に記載の放電加工用電極の交換判定装置において、
    前記貫通位置検出手段は、前記電極と前記ワークとの間の極間電圧を検出し、前記極間電圧が所定値を越えたときの前記電極の位置を前記貫通位置として検出する放電加工用電極の交換判定装置。
  4. 請求項1〜3のいずれか1項に記載の放電加工用電極の交換判定装置において、
    前記判定手段により電極交換が不要と判定されると、次の貫通孔を加工するための次加工工程への移行を許可し、前記判定手段により電極交換が必要と判定されると、前記次加工工程への移行を禁止する放電制御手段をさらに備える放電加工用電極の交換判定装置。
  5. ワークに連続して複数の貫通孔を順次放電加工する際に、電極の交換の要否を判定する放電加工用電極の交換判定方法であって、
    前記電極の残存長さを検出し、
    貫通穴を形成する工程において放電が開始したことを検出し、放電が開始した時の前記電極の位置である放電開始位置を検出し、
    貫通穴を形成する工程において前記電極がワークを貫通したことを検出し、前記電極がワークを貫通した時の前記電極の位置である貫通位置を検出し、
    検出された直近の放電開始位置と検出された直近の貫通位置との差である前記電極の消耗量を含んだ実質送り量に基づき、次の貫通孔の加工に必要な前記電極の必要長さを設定し、
    検出された前記残存長さと設定された前記必要長さとを比較して、電極交換の要否を判定することを特徴とする放電加工用電極の交換判定方法。
JP2014527879A 2012-07-31 2012-07-31 放電加工用電極の交換判定装置および交換判定方法 Active JP5951019B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/069498 WO2014020709A1 (ja) 2012-07-31 2012-07-31 放電加工用電極の交換判定装置および交換判定方法

Publications (2)

Publication Number Publication Date
JPWO2014020709A1 JPWO2014020709A1 (ja) 2016-07-11
JP5951019B2 true JP5951019B2 (ja) 2016-07-13

Family

ID=50027439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014527879A Active JP5951019B2 (ja) 2012-07-31 2012-07-31 放電加工用電極の交換判定装置および交換判定方法

Country Status (5)

Country Link
US (1) US9776269B2 (ja)
EP (1) EP2881204B1 (ja)
JP (1) JP5951019B2 (ja)
CN (1) CN104507615B (ja)
WO (1) WO2014020709A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6017525B2 (ja) * 2014-12-17 2016-11-02 ファナック株式会社 消耗品交換機能を有するワイヤ放電加工機用制御装置
JP6539453B2 (ja) * 2015-01-28 2019-07-03 株式会社エレニックス 細穴放電加工機
US9849528B2 (en) 2015-09-15 2017-12-26 General Electric Company Electrical discharge machining system having independent electrodes
US10307846B2 (en) * 2015-09-15 2019-06-04 General Electric Company Electrical discharge machining system having independent electrodes, related control system and method
US10589370B2 (en) 2017-05-08 2020-03-17 General Electric Company Automatic blocked hole identification
US10953483B2 (en) 2017-11-15 2021-03-23 General Electric Company Tool electrode for and methods of electrical discharge machining
JP6824916B2 (ja) * 2018-01-31 2021-02-03 株式会社ソディック ワイヤ放電加工装置
CN114473091B (zh) * 2022-03-15 2023-08-11 江苏理工学院 一种水平式电解电火花加工装置及方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114821A (ja) 1981-12-29 1983-07-08 Fanuc Ltd 放電加工方法
JP3007911B2 (ja) 1990-11-30 2000-02-14 株式会社ソディック 細穴放電加工機
JP2001025922A (ja) 1999-07-12 2001-01-30 Seibu Electric & Mach Co Ltd 細穴加工完了検出手段を備えた細穴放電加工方法
KR100493610B1 (ko) * 2000-05-22 2005-06-08 미쓰비시덴키 가부시키가이샤 세공가공용 방전가공장치
US6723942B1 (en) * 2003-03-06 2004-04-20 Industrial Technology Research Institute Automatic breakthrough detection device
WO2004108336A1 (ja) * 2003-06-04 2004-12-16 Makino Milling Machine Co., Ltd. 放電加工機及びその加工方法
JP2005144651A (ja) 2003-11-12 2005-06-09 Asutekku:Kk 貫通検知装置および方法ならびに放電加工機
CN100411795C (zh) * 2004-05-13 2008-08-20 嘉昇机电工业股份有限公司 细孔放电加工机自动更换电极装置
KR100564160B1 (ko) * 2005-01-21 2006-03-27 임창영 방전가공형 드릴장치의 가공전극 소모량 자동 측정방법
TWI335847B (en) * 2007-01-23 2011-01-11 Ind Tech Res Inst Method for detecting and compensating electrode wear of electric dischage macnining

Also Published As

Publication number Publication date
CN104507615B (zh) 2017-04-19
EP2881204A1 (en) 2015-06-10
WO2014020709A1 (ja) 2014-02-06
CN104507615A (zh) 2015-04-08
US9776269B2 (en) 2017-10-03
JPWO2014020709A1 (ja) 2016-07-11
EP2881204B1 (en) 2018-09-26
EP2881204A4 (en) 2016-05-18
US20150209884A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
JP5951019B2 (ja) 放電加工用電極の交換判定装置および交換判定方法
JP5951018B2 (ja) 放電加工方法
JP5789070B2 (ja) 分散形アーク電食
JP4460279B2 (ja) ブレード付きディスクの多軸数値制御電気機械加工
CN109715333B (zh) 细孔放电加工机
JP5507410B2 (ja) 工作機械における主軸回転速度のモニタ方法及びモニタ装置、工作機械
JP5901777B2 (ja) 放電加工方法および電極ガイド位置設定装置
JP6661674B2 (ja) 工作機械のノズル制御装置
JP5925900B2 (ja) 放電加工機の加工槽昇降装置
JP6404968B2 (ja) ワイヤ放電加工機
JP6195659B2 (ja) 加工プログラムの生成方法、経路生成装置および放電加工機
JP2013188831A (ja) 工作機械の制御装置およびそれを備えた工作機械
EP3278916B1 (en) Fine hole electrical discharge machine
JP4311686B2 (ja) プリント基板の加工方法
JP4509509B2 (ja) 放電加工装置
JP2010069545A (ja) 数値制御式工作機械及び数値制御式工作機械の制御プログラム
JP2013066956A (ja) 穴明け加工装置及び穴明け加工方法
JP2011121139A (ja) 工具異常検知装置および検知方法
JP7057703B2 (ja) 工作機械
US20180304426A1 (en) Control device and control method
JP2015217479A (ja) 切削加工装置及び切削加工方法
JP2002172525A (ja) 放電加工制御方法および放電加工制御装置
JP2003211314A (ja) バリ除去方法およびバリ除去装置
JP2017148876A (ja) マシニングセンタ

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160607

R150 Certificate of patent or registration of utility model

Ref document number: 5951019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250