JP5948750B2 - Antiglare film, method for producing antiglare film, polarizing plate and stereoscopic image display device - Google Patents

Antiglare film, method for producing antiglare film, polarizing plate and stereoscopic image display device Download PDF

Info

Publication number
JP5948750B2
JP5948750B2 JP2011157616A JP2011157616A JP5948750B2 JP 5948750 B2 JP5948750 B2 JP 5948750B2 JP 2011157616 A JP2011157616 A JP 2011157616A JP 2011157616 A JP2011157616 A JP 2011157616A JP 5948750 B2 JP5948750 B2 JP 5948750B2
Authority
JP
Japan
Prior art keywords
film
antiglare
layer
mass
antiglare layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011157616A
Other languages
Japanese (ja)
Other versions
JP2013024964A (en
Inventor
理英子 れん
理英子 れん
岡野 賢
賢 岡野
幸仁 中澤
幸仁 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2011157616A priority Critical patent/JP5948750B2/en
Publication of JP2013024964A publication Critical patent/JP2013024964A/en
Application granted granted Critical
Publication of JP5948750B2 publication Critical patent/JP5948750B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Crystal (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Polarising Elements (AREA)

Description

本発明は、防眩性フィルム、防眩性フィルムの製造方法、偏光板及び立体画像表示装置に関する。   The present invention relates to an antiglare film, a method for producing an antiglare film, a polarizing plate, and a stereoscopic image display device.

特定の波長の直線偏光を円偏光に変換する機能を持つλ/4板は、近年、立体(3D)画像表示装置の分野で需要が出てきている。   A λ / 4 plate having a function of converting linearly polarized light of a specific wavelength into circularly polarized light has recently been in demand in the field of stereoscopic (3D) image display devices.

最初に立体画像表示装置について記載する。立体画像表示装置にはいくつかの方式が知られているが、その一つに液晶シャッター機能の付いた専用の立体画像視認用眼鏡を観測者が着用することで、2次元画像を立体画像として観測者に認識させる方式がある。この方式で現在有力視されているのが、画像を表示するディスプレイに視差画像である右眼用画像と左眼用画像とを時系列で交互に切り替えて映し出し、観測者は立体画像視認用眼鏡を着用して、液晶ディスプレイの画像を見るという方式である(例えば、特許文献1参照)。   First, a stereoscopic image display device will be described. Several types of stereoscopic image display devices are known. One of them is that a viewer wears dedicated stereoscopic image viewing glasses with a liquid crystal shutter function, so that a two-dimensional image is converted into a stereoscopic image. There is a method to make the observer recognize. What is currently viewed as promising in this method is that the right-eye image and the left-eye image, which are parallax images, are alternately displayed in time series on the display that displays the image, and the observer uses glasses for viewing stereoscopic images. This is a method in which an image of a liquid crystal display is viewed while wearing (see, for example, Patent Document 1).

このような液晶ディスプレイと立体画像視認用眼鏡からなる立体画像表示装置では、首を傾けた際に、輝度低下や色味の変化(以下クロストークともいう)という問題がある。首を傾けた際の輝度低下の抑制及び色味変化の抑制ためには、液晶ディスプレイの視認側及び立体画像視認用眼鏡の目から遠い側の表面にそれぞれλ/4板を用いることが有効である。この場合、λ/4板がディスプレイや立体画像視認用眼鏡の最表面に配置されるため、防眩性などの視認性を改善するために、λ/4板機能を有する防眩性フィルム等の使用が好ましい(例えば、特許文献2参照)。   In such a stereoscopic image display device including a liquid crystal display and stereoscopic image viewing glasses, there is a problem of a decrease in luminance and a change in color (hereinafter also referred to as crosstalk) when the head is tilted. It is effective to use a λ / 4 plate on the surface on the viewing side of the liquid crystal display and on the side far from the eyes of the 3D image viewing glasses in order to suppress the luminance drop and the color change when the head is tilted. is there. In this case, since the λ / 4 plate is disposed on the outermost surface of the display or the stereoscopic image viewing glasses, in order to improve the visibility such as the antiglare property, an antiglare film having a λ / 4 plate function, etc. Use is preferable (for example, refer patent document 2).

該λ/4板機能を有する防眩性フィルムはハードコート層に微粒子を含有させて防眩層としたものであるが、立体画像表示装置の表面反射を防止する為に上記防眩性フィルムを表示装置表面に設けると、防眩層自身の内部散乱によりクロストークが発生するという新たな問題があり改善が望まれていた。   The antiglare film having the function of λ / 4 plate is a hard coat layer containing fine particles to form an antiglare layer. In order to prevent surface reflection of a stereoscopic image display device, the antiglare film is used. When provided on the surface of the display device, there is a new problem that crosstalk occurs due to internal scattering of the antiglare layer itself, and improvement has been desired.

また、該クロストークは、λ/4板を作成する際に厚み方向のリターデーションRtが低減することにより、より強調されることが分かった。   Further, it was found that the crosstalk is more emphasized when the retardation Rt in the thickness direction is reduced when a λ / 4 plate is produced.

λ/4板として基材フィルム上に液晶性分子を塗布配向させた光学異方性層を設ける技術が知られているが(例えば、特許文献3参照)、この技術によれば面内方向のリターデーションRoと厚み方向のリターデーションRtをコントロール出来て好ましい。しかしながら該光学異方性層上に直接防眩層を塗設すると湿熱耐久密着性が劣化することが分かった。これを回避するには光学異方性層上に、防眩層が塗設された別の光学フィルムを接着剤で貼りつけることが考えられるが、工数やコスト面で不利である。あるいは、光学異方性層の裏面に表面加工を行って、光学異方性層側を接着剤で偏光子に貼りつける方法もあるが、偏光子と液晶の両方に接着することは容易ではなく、やはり工数やコストがかかる。   As a λ / 4 plate, a technique of providing an optically anisotropic layer in which liquid crystalline molecules are applied and oriented on a base film is known (see, for example, Patent Document 3). It is preferable because the retardation Ro and the retardation Rt in the thickness direction can be controlled. However, it has been found that when an antiglare layer is directly coated on the optically anisotropic layer, wet heat durability adhesion deteriorates. In order to avoid this, it is conceivable that another optical film provided with an antiglare layer is adhered on the optically anisotropic layer with an adhesive, but this is disadvantageous in terms of man-hours and costs. Alternatively, there is a method of performing surface processing on the back surface of the optically anisotropic layer and sticking the optically anisotropic layer side to the polarizer with an adhesive, but it is not easy to adhere to both the polarizer and the liquid crystal After all, it takes man-hours and costs.

防眩層自身の内部散乱によるクロストークの発生がないλ/4板機能を有する防眩性フィルム、及び厚み方向のリターデーションRtを制御するため光学異方性層を設けたλ/4板上へ直接防眩層を設けても、湿熱耐久密着性劣化がないλ/4板機能を有する防眩性フィルムの出現が望まれている状況にある。   On a λ / 4 plate provided with an anti-glare film having a λ / 4 plate function that does not cause crosstalk due to internal scattering of the anti-glare layer itself, and an optically anisotropic layer for controlling retardation Rt in the thickness direction Even if an antiglare layer is provided directly on the surface, there is a demand for the appearance of an antiglare film having a λ / 4 plate function that does not deteriorate wet heat durability adhesion.

特開平8−201942号公報Japanese Patent Laid-Open No. 8-201942 特開2008−83307号公報JP 2008-83307 A 特許3734211号公報Japanese Patent No. 3734211

従って本発明の目的は、防眩層自身の内部散乱によるクロストークの発生がないλ/4板機能を有する防眩性フィルム、また厚み方向のリターデーションRtを制御するため光学異方性層を設けたλ/4板上へ直接防眩層を設けても、湿熱耐久密着性劣化がない防眩性フィルムを提供することにある。   Accordingly, an object of the present invention is to provide an antiglare film having a λ / 4 plate function that does not generate crosstalk due to internal scattering of the antiglare layer itself, and an optically anisotropic layer to control the retardation Rt in the thickness direction. An object of the present invention is to provide an antiglare film that does not deteriorate wet heat durability even when an antiglare layer is provided directly on the provided λ / 4 plate.

更には、上記防眩性フィルムの製造方法を提供することにあり、該防眩性フィルムを用いた偏光板、立体画像表示装置を提供することにある。   Furthermore, it is in providing the manufacturing method of the said anti-glare film, and providing the polarizing plate and stereoscopic image display apparatus using this anti-glare film.

本発明者は、上記課題に対して鋭意検討した結果、従来の防眩層のように微粒子を用いて表面に凹凸をつけるのではなく、基材フィルムの長手方向に周期を持たず不規則な形状で不規則な突起形状を微粒子を用いずに形成することによって、内部散乱を低減しクロストークを改良できることを見出した。微粒子を用いると、微粒子と防眩層を形成する樹脂との屈折率が異なるため、両者の屈折率の違いや微粒子の凝集によって内部散乱に起因したヘイズ(内部ヘイズ)が発生し易い。   As a result of earnestly examining the above problems, the inventor does not have irregularities on the surface using fine particles as in the conventional antiglare layer, but has no periodicity in the longitudinal direction of the base film and is irregular. It has been found that by forming irregularly shaped protrusions without using fine particles, internal scattering can be reduced and crosstalk can be improved. When fine particles are used, the refractive index of the fine particles and the resin forming the anti-glare layer are different, so that haze (internal haze) due to internal scattering is likely to occur due to the difference in refractive index between them and aggregation of the fine particles.

尚、虹縞模様(干渉)の発生を避けるためには上記突起形状は不規則な形状でなくてはならず、エンボス型押しのような突起形状が規則的になる形成方法は好ましくない。   In order to avoid the occurrence of rainbow stripes (interference), the shape of the protrusion must be irregular, and a formation method in which the protrusion shape is regular, such as embossing embossing, is not preferable.

また、本発明に係る微粒子を用いない防眩層であると光学異方性層上へ該防眩層を直接塗設することが可能となり、湿熱耐久密着性劣化がない防眩性フィルムを提供することできることも見出した。   In addition, when the antiglare layer does not use the fine particles according to the present invention, the antiglare layer can be directly coated on the optically anisotropic layer, and an antiglare film having no wet heat durability adhesion deterioration is provided. I also found that I can do it.

これは推測ではあるが、本発明の微粒子を用いない防眩層塗布液が、微粒子を含まないことに加え、防眩層成分である低粘度樹脂を高温乾燥させる工程により、塗設時に液晶層の配向を変えることなく樹脂が基材まで到達密着して、基材/光学異方性層の熱による剥れを抑制するものと考えられる。   Although this is speculated, the antiglare layer coating solution that does not use the fine particles of the present invention does not contain fine particles, and in addition, a liquid crystal layer is applied during coating by a step of drying a low-viscosity resin that is a component of the antiglare layer at a high temperature. It is considered that the resin reaches the base material without changing the orientation of the base material and adheres to the base material to suppress peeling of the base material / optically anisotropic layer due to heat.

本発明の上記課題は以下の構成により達成される。   The above object of the present invention is achieved by the following configurations.

1.下記面内リターデーションRo(550)が100〜160nmの範囲内にあり、基材フィルム長手方向に対する配向角θが40〜50°の範囲内にある基材フィルム上に、防眩層を有する防眩性フィルムであって、該防眩層が突起形状を有し、該突起形状が基材フィルムの長手方向に周期を持たず不規則な形状で不規則に配置されており、かつ防眩層の算術平均粗さRaが25〜300nmであり、かつ防眩層の内部散乱に起因するヘイズが0〜1.0%であることを特徴とする防眩性フィルム。   1. An antiglare layer having an antiglare layer on a base film having the following in-plane retardation Ro (550) in the range of 100 to 160 nm and an orientation angle θ with respect to the longitudinal direction of the base film in the range of 40 to 50 °. A glare-proof film, wherein the anti-glare layer has a protrusion shape, the protrusion shape is irregularly arranged in an irregular shape without a period in the longitudinal direction of the base film, and the anti-glare layer The antiglare film is characterized by having an arithmetic average roughness Ra of 25 to 300 nm and a haze due to internal scattering of the antiglare layer of 0 to 1.0%.

Ro(550)=(nx−ny)×d (式中、nxはフィルム面内における遅相軸x方向における屈折率、nyはフィルム面内方向であり、x方向に直行するy方向における屈折率、dはフィルムの膜厚(nm)を表す。屈折率は23℃・55%RHにおいて、測定波長550nmで測定する。)
2.前記防眩層が実質的に微粒子を含有しないことを特徴とする前記1に記載の防眩性フィルム。
Ro (550) = (nx−ny) × d (where nx is the refractive index in the slow axis x direction in the film plane, ny is the film in-plane direction, and the refractive index in the y direction perpendicular to the x direction) D represents the film thickness (nm), and the refractive index is measured at 23 ° C. and 55% RH at a measurement wavelength of 550 nm.)
2. 2. The antiglare film as described in 1 above, wherein the antiglare layer contains substantially no fine particles.

3.前記基材フィルムは液晶性分子から形成された光学異方性層を有し、該光学異方性層上に直接前記防眩層を設けたことを特徴とする前記1または2に記載の防眩性フィルム。   3. 3. The anti-glare layer according to 1 or 2 above, wherein the base film has an optically anisotropic layer formed from liquid crystalline molecules, and the antiglare layer is provided directly on the optically anisotropic layer. Dazzle film.

4.偏光子の両側の面にλ/4板を有する偏光板であって、一方の面に前記1〜3の何れか1項に記載の防眩性フィルムを有することを特徴とする偏光板。   4). A polarizing plate having λ / 4 plates on both sides of a polarizer, wherein the anti-glare film according to any one of 1 to 3 is provided on one side.

5.前記4に記載の偏光板を有することを特徴とする立体画像表示装置。   5. 5. A stereoscopic image display device comprising the polarizing plate described in 4 above.

6.バックライトとして有機EL素子を使用したことを特徴とする前記5に記載の立体画像表示装置。   6). 6. The stereoscopic image display device according to 5 above, wherein an organic EL element is used as a backlight.

7.前記1〜3のいずれか1項に記載の防眩性フィルムを製造する防眩性フィルムの製造方法であって、25℃における粘度が30〜2500mPa・sの範囲内にある活性線硬化型樹脂を含有する防眩層を、少なくとも塗布工程、乾燥工程及び硬化工程を経由して形成し、かつ前記乾燥工程における減率乾燥区間の温度を90〜140℃の範囲内に維持した条件下で処理することを特徴とする防眩性フィルムの製造方法。   7). 4. An anti-glare film production method for producing the anti-glare film according to any one of 1 to 3, wherein the viscosity at 25 ° C. is in the range of 30 to 2500 mPa · s. The anti-glare layer containing is formed at least through the coating process, the drying process, and the curing process, and is processed under the condition that the temperature of the decreasing rate drying section in the drying process is maintained within the range of 90 to 140 ° C. A method for producing an antiglare film, characterized by comprising:

本発明によれば、λ/4板上に設けられた防眩層自身の内部散乱によるクロストークの発生がない防眩性フィルム、また厚み方向のリターデーションRtを制御するため光学異方性層を設けたλ/4板上へ直接防眩層を設けても、湿熱耐久密着性劣化がない防眩性フィルムを提供することができる。   According to the present invention, an anti-glare film that does not generate crosstalk due to internal scattering of the anti-glare layer provided on the λ / 4 plate, and an optically anisotropic layer for controlling the retardation Rt in the thickness direction. Even if the antiglare layer is directly provided on the λ / 4 plate provided with the antiglare film, there is no wet heat durability adhesion deterioration.

更には、上記防眩性フィルムの製造方法を提供することができ、該防眩性フィルムを用いた偏光板、立体画像表示装置を提供することができる。   Furthermore, the manufacturing method of the said anti-glare film can be provided, and the polarizing plate and stereoscopic image display apparatus using this anti-glare film can be provided.

本発明に係る防眩層の不規則な突起を示す概略図である。It is the schematic which shows the irregular protrusion of the glare-proof layer based on this invention. 突起の説明図である。It is explanatory drawing of protrusion. 本発明の製造方法に用いるテンターのレールの軌道(レールパターン)を示す概略図である。It is the schematic which shows the track | orbit (rail pattern) of the rail of the tenter used for the manufacturing method of this invention. 本発明に用いる斜め延伸テンターの模式図である。It is a schematic diagram of the diagonally stretched tenter used for this invention. 防眩層表面の光学干渉式表面粗さ計による観察図である。It is an observation figure by the optical interference type surface roughness meter of the glare-proof layer surface.

以下本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail, but the present invention is not limited thereto.

<防眩性フィルム>
本発明でいう防眩性フィルムとは、基材フィルムの表面に反射した像や外光の輪郭をぼかす層を設けることで、液晶ディスプレイ、有機ELディスプレイ、プラズマディスプレイといった画像表示装置等の使用時に、外光や反射像の映り込みが気にならないようにしたフィルムのことである。
<Anti-glare film>
The antiglare film referred to in the present invention is a layer that blurs the outline of reflected images and external light on the surface of the base film, and is used when an image display device such as a liquid crystal display, an organic EL display, or a plasma display is used. It is a film that prevents the reflection of external light and reflected images.

以下、本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although the form for implementing this invention is demonstrated in detail, this invention is not limited to these.

(表面形状)
本発明の防眩性フィルムは、少なくとも防眩層と下記面内リターデーションRo(550)が100〜160nmの範囲内にあり、基材フィルム長手方向に対する配向角θが40〜50°の範囲内にある基材フィルムから構成され、該防眩層が表面凹凸を形成する突起形状を有し、その突起形状が長手方向に周期を持たず、不規則な形状の突起であり、その配置も不規則な配置であることを特徴とする。
(Surface shape)
The antiglare film of the present invention has at least an antiglare layer and the following in-plane retardation Ro (550) in the range of 100 to 160 nm, and the orientation angle θ with respect to the longitudinal direction of the base film is in the range of 40 to 50 °. The antiglare layer has a protrusion shape that forms surface irregularities, the protrusion shape is a protrusion having an irregular shape without a period in the longitudinal direction, and the arrangement thereof is not good. It is a regular arrangement.

本発明の防眩性フィルムの防眩層が有する「長手方向に周期を持たない不規則な形状の突起」とは、表面凹凸が長手方向に周期性を持たず、形も大きさも定まらない様々な形状の突起をさす。従って、例えば5cm程度の直径を持つエンボスロール等を押し当てて長手方向に凹凸構造を形成した場合に形成される、15cm程度の周期性を有するような突起形状は本発明に係る突起形状には含まれない。   “An irregularly shaped protrusion having no periodicity in the longitudinal direction” of the antiglare layer of the antiglare film of the present invention means that the surface irregularities have no periodicity in the longitudinal direction and the shape and size are not determined. A protrusion with a proper shape. Therefore, for example, when a concavo-convex structure is formed in the longitudinal direction by pressing an embossing roll or the like having a diameter of about 5 cm, a projection shape having a periodicity of about 15 cm is included in the projection shape according to the present invention. Not included.

具体的には、これらに限定はされないが、例えば、図1に示す幅も高さも異なる突起が、不規則な形状の突起として例示される。また、「不規則な配置」とは、前記不規則な傾向の突起が規則的に(例えば、等間隔などで)配置されているのではなく、ランダムな間隔で不規則に配置されており、等方的であっても、異方的であってもよいことをさす。   Specifically, although not limited thereto, for example, protrusions having different widths and heights illustrated in FIG. 1 are exemplified as irregularly shaped protrusions. The “irregular arrangement” means that the irregularly-protruding protrusions are not regularly arranged (for example, at regular intervals), but are irregularly arranged at random intervals, It may be isotropic or anisotropic.

本発明の防眩性フィルムは、防眩層の内部散乱に起因するヘイズ(以後、内部ヘイズとも記載する)が0〜1.0%であることを一つの特徴としている。前記した突起形状を形成する際、前記範囲の内部ヘイズにコントロールし、かつ突起形状の算術平均粗さRaを25〜300nmの範囲に制御することで、本発明の目的効果が良好に発揮される。好ましくは、内部ヘイズは0.60〜1.0%である。   One feature of the antiglare film of the present invention is that the haze caused by internal scattering of the antiglare layer (hereinafter also referred to as internal haze) is 0 to 1.0%. When forming the above-described protrusion shape, the object effect of the present invention is satisfactorily exhibited by controlling the internal haze within the above range and controlling the arithmetic average roughness Ra of the protrusion shape within the range of 25 to 300 nm. . Preferably, the internal haze is 0.60 to 1.0%.

内部ヘイズは以下の手順で測定することができる。防眩性フィルムの表面および裏面にシリコーンオイルを数滴滴下し、厚さ1mmのガラス板(ミクロスライドガラス品番S 9111、MATSUNAMI製)2枚で、裏表より挟む。表裏をガラスで挟み込んだ防眩性フィルムを、完全に2枚のガラス板と光学的に密着させ、この状態でヘイズ(Ha)をJIS−K7105及びJIS−K7136に準じて測定する。次に、ガラス板2枚の間にシリコーンオイルのみ数滴滴下して挟みこんでガラスヘイズ(Hb)を測定する。そして、防眩性フィルムをガラスで挟み込んだヘイズ(Ha)から、ガラスヘイズ(Hb)を引きくことで、内部ヘイズ(Hi)は算出できる。また、表面ヘイズ(フィルムの表面散乱に起因するヘイズ)は0.50〜20%であることが好ましい。表面ヘイズは、全ヘイズから内部ヘイズを引くことで求められる。全ヘイズは0.50%〜20%であることが好ましい。   The internal haze can be measured by the following procedure. A few drops of silicone oil are dropped on the front and back surfaces of the antiglare film and sandwiched between two glass plates (micro slide glass product number S 9111, manufactured by MATSANAMI) having a thickness of 1 mm from the front and back. The antiglare film having the front and back sandwiched by glass is optically closely adhered to two glass plates, and the haze (Ha) is measured according to JIS-K7105 and JIS-K7136 in this state. Next, several drops of silicone oil are dropped between two glass plates and sandwiched to measure glass haze (Hb). And internal haze (Hi) is computable by drawing glass haze (Hb) from the haze (Ha) which pinched | interposed the glare-proof film with glass. Moreover, it is preferable that surface haze (haze resulting from surface scattering of a film) is 0.50 to 20%. The surface haze is obtained by subtracting the internal haze from the total haze. The total haze is preferably 0.50% to 20%.

本発明の防眩性フィルムは、防眩層の算術平均粗さRa(JIS B0601:1994)が25〜300nmで有ることをもう一つの特徴としている。算術平均粗さRaは、更に好ましくは25〜130nmnmであり、特に好ましくは65〜130nmである。前記範囲の算術平均粗さRaとするため突起形状の高さは、20nm〜4μm、が好ましい。また突起形状の幅は50nm〜300μm、好ましくは、50nm〜100μmである。上記突起形状の高さ、及び幅は断面観察から求めることができる。よりわかりやすくするために、図2に突起の説明図を示した。図2に示されているように、断面観察の画像に中心線aを引き、山の麓を形成する線b、cと中心線aとの2つの交点の距離を、突起サイズの幅tとした。また、山頂と中心線aまでの距離を突起サイズの高さhとして求められる。   Another feature of the antiglare film of the present invention is that the arithmetic average roughness Ra (JIS B0601: 1994) of the antiglare layer is 25 to 300 nm. The arithmetic average roughness Ra is more preferably 25 to 130 nm, and particularly preferably 65 to 130 nm. In order to obtain the arithmetic average roughness Ra within the above range, the height of the protrusion shape is preferably 20 nm to 4 μm. The width of the protrusion shape is 50 nm to 300 μm, preferably 50 nm to 100 μm. The height and width of the protrusion shape can be obtained from cross-sectional observation. In order to make it easier to understand, FIG. 2 shows an explanatory view of the protrusion. As shown in FIG. 2, the center line a is drawn on the cross-sectional observation image, and the distance between the two intersections of the lines b and c and the center line a forming the mountain ridge is defined as the protrusion size width t and did. Further, the distance from the summit to the center line a is obtained as the height h of the protrusion size.

本発明の防眩性フィルムの防眩層の10点平均粗さRzは、中心線平均粗さRaの10倍以下、平均山谷距離Smは5〜150μmが好ましく、より好ましくは20〜100μm、凹凸最深部からの凸部高さの標準偏差は0.5μm以下、中心線を基準とした平均山谷距離Smの標準偏差が20μm以下、傾斜角0〜5度の面は10%以上が好ましい。このように設計することで、防眩層の白呆け抑制効果が得られる。前記した算術平均粗さRa、Sm、Rzは、JIS B0601:1994に準じて光学干渉式表面粗さ計(たとえば、RST/PLUS、WYKO社製、Zygo社製 New View 5030)で測定した値である。   The 10-point average roughness Rz of the antiglare layer of the antiglare film of the present invention is 10 times or less of the centerline average roughness Ra, and the average mountain valley distance Sm is preferably 5 to 150 μm, more preferably 20 to 100 μm, unevenness. The standard deviation of the height of the convex part from the deepest part is preferably 0.5 μm or less, the standard deviation of the average mountain-valley distance Sm with respect to the center line is 20 μm or less, and the surface with an inclination angle of 0 to 5 degrees is preferably 10% or more. By designing in this way, the effect of suppressing whitening of the antiglare layer can be obtained. The arithmetic average roughness Ra, Sm, Rz is a value measured with an optical interference surface roughness meter (for example, RST / PLUS, manufactured by WYKO, New View 5030 manufactured by Zygo) according to JIS B0601: 1994. is there.

また、防眩層の尖度(Rku)は3以下が好ましい。尖度(Rku)とは、凹凸形状の凸状部分の形状を規定するパラメータであり、この尖度(Rku)の値が大きい程、凹凸形状の凸状部分の形状は、針のように尖った形状であることとなる。尖度(Rku)3を超えるものは、白ボケが発生しやすい。防眩層の尖度(Rku)は、更に好ましくは1.5〜2.8である。また、表面の歪度(Rsk)の絶対値は1以下であることが好ましい。前記歪度(Rsk)は、凹凸形状の平均面に対する凸状部分と凹状部分との割合を示すパラメータであり、凹凸形状が、平均面に対して凸状部分が多いとプラスに大きな値となり、平均面に対して凹状部分が多いとマイナスに大きな値となる。歪度(Rsk)の絶対値が1を超えるものは、白ボケが発生しやすい。歪度(Rsk)の絶対値は、好ましくは0.01〜0.5である。なお、尖度(Rku)及び歪度(Rsk)は、上記光学干渉式表面粗さ計を用いて計測できる。   The kurtosis (Rku) of the antiglare layer is preferably 3 or less. The kurtosis (Rku) is a parameter that defines the shape of the convex portion of the concavo-convex shape. The larger the kurtosis (Rku) value, the more the shape of the convex portion of the concavo-convex shape is pointed like a needle. It will be a different shape. If the kurtosis (Rku) exceeds 3, white blurring tends to occur. The kurtosis (Rku) of the antiglare layer is more preferably 1.5 to 2.8. Further, the absolute value of the degree of distortion (Rsk) of the surface is preferably 1 or less. The skewness (Rsk) is a parameter indicating the ratio of the convex portion and the concave portion with respect to the average surface of the concavo-convex shape, and the concavo-convex shape becomes a positively large value when there are many convex portions with respect to the average surface, If there are many concave portions with respect to the average surface, the value becomes negatively large. When the absolute value of the skewness (Rsk) exceeds 1, white blur tends to occur. The absolute value of the skewness (Rsk) is preferably 0.01 to 0.5. In addition, kurtosis (Rku) and skewness (Rsk) can be measured using the said optical interference type surface roughness meter.

なお、上述したような特徴を有する防眩層の上記表面形状は、例えば、防眩層塗布組成物の乾燥工程における減率乾燥区間の処理温度を高温制御し、樹脂の塗膜対流を発生させ、防眩層表面に不均一な状態を作り、この不均一な表面状態で硬化し、塗膜を形成する方法などによって得ることができる。このような方法で塗膜を形成することで、防眩層の膜強度が向上する。また、防眩層塗布組成物の乾燥工程における減率乾燥区間の処理温度を高温条件に制御する方法は、本発明の目的効果に加えて、生産性にも優れる点で好ましい。   In addition, the surface shape of the antiglare layer having the above-described characteristics is, for example, controlling the processing temperature in the decreasing rate drying section in the drying process of the antiglare layer coating composition to generate a resin film convection. It can be obtained by a method of forming a non-uniform state on the surface of the antiglare layer, curing in this non-uniform surface state, and forming a coating film. By forming the coating film by such a method, the film strength of the antiglare layer is improved. In addition to the objective effect of the present invention, the method of controlling the treatment temperature in the decreasing rate drying section in the drying process of the antiglare layer coating composition is preferable in terms of excellent productivity.

(防眩層)
本発明に係る防眩層は活性線硬化樹脂を含有すること、すなわち、紫外線や電子線のような活性線(活性エネルギー線ともいう)照射により、架橋反応を経て硬化する樹脂を主たる成分とする層であることが好ましい。
(Anti-glare layer)
The antiglare layer according to the present invention contains an actinic radiation curable resin, that is, a resin that is cured through a crosslinking reaction when irradiated with an actinic ray (also referred to as an actinic energy ray) such as an ultraviolet ray or an electron beam. A layer is preferred.

活性線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性線を照射することによって硬化させて活性線硬化樹脂層が形成される。   As the actinic radiation curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and an actinic radiation curable resin layer is formed by curing by irradiation with actinic radiation such as ultraviolet rays or electron beams. The

活性線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する樹脂が機械的膜強度(耐擦傷性、鉛筆硬度)に優れる点から好ましい。   Typical examples of the actinic radiation curable resin include an ultraviolet curable resin and an electron beam curable resin, but the resin that is cured by ultraviolet irradiation is excellent in mechanical film strength (abrasion resistance, pencil hardness). preferable.

紫外線硬化性樹脂としては、例えば、紫外線硬化型アクリレート系樹脂、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂等が好ましく用いられる。中でも紫外線硬化型アクリレート系樹脂が好ましい。   Examples of the ultraviolet curable resin include an ultraviolet curable acrylate resin, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet ray. A curable epoxy resin or the like is preferably used. Of these, ultraviolet curable acrylate resins are preferred.

紫外線硬化型アクリレート系樹脂としては、多官能アクリレートが好ましい。該多官能アクリレートとしては、ペンタエリスリトール多官能アクリレート、ジペンタエリスリトール多官能アクリレート、ペンタエリスリトール多官能メタクリレート、およびジペンタエリスリトール多官能メタクリレートよりなる群から選ばれることが好ましい。ここで、多官能アクリレートとは、分子中に2個以上のアクリロイルオキシ基またはメタクロイルオキシ基を有する化合物である。多官能アクリレートのモノマーとしては、例えばエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリ/テトラアクリレート、ジトリメチロールプロパンテトラアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、活性エネルギー線硬化型のイソシアヌレート誘導体等が好ましく挙げられる。   As the ultraviolet curable acrylate resin, a polyfunctional acrylate is preferable. The polyfunctional acrylate is preferably selected from the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate. Here, the polyfunctional acrylate is a compound having two or more acryloyloxy groups or methacryloyloxy groups in the molecule. Examples of the polyfunctional acrylate monomer include ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethane triacrylate. , Tetramethylolmethane tetraacrylate, pentaglycerol triacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tri / tetraacrylate, ditrimethylolpropane tetraacrylate, ethoxylated pentaerythritol tetraacrylate, pentaerythritol tetraacrylate, glycerol triacrylate relay , Dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, etc. isocyanurate derivatives of the active energy ray-curable are preferably exemplified.

活性エネルギー線硬化型のイソシアヌレート誘導体としては、イソシアヌル酸骨格に1個以上のエチレン性不飽和基が結合した構造を有する化合物であればよく、特に制限はないが、同一分子内に3個以上のエチレン性不飽和基及び1個以上のイソシアヌレート環を有する化合物が好ましい。具体的には、トリス(アクリロイルオキシエチル)イソシアヌレート等が挙げられる。   The active energy ray-curable isocyanurate derivative is not particularly limited as long as it is a compound having a structure in which one or more ethylenically unsaturated groups are bonded to the isocyanuric acid skeleton, but three or more in the same molecule. A compound having an ethylenically unsaturated group and one or more isocyanurate rings is preferred. Specific examples include tris (acryloyloxyethyl) isocyanurate.

これらの市販品としては、アデカオプトマーNシリーズ((株)ADEKA製);サンラッドH−601、RC−750、RC−700、RC−600、RC−500、RC−611、RC−612(三洋化成工業(株)製);アロニックスM−6100、M−8030、M−8060、アロニックスM−215、アロニックスM−315、アロニックスM−313、アロニックスM−327(東亞合成(株)製);NK−エステルA−TMM−3L、NK−エステルAD−TMP、NK−エステルATM−35E、NKエステルA−DOG、NKエステルA−IBD−2E、A−9300、A−9300−1CL(新中村化学工業(株));ライトアクリレートTMP−A、PE−3A(共栄社化学)などが挙げられる。   As these commercial products, Adekaoptomer N series (manufactured by ADEKA Corporation); Sun Rad H-601, RC-750, RC-700, RC-600, RC-500, RC-611, RC-612 (Sanyo) Aronix M-6100, M-8030, M-8060, Aronix M-215, Aronix M-315, Aronix M-313, Aronix M-327 (manufactured by Toagosei Co., Ltd.); NK -Ester A-TMM-3L, NK-ester AD-TMP, NK-ester ATM-35E, NK ester A-DOG, NK ester A-IBD-2E, A-9300, A-9300-1CL (Shin Nakamura Chemical Co., Ltd.) Co., Ltd.); light acrylate TMP-A, PE-3A (Kyoeisha Chemical) and the like.

また、上記活性線硬化樹脂を単独または2種以上混合した活性線硬化型樹脂組成物(活性線硬化樹脂と溶剤以外の添加剤からなる)の25℃における粘度は、好ましくは30mPa・s以上、2500mPa・s以下である。このような低粘度の樹脂組成物を用いることで、前述した突起形状と算術平均粗さRaが得られやすい。また、樹脂組成物の粘度が30mPa・s以上の粘度であれば高官能数のモノマーを用いることが出来て、十分高い硬化性が得られ、2500mPa・s以下の粘度であれば、乾燥工程において樹脂組成物の十分な流動性が得られやすい。   Further, the viscosity at 25 ° C. of the actinic radiation curable resin composition (consisting of the actinic radiation curable resin and an additive other than the solvent) in which the actinic radiation curable resin is used alone or in combination of two or more is preferably 30 mPa · s or more, It is 2500 mPa · s or less. By using such a low-viscosity resin composition, the above-described protrusion shape and arithmetic average roughness Ra are easily obtained. Moreover, if the viscosity of the resin composition is 30 mPa · s or more, a monomer having a high functionality can be used, and sufficiently high curability is obtained. If the viscosity is 2500 mPa · s or less, in the drying step. Sufficient fluidity of the resin composition is easily obtained.

なお、上記粘度は、B型粘度計を用いて25℃の条件にて測定した値である。   In addition, the said viscosity is the value measured on 25 degreeC conditions using the B-type viscometer.

また、単官能アクリレートを用いても良い。単官能アクリレートとしては、イソボロニルアクリレート、2−ヒドロキシ−3−フェノキシプロピルアクリレート、イソステアリルアクリレート、ベンジルアクリレート、エチルカルビトールアクリレート、フェノキシエチルアクリレート、ラウリルアクリレート、イソオクチルアクリレート、テトラヒドロフルフリルアクリレート、ベヘニルアクリレート、4−ヒドロキシブチルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、シクロヘキシルアクリレート、マレイミドアクリレート、N−アクリロイルオキシエチルヘキサヒドロフタルイミドなどが挙げられる。このような単官能アクリレートは、日本化成工業株式会社、新中村化学工業株式会社、大阪有機化学工業株式会社、東亞合成株式会社等から入手できる。   A monofunctional acrylate may also be used. Monofunctional acrylates include isobornyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, isostearyl acrylate, benzyl acrylate, ethyl carbitol acrylate, phenoxyethyl acrylate, lauryl acrylate, isooctyl acrylate, tetrahydrofurfuryl acrylate, behenyl Examples include acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, cyclohexyl acrylate, maleimide acrylate, and N-acryloyloxyethyl hexahydrophthalimide. Such monofunctional acrylates can be obtained from Nippon Kasei Kogyo Co., Ltd., Shin-Nakamura Chemical Co., Ltd., Osaka Organic Chemical Co., Ltd., Toagosei Co., Ltd., etc.

単官能アクリレートを用いる場合には、多官能アクリレートと単官能アクリレートの含有質量比で、多官能アクリレート:単官能アクリレート=80:20〜99:2で含有することが好ましい。   When using a monofunctional acrylate, it is preferable to contain polyfunctional acrylate: monofunctional acrylate = 80: 20 to 99: 2 in terms of the mass ratio of polyfunctional acrylate and monofunctional acrylate.

また、本発明の防眩層は、前記活性線硬化型樹脂に対し非相溶性である樹脂を実質的に含有していないことが、本発明の効果を得られ易いこと、内部ヘイズの低下によるコントラスト向上のために好ましい。   In addition, the antiglare layer of the present invention does not substantially contain a resin that is incompatible with the actinic radiation curable resin, the effect of the present invention can be easily obtained, and the internal haze is reduced. It is preferable for improving the contrast.

なお、本発明において、「非相溶性」とは、二種類以上の樹脂の溶融混合物の融解温度Tm又はガラス転移点Tgを測定・観察したときに、当該溶融混合物を構成する樹脂それぞれ単独のピークが観察されるものをいう。また、透過型電子顕微鏡観察においてそれぞれの相が実質的に観察されるものをいう。一方、「相溶性」とは、同種又は二種類以上の樹脂の溶融混合物の融解温度Tm又はガラス転移点Tgを測定・観察したときに、当該溶融混合物のピークが1個以下観察されるものをいう。   In the present invention, “incompatible” means that each of the resins constituting the molten mixture has a single peak when the melting temperature Tm or the glass transition point Tg of the molten mixture of two or more resins is measured and observed. Means what is observed. Further, it means that each phase is substantially observed in transmission electron microscope observation. On the other hand, “compatible” means that one or less peaks of the molten mixture are observed when the melting temperature Tm or the glass transition point Tg of the molten mixture of the same or two or more resins is measured and observed. Say.

本発明において、活性線硬化型樹に対し非相溶性である樹脂としては、(メタ)アクリル系やアクリル系の単量体を重合又は共重合して得られる樹脂やポリエステル樹脂、更に、後述する基材フィルムにおいて用いられる熱可塑性アクリル樹脂、セルロースエステル樹脂などが挙げられる。   In the present invention, examples of the resin that is incompatible with the actinic ray curable tree include resins and polyester resins obtained by polymerizing or copolymerizing (meth) acrylic or acrylic monomers, and will be described later. The thermoplastic acrylic resin used in a base film, a cellulose ester resin, etc. are mentioned.

非相溶性樹脂を実質的に含有しないとは、防眩層中の含有量が、フィルム基材からの抽出物成分を除き、0.01質量%以下をいう。   “Containing substantially no incompatible resin” means that the content in the antiglare layer is 0.01% by mass or less excluding the extract component from the film substrate.

また、防眩層には活性線硬化樹脂の硬化促進のため、光重合開始剤を含有することが好ましい。光重合開始剤量としては、質量比で、光重合開始剤:活性線硬化樹脂=20:100〜0.01:100で含有することが好ましい。光重合開始剤としては、具体的には、具体的には、アルキルフェノン系、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α−アミロキシムエステル、チオキサントン等および、これらの誘導体を挙げることができるが、特にこれらに限定されるものではない。   Further, the antiglare layer preferably contains a photopolymerization initiator in order to accelerate the curing of the actinic radiation curable resin. The amount of the photopolymerization initiator is preferably contained in a mass ratio of photopolymerization initiator: active ray curable resin = 20: 100 to 0.01: 100. Specific examples of the photopolymerization initiator include alkylphenone series, acetophenone, benzophenone, hydroxybenzophenone, Michler ketone, α-amyloxime ester, thioxanthone and the like, and derivatives thereof. In particular, it is not limited to these.

このような光重合開始剤は市販品を用いてもよく、例えば、例えば、BASFジャパン(株)製のイルガキュア184、イルガキュア907、イルガキュア651などが好ましい例示として挙げられる。   A commercial item may be used for such a photoinitiator, for example, Irgacure 184, Irgacure 907, Irgacure 651, etc. by BASF Japan Ltd. are mentioned as a preferable illustration.

また防眩層は、本発明の目的効果が得られにくいことや、内部ヘイズの上昇によりコントラストの低下を招くことから、無機微粒子や有機微粒子といった微粒子を実質的に含有しないことが好ましい。なお、本発明において、微粒子を実質的に含有しないとは、防眩層中に含まれる微粒子の含有量が、0.01質量%以下を言う。また防眩層には、帯電防止性を付与するために導電剤が含まれていても良い。好ましい導電剤としてはπ共役系導電性ポリマーが挙げられる。また、イオン液体も導電性化合物として好ましく用いられる。   In addition, the antiglare layer preferably does not substantially contain fine particles such as inorganic fine particles and organic fine particles because the objective effect of the present invention is difficult to obtain and the contrast is lowered due to an increase in internal haze. In the present invention, “substantially not containing fine particles” means that the content of fine particles contained in the antiglare layer is 0.01% by mass or less. Further, the antiglare layer may contain a conductive agent in order to impart antistatic properties. A preferable conductive agent is a π-conjugated conductive polymer. An ionic liquid is also preferably used as the conductive compound.

防眩層には、塗布性の観点から、シリコーン系界面活性剤、フッ素系界面活性剤或いはポリオキシエーテル等の非イオン性界面活性剤、アニオン界面活性剤、及びフッ素−シロキサングラフト化合物を含有させても良い。   The antiglare layer contains a nonionic surfactant such as a silicone surfactant, a fluorosurfactant or polyoxyether, an anionic surfactant, and a fluorine-siloxane graft compound from the viewpoint of applicability. May be.

フッ素−シロキサングラフト化合物とは、少なくともフッ素系樹脂に、シロキサン及び/またはオルガノシロキサン単体を含むポリシロキサン及び/またはオルガノポリシロキサンをグラフト化させて得られる共重合体の化合物をいう。このようなフッ素−シロキサングラフト化合物は、後述の実施例に記載されているような方法で調製することができる。あるいは、市販品としては、富士化成工業株式会社製のZX−022H、ZX−007C、ZX−049、ZX−047−D等を挙げることができる。またこれら成分は、塗布液中の固形分成分に対し、0.01〜3質量%の範囲で添加することが好ましい。   The fluorine-siloxane graft compound refers to a copolymer compound obtained by grafting polysiloxane containing siloxane and / or organosiloxane alone and / or organopolysiloxane to at least a fluorine-based resin. Such a fluorine-siloxane graft compound can be prepared by a method as described in Examples described later. Or as a commercial item, Fuji Chemical Industries Ltd. ZX-022H, ZX-007C, ZX-049, ZX-047-D etc. can be mentioned. Moreover, it is preferable to add these components in 0.01-3 mass% with respect to the solid content component in a coating liquid.

防眩層は、上記した防眩層を形成する成分を、溶剤で希釈して防眩層組成物(または防眩層塗布組成物とも言う)として、この防眩層組成物を以下の方法でフィルム基材上に塗布、乾燥、硬化して防眩層を設けることが好ましい。   The anti-glare layer is prepared by diluting the above-described components forming the anti-glare layer with a solvent as an anti-glare layer composition (also referred to as an anti-glare layer coating composition). It is preferable to provide an antiglare layer by coating, drying and curing on the film substrate.

溶剤としては、ケトン類(メチルエチルケトン、アセトン、シクロヘキサノン、メチルイソブチルケトンなど)、エステル類(酢酸メチル、酢酸エチル、酢酸ブチル、酢酸プロピル、プロピレングリコールモノメチルエーテルアセテートなど)、アルコール類(エタノール、メタノール、ブタノール、n−プロピルアルコール、イソプロピルアルコール、ジアセトンアルコール)、炭化水素類(トルエン、キシレン、ベンゼン、シクロヘキサン)、グリコールエーテル類(プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、エチレングリコールモノプロピルエーテルなど)などを好ましく用いることが出来る。また、これら溶剤の中でもエステル類、ケトン類、グリコールエーテル類或いはアルコール類が好ましい。前記活性線硬化樹脂100質量部に対して、20〜200質量部の範囲でこれら好ましい溶剤を用いることで、防眩層塗布組成物を基材フィルムに塗布後、防眩層塗布組成物の溶剤が蒸発しながら、防眩層を形成していく過程で、樹脂の対流が生じやすく、その結果、防眩層で、不規則な表面粗れが発現しやすく、前記算術平均粗さRaに制御しやすいため好ましい。   Solvents include ketones (methyl ethyl ketone, acetone, cyclohexanone, methyl isobutyl ketone, etc.), esters (methyl acetate, ethyl acetate, butyl acetate, propyl acetate, propylene glycol monomethyl ether acetate, etc.), alcohols (ethanol, methanol, butanol, etc.) , N-propyl alcohol, isopropyl alcohol, diacetone alcohol), hydrocarbons (toluene, xylene, benzene, cyclohexane), glycol ethers (propylene glycol monomethyl ether, propylene glycol monopropyl ether, ethylene glycol monopropyl ether, etc.), etc. Can be preferably used. Of these solvents, esters, ketones, glycol ethers or alcohols are preferred. By using these preferable solvents in the range of 20 to 200 parts by mass with respect to 100 parts by mass of the actinic radiation curable resin, after applying the antiglare layer coating composition to the base film, the solvent of the antiglare layer coating composition In the process of forming the antiglare layer while evaporating, convection of the resin is likely to occur, and as a result, irregular surface roughness is likely to appear in the antiglare layer, and the arithmetic average roughness Ra is controlled. It is preferable because it is easy to do.

防眩層の塗布量はウェット膜厚として0.1〜40μmが適当で、好ましくは、0.5〜30μmである。また、ドライ膜厚としては平均膜厚0.1〜30μm、好ましくは1〜20μm、特に好ましくは6〜15μmである。   The coating amount of the antiglare layer is suitably 0.1 to 40 μm, preferably 0.5 to 30 μm, as the wet film thickness. The dry film thickness is from 0.1 to 30 μm, preferably from 1 to 20 μm, particularly preferably from 6 to 15 μm.

防眩層の塗布方法は、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等の公知の方法を用いることが出来る。これら塗布方法を用いて防眩層を形成する防眩層組成物を塗布し、塗布後、乾燥し、活性線を照射(UV硬化処理とも言う)し、更に必要に応じて、UV硬化後に加熱処理することで形成できる。UV硬化後の加熱処理温度としては80℃以上が好ましく、更に好ましくは100℃以上であり、特に好ましくは120℃以上である。このような高温でUV硬化後の加熱処理を行うことで、鉛筆硬度に優れた防眩層を得ることができる。   As a method for applying the antiglare layer, known methods such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, and an ink jet method can be used. Using these coating methods, an antiglare layer composition for forming an antiglare layer is applied, dried after application, irradiated with actinic radiation (also referred to as UV curing treatment), and further heated after UV curing as necessary. It can be formed by processing. The heat treatment temperature after UV curing is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 120 ° C. or higher. By performing the heat treatment after UV curing at such a high temperature, an antiglare layer having excellent pencil hardness can be obtained.

本発明の防眩性フィルムは、前述したように25℃における粘度が30〜2500mPa・sの範囲内にある活性線硬化型樹脂を含有する防眩層を、少なくとも塗布工程、乾燥工程及び硬化工程を経由して形成し、かつ前記乾燥工程における減率乾燥区間の温度を90〜140℃の範囲内に維持した条件下で処理して本発明に係る突起形状を形成することが好ましい。   As described above, the antiglare film of the present invention comprises at least a coating process, a drying process, and a curing process, including an actinic radiation curable resin having a viscosity at 25 ° C. in the range of 30 to 2500 mPa · s. It is preferable that the protrusion shape according to the present invention is formed by processing under the condition that the temperature of the decreasing rate drying section in the drying step is maintained within the range of 90 to 140 ° C.

減率乾燥区間の温度を90℃以上、140℃以下とすることで、防眩層の形成時に塗膜樹脂中で対流が生じるため、その結果、防眩層表面に不規則な表面粗れが発現しやすく、前記算術平均粗さRaの範囲内に制御できるものである。   By setting the temperature of the decreasing rate drying section to 90 ° C. or more and 140 ° C. or less, convection occurs in the coating resin during formation of the anti-glare layer, and as a result, irregular surface roughness occurs on the anti-glare layer surface. It is easy to express and can be controlled within the range of the arithmetic average roughness Ra.

一般に乾燥プロセスは、乾燥が始まると、乾燥速度が一定の状態から徐々に減少する状態へと変化していくことが知られており、乾燥速度が一定の区間を恒率乾燥区間、乾燥速度が減少していく区間を減率乾燥区間と呼ぶ。恒率乾燥区間においては流入する熱量はすべて塗膜表面の溶媒蒸発に費やされており、塗膜表面の溶媒が少なくなると蒸発面が表面から内部に移動して減率乾燥区間に入る。これ以降は塗膜表面の温度が上昇し熱風温度に近づいていくため、活性線硬化型樹脂組成物の温度が上昇し、樹脂粘度が低下して流動性が増すと考えられる。   In general, it is known that the drying process changes from a constant state to a gradually decreasing state when drying starts. The decreasing section is called the decreasing rate drying section. In the constant rate drying section, the amount of heat flowing in is all consumed for solvent evaporation on the coating film surface, and when the solvent on the coating film surface decreases, the evaporation surface moves from the surface to the inside and enters the decreasing rate drying section. Thereafter, the temperature of the coating film surface rises and approaches the hot air temperature, so that the temperature of the actinic radiation curable resin composition rises, the resin viscosity decreases, and the fluidity increases.

UV硬化処理の光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。   As a light source for UV curing treatment, any light source that generates ultraviolet rays can be used without limitation. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.

照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常50〜1000mJ/cm、好ましくは50〜300mJ/cmである。 Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually 50 to 1000 mJ / cm 2 , preferably 50 to 300 mJ / cm 2 .

活性線を照射する際には、フィルムの搬送方向に張力を付与しながら行うことが好ましく、更に好ましくは幅方向にも張力を付与しながら行うことである。付与する張力は30〜300N/mが好ましい。張力を付与する方法は特に限定されず、バックロール上で搬送方向に張力を付与してもよく、テンターにて幅方向、または2軸方向に張力を付与してもよい。これによって更に平面性の優れたフィルムを得ることができる。   When irradiating actinic radiation, it is preferably performed while applying tension in the film transport direction, and more preferably while applying tension in the width direction. The tension to be applied is preferably 30 to 300 N / m. The method for applying tension is not particularly limited, and tension may be applied in the transport direction on the back roll, or tension may be applied in the width direction or biaxial direction by a tenter. Thereby, a film having further excellent flatness can be obtained.

また防眩層は、後述する基材フィルムで説明する紫外線吸収剤をさらに含有しても良い。紫外線吸収剤を含有する場合のフィルムの構成としては、防眩層が2層以上で構成され、かつ基材フィルムと接する防眩層に紫外線吸収剤を含有することが好ましい。   Further, the antiglare layer may further contain an ultraviolet absorber described in the base film described later. As a structure of the film in the case of containing an ultraviolet absorber, the antiglare layer is preferably composed of two or more layers, and the antiglare layer in contact with the base film preferably contains the ultraviolet absorber.

紫外線吸収剤の含有量としては質量比で、紫外線吸収剤:防眩層構成樹脂=0.01:100〜10:100で含有することが好ましい。2層以上設ける場合、基材フィルムと接する防眩層の膜厚は、0.05〜2μmの範囲であることが好ましい。2層以上の積層は同時重層で形成しても良い。同時重層とは、乾燥工程を経ずに基材上に2層以上の防眩層をwet on wetで塗布して、防眩層を形成することである。第1防眩層の上に乾燥工程を経ずに、第2防眩層をwet on wetで積層するには、押し出しコーターにより逐次重層するか、若しくは複数のスリットを有するスロットダイにて同時重層を行えばよい。   The content of the ultraviolet absorber is preferably a mass ratio, and the ultraviolet absorber: antiglare layer constituting resin = 0.01: 100 to 10: 100. When providing two or more layers, it is preferable that the film thickness of the glare-proof layer which contact | connects a base film is the range of 0.05-2 micrometers. Two or more layers may be formed as a simultaneous multilayer. The simultaneous multi-layering means that two or more anti-glare layers are applied on a substrate by wet on wet without passing through a drying step to form the anti-glare layer. In order to laminate the second anti-glare layer on the first anti-glare layer without a drying step, the layers are stacked one after another with an extrusion coater or simultaneously with a slot die having a plurality of slits. Can be done.

なお、本発明での防眩性フィルムは、硬度の指標で有る鉛筆硬度がH以上、より好ましくは3H以上である。3H以上であれば、液晶表示装置の偏光板化工程で、傷が付きにくいばかりではなく、屋外用途で用いられることが多い、大型の液晶表示装置や、デジタルサイネージ用液晶表示装置の表面保護フィルムとして用いた際も優れた機械特性を示す。鉛筆硬度は、作製した防眩性フィルムを温度23℃、相対湿度55%の条件で2時間以上調湿した後、加重500g条件でJIS S 6006が規定する試験用鉛筆を用いて、JIS K5400が規定する鉛筆硬度評価方法に従い測定した値である。   The antiglare film of the present invention has a pencil hardness, which is an index of hardness, of H or higher, more preferably 3H or higher. If it is 3H or more, it is not only difficult to be scratched in the polarizing plate forming step of the liquid crystal display device, but also used for outdoor applications, and is a surface protective film for large liquid crystal display devices and liquid crystal display devices for digital signage. Excellent mechanical properties when used. The pencil hardness is determined by JIS K5400 using a test pencil specified by JIS S 6006 under the condition of a weight of 500 g after the prepared anti-glare film is conditioned at a temperature of 23 ° C. and a relative humidity of 55% for 2 hours or more. It is a value measured according to the pencil hardness evaluation method specified.

次いで、基材フィルムについて説明する。   Next, the base film will be described.

<λ/4板機能>
本発明に係る基材フィルムはλ/4板機能を有することが特徴である。
<Λ / 4 plate function>
The base film according to the present invention is characterized by having a λ / 4 plate function.

λ/4板とはある特定の波長の直線偏光を円偏光に(または、円偏光を直線偏光に)変換する機能を有するものをいう。λ/4板は、所定の光の波長(通常、可視光領域)に対して、層の面内の位相差値Roが約1/4となるように設計されている。   The λ / 4 plate is a plate having a function of converting linearly polarized light having a specific wavelength into circularly polarized light (or circularly polarized light into linearly polarized light). The λ / 4 plate is designed such that the in-plane retardation value Ro is about 1/4 with respect to a predetermined wavelength of light (usually in the visible light region).

本発明に係るλ/4板は、波長550nmで測定した面内方向のリターデーションRo(550)が100〜160nmの範囲である。   In the λ / 4 plate according to the present invention, the in-plane retardation Ro (550) measured at a wavelength of 550 nm is in the range of 100 to 160 nm.

本発明に係るλ/4板は、可視光の波長の範囲においてほぼ完全な円偏光を得るため、可視光の波長の範囲において概ね波長の1/4のリターデーションを有する位相差板(樹脂フィルム)であることが好ましい。   The λ / 4 plate according to the present invention is a retardation plate (resin film) having a retardation of approximately ¼ of the wavelength in the visible light wavelength range in order to obtain almost perfect circularly polarized light in the visible light wavelength range. ) Is preferable.

「可視光の波長の範囲において概ね1/4のリターデーション」とは、波長400から700nmにおいて長波長ほどリターデーションが大きく、波長450nmで測定した下記式(i)で表されるリターデーション値であるRo(450)と波長590nmで測定したリターデーション値であるRo(590)が、1<Ro(590)/Ro(450)≦1.6 を満たすことが好ましい。さらにλ/4板として有効に機能するためには、代表的には、Ro(550)が100〜160nmの範囲内である位相差フィルムであることがより好ましい。   The term “retardation of approximately ¼ in the wavelength range of visible light” means a retardation value represented by the following formula (i) measured at a wavelength of 450 nm, with a larger retardation at a wavelength of 400 to 700 nm. It is preferable that Ro (590) which is a retardation value measured at a certain Ro (450) and a wavelength of 590 nm satisfies 1 <Ro (590) / Ro (450) ≦ 1.6. Further, in order to effectively function as a λ / 4 plate, typically, a retardation film having Ro (550) in the range of 100 to 160 nm is more preferable.

式(i):Ro=(nx−ny)×d
式中、nx、nyは、23℃・55%RH、550nmの屈折率nx(フィルムの面内の最大の屈折率、遅相軸方向の屈折率ともいう。)、ny(フィルム面内で遅相軸に直交する方向の屈折率)であり、dはフィルムの厚さ(nm)である。
Formula (i): Ro = (nx−ny) × d
In the formula, nx and ny are a refractive index nx of 23 ° C. and 55% RH, 550 nm (the maximum refractive index in the plane of the film, also referred to as a refractive index in the slow axis direction), ny (slow in the plane of the film). The refractive index in the direction perpendicular to the phase axis), and d is the thickness (nm) of the film.

Roは自動複屈折率計を用いて測定することができる。自動複屈折率計KOBRA−21ADH(王子計測機器(株)製)を用いて、23℃、55%RHの環境下で、550nmでの複屈折率測定によりRoを算出する。   Ro can be measured using an automatic birefringence meter. Using an automatic birefringence meter KOBRA-21ADH (manufactured by Oji Scientific Instruments), Ro is calculated by birefringence measurement at 550 nm in an environment of 23 ° C. and 55% RH.

λ/4板の遅相軸の角度と偏光子の透過軸との角度が実質的に45°になるように積層すると円偏光板が得られる。即ちλ/4板の基材フィルム長手方向に対する前記遅相軸の角度(即ち配向角θ)が「実質的に45°」であると、偏光フィルムの長手方向に平行な方向に透過軸がある偏光子と長手方向を合わせて積層貼合することで、生産性よく円偏光板が形成できる。   A circularly polarizing plate is obtained by laminating so that the angle between the slow axis of the λ / 4 plate and the transmission axis of the polarizer is substantially 45 °. That is, when the angle of the slow axis with respect to the longitudinal direction of the base film of the λ / 4 plate (that is, the orientation angle θ) is “substantially 45 °”, the transmission axis is in a direction parallel to the longitudinal direction of the polarizing film. A circularly polarizing plate can be formed with good productivity by laminating and laminating the polarizer and the longitudinal direction.

従って本発明に係る基材フィルムのフィルム長手方向に対する配向角θは「実質的に45°」であり、「実質的に45°」とは、40〜50°であることを意味する。   Therefore, the orientation angle θ with respect to the film longitudinal direction of the base film according to the present invention is “substantially 45 °”, and “substantially 45 °” means 40 to 50 °.

より詳細には、本発明に係る基材フィルムの前記配向角θは、41〜49°であることが好ましく、42〜48°であることがより好ましく、43〜47°であることが更に好ましく、44〜46°であることが最も好ましい。   More specifically, the orientation angle θ of the base film according to the present invention is preferably 41 to 49 °, more preferably 42 to 48 °, and still more preferably 43 to 47 °. 44 to 46 ° is most preferable.

<基材フィルム>
本発明に係る基材フィルムは熱可塑性樹脂を主に含有するλ/4板であることが好ましく、該基材フィルムは製造が容易であること、防眩層と接着し易いこと、光学的に等方性であることが好ましい。また、λ/4板が熱可塑性樹脂を含有する基材フィルムであると偏光板保護フィルムとして使用することもできる。
<Base film>
The base film according to the present invention is preferably a λ / 4 plate mainly containing a thermoplastic resin. The base film is easy to manufacture, easily adheres to the antiglare layer, optically It is preferably isotropic. Further, if the λ / 4 plate is a base film containing a thermoplastic resin, it can also be used as a polarizing plate protective film.

上記性質を有した基材フィルムであれば何れでもよく、例えば、トリアセチルセルロースフィルム、セルロースアセテートプロピオネートフィルム、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム等のセルロースエステル系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ノルボルネン樹脂系フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、シクロオレフィンポリマーフィルム、ポリメチルメタクリレートフィルムまたはアクリルフィルム等を使用することができる。   Any base film having the above properties may be used. For example, cellulose ester-based films such as triacetyl cellulose film, cellulose acetate propionate film, cellulose diacetate film, and cellulose acetate butyrate film, polyethylene terephthalate, polyethylene Polyester film such as naphthalate, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene film, polypropylene film, cellophane, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, Syndiotactic polystyrene film, norbornene resin film, polymethylpentene Irumu, polyether ketone film, polyether ketone imide film, a polyamide film, a fluorine resin film, nylon film, can be used cycloolefin polymer film, a polymethyl methacrylate film or an acrylic film or the like.

これらの内、セルロースエステルフィルム(例えば、コニカミノルタタックKC8UX、KC4UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC4UY、KC4UE、およびKC12UR(以上、コニカミノルタオプト(株)製))、ポリカーボネートフィルム、シクロオレフィンポリマーフィルム、ポリエステルフィルムが好ましく、本発明においては、セルロースエステルフィルムが防眩層で上記した突形状が得られやすいこと、製造性、コスト面から特に好ましい。   Among these, cellulose ester films (for example, Konica Minoltak KC8UX, KC4UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UE, KC4UE, and KC12UR (above, Konica Minolta Opto Co., Ltd., Polycarbonate Film) An olefin polymer film and a polyester film are preferable, and in the present invention, the cellulose ester film is particularly preferable from the viewpoint of easy production of the above-described protruding shape by the antiglare layer, productivity, and cost.

基材フィルムの屈折率は、1.30〜1.70であることが好ましく、1.40〜1.65であることがより好ましい。屈折率は、アタゴ社製 アッペ屈折率計2Tを用いてJIS K7142の方法で測定する。   The refractive index of the base film is preferably 1.30 to 1.70, and more preferably 1.40 to 1.65. The refractive index is measured by the method of JIS K7142 using an Atpe refractometer 2T.

(セルロースエステルフィルム)
次に基材フィルムとして特に好ましいセルロースエステルフィルムについてより詳細に説明する。
(Cellulose ester film)
Next, a cellulose ester film particularly preferable as the base film will be described in more detail.

セルロースエステルフィルムは上記特徴を有するものであれば特に限定はされないが、セルロースエステル樹脂(以下、セルロースエステルともいう)は、セルロースの低級脂肪酸エステルであることが好ましい。セルロースの低級脂肪酸エステルにおける低級脂肪酸とは炭素原子数が6以下の脂肪酸を意味し、例えば、セルロースアセテート、セルロースジアセテート、セルローストリアセテート、セルロースプロピオネート、セルロースブチレート等や、セルロースアセテートプロピオネート、セルロースアセテートブチレート等の混合脂肪酸エステルを用いることができる。   The cellulose ester film is not particularly limited as long as it has the above characteristics, but the cellulose ester resin (hereinafter also referred to as cellulose ester) is preferably a lower fatty acid ester of cellulose. The lower fatty acid in the lower fatty acid ester of cellulose means a fatty acid having 6 or less carbon atoms. For example, cellulose acetate, cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, etc. Further, mixed fatty acid esters such as cellulose acetate butyrate can be used.

上記記載の中でも、特に好ましく用いられるセルロースの低級脂肪酸エステルはセルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネートである。これらのセルロースエステルは単独或いは混合して用いることができる。   Among the above descriptions, the lower fatty acid esters of cellulose that are particularly preferably used are cellulose diacetate, cellulose triacetate, and cellulose acetate propionate. These cellulose esters can be used alone or in combination.

セルロースジアセテートは、平均酢化度(結合酢酸量)51.0%〜56.0%が好ましく用いられる。また、市販品としては、ダイセル社L20、L30、L40、L50、イーストマンケミカル社のCa398−3、Ca398−6、Ca398−10、Ca398−30、Ca394−60Sが挙げられる。   Cellulose diacetate preferably has an average degree of acetylation (bound acetic acid amount) of 51.0% to 56.0%. Moreover, as a commercial item, Daicel Corporation L20, L30, L40, L50, Caman-3, Ca398-6, Ca398-10, Ca398-30, Ca394-60S of Eastman Chemical Co., Ltd. are mentioned.

セルローストリアセテートは、平均酢化度(結合酢酸量)54.0〜62.5%のものが好ましく用いられ、更に好ましいのは、平均酢化度が58.0〜62.5%のセルローストリアセテートである。   The cellulose triacetate preferably has an average degree of acetylation (bound acetic acid amount) of 54.0 to 62.5%, and more preferably cellulose triacetate having an average degree of acetylation of 58.0 to 62.5%. is there.

平均酢化度が小さいと寸法変化が大きく、また偏光板の偏光度が低下する。平均酢化度が大きいと溶剤に対する溶解度が低下し生産性が下がる。   When the average degree of acetylation is small, the dimensional change is large, and the polarization degree of the polarizing plate is lowered. When the average degree of acetylation is large, the solubility in a solvent is lowered and productivity is lowered.

セルローストリアセテートとしては、アセチル基置換度が、2.80〜2.95であって数平均分子量(Mn)が125000以上、155000未満、重量平均分子量(Mw)は、265000以上310000未満、Mw/Mnが1.9〜2.1であるセルローストリアセテートA、アセチル基置換度が2.75〜2.90であって数平均分子量(Mn)が155000以上、180000未満、Mwは290000以上360000未満、Mw/Mnは、1.8〜2.0であるセルローストリアセテートBを含有することが好ましい。   The cellulose triacetate has a degree of acetyl group substitution of 2.80 to 2.95, a number average molecular weight (Mn) of 125,000 or more and less than 155000, a weight average molecular weight (Mw) of 265,000 or more and less than 310,000, Mw / Mn. Triacetate A having a acetyl group substitution degree of 2.75 to 2.90, a number average molecular weight (Mn) of 155,000 or more and less than 180,000, Mw of 290000 or more and less than 360,000, Mw / Mn preferably contains cellulose triacetate B which is 1.8 to 2.0.

さらに、セルローストリアセテートAとセルローストリアセテートBを併用する場合には、質量比でセルローストリアセテートA:セルローストリアセテートB=100:0〜20:80までの範囲であることが好ましい。セルローストリアセテート以外で好ましいセルロースエステルは、炭素原子数2〜4のアシル基を置換基として有し、アセチル基の置換度をXとし、プロピオニル基又はブチリル基の置換度をYとした時、下記式(I)および(II)を同時に満たすセルロースエステルを含むセルロースエステルである。   Further, when cellulose triacetate A and cellulose triacetate B are used in combination, it is preferable that the mass ratio is in the range of cellulose triacetate A: cellulose triacetate B = 100: 0 to 20:80. Preferred cellulose esters other than cellulose triacetate have an acyl group having 2 to 4 carbon atoms as a substituent, the substitution degree of acetyl group is X, and the substitution degree of propionyl group or butyryl group is Y, It is a cellulose ester containing the cellulose ester which satisfy | fills (I) and (II) simultaneously.

式(I) 2.6≦X+Y≦3.0
式(II) 0≦X≦2.5
特にセルロースアセテートプロピオネートが好ましく用いられ、中でも1.9≦X≦2.5、0.1≦Y≦0.9であることが好ましい。
Formula (I) 2.6 ≦ X + Y ≦ 3.0
Formula (II) 0 ≦ X ≦ 2.5
In particular, cellulose acetate propionate is preferably used, and among them, 1.9 ≦ X ≦ 2.5 and 0.1 ≦ Y ≦ 0.9 are preferable.

セルロースエステルの数平均分子量(Mn)および分子量分布(Mw)は、高速液体クロマトグラフィーを用い測定できる。測定条件は以下の通りである。   The number average molecular weight (Mn) and molecular weight distribution (Mw) of the cellulose ester can be measured using high performance liquid chromatography. The measurement conditions are as follows.

溶媒:メチレンクロライド
カラム:Shodex K806、K805、K803G
(昭和電工(株)製を3本接続して使用した)
カラム温度:25℃
試料濃度:0.1質量%
検出器:RI Model 504(GLサイエンス社製)
ポンプ:L6000(日立製作所(株)製)
流量:1.0ml/min
校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)
Mw=1000000〜500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G
(Used by connecting three Showa Denko Co., Ltd.)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (GL Science Co., Ltd.)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0 ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corporation)
A calibration curve with 13 samples from Mw = 100000 to 500 was used. The 13 samples are preferably used at approximately equal intervals.

(セルロースエステル樹脂・熱可塑性アクリル樹脂含有フィルム)
また、基材フィルムは、熱可塑性アクリル樹脂とセルロースエステル樹脂とを含有し、熱可塑性アクリル樹脂とセルロースエステル樹脂の含有質量比が、熱可塑性アクリル樹脂:セルロースエステル樹脂=95:5〜50:50であるフィルムを用いても良い。
(Cellulose ester resin / thermoplastic acrylic resin-containing film)
The base film contains a thermoplastic acrylic resin and a cellulose ester resin, and the mass ratio of the thermoplastic acrylic resin to the cellulose ester resin is thermoplastic acrylic resin: cellulose ester resin = 95: 5 to 50:50. You may use the film which is.

アクリル樹脂には、メタクリル樹脂も含まれる。アクリル樹脂としては、特に制限されるものではないが、メチルメタクリレート単位50〜99質量%、およびこれと共重合可能な他の単量体単位1〜50質量%からなるものが好ましい。共重合可能な他の単量体としては、アルキル数の炭素数が2〜18のアルキルメタクリレート、アルキル数の炭素数が1〜18のアルキルアクリレート、アクリル酸、メタクリル酸等のα,β−不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸、スチレン、α−メチルスチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β−不飽和ニトリル、無水マレイン酸、マレイミド、N−置換マレイミド、グルタル酸無水物等が挙げられ、これらは単独で、あるいは2種以上の単量体を併用して用いることができる。   Acrylic resin also includes methacrylic resin. Although it does not restrict | limit especially as an acrylic resin, What consists of 50-99 mass% of methyl methacrylate units and 1-50 mass% of other monomer units copolymerizable with this is preferable. Other monomers that can be copolymerized include alkyl methacrylates having 2 to 18 carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, acrylic acid, methacrylic acid, and the like. Unsaturated group-containing divalent carboxylic acids such as saturated acid, maleic acid, fumaric acid and itaconic acid, aromatic vinyl compounds such as styrene and α-methylstyrene, α, β-unsaturated nitriles such as acrylonitrile and methacrylonitrile, Maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride and the like can be mentioned, and these can be used alone or in combination of two or more monomers.

これらの中でも、共重合体の耐熱分解性や流動性の観点から、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、n−ブチルアクリレート、s−ブチルアクリレート、2−エチルヘキシルアクリレート等が好ましく、メチルアクリレートやn−ブチルアクリレートが特に好ましく用いられる。また、重量平均分子量(Mw)は80000〜500000であることが好ましく、更に好ましくは、110000〜500000の範囲内である。   Among these, methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer. n-Butyl acrylate is particularly preferably used. Moreover, it is preferable that a weight average molecular weight (Mw) is 80000-500000, More preferably, it exists in the range of 110000-500000.

アクリル樹脂の重量平均分子量は、測定条件含めて、ゲルパーミエーションクロマトグラフィーにより測定することができる。アクリル樹脂の製造方法としては、特に制限は無く、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いても良い。ここで、重合開始剤としては、通常のパーオキサイド系およびアゾ系のものを用いることができ、また、レドックス系とすることもできる。重合温度については、懸濁または乳化重合では30〜100℃、塊状または溶液重合では80〜160℃で実施しうる。得られた共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。また、市販品も使用することができる。例えば、デルペット60N、80N(旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80,BR83,BR85,BR88(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)等が挙げられる。アクリル樹脂は2種以上を併用することもできる。また、アクリル樹脂には、(メタ)アクリル系ゴムと芳香族ビニル化合物の共重合体に(メタ)アクリル系樹脂がグラフトされたグラフト共重合体を用いてもよい。前記グラフト共重合体は、(メタ)アクリル系ゴムと芳香族ビニル化合物の共重合体がコア(core)を構成し、その周辺に前記(メタ)アクリル系樹脂がシェル(shell)を構成するコア−シェルタイプのグラフト共重合体であることが好ましい。   The weight average molecular weight of the acrylic resin can be measured by gel permeation chromatography including the measurement conditions. There is no restriction | limiting in particular as a manufacturing method of an acrylic resin, You may use any well-known methods, such as suspension polymerization, emulsion polymerization, block polymerization, or solution polymerization. Here, as a polymerization initiator, a normal peroxide type and an azo type can be used, and a redox type can also be used. Regarding the polymerization temperature, suspension or emulsion polymerization may be performed at 30 to 100 ° C, and bulk or solution polymerization may be performed at 80 to 160 ° C. In order to control the reduced viscosity of the obtained copolymer, polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent. Commercial products can also be used. For example, Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dialal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) and the like can be mentioned. . Two or more acrylic resins can be used in combination. The acrylic resin may be a graft copolymer obtained by grafting a (meth) acrylic resin to a copolymer of (meth) acrylic rubber and an aromatic vinyl compound. In the graft copolymer, a copolymer of (meth) acrylic rubber and an aromatic vinyl compound forms a core, and the (meth) acrylic resin forms a shell around the copolymer. -It is preferably a shell-type graft copolymer.

基材フィルムにおけるアクリル樹脂とセルロースエステル樹脂の総質量は、基材フィルムの55質量%以上であることが好ましく、更に好ましくは60質量%以上であり、特に好ましくは、70質量%以上である。基材フィルムは、熱可塑性アクリル樹脂、セルロースエステル樹脂以外の樹脂や添加剤を含有して構成されていても良い。   The total mass of the acrylic resin and the cellulose ester resin in the base film is preferably 55% by mass or more of the base film, more preferably 60% by mass or more, and particularly preferably 70% by mass or more. The base film may be configured to contain resins and additives other than thermoplastic acrylic resins and cellulose ester resins.

(アクリル粒子)
基材フィルムは脆性の改善に優れる点から、アクリル粒子を含有しても良い。アクリル粒子とは、前記熱可塑性アクリル樹脂及びセルロースエステル樹脂を相溶状態で含有する基材フィルム中に粒子の状態(非相溶状態ともいう)で存在するアクリル成分を表す。
(Acrylic particles)
The base film may contain acrylic particles because it is excellent in improving brittleness. An acrylic particle represents the acrylic component which exists in the state of particle | grains (it is also called an incompatible state) in the base film containing the said thermoplastic acrylic resin and cellulose-ester resin in a compatible state.

アクリル粒子は特に限定されるものではないが、多層構造アクリル系粒状複合体であることが好ましい。多層構造重合体であるアクリル系粒状複合体の市販品の例としては、例えば、三菱レイヨン社製“メタブレン”、鐘淵化学工業社製“カネエース”、呉羽化学工業社製“パラロイド”、ロームアンドハース社製“アクリロイド”、ガンツ化成工業社製“スタフィロイド”およびクラレ社製“パラペットSA”などが挙げられ、これらは、単独ないし2種以上を用いることができる。基材フィルムにアクリル粒子を添加する場合は、アクリル樹脂とセルロースエステル樹脂との混合物の屈折率とアクリル粒子の屈折率が近いことが、透明性が高いフィルムを得る点では好ましい。具体的には、アクリル粒子とアクリル樹脂の屈折率差が0.05以下であることが好ましく、より好ましくは0.02以下、とりわけ0.01以下であることが好ましい。   The acrylic particles are not particularly limited, but are preferably multi-layered acrylic granular composites. Examples of commercially available acrylic granular composites that are multi-layer structured polymers include, for example, “Metablene” manufactured by Mitsubishi Rayon Co., “Kaneace” manufactured by Kaneka Chemical Co., Ltd., “Paralloid” manufactured by Kureha Chemical Co., Ltd., Rohm and “Acryloid” manufactured by Haas, “Staffyroid” manufactured by Ganz Kasei Kogyo Co., Ltd., “Parapet SA” manufactured by Kuraray Co., Ltd., and the like can be used. When adding acrylic particles to the base film, it is preferable that the refractive index of the mixture of the acrylic resin and the cellulose ester resin is close to the refractive index of the acrylic particles in order to obtain a highly transparent film. Specifically, the refractive index difference between the acrylic particles and the acrylic resin is preferably 0.05 or less, more preferably 0.02 or less, and particularly preferably 0.01 or less.

アクリル微粒子は、該フィルムを構成するアクリル樹脂とセルロースエステル樹脂の総質量に対して、含有質量比でアクリル微粒子:アクリル樹脂とセルロースエステル樹脂総質量=0.5:100〜30:100の範囲で含有させることで、目的効果がより良く発揮される点から好ましく、更に好ましくは、アクリル微粒子:アクリル樹脂とセルロースエステル樹脂の総質量=1.0:100〜15:100の範囲である。   The acrylic fine particles are in the range of acrylic fine particles: acrylic resin and cellulose ester resin total mass = 0.5: 100 to 30: 100 with respect to the total mass of the acrylic resin and cellulose ester resin constituting the film. By containing, it is preferable from the point that an objective effect is exhibited more preferable, More preferably, it is the range of 1.0: 100-15: 100 of acrylic fine particles: total mass of acrylic resin and cellulose-ester resin.

〔微粒子〕
本実施形態に係る基材フィルムには、取扱性を向上させる為、例えば二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の無機微粒子や架橋高分子などのマット剤を含有させることが好ましい。中でも二酸化ケイ素がフィルムのヘイズを小さくできるので好ましく用いられる。
[Fine particles]
In order to improve the handleability, the base film according to the present embodiment includes, for example, silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, silica It is preferable to contain matting agents such as inorganic fine particles such as aluminum oxide, magnesium silicate, and calcium phosphate, and a crosslinked polymer. Among these, silicon dioxide is preferably used because it can reduce the haze of the film.

微粒子の1次平均粒子径としては、20nm以下が好ましく、更に好ましくは、5〜16nmであり、特に好ましくは、5〜12nmである。   The primary average particle diameter of the fine particles is preferably 20 nm or less, more preferably 5 to 16 nm, and particularly preferably 5 to 12 nm.

(その他の添加剤)
基材フィルムには、組成物の流動性や柔軟性を向上するために、可塑剤を併用することもできる。可塑剤としては、フタル酸エステル系、脂肪酸エステル系、トリメリット酸エステル系、リン酸エステル系、ポリエステル系、あるいはエポキシ系等が挙げられる。この中で、ポリエステル系とフタル酸エステル系の可塑剤が好ましく用いられる。ポリエステル系可塑剤は、フタル酸ジオクチルなどのフタル酸エステル系の可塑剤に比べて非移行性や耐抽出性に優れる。用途に応じてこれらの可塑剤を選択、あるいは併用することによって、広範囲の用途に適用できる。
(Other additives)
A plasticizer can also be used in combination with the base film in order to improve the fluidity and flexibility of the composition. Examples of the plasticizer include phthalate ester, fatty acid ester, trimellitic ester, phosphate ester, polyester, and epoxy. Of these, polyester and phthalate plasticizers are preferably used. Polyester plasticizers are superior in non-migration and extraction resistance compared to phthalate ester plasticizers such as dioctyl phthalate. It can be applied to a wide range of uses by selecting or using these plasticizers according to the use.

ポリエステル系可塑剤は、一価ないし四価のカルボン酸と一価ないし六価のアルコールとの反応物であるが、主に二価カルボン酸とグリコールとを反応させて得られたものが用いられる。代表的な二価カルボン酸としては、グルタル酸、イタコン酸、アジピン酸、フタル酸、アゼライン酸、セバシン酸などが挙げられる。またポリエステル系可塑剤の好ましくは、芳香族末端エステル系可塑剤である。芳香族末端エステル系可塑剤としては、フタル酸、アジピン酸、少なくとも一種のベンゼンモノカルボン酸および少なくとも一種の炭素数2〜12のアルキレングリコールとを反応させた構造を有するエステル化合物が好ましく、最終的な化合物の構造としてアジピン酸残基およびフタル酸残基を有していればよく、エステル化合物を製造する際には、ジカルボン酸の酸無水物またはエステル化物として反応させてもよい。   The polyester plasticizer is a reaction product of a monovalent or tetravalent carboxylic acid and a monovalent or hexavalent alcohol, and is mainly obtained by reacting a divalent carboxylic acid with a glycol. . Representative divalent carboxylic acids include glutaric acid, itaconic acid, adipic acid, phthalic acid, azelaic acid, sebacic acid and the like. The polyester plasticizer is preferably an aromatic terminal ester plasticizer. The aromatic terminal ester plasticizer is preferably an ester compound having a structure obtained by reacting phthalic acid, adipic acid, at least one benzene monocarboxylic acid, and at least one alkylene glycol having 2 to 12 carbon atoms. As long as it has an adipic acid residue and a phthalic acid residue as the structure of such a compound, when an ester compound is produced, it may be reacted as an acid anhydride or esterified product of dicarboxylic acid.

ベンゼンモノカルボン酸成分としては、例えば、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸等があり、安息香酸であることが最も好ましい。また、これらはそれぞれ1種または2種以上の混合物として使用することができる。   Examples of the benzene monocarboxylic acid component include benzoic acid, para-tert-butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal propylbenzoic acid, aminobenzoic acid, acetoxybenzoic acid and the like. Most preferred is benzoic acid. Moreover, these can be used as a 1 type, or 2 or more types of mixture, respectively.

炭素数2〜12のアルキレングリコール成分としては、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,2−プロパンジオール、2−メチル1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、2,2−ジメチル−1,3−プロパンジオール(ネオペンチルグリコール)、2,2−ジエチル−1,3−プロパンジオール(3,3−ジメチロールペンタン)、2−n−ブチル−2−エチル−1,3プロパンジオール(3,3−ジメチロールヘプタン)、3−メチル−1,5−ペンタンジオール1,6−ヘキサンジオール、2,2,4−トリメチル1,3−ペンタンジオール、2−エチル1,3−ヘキサンジオール、2−メチル1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,12−オクタデカンジオール等が挙げられる。これらの中では特に1,2−プロピレングリコールが好ましい。これらのグリコールは、1種または2種以上の混合物として使用してもよい。   Examples of the alkylene glycol component having 2 to 12 carbon atoms include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,2-propanediol, 2-methyl 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 2,2-diethyl-1, 3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptane), 3-methyl-1,5-pentanediol 1 , 6-hexanediol, 2,2,4-trimethyl 1,3-pentanediol, 2-ethyl 1,3-hexanediol, - methyl 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-octadecane diol. Among these, 1,2-propylene glycol is particularly preferable. These glycols may be used as one kind or a mixture of two or more kinds.

芳香族末端エステル系可塑剤は、オリゴエステル、ポリエステルの型のいずれでもよく、分子量は100〜10000の範囲が良いが、好ましくは350〜3000の範囲である。また酸価は、1.5mgKOH/g以下、水酸基価は25mgKOH/g以下、より好ましくは酸価0.5mgKOH/g以下、水酸基価は15mgKOH/g以下のものである。   The aromatic terminal ester plasticizer may be of an oligoester type or a polyester type, and the molecular weight is preferably in the range of 100 to 10,000, but is preferably in the range of 350 to 3000. The acid value is 1.5 mgKOH / g or less, the hydroxyl value is 25 mgKOH / g or less, more preferably the acid value is 0.5 mgKOH / g or less, and the hydroxyl value is 15 mgKOH / g or less.

可塑剤は基材フィルム100質量部に対して、0.5〜30質量部を添加するのが好ましい。具体的には以下に示す化合物(2−1〜2−6、および2−20〜2−23)などが挙げられるがこれらに限定されない。   The plasticizer is preferably added in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of the base film. Specific examples include the following compounds (2-1 to 2-6, and 2-20 to 2-23), but are not limited thereto.

更に、基材フィルムには、糖エステル化合物が含有されていても良い。糖エステル化合物とは、下記単糖、二糖、三糖またはオリゴ糖などの糖のOH基のすべてもしくは一部をエステル化した化合物であり、より具体的な例示としては、一般式(1)で表わされる化合物などをあげることができる。   Further, the base film may contain a sugar ester compound. The sugar ester compound is a compound obtained by esterifying all or part of the OH group of a sugar such as the following monosaccharide, disaccharide, trisaccharide or oligosaccharide. As a more specific example, a general formula (1) The compound etc. which are represented by these can be mention | raise | lifted.

(式中、R〜Rは、置換又は無置換の炭素数2〜22のアルキルカルボニル基、或いは、置換又は無置換の炭素数2〜22のアリールカルボニル基を表し、R〜Rは、同じであっても、異なっていてもよい。)
以下に一般式(1)で示される化合物をより具体的(化合物1−1〜化合物1−23)に示すが、これらに限定はされない。
(In the formula, R 1 to R 8 represent a substituted or unsubstituted alkylcarbonyl group having 2 to 22 carbon atoms or a substituted or unsubstituted arylcarbonyl group having 2 to 22 carbon atoms, and R 1 to R 8. May be the same or different.)
Although the compound shown by General formula (1) below is shown more concretely (compound 1-1-compound 1-23), it is not limited to these.

基材フィルムは、紫外線吸収剤を含有することも好ましく、用いられる紫外線吸収剤としては、ベンゾトリアゾール系、2−ヒドロキシベンゾフェノン系またはサリチル酸フェニルエステル系のもの等が挙げられる。例えば、2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、2−(3,5−ジ−t−ブチル−2−ヒドロキシフェニル)ベンゾトリアゾール等のトリアゾール類、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2,2′−ジヒドロキシ−4−メトキシベンゾフェノン等のベンゾフェノン類を例示することができる。   The base film preferably also contains an ultraviolet absorber, and examples of the ultraviolet absorber used include benzotriazole-based, 2-hydroxybenzophenone-based or salicylic acid phenyl ester-based ones. For example, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (3 Triazoles such as 5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone And benzophenones.

なお、紫外線吸収剤のうちでも、分子量が400以上の紫外線吸収剤は、高沸点で揮発しにくく、高温成形時にも飛散しにくいため、比較的少量の添加で効果的に耐候性を改良することができる。   Among UV absorbers, UV absorbers with a molecular weight of 400 or more are difficult to volatilize at high boiling points and are difficult to disperse even during high temperature molding, so that the weather resistance can be effectively improved with a relatively small amount of addition. Can do.

分子量が400以上の紫外線吸収剤としては、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2−ベンゾトリアゾール、2,2−メチレンビス[4−(1,1,3,3−テトラブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]等のベンゾトリアゾール系、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート等のヒンダードアミン系、さらには2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロン酸ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)、1−[2−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチル]−4−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]−2,2,6,6−テトラメチルピペリジン等の分子内にヒンダードフェノールとヒンダードアミンの構造を共に有するハイブリッド系のものが挙げられ、これらは単独で、あるいは2種以上を併用して使用することができる。これらのうちでも、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2−ベンゾトリアゾールや2,2−メチレンビス[4−(1,1,3,3−テトラブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]が特に好ましい。   Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- (1, 1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol], bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis ( Hindered amines such as 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonic acid Bis (1,2,2,6,6-pentamethyl-4-piperidyl), 1- [2- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] ethyl L] -4- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine and the like, hindered phenol and hindered amine A hybrid system having both structures can be mentioned, and these can be used alone or in combination of two or more. Among these, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3- Tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] is particularly preferred.

これらは、市販品を用いてもよく、例えば、BASFジャパン社製のチヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン928等のチヌビン類を好ましく使用できる。   Commercially available products may be used. For example, TINUVIN such as TINUVIN 109, TINUVIN 171, TINUVIN 234, TINUVIN 326, TINUVIN 327, TINUVIN 328, and TINUVIN 928 manufactured by BASF Japan Ltd. can be preferably used.

さらに、基材フィルムには、成形加工時の熱分解性や熱着色性を改良するために各種の酸化防止剤を添加することもできる。また帯電防止剤を加えて、基材フィルムに帯電防止性能を与えることも可能である。   Furthermore, various antioxidants can also be added to the base film in order to improve the thermal decomposability and thermal colorability during molding. It is also possible to add an antistatic agent to give the base film antistatic performance.

基材フィルムには、リン系難燃剤を配合した難燃アクリル系樹脂組成物を用いても良い。ここで用いられるリン系難燃剤としては、赤リン、トリアリールリン酸エステル、ジアリールリン酸エステル、モノアリールリン酸エステル、アリールホスホン酸化合物、アリールホスフィンオキシド化合物、縮合アリールリン酸エステル、ハロゲン化アルキルリン酸エステル、含ハロゲン縮合リン酸エステル、含ハロゲン縮合ホスホン酸エステル、含ハロゲン亜リン酸エステル等から選ばれる1種、あるいは2種以上の混合物を挙げることができる。   A flame retardant acrylic resin composition containing a phosphorus flame retardant may be used for the base film. Phosphorus flame retardants used here include red phosphorus, triaryl phosphate ester, diaryl phosphate ester, monoaryl phosphate ester, aryl phosphonate compound, aryl phosphine oxide compound, condensed aryl phosphate ester, halogenated alkyl phosphorus. Examples thereof include one or a mixture of two or more selected from acid esters, halogen-containing condensed phosphates, halogen-containing condensed phosphonates, halogen-containing phosphites, and the like.

具体的な例としては、トリフェニルホスフェート、9,10−ジヒドロ−9−オキサ−10−ホスファフェナンスレン−10−オキシド、フェニルホスホン酸、トリス(β−クロロエチル)ホスフェート、トリス(ジクロロプロピル)ホスフェート、トリス(トリブロモネオペンチル)ホスフェート等が挙げられる。基材フィルムは、「延性破壊が起こらないフィルム」であることが好ましい。ここで、延性破壊とは、ある材料が有する強度よりも、大きな応力が作用することで生じる破断のことであり、最終破断までに材料の著しい伸びや絞りを伴う破壊と定義される。その破面には、ディンプルと呼ばれる窪みが無数に形成される特徴がある。   Specific examples include triphenyl phosphate, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phenylphosphonic acid, tris (β-chloroethyl) phosphate, tris (dichloropropyl). Examples thereof include phosphate and tris (tribromoneopentyl) phosphate. The base film is preferably a “film that does not cause ductile fracture”. Here, the ductile fracture is a fracture caused by applying a stress larger than the strength of a certain material, and is defined as a fracture accompanied by significant elongation or drawing of the material until the final fracture. The fracture surface is characterized by numerous indentations called dimples.

基材フィルムはより高温の環境下での使用に耐えられることが求められており、基材フィルムは張力軟化点が、105℃〜145℃であれば、十分な耐熱性を示すものと判断でき好ましく、特に110℃〜130℃が好ましい。   The base film is required to withstand use in a higher temperature environment, and the base film can be judged to exhibit sufficient heat resistance if the tension softening point is 105 ° C to 145 ° C. 110 to 130 ° C. is particularly preferable.

張力軟化点の具体的な測定方法としては、例えば、テンシロン試験機(ORIENTEC社製、RTC−1225A)を用いて、光学フィルムを120mm(縦)×10mm(幅)で切り出し、10Nの張力で引っ張りながら30℃/minの昇温速度で昇温を続け、9Nになった時点での温度を3回測定し、その平均値により求めることができる。   As a specific method of measuring the tension softening point, for example, using a Tensilon tester (ORIENTEC, RTC-1225A), the optical film is cut out at 120 mm (length) × 10 mm (width) and pulled with a tension of 10 N. However, the temperature can be continuously increased at a temperature increase rate of 30 ° C./min, and the temperature at 9 N can be measured three times, and the average value can be obtained.

尚、ここでいうガラス転移温度とは、示差走査熱量測定器(Perkin Elmer社製DSC−7型)を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)である。   The glass transition temperature referred to here is an intermediate value determined according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer) at a temperature rising rate of 20 ° C./min. Point glass transition temperature (Tmg).

液晶表示装置の偏光板用保護フィルムとして基材フィルムが用いられる場合は、吸湿による寸法変化によりムラや位相差値の変化が発生してしまい、コントラストの低下や色むらといった問題を発生させる。特に屋外で使用される液晶表示装置に用いられる偏光板保護フィルムであれば、上記の問題は顕著となる。このため、寸法変化率(%)は0.5%未満が好ましく、更に、0.3%未満であることが好ましい。基材フィルムは、フィルム面内の直径5μm以上の欠点が1個/10cm四方以下であることが好ましい。更に好ましくは0.5個/10cm四方以下、一層好ましくは0.1個/10cm四方以下である。ここで欠点の直径とは、欠点が円形の場合はその直径を示し、円形でない場合は欠点の範囲を下記方法により顕微鏡で観察して決定し、その最大径(外接円の直径)とする。   When a base film is used as a protective film for a polarizing plate of a liquid crystal display device, unevenness or a change in retardation value occurs due to a dimensional change due to moisture absorption, causing problems such as a decrease in contrast and color unevenness. In particular, the above problem becomes significant when the polarizing plate protective film is used in a liquid crystal display device used outdoors. For this reason, the dimensional change rate (%) is preferably less than 0.5%, and more preferably less than 0.3%. The base film preferably has a defect of 5 μm or more in diameter in the film plane of 1 piece / 10 cm square or less. More preferably, it is 0.5 piece / 10 cm square or less, more preferably 0.1 piece / 10 cm square or less. Here, the diameter of the defect indicates the diameter when the defect is circular, and when the defect is not circular, the range of the defect is determined by observing with a microscope by the following method, and the maximum diameter (diameter of circumscribed circle) is determined.

欠点の範囲は、欠点が気泡や異物の場合は、欠点を微分干渉顕微鏡の透過光で観察したときの影の大きさである。欠点が、ロール傷の転写や擦り傷など、表面形状の変化の場合は、欠点を微分干渉顕微鏡の反射光で観察して大きさを確認する。   The range of the defect is the size of the shadow when the defect is observed with the transmitted light of the differential interference microscope when the defect is a bubble or a foreign object. When the defect is a change in the surface shape, such as transfer of a roll flaw or an abrasion, the size is confirmed by observing the defect with the reflected light of a differential interference microscope.

なお、反射光で観察する場合に、欠点の大きさが不明瞭であれば、表面にアルミや白金を蒸着して観察する。かかる欠点頻度にて表される品位に優れたフィルムを生産性よく得るには、ポリマー溶液を流延直前に高精度濾過することや、流延機周辺のクリーン度を高くすること、また、流延後の乾燥条件を段階的に設定し、効率よくかつ発泡を抑えて乾燥させることが有効である。   In addition, when observing with reflected light, if the size of the defect is unclear, aluminum or platinum is deposited on the surface for observation. In order to obtain a film having excellent quality expressed by such a defect frequency with high productivity, it is necessary to filter the polymer solution with high precision immediately before casting, to increase the cleanliness around the casting machine, It is effective to set drying conditions after rolling stepwise and to dry efficiently while suppressing foaming.

欠点の個数が1個/10cm四方より多いと、例えば後工程での加工時などでフィルムに張力がかかると、欠点を基点としてフィルムが破断して生産性が低下する場合がある。また、欠点の直径が5μm以上になると、偏光板観察などにより目視で確認でき、光学部材として用いたとき輝点が生じる場合がある。   When the number of defects is greater than 1/10 cm square, for example, when the film is tensioned during processing in a later process, the film may break with the defects as a starting point, and productivity may decrease. Moreover, when the diameter of a defect becomes 5 micrometers or more, it can confirm visually by polarizing plate observation etc., and when used as an optical member, a bright spot may arise.

また、目視で確認できない場合でも、該フィルム上にハードコート層などを形成したときに、塗剤が均一に形成できず欠点(塗布抜け)となる場合がある。ここで、欠点とは、溶液製膜の乾燥工程において溶媒の急激な蒸発に起因して発生するフィルム中の空洞(発泡欠点)や、製膜原液中の異物や製膜中に混入する異物に起因するフィルム中の異物(異物欠点)を言う。   Moreover, even when it cannot be visually confirmed, when a hard coat layer or the like is formed on the film, the coating agent may not be formed uniformly, resulting in a defect (missing coating). Here, the defect is a void in the film (foaming defect) generated due to the rapid evaporation of the solvent in the drying process of the solution casting, a foreign matter in the film forming stock solution, or a foreign matter mixed in the film forming. This refers to the foreign matter (foreign matter defect) in the film.

また、基材フィルムは、JIS−K7127−1999に準拠した測定において、少なくとも一方向の破断伸度が、10%以上であることが好ましく、より好ましくは20%以上である。   In addition, the base film preferably has a breaking elongation of at least one direction of 10% or more, more preferably 20% or more, in the measurement based on JIS-K7127-1999.

破断伸度の上限は特に限定されるものではないが、現実的には250%程度である。破断伸度を大きくするには異物や発泡に起因するフィルム中の欠点を抑制することが有効である。   The upper limit of the elongation at break is not particularly limited, but is practically about 250%. In order to increase the elongation at break, it is effective to suppress defects in the film caused by foreign matter and foaming.

基材フィルムの厚みは、20μm以上であることが好ましい。より好ましくは30μm以上である。   The thickness of the base film is preferably 20 μm or more. More preferably, it is 30 μm or more.

厚みの上限は特に限定される物ではないが、溶液製膜法でフィルム化する場合は、塗布性、発泡、溶媒乾燥などの観点から、上限は250μm程度である。なお、フィルムの厚みは用途により適宜選定することができる。   The upper limit of the thickness is not particularly limited, but in the case of forming a film by a solution casting method, the upper limit is about 250 μm from the viewpoint of applicability, foaming, solvent drying, and the like. The thickness of the film can be appropriately selected depending on the application.

基材フィルムは、その全光線透過率が90%以上であることが好ましく、より好ましくは93%以上である。また、現実的な上限としては、99%程度である。かかる全光線透過率にて表される優れた透明性を達成するには、可視光を吸収する添加剤や共重合成分を導入しないようにすることや、ポリマー中の異物を高精度濾過により除去し、フィルム内部の光の拡散や吸収を低減させることが有効である。また、製膜時のフィルム接触部(冷却ロール、カレンダーロール、ドラム、ベルト、溶液製膜における塗布基材、搬送ロールなど)の表面粗さを小さくしてフィルム表面の表面粗さを小さくすることや、アクリル樹脂の屈折率を小さくすることによりフィルム表面の光の拡散や反射を低減させることが有効である。   The base film preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce additives and copolymerization components that absorb visible light, or to remove foreign substances in the polymer by high-precision filtration. It is effective to reduce the diffusion and absorption of light inside the film. Also, reduce the surface roughness of the film surface by reducing the surface roughness of the film contact part (cooling roll, calender roll, drum, belt, coating substrate in solution casting, transport roll, etc.) during film formation. It is also effective to reduce the diffusion and reflection of light on the film surface by reducing the refractive index of the acrylic resin.

(基材フィルムの製膜)
次に、基材フィルムの製膜方法の例を説明するが、これに限定されるものではない。基材フィルムの製膜方法としては、インフレーション法、T−ダイ法、カレンダー法、切削法、流延法、エマルジョン法、ホットプレス法等の製造法が使用できる。
(Formation of base film)
Next, although the example of the film forming method of a base film is demonstrated, it is not limited to this. As a method for forming the base film, a production method such as an inflation method, a T-die method, a calendar method, a cutting method, a casting method, an emulsion method, or a hot press method can be used.

本発明に係る基材フィルムは溶液流延法でも溶融流延法のどちらで製膜してもよい。   The base film according to the present invention may be formed by either a solution casting method or a melt casting method.

セルロースエステル樹脂やアクリル樹脂を溶解に用いた溶媒の残留抑制の点からは溶融流延法で作製する方法が好ましい。溶融流延によって形成される方法は、溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの中で、機械的強度及び表面精度などに優れるフィルムが得られる、溶融押出し法が好ましい。また、着色抑制、異物欠点の抑制、ダイラインなどの光学欠点の抑制などの観点からは流延法による溶液流延法が好ましい。   From the viewpoint of suppressing residual solvent using a cellulose ester resin or an acrylic resin for dissolution, a method of producing by a melt casting method is preferable. Methods formed by melt casting can be classified into melt extrusion molding methods, press molding methods, inflation methods, injection molding methods, blow molding methods, stretch molding methods, and the like. Among these, the melt extrusion method is preferable, in which a film having excellent mechanical strength and surface accuracy can be obtained. Further, from the viewpoint of suppressing coloring, suppressing defects of foreign matter, and suppressing optical defects such as die lines, a solution casting method by a casting method is preferable.

〔有機溶媒〕
基材フィルムを溶液流延法で製造する場合のドープを形成するのに有用な有機溶媒は、アクリル樹脂、セルロースエステル樹脂、その他の添加剤を同時に溶解するものであれば制限なく用いることが出来る。
[Organic solvent]
The organic solvent useful for forming the dope when the base film is produced by the solution casting method can be used without limitation as long as it dissolves acrylic resin, cellulose ester resin, and other additives at the same time. .

例えば、塩素系有機溶媒としては、塩化メチレン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2−トリフルオロエタノール、2,2,3,3−ヘキサフルオロ−1−プロパノール、1,3−ジフルオロ−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−メチル−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、2,2,3,3,3−ペンタフルオロ−1−プロパノール、ニトロエタン等を挙げることが出来、塩化メチレン、酢酸メチル、酢酸エチル、アセトンを好ましく使用し得る。   For example, as the chlorinated organic solvent, methylene chloride, as the non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- Examples include 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, and nitroethane. Methylene chloride, methyl acetate, ethyl acetate and acetone can be preferably used.

ドープには、上記有機溶媒の他に、1〜40質量%の炭素原子数1〜4の直鎖または分岐鎖状の脂肪族アルコールを含有させることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ない時は非塩素系有機溶媒系でのアクリル樹脂、セルロースエステル樹脂の溶解を促進する役割もある。   In addition to the organic solvent, the dope preferably contains 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. When the proportion of alcohol in the dope increases, the web gels and peeling from the metal support becomes easy, and when the proportion of alcohol is small, the acrylic resin and cellulose ester resin dissolve in a non-chlorine organic solvent system. There is also a role to promote.

特に、メチレンクロライド、及び炭素数1〜4の直鎖または分岐鎖状の脂肪族アルコールを含有する溶媒に、アクリル樹脂と、セルロースエステル樹脂と、アクリル粒子の3種を、少なくとも計15〜45質量%溶解させたドープ組成物であることが好ましい。   In particular, in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms, at least 15 to 45 mass in total of at least three kinds of acrylic resin, cellulose ester resin, and acrylic particles are used. It is preferable that the dope composition is dissolved in%.

炭素原子数1〜4の直鎖または分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、sec−ブタノール、tert−ブタノールを挙げることが出来る。これらの内ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からエタノールが好ましい。   Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.

〔溶液流延法〕
基材フィルムは、溶液流延法によって製造することが出来る。溶液流延法では、樹脂および添加剤を溶剤に溶解させてドープを調製する工程、ドープをベルト状もしくはドラム状の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸または幅保持する工程、更に乾燥する工程、仕上がったフィルムを巻き取る工程により行われる。
[Solution casting method]
The base film can be produced by a solution casting method. In the solution casting method, a step of preparing a dope by dissolving a resin and an additive in a solvent, a step of casting the dope on a belt-like or drum-like metal support, and a step of drying the cast dope as a web , A step of peeling from the metal support, a step of stretching or maintaining the width, a step of further drying, and a step of winding up the finished film.

ドープ中のセルロースエステル、およびセルロースエステル樹脂・アクリル樹脂の濃度は、濃度が高い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、セルロースエステルの濃度が高過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10〜35質量%が好ましく、更に好ましくは、15〜25質量%である。流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。   The concentration of cellulose ester in the dope, and the concentration of cellulose ester resin / acrylic resin is preferably higher because the drying load after casting on the metal support can be reduced. The load increases, and the filtration accuracy deteriorates. As a density | concentration which makes these compatible, 10-35 mass% is preferable, More preferably, it is 15-25 mass%. The metal support in the casting (casting) step preferably has a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.

キャストの幅は1〜4mとすることができる。流延工程の金属支持体の表面温度は−50℃〜溶剤が沸騰して発泡しない温度以下に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高すぎるとウェブが発泡したり、平面性が劣化する場合がある。   The cast width can be 1 to 4 m. The surface temperature of the metal support in the casting step is set to −50 ° C. to a temperature at which the solvent boils and does not foam. A higher temperature is preferred because the web can be dried faster, but if it is too high, the web may foam or the flatness may deteriorate.

好ましい支持体温度としては0〜100℃で適宜決定され、5〜30℃が更に好ましい。または、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は特に制限されないが、温風または冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。   The preferable support temperature is appropriately determined at 0 to 100 ° C, and more preferably 5 to 30 ° C. Alternatively, it is also a preferable method that the web is gelled by cooling and peeled from the drum in a state containing a large amount of residual solvent. The method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short.

温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。   When using warm air, considering the temperature drop of the web due to the latent heat of vaporization of the solvent, while using warm air above the boiling point of the solvent, there may be cases where wind at a temperature higher than the target temperature is used while preventing foaming. .

特に、流延から剥離するまでの間で支持体の温度および乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。   In particular, it is preferable to perform drying efficiently by changing the temperature of the support and the temperature of the drying air during the period from casting to peeling.

セルロースエステルフィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10〜150質量%が好ましく、更に好ましくは20〜40質量%または60〜130質量%であり、特に好ましくは、20〜30質量%または70〜120質量%である。   In order for the cellulose ester film to exhibit good flatness, the residual solvent amount when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to 130% by mass. Especially preferably, it is 20-30 mass% or 70-120 mass%.

残留溶媒量は下記式で定義される。   The amount of residual solvent is defined by the following formula.

残留溶媒量(質量%)={(M−N)/N}×100
なお、Mはウェブまたはフィルムを製造中または製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
Residual solvent amount (% by mass) = {(MN) / N} × 100
Note that M is the mass of a sample collected during or after the production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.

また、セルロースエステルフィルム或いはセルロースエステル樹脂・アクリル樹脂フィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量を1質量%以下にすることが好ましく、更に好ましくは0.1質量%以下であり、特に好ましくは0〜0.01質量%以下である。   Further, in the drying step of the cellulose ester film or the cellulose ester resin / acrylic resin film, it is preferable that the web is peeled off from the metal support and further dried to make the residual solvent amount 1% by mass or less, more preferably 0. 0.1 mass% or less, particularly preferably 0 to 0.01 mass% or less.

フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールにウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。   In the film drying step, generally, a roll drying method (a method in which webs are alternately passed through a plurality of rolls arranged above and below) and a method in which the web is dried while being conveyed by a tenter method are employed.

〔延伸工程〕
本発明に係る基材フィルムは、波長550nmで測定した面内方向のリターデーションRo(550)が100〜160nmの範囲であるが、該リターデーションはフィルム延伸によって付与することが好ましい。
[Stretching process]
In the substrate film according to the present invention, the retardation Ro (550) in the in-plane direction measured at a wavelength of 550 nm is in the range of 100 to 160 nm, and the retardation is preferably imparted by film stretching.

延伸する方法には特に限定はない。例えば、複数のロールに周速差をつけ、その間でロール周速差を利用して縦方向に延伸する方法、ウェブの両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げて縦方向に延伸する方法、同様に横方向に広げて横方向に延伸する方法、あるいは縦横同時に広げて縦横両方向に延伸する方法などが挙げられる。もちろんこれ等の方法は、組み合わせて用いてもよい。すなわち、製膜方向に対して横方向に延伸しても、縦方向に延伸しても、両方向に延伸してもよく、さらに両方向に延伸する場合は同時延伸であっても、逐次延伸であってもよい。なお、いわゆるテンター法の場合、リニアドライブ方式でクリップ部分を駆動すると滑らかな延伸が行うことができ、破断等の危険性が減少できるので好ましい。   There is no particular limitation on the stretching method. For example, a method in which a difference in peripheral speed is applied to a plurality of rolls, and the roll peripheral speed difference is used to stretch in the longitudinal direction between the rolls. And a method of stretching in the vertical direction, a method of stretching in the horizontal direction and stretching in the horizontal direction, a method of stretching in the vertical and horizontal directions and stretching in both the vertical and horizontal directions, and the like. Of course, these methods may be used in combination. That is, the film may be stretched in the transverse direction, longitudinally, or in both directions with respect to the film forming direction, and when stretched in both directions, simultaneous stretching or sequential stretching may be used. May be. In the case of the so-called tenter method, driving the clip portion by the linear drive method is preferable because smooth stretching can be performed and the risk of breakage and the like can be reduced.

本発明においては特に、延伸はフィルム搬送ロールの周速差を利用して搬送方向に行うか、若しくは搬送方向と直交方向(幅手方向又はTD方向ともいう)にウェブの両端をクリップ等で把持するテンター方式で行うことが好ましく、更に左右把持手段によってウェブの把持長(把持開始から把持終了までの距離)を左右で独立に制御できるテンターを用いることも好ましい。   In the present invention, in particular, stretching is performed in the transport direction using the difference in peripheral speed of the film transport roll, or both ends of the web are gripped with clips or the like in the direction perpendicular to the transport direction (also referred to as the width direction or the TD direction). It is preferable to use a tenter method, and it is also preferable to use a tenter that can independently control the web gripping length (distance from the start of gripping to the end of gripping) by the left and right gripping means.

また、本発明では本発明に係る基材フィルムを、延伸工程でフィルム搬送方向に対して45°方向に延伸することがフィルム長手方向に対する配向角θを40〜50°にする上で好ましい。   Moreover, in this invention, it is preferable when extending | stretching the base film which concerns on this invention to a 45 degree direction with respect to a film conveyance direction at the extending | stretching process, and to make orientation angle (theta) 40-40 degrees with respect to a film longitudinal direction.

これは、遅相軸が長手方向と平行な方向に透過軸があるロール状の偏光フィルムと、配向角が実質的に45°である基材フィルムとを長手方向を合わせてロール トゥ ロールで貼合すると、ロール状長尺状のλ/4板を容易に製造できるので、フィルムのカットロスが少なく生産上有利なことによる。   This is because a roll-shaped polarizing film having a transmission axis in a direction parallel to the longitudinal direction of the slow axis and a base film having an orientation angle of substantially 45 ° are aligned with each other in a roll-to-roll manner. If combined, a roll-like long λ / 4 plate can be easily manufactured, which is advantageous in terms of production with less cut loss of the film.

以下、45°の方向に延伸する方法を説明する。   Hereinafter, a method of stretching in the 45 ° direction will be described.

セルロースエステルフィルムを長手方向に対して実質的に45°の方向に斜め延伸するためには、図3で示されるテンターを用いることが好ましい。図3は、テンターによる斜め延伸を示す模式図である。   In order to obliquely stretch the cellulose ester film in a direction substantially 45 ° with respect to the longitudinal direction, it is preferable to use a tenter shown in FIG. FIG. 3 is a schematic diagram showing oblique stretching by a tenter.

延伸フィルムの製造は、テンターを用いて行う。このテンターは、フィルムロール(繰出しロール)から繰り出されるフィルムを、オーブンによる加熱環境下で、その進行方向(フィルム幅方向の中点の移動方向)に対して斜め方向に拡幅する装置である。このテンターは、オーブンと、フィルムを搬送するための把持具が走行する左右で一対のレールと、該レール上を走行する多数の把持具とを備えている。フィルムロールから繰り出され、テンターの入口部に順次供給されるフィルムの両端を、把持具で把持し、オーブン内にフィルムを導き、テンターの出口部で把持具からフィルムを開放する。把持具から開放されたフィルムは巻芯に巻き取られる。一対のレールは、それぞれ無端状の連続軌道を有し、テンターの出口部でフィルムの把持を開放した把持具は、外側を走行して順次入口部に戻されるようになっている。   The stretched film is produced using a tenter. This tenter is a device that widens a film fed from a film roll (feeding roll) in an oblique direction with respect to its traveling direction (moving direction of the middle point in the film width direction) in a heating environment by an oven. The tenter includes an oven, a pair of rails on the left and right on which a gripping tool for transporting the film travels, and a number of gripping tools that travel on the rails. Both ends of the film fed out from the film roll and sequentially supplied to the entrance portion of the tenter are gripped by a gripping tool, the film is guided into the oven, and the film is released from the gripping tool at the exit portion of the tenter. The film released from the gripping tool is wound around the core. Each of the pair of rails has an endless continuous track, and the gripping tool which has released the grip of the film at the exit portion of the tenter travels outside and is sequentially returned to the entrance portion.

なお、テンターのレール形状は、製造すべき延伸フィルムに与える配向角、延伸倍率等に応じて、左右で非対称な形状となっており、手動で又は自動で微調整できるようになっている。本発明においては、長尺の熱可塑性樹脂フィルムを延伸し、配向角θが延伸後の巻取り方向に対して、40°〜80°の範囲内で、任意の角度に設定できるようになっている。本発明において、テンターの把持具は、前後の把持具と一定間隔を保って、一定速度で走行するようになっている。   The rail shape of the tenter is asymmetrical on the left and right according to the orientation angle, stretch ratio, etc. given to the stretched film to be manufactured, and can be finely adjusted manually or automatically. In the present invention, a long thermoplastic resin film is stretched, and the orientation angle θ can be set to any angle within the range of 40 ° to 80 ° with respect to the winding direction after stretching. Yes. In the present invention, the gripping tool of the tenter is configured to travel at a constant speed with a certain distance from the front and rear gripping tools.

図3は、斜め延伸するために用いるテンターのレールの軌道(レールパターン)を示している。セルロースエステルフィルムの繰出し方向DR1は、延伸後のフィルムの巻取り方向(MD方向)DR2と異なっており、これにより、比較的大きな配向角をもつ延伸フィルムにおいても広幅で均一な光学特性を得ることが可能となっている。繰出し角度θiは、延伸前のフィルムの繰出し方向DR1と延伸後のフィルムの巻取り方向DR2とのなす角度である。本発明においては、上述のように40°〜80°の配向角を持つフィルムを製造するため、繰出し角度θiは、10°<θi<60°、好ましくは15°<θi<50°で設定される。繰出し角度θiを前記範囲とすることにより、得られるフィルムの幅方向の光学特性のバラツキが良好となる(小さくなる。)。   FIG. 3 shows a rail track (rail pattern) of a tenter used for oblique stretching. The feeding direction DR1 of the cellulose ester film is different from the winding direction (MD direction) DR2 of the stretched film, thereby obtaining a wide and uniform optical characteristic even in a stretched film having a relatively large orientation angle. Is possible. The feeding angle θi is an angle formed by the feeding direction DR1 of the film before stretching and the winding direction DR2 of the film after stretching. In the present invention, in order to produce a film having an orientation angle of 40 ° to 80 ° as described above, the feeding angle θi is set to 10 ° <θi <60 °, preferably 15 ° <θi <50 °. The By setting the feeding angle θi in the above range, the variation in the optical characteristics in the width direction of the obtained film becomes good (becomes small).

フィルムロール(繰出しロール)から繰出されたセルロースエステルフィルムは、テンター入口(符号aの位置)において、その両端(両側)を左右の把持具によって順次把持されて、把持具の走行に伴い走行される。テンター入口(符号aの位置)で、フィルム進行方向(繰り出し方向DR1)に対して略垂直な方向に相対している左右の把持具CL,CRは、左右非対称なレール上を走行し、予熱ゾーン、延伸ゾーン、熱固定ゾーンを有するオーブンを通過する。ここで、略垂直とは、前述の向かい合う把持具CL,CR同士を結んだ直線とフィルム繰出し方向DR1とがなす角度が、90±1°以内にあることを示す。   The cellulose ester film fed from the film roll (feeding roll) is gripped in order by the left and right gripping tools at the tenter inlet (position a), and then traveled as the gripping tool travels. . The left and right grips CL and CR, which are opposed to the direction of the film traveling direction (feeding direction DR1) at the tenter entrance (position a), run on a rail that is asymmetrical to the left and right, and are in a preheating zone. Through an oven having a stretching zone and a heat setting zone. Here, “substantially perpendicular” indicates that the angle formed by the straight line connecting the aforementioned gripping tools CL and CR and the film feeding direction DR1 is within 90 ± 1 °.

予熱ゾーンとは、オーブン入口部において、両端を把持した把持具の間隔が一定の間隔を保ったまま走行する区間をさす。延伸ゾーンとは、両端を把持した把持具の間隔が開きだし、再び一定となるまでの区間をさす。また、冷却ゾーンとは、延伸ゾーンより後の把持具の間隔が再び一定となる期間において、ゾーン内の温度がフィルムを構成する熱可塑性樹脂のガラス転移温度Tg℃以下に設定される区間をさす。   The preheating zone refers to a section in which the vehicle travels while maintaining a constant interval between the gripping tools gripping both ends at the oven entrance. The stretching zone refers to an interval until the gap between the gripping tools gripping both ends starts to become constant again. In addition, the cooling zone refers to a section in which the temperature in the zone is set to be equal to or lower than the glass transition temperature Tg ° C. of the thermoplastic resin constituting the film during a period in which the interval between the gripping tools after the stretching zone becomes constant again. .

各ゾーンの温度は、熱可塑性樹脂のガラス転移温度Tgに対し、予熱ゾーンの温度はTg+5〜Tg+20℃、延伸ゾーンの温度はTg〜Tg+20℃、冷却ゾーンの温度はTg−30〜Tg℃に設定することが好ましい。   The temperature of each zone is set to Tg + 5 to Tg + 20 ° C., the temperature of the stretching zone is set to Tg to Tg + 20 ° C., and the temperature of the cooling zone is set to Tg−30 to Tg ° C. with respect to the glass transition temperature Tg of the thermoplastic resin. It is preferable to do.

延伸工程における延伸倍率R(W/Wo)は、好ましくは1.3〜3.0倍、より好ましくは1.5〜2.8倍である。延伸倍率がこの範囲にあると幅方向厚さムラが小さくなるので好ましい。テンター延伸機の延伸ゾーンにおいて、幅方向で延伸温度に差を付けると幅方向厚さムラをさらに良好なレベルにすることが可能になる。なお、Woは延伸前のフィルムの幅、Wは延伸後のフィルムの幅を表す。   The draw ratio R (W / Wo) in the drawing step is preferably 1.3 to 3.0 times, more preferably 1.5 to 2.8 times. When the draw ratio is within this range, thickness unevenness in the width direction is reduced, which is preferable. In the stretching zone of the tenter stretching machine, if the stretching temperature is differentiated in the width direction, the thickness unevenness in the width direction can be further improved. In addition, Wo represents the width of the film before stretching, and W represents the width of the film after stretching.

上記斜め方向に延伸する工程は、製膜工程内(オンライン)で行ってもよく、また一度フィルムを巻き取った後に繰り出して上記テンターにて延伸を行ってもよい(オフライン)。   The step of stretching in the oblique direction may be performed within the film forming step (online), or may be unwound after being wound up and stretched by the tenter (offline).

フィルムを乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ロール、マイクロ波等で行うことができるが、簡便さの点で、熱風で行うことが好ましい。   The means for drying the film is not particularly limited, and can be generally performed with hot air, infrared rays, a heating roll, microwave, or the like, but it is preferably performed with hot air in terms of simplicity.

フィルムの乾燥工程における乾燥温度は好ましくはフィルムのガラス転移点−5℃以下、100℃以上で10分以上60分以下の熱処理を行うことが効果的である。乾燥温度は100〜200℃、更に好ましくは110〜160℃で乾燥が行われる。   The drying temperature in the drying process of the film is preferably effective in performing a heat treatment at a glass transition point of −5 ° C. or lower, 100 ° C. or higher and 10 minutes or longer and 60 minutes or shorter. Drying is performed at a drying temperature of 100 to 200 ° C, more preferably 110 to 160 ° C.

所定の熱処理の後、巻き取り前にスリッターを設けて端部を切り落とすことが良好な巻姿を得るため好ましい。更に、幅手両端部にはナーリング加工をすることが好ましい。   After the predetermined heat treatment, it is preferable to provide a slitter and cut off the end portion before winding to obtain a good winding shape. Furthermore, it is preferable to knurling both ends of the width.

ナーリング加工は、加熱されたエンボスロールを押し当てることにより形成することができる。エンボスロールには細かな凹凸が形成されており、これを押し当てることでフィルムに凹凸を形成し、端部を嵩高くすることができる。   The knurling process can be formed by pressing a heated embossing roll. Fine embossing is formed on the embossing roll, and the embossing roll can be pressed to form asperity on the film and make the end bulky.

本発明に用いられるセルロースエステルフィルムの幅手両端部のナーリングの高さは4〜20μm、幅5〜20mmが好ましい。   The height of the knurling at both ends of the width of the cellulose ester film used in the present invention is preferably 4 to 20 μm and the width of 5 to 20 mm.

また、本発明においては、上記のナーリング加工は、フィルムの製膜工程において乾燥終了後、巻き取りの前に設けることが好ましい。   In the present invention, the knurling process is preferably provided after the drying in the film forming process and before winding.

〔溶融製膜法〕
基材フィルムは、溶融製膜法によって製膜しても良い。溶融製膜法は、樹脂および可塑剤などの添加剤を含む組成物を、流動性を示す温度まで加熱溶融し、その後、流動性のセルロースエステルを含む溶融物を流延することをいう。
[Melting method]
The base film may be formed by a melt film forming method. The melt film-forming method refers to heating and melting a composition containing an additive such as a resin and a plasticizer to a temperature exhibiting fluidity, and then casting a melt containing a fluid cellulose ester.

加熱溶融する成形法は、更に詳細には、溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの成形法の中では、機械的強度および表面精度などの点から、溶融押出し法が好ましい。溶融押出しに用いる複数の原材料は、通常予め混錬してペレット化しておくことが好ましい。   More specifically, the heat melting molding method can be classified into a melt extrusion molding method, a press molding method, an inflation method, an injection molding method, a blow molding method, a stretch molding method, and the like. Among these molding methods, the melt extrusion method is preferable from the viewpoint of mechanical strength and surface accuracy. It is preferable that a plurality of raw materials used for melt extrusion are usually kneaded in advance and pelletized.

ペレット化は、公知の方法でよく、例えば、乾燥セルロースエステルや可塑剤、その他添加剤をフィーダーで押出し機に供給し1軸や2軸の押出し機を用いて混錬し、ダイからストランド状に押出し、水冷または空冷し、カッティングすることでできる。   Pelletization may be performed by a known method. For example, dry cellulose ester, plasticizer, and other additives are fed to an extruder with a feeder and kneaded using a single-screw or twin-screw extruder, and formed into a strand from a die. It can be done by extrusion, water cooling or air cooling and cutting.

添加剤は、押出し機に供給する前に混合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。   The additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders.

粒子や酸化防止剤等少量の添加剤は、均一に混合するため、事前に混合しておくことが好ましい。   A small amount of additives such as particles and antioxidants are preferably mixed in advance in order to mix uniformly.

押出し機は、剪断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないようにペレット化可能でなるべく低温で加工することが好ましい。例えば、2軸押出し機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。   The extruder is preferably processed at as low a temperature as possible so as to be able to be pelletized so that the shear force is suppressed and the resin does not deteriorate (decrease in molecular weight, coloring, gel formation, etc.). For example, in the case of a twin screw extruder, it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.

以上のようにして得られたペレットを用いてフィルム製膜を行う。もちろんペレット化せず、原材料の粉末をそのままフィーダーで押出し機に供給し、そのままフィルム製膜することも可能である。   A film is formed using the pellets obtained as described above. Of course, the raw material powder can be directly fed to the extruder by a feeder without being pelletized to form a film as it is.

上記ペレットを1軸や2軸タイプの押出し機を用いて、押出す際の溶融温度を200〜300℃程度とし、リーフディスクタイプのフィルターなどで濾過し異物を除去した後、Tダイからフィルム状に流延し、冷却ロールと弾性タッチロールでフィルムをニップされ、冷却ロール上で固化させる。   Using a single or twin screw extruder, the pellets are melted at a temperature of about 200 to 300 ° C., filtered through a leaf disk filter, etc. to remove foreign matter, and then formed into a film from a T die. The film is nipped by a cooling roll and an elastic touch roll, and solidified on the cooling roll.

供給ホッパーから押出し機へ導入する際は真空下または減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。   When introducing from the supply hopper to the extruder, it is preferable to prevent oxidative decomposition or the like under vacuum, reduced pressure, or inert gas atmosphere.

押出し流量は、ギヤポンプを導入するなどして安定に行うことが好ましい。また、異物の除去に用いるフィルターは、ステンレス繊維焼結フィルターが好ましく用いられる。ステンレス繊維焼結フィルターは、ステンレス繊維体を複雑に絡み合った状態を作り出した上で圧縮し接触箇所を焼結し一体化したもので、その繊維の太さと圧縮量により密度を変え、濾過精度を調整できる。   The extrusion flow rate is preferably performed stably by introducing a gear pump or the like. Further, a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances. The stainless steel fiber sintered filter is a united stainless steel fiber body that is intricately intertwined and compressed, and the contact points are sintered and integrated. The density of the fiber is changed depending on the thickness of the fiber and the amount of compression, and the filtration accuracy is improved. Can be adjusted.

可塑剤や粒子などの添加剤は、予め樹脂と混合しておいてもよいし、押出し機の途中で練り込んでもよい。均一に添加するために、スタチックミキサーなどの混合装置を用いることが好ましい。   Additives such as plasticizers and particles may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.

冷却ロールと弾性タッチロールでフィルムをニップする際のタッチロール側のフィルム温度はフィルムのTg以上Tg+110℃以下にすることが好ましい。このような目的で使用する弾性体表面を有するロールは、公知のロールが使用できる。   The film temperature on the touch roll side when the film is nipped between the cooling roll and the elastic touch roll is preferably Tg or more and Tg + 110 ° C. or less of the film. A well-known roll can be used for the roll which has the elastic body surface used for such a purpose.

弾性タッチロールは挟圧回転体ともいう。弾性タッチロールとしては、市販されているものを用いることもできる。   The elastic touch roll is also called a pinching rotator. As the elastic touch roll, a commercially available one can be used.

冷却ロールからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。   When peeling the film from the cooling roll, it is preferable to control the tension to prevent deformation of the film.

また、上記のようにして得られたフィルムは、冷却ロールに接する工程を通過後、前記延伸操作により延伸することが好ましい。   Moreover, it is preferable that the film obtained as described above is stretched by the stretching operation after passing through the step of contacting the cooling roll.

延伸する方法は、公知のロール延伸機やテンターなどを好ましく用いることができる。延伸温度は、通常フィルムを構成する樹脂のTg〜Tg+60℃の温度範囲で行われることが好ましい。   As a method of stretching, a known roll stretching machine or tenter can be preferably used. The stretching temperature is usually preferably performed in the temperature range of Tg to Tg + 60 ° C. of the resin constituting the film.

巻き取る前に、製品となる幅に端部をスリットして裁ち落とし、巻き中の貼り付きやすり傷防止のために、ナール加工(エンボッシング加工)を両端に施してもよい。ナール加工の方法は凸凹のパターンを側面に有する金属リングを加熱や加圧により加工することができる。なお、フィルム両端部のクリップの把持部分は通常、フィルムが変形しており製品として使用できないので切除されて、再利用される。   Prior to winding, the ends may be slit and cut to the width of the product, and knurling (embossing) may be applied to both ends to prevent sticking or scratching during winding. The knurling method can process a metal ring having an uneven pattern on its side surface by heating or pressing. In addition, since the film has deform | transformed and cannot use as a product normally, the holding | grip part of the clip of both ends of a film is cut out and reused.

(基材フィルムの物性)
本実施形態における基材フィルムの膜厚は、特に限定はされないが10〜250μmが用いられる。特に膜厚は10〜100μmであることが特に好ましい。更に好ましくは30〜60μmである。
(Physical properties of base film)
Although the film thickness of the base film in this embodiment is not specifically limited, 10-250 micrometers is used. In particular, the film thickness is particularly preferably 10 to 100 μm. More preferably, it is 30-60 micrometers.

本発明に係る基材フィルムは、幅1〜4mのものが用いられる。特に幅1.4〜4mのものが好ましく用いられ、特に好ましくは1.6〜3mである。4mを超えると搬送が困難となる。   The base film according to the present invention has a width of 1 to 4 m. In particular, those having a width of 1.4 to 4 m are preferably used, and particularly preferably 1.6 to 3 m. If it exceeds 4 m, conveyance becomes difficult.

また、基材フィルムの算術平均粗さRaは、好ましくは2.0nm〜4.0nm、より好ましくは2.5nm〜3.5nmである。   The arithmetic average roughness Ra of the base film is preferably 2.0 nm to 4.0 nm, more preferably 2.5 nm to 3.5 nm.

<機能性層>
本発明に係る防眩性フィルムは、基材フィルム上に光学異方性層を設けることが好ましく、また基材フィルムの防眩層とは反対側の面にバックコート層を設けることが好ましく、更に防眩層の上に反射防止層等の機能性層を設けることが好ましい。
<Functional layer>
The antiglare film according to the present invention is preferably provided with an optically anisotropic layer on the base film, and preferably provided with a backcoat layer on the surface opposite to the antiglare layer of the base film, Furthermore, it is preferable to provide a functional layer such as an antireflection layer on the antiglare layer.

(光学異方性層)
本発明ではλ/4板機能を光学異方性層によっても付与することができる。基材フィルムの上に配向膜を形成し、ラビング処理を施した後さらに光学異方性層を付与することで形成される。
(Optically anisotropic layer)
In the present invention, the λ / 4 plate function can be imparted also by the optically anisotropic layer. The film is formed by forming an alignment film on the substrate film, applying a rubbing treatment, and further applying an optically anisotropic layer.

本発明の防眩性フィルムは、防眩層に微粒子を用いないことにより、光学異方性層上へ前記防眩層を直接塗設することが可能となり、湿熱耐久密着性劣化がない防眩性フィルムを提供することができる。   The antiglare film of the present invention can be directly coated on the optically anisotropic layer by using no fine particles in the antiglare layer, and does not deteriorate wet heat durability adhesion. A protective film can be provided.

[配向膜]
前記表面処理した基材フィルム上に配向膜を設ける。
[Alignment film]
An alignment film is provided on the surface-treated substrate film.

この膜は、液晶性分子の配向方向を規定する機能を有する。   This film has a function of defining the alignment direction of liquid crystalline molecules.

しかし、液晶性化合物を配向後にその配向状態を固定してしまえば、配向膜はその役割を果たしているために、本発明の構成要素としては必ずしも必須のものではない。   However, if the alignment state is fixed after aligning the liquid crystalline compound, the alignment film plays the role, and thus is not necessarily an essential component of the present invention.

即ち、配向状態が固定された配向膜上の光学異方性層のみを偏光子上に転写して偏光板を作製することも可能である。   That is, it is also possible to produce a polarizing plate by transferring only the optically anisotropic layer on the alignment film in which the alignment state is fixed onto the polarizer.

配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュア・ブロジェット法(LB膜)による有機化合物(例、ω−トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で設けることができる。   The alignment film is an organic compound (eg, ω-tricosanoic acid) formed by rubbing treatment of an organic compound (preferably polymer), oblique deposition of an inorganic compound, formation of a layer having a microgroove, or Langmuir-Blodgett method (LB film). , Dioctadecylmethylammonium chloride, methyl stearylate).

更に、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。   Furthermore, an alignment film in which an alignment function is generated by application of an electric field, application of a magnetic field, or light irradiation is also known.

配向膜は、ポリマーのラビング処理により形成することが好ましい。配向膜に使用するポリマーは、原則として、液晶性分子を配向させる機能のある分子構造を有する。   The alignment film is preferably formed by polymer rubbing treatment. In principle, the polymer used for the alignment film has a molecular structure having a function of aligning liquid crystal molecules.

本発明では、液晶性分子を配向させる機能に加えて、架橋性官能基(例、二重結合)を有する側鎖を主鎖に結合させるか、あるいは、液晶性分子を配向させる機能を有する架橋性官能基を側鎖に導入することが好ましい。   In the present invention, in addition to the function of aligning liquid crystalline molecules, a cross-linking having a function of aligning a side chain having a crosslinkable functional group (eg, double bond) to the main chain or aligning liquid crystalline molecules. It is preferable to introduce a functional functional group into the side chain.

配向膜に使用されるポリマーは、それ自体架橋可能なポリマーあるいは架橋剤により架橋されるポリマーのいずれも使用することができ、これらの組み合わせを複数使用することができる。   As the polymer used for the alignment film, either a polymer that can be crosslinked by itself or a polymer that is crosslinked by a crosslinking agent can be used, and a plurality of combinations thereof can be used.

前記ポリマーとしては、例えば特開平8−338913号公報中段落番号[0022]記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコールおよび変性ポリビニルアルコール、ポリ(N−メチロールアクリルアミド)、ポリアシレート、ポリイミド、酢酸ビニル共重合体、カルボキシメチルセルロース、ポリカーボネート等が含まれる。シランカップリング剤をポリマーとして用いることができる。   Examples of the polymer include methacrylate copolymers, styrene copolymers, polyolefins, polyvinyl alcohols and modified polyvinyl alcohols, poly (N-methylolacrylamide) described in paragraph No. [0022] of JP-A-8-338913, Polyacylate, polyimide, vinyl acetate copolymer, carboxymethyl cellulose, polycarbonate and the like are included. Silane coupling agents can be used as the polymer.

水溶性ポリマー(例、ポリ(N−メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール、変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコールおよび変性ポリビニルアルコールがさらに好ましく、ポリビニルアルコールおよび変性ポリビニルアルコールが最も好ましい。   Water-soluble polymers (eg, poly (N-methylolacrylamide), carboxymethylcellulose, gelatin, polyvinyl alcohol, modified polyvinyl alcohol) are preferred, gelatin, polyvinyl alcohol and modified polyvinyl alcohol are more preferred, and polyvinyl alcohol and modified polyvinyl alcohol are most preferred. .

重合度が異なるポリビニルアルコールまたは変性ポリビニルアルコールを2種類併用することが特に好ましい。ポリビニルアルコールの鹸化度は、70〜100%が好ましく、80〜100%がさらに好ましい。ポリビニルアルコールの重合度は、100〜5000であることが好ましい。   It is particularly preferable to use two types of polyvinyl alcohol or modified polyvinyl alcohol having different degrees of polymerization. The saponification degree of polyvinyl alcohol is preferably 70 to 100%, more preferably 80 to 100%. It is preferable that the polymerization degree of polyvinyl alcohol is 100-5000.

液晶性分子を配向させる機能を有する側鎖は、一般に疎水性基を官能基として有する。   A side chain having a function of aligning liquid crystal molecules generally has a hydrophobic group as a functional group.

具体的な官能基の種類は、液晶性分子の種類および必要とする配向状態に応じて決定する。   The specific type of functional group is determined according to the type of liquid crystal molecule and the required alignment state.

例えば、変性ポリビニルアルコールの変性基としては、共重合変性、連鎖移動変性またはブロック重合変性により導入できる。   For example, the modifying group of the modified polyvinyl alcohol can be introduced by copolymerization modification, chain transfer modification or block polymerization modification.

変性基の例には、親水性基(カルボン酸基、スルホン酸基、ホスホン酸基、アミノ基、アンモニウム基、アミド基、チオール基等)、炭素数10〜100個の炭化水素基、フッ素原子置換の炭化水素基、チオエーテル基、重合性基(不飽和重合性基、エポキシ基、アジリニジル基等)、アルコキシシリル基(トリアルコキシ、ジアルコキシ、モノアルコキシ)等が挙げられる。   Examples of modifying groups include hydrophilic groups (carboxylic acid groups, sulfonic acid groups, phosphonic acid groups, amino groups, ammonium groups, amide groups, thiol groups, etc.), hydrocarbon groups having 10 to 100 carbon atoms, fluorine atoms Substituted hydrocarbon groups, thioether groups, polymerizable groups (unsaturated polymerizable groups, epoxy groups, azirinidyl groups, etc.), alkoxysilyl groups (trialkoxy, dialkoxy, monoalkoxy) and the like can be mentioned.

これらの変性ポリビニルアルコール化合物の具体例として、例えば特開2000−155216号公報中の段落番号[0022]〜[0145]、同2002−62426号公報中の段落番号[0018]〜[0022]に記載のもの等が挙げられる。   Specific examples of these modified polyvinyl alcohol compounds are described, for example, in paragraph numbers [0022] to [0145] in JP-A No. 2000-155216 and paragraph numbers [0018] to [0022] in JP-A No. 2002-62426. And the like.

架橋性官能基を有する側鎖を配向膜ポリマーの主鎖に結合させるか、あるいは、液晶性分子を配向させる機能を有する側鎖に架橋性官能基を導入すると、配向膜のポリマーと光学異方性層に含まれる多官能モノマーとを共重合させることができる。   When a side chain having a crosslinkable functional group is bonded to the main chain of the alignment film polymer, or a crosslinkable functional group is introduced into a side chain having a function of aligning liquid crystalline molecules, the alignment film polymer and the optically anisotropic film The polyfunctional monomer contained in the conductive layer can be copolymerized.

その結果、多官能モノマーと多官能モノマーとの間だけではなく、配向膜ポリマーと配向膜ポリマーとの間、そして多官能モノマーと配向膜ポリマーとの間も共有結合で強固に結合される。従って、架橋性官能基を配向膜ポリマーに導入することで、光学補償シートの強度を著しく改善することができる。   As a result, not only between the polyfunctional monomer and the polyfunctional monomer, but also between the alignment film polymer and the alignment film polymer and between the polyfunctional monomer and the alignment film polymer is firmly bonded by a covalent bond. Therefore, the strength of the optical compensation sheet can be remarkably improved by introducing the crosslinkable functional group into the alignment film polymer.

配向膜ポリマーの架橋性官能基は、多官能モノマーと同様に、重合性基を含むことが好ましい。具体的には、例えば特開2000−155216号公報中段落番号[0080]〜[0100]記載のもの等が挙げられる。配向膜ポリマーは、前記の架橋性官能基とは別に、架橋剤を用いて架橋させることもできる。   The crosslinkable functional group of the alignment film polymer preferably contains a polymerizable group in the same manner as the polyfunctional monomer. Specific examples include those described in JP-A 2000-155216, paragraphs [0080] to [0100]. Apart from the crosslinkable functional group, the alignment film polymer can also be crosslinked using a crosslinking agent.

架橋剤としては、アルデヒド、N−メチロール化合物、ジオキサン誘導体、カルボキシル基を活性化することにより作用する化合物、活性ビニル化合物、活性ハロゲン化合物、イソオキサゾールおよびジアルデヒド澱粉が含まれる。   Examples of the crosslinking agent include aldehydes, N-methylol compounds, dioxane derivatives, compounds that act by activating carboxyl groups, active vinyl compounds, active halogen compounds, isoxazole, and dialdehyde starch.

二種類以上の架橋剤を併用してもよい。具体的には、例えば特開2002−62426号公報中の段落番号[0023]〜[024]記載の化合物等が挙げられる。反応活性の高いアルデヒド、特にグルタルアルデヒドが好ましい。   Two or more kinds of crosslinking agents may be used in combination. Specific examples include compounds described in paragraphs [0023] to [024] in JP-A No. 2002-62426. Aldehydes having high reaction activity, particularly glutaraldehyde are preferred.

架橋剤の添加量は、ポリマーに対して0.1〜20質量%が好ましく、0.5〜15質量%がさらに好ましい。   0.1-20 mass% is preferable with respect to a polymer, and, as for the addition amount of a crosslinking agent, 0.5-15 mass% is more preferable.

配向膜に残存する未反応の架橋剤の量は、1.0質量%以下であることが好ましく、0.5質量%以下であることがさらに好ましい。このように調節することで、配向膜を液晶表示装置に長期使用、或は高温高湿の雰囲気下に長期間放置しても、レチキュレーション発生のない充分な耐久性が得られる。   The amount of the unreacted crosslinking agent remaining in the alignment film is preferably 1.0% by mass or less, and more preferably 0.5% by mass or less. By adjusting in this way, even if the alignment film is used for a long time in a liquid crystal display device or left in a high temperature and high humidity atmosphere for a long time, sufficient durability without reticulation can be obtained.

配向膜は、基本的に、配向膜形成材料である前記ポリマー、架橋剤を含む透明支持体上に塗布した後、加熱乾燥し(架橋させ)、ラビング処理することにより形成することができる。   The alignment film can be basically formed by applying the polymer as an alignment film forming material and a transparent support containing a crosslinking agent, followed by drying by heating (crosslinking) and rubbing treatment.

架橋反応は、前記のように、透明支持体上に塗布した後、任意の時期に行って良い。ポリビニルアルコールのような水溶性ポリマーを配向膜形成材料として用いる場合には、塗布液は消泡作用のある有機溶媒(例、メタノール)と水の混合溶媒とすることが好ましい。   As described above, the crosslinking reaction may be carried out at any time after coating on the transparent support. When a water-soluble polymer such as polyvinyl alcohol is used as the alignment film forming material, the coating solution is preferably a mixed solvent of an organic solvent (eg, methanol) having a defoaming action and water.

その比率は質量比で水:メタノールが0:100〜99:1が好ましく、0:100〜91:9であることがさらに好ましい。これにより、泡の発生が抑えられ、配向膜、更には光学異方層の層表面の欠陥が著しく減少する。   The ratio of water: methanol is preferably 0: 100 to 99: 1, and more preferably 0: 100 to 91: 9. Thereby, generation | occurrence | production of a bubble is suppressed and the defect of the layer surface of an orientation film and also an optically anisotropic layer reduces remarkably.

配向膜の塗布方法は、スピンコーティング法、ディップコーティング法、カーテンコーティング法、エクストルージョンコーティング法、ロッドコーティング法またはロールコーティング法が好ましい。特にロッドコーティング法が好ましい。   The alignment film is preferably applied by spin coating, dip coating, curtain coating, extrusion coating, rod coating, or roll coating. A rod coating method is particularly preferable.

また、乾燥後の膜厚は0.1〜10μmが好ましい。加熱乾燥は、20℃〜110℃で行うことができる。充分な架橋を形成するためには60℃〜100℃が好ましく、特に80℃〜100℃が好ましい。乾燥時間は1分〜36時間で行うことができるが、好ましくは1分〜30分である。pHも、使用する架橋剤に最適な値に設定することが好ましく、グルタルアルデヒドを使用した場合は、pH4.5〜5.5で、特に5が好ましい。   The film thickness after drying is preferably 0.1 to 10 μm. Heating and drying can be performed at 20 ° C to 110 ° C. In order to form sufficient cross-linking, 60 ° C to 100 ° C is preferable, and 80 ° C to 100 ° C is particularly preferable. The drying time can be 1 minute to 36 hours, preferably 1 minute to 30 minutes. The pH is preferably set to an optimum value for the crosslinking agent to be used. When glutaraldehyde is used, the pH is 4.5 to 5.5, and 5 is particularly preferable.

配向膜は、透明支持体上又は前記下塗層上に設けられる。配向膜は、前記のようにポリマー層を架橋したのち、表面をラビング処理することにより得ることができる。   The alignment film is provided on the transparent support or the undercoat layer. The alignment film can be obtained by rubbing the surface after crosslinking the polymer layer as described above.

前記ラビング処理は、LCDの液晶配向処理工程として広く採用されている処理方法を適用することができる。即ち、配向膜の表面を、紙やガーゼ、フェルト、ゴムあるいはナイロン、ポリアシレート繊維などを用いて一定方向に擦ることにより、配向を得る方法を用いることができる。   For the rubbing treatment, a treatment method widely adopted as a liquid crystal alignment treatment process of LCD can be applied. That is, a method of obtaining the orientation by rubbing the surface of the orientation film in a certain direction using paper, gauze, felt, rubber, nylon, polyacylate fiber or the like can be used.

一般的には、長さおよび太さが均一な繊維を平均的に植毛した布などを用いて数回程度ラビングを行うことにより実施される。   Generally, it is carried out by rubbing several times using a cloth or the like in which fibers having a uniform length and thickness are planted on average.

工業的に実施する場合、搬送している偏光層のついたフィルムに対し、回転するラビングロールを接触させることで達成するが、ラビングロールの真円度、円筒度、振れ(偏芯)はいずれも30μm以下であることが好ましい。ラビングロールへのフィルムのラップ角度は、0.1〜90°が好ましい。   When industrially implemented, this is achieved by bringing a rotating rubbing roll into contact with the film with the polarizing layer being transported. However, the roundness, cylindricity, and deflection (eccentricity) of the rubbing roll can be any. Is preferably 30 μm or less. The film wrap angle on the rubbing roll is preferably 0.1 to 90 °.

ただし、特開平8−160430号公報に記載されているように、360°以上巻き付けることで、安定なラビング処理を得ることもできる。   However, as described in JP-A-8-160430, a stable rubbing treatment can be obtained by winding 360 ° or more.

フィルムの搬送速度は1〜100m/minが好ましい。ラビング角は0〜60°の範囲で適切なラビング角度を選択することが好ましい。液晶表示装置に使用する場合は、40〜50°が好ましい。45°が特に好ましい。   As for the conveyance speed of a film, 1-100 m / min is preferable. It is preferable to select an appropriate rubbing angle in the range of 0 to 60 °. When used for a liquid crystal display device, 40 to 50 ° is preferable. 45 ° is particularly preferred.

次に、配向膜の上に光学異方性層の液晶性分子を配向させる。   Next, the liquid crystalline molecules of the optically anisotropic layer are aligned on the alignment film.

その後、必要に応じて、配向膜ポリマーと光学異方性層に含まれる多官能モノマーとを反応させるか、あるいは、架橋剤を用いて配向膜ポリマーを架橋させる。   Thereafter, as necessary, the alignment film polymer and the polyfunctional monomer contained in the optically anisotropic layer are reacted, or the alignment film polymer is crosslinked using a crosslinking agent.

光学異方性層に用いる液晶性分子には、棒状液晶性分子および円盤状液晶性分子が含まれる。棒状液晶性分子および円盤状液晶性分子は、高分子液晶でも低分子液晶でもよく、さらに、低分子液晶が架橋され液晶性を示さなくなったものも含まれる。   The liquid crystalline molecules used in the optically anisotropic layer include rod-like liquid crystalline molecules and discotic liquid crystalline molecules. The rod-like liquid crystal molecules and the disk-like liquid crystal molecules may be high-molecular liquid crystals or low-molecular liquid crystals, and further include those in which low-molecular liquid crystals are cross-linked and no longer exhibit liquid crystallinity.

(棒状液晶性分子)
棒状液晶性分子としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルアシレート類、安息香酸アシレート類、シクロヘキサンカルボン酸フェニルアシレート類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。
(Rod-like liquid crystalline molecules)
Examples of rod-like liquid crystalline molecules include azomethines, azoxys, cyanobiphenyls, cyanophenyl acylates, benzoic acid acylates, cyclohexanecarboxylic acid phenyl acylates, cyanophenyl cyclohexanes, cyano substituted phenyl pyrimidines, alkoxy substituted phenyl Pyrimidines, phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used.

なお、棒状液晶性分子には、金属錯体も含まれる。また、棒状液晶性分子を繰り返し単位中に含む液晶ポリマーも、棒状液晶性分子として用いることができる。言い換えると、棒状液晶性分子は、(液晶)ポリマーと結合していてもよい。   The rod-like liquid crystalline molecule includes a metal complex. In addition, a liquid crystal polymer containing a rod-like liquid crystalline molecule in a repeating unit can also be used as the rod-like liquid crystalline molecule. In other words, the rod-like liquid crystal molecule may be bonded to a (liquid crystal) polymer.

棒状液晶性分子については、季刊化学総説第22巻液晶の化学(1994)日本化学会編の第4章、第7章および第11章、および液晶デバイスハンドブック日本学術振興会第142委員会編の第3章に記載がある。   For rod-like liquid crystalline molecules, see Chapter 4, Chapter 7 and Chapter 11 of the Chemistry of the Quarterly Chemistry Vol. 22 (1994) The Chemical Society of Japan, and the 142th Committee of the Japan Society for the Promotion of Science. Described in Chapter 3.

棒状液晶性分子の複屈折率は、0.001〜0.7の範囲にあることが好ましい。   The birefringence of the rod-like liquid crystal molecule is preferably in the range of 0.001 to 0.7.

棒状液晶性分子は、その配向状態を固定するために、重合性基を有することが好ましい。   The rod-like liquid crystalline molecule preferably has a polymerizable group in order to fix its alignment state.

重合性基は、ラジカル重合性不飽基或はカチオン重合性基が好ましく、具体的には、例えば特開2002−62427号公報中の段落番号[0064]〜[0086]記載の重合性基、重合性液晶化合物が挙げられる。   The polymerizable group is preferably a radically polymerizable unsaturated group or a cationically polymerizable group. Specifically, for example, the polymerizable group described in paragraphs [0064] to [0086] of JP-A-2002-62427, A polymerizable liquid crystal compound is mentioned.

(円盤状液晶性分子)
円盤状(ディスコティック)液晶性分子には、C.Destradeらの研究報告、Mol.Cryst.71巻、111頁(1981年)に記載されているベンゼン誘導体、C.Destradeらの研究報告、Mol.Cryst.122巻、141頁(1985年)、Physics lett,A,78巻、82頁(1990)に記載されているトルキセン誘導体、B.Kohneらの研究報告、Angew.Chem.96巻、70頁(1984年)に記載されたシクロヘキサン誘導体及びJ.M.Lehnらの研究報告、J.Chem.Commun.,1794頁(1985年)、J.Zhangらの研究報告、J.Am.Chem.Soc.116巻、2655頁(1994年)に記載されているアザクラウン系やフェニルアセチレン系マクロサイクルが含まれる。
(Discotic liquid crystalline molecules)
For discotic liquid crystal molecules, C.I. Destrade et al., Mol. Cryst. 71, 111 (1981), benzene derivatives described in C.I. Destrade et al., Mol. Cryst. 122, 141 (1985), Physics lett, A, 78, 82 (1990); Kohne et al., Angew. Chem. 96, page 70 (1984) and the cyclohexane derivatives described in J. Am. M.M. Lehn et al. Chem. Commun. , 1794 (1985), J. Am. Zhang et al., J. Am. Chem. Soc. 116, 2655 (1994), azacrown type and phenylacetylene type macrocycles are included.

円盤状液晶性分子としては、分子中心の母核に対して、直鎖のアルキル基、アルコキシ基、置換ベンゾイルオキシ基が母核の側鎖として放射線状に置換した構造である液晶性を示す化合物も含まれる。   As a discotic liquid crystalline molecule, a compound having liquid crystallinity having a structure in which a linear alkyl group, an alkoxy group, and a substituted benzoyloxy group are radially substituted as a side chain of the mother nucleus with respect to the mother nucleus at the center of the molecule Is also included.

分子または分子の集合体が、回転対称性を有し、一定の配向を付与できる化合物であることが好ましい。   The molecule or the assembly of molecules is preferably a compound having rotational symmetry and imparting a certain orientation.

円盤状液晶性分子から形成する光学異方性層は、最終的に光学異方性層に含まれる化合物が円盤状液晶性分子である必要はなく、例えば、低分子の円盤状液晶性分子が熱や光で反応する基を有しており、結果的に熱、光で反応により重合または架橋し、高分子量化し液晶性を失った化合物も含まれる。   In the optically anisotropic layer formed from the discotic liquid crystalline molecules, the compound finally contained in the optically anisotropic layer does not need to be a discotic liquid crystalline molecule. Also included are compounds having a group that reacts with heat or light and, as a result, polymerized or cross-linked by reaction with heat or light, resulting in a high molecular weight and loss of liquid crystallinity.

円盤状液晶性分子の好ましい例は、特開平8−50206号公報に記載されている。また、円盤状液晶性分子の重合については、特開平8−27284公報に記載がある。   Preferred examples of the discotic liquid crystalline molecules are described in JP-A-8-50206. The polymerization of discotic liquid crystalline molecules is described in JP-A-8-27284.

円盤状液晶性分子を重合により固定するためには、円盤状液晶性分子の円盤状コアに、置換基として重合性基を結合させる必要がある。   In order to fix the discotic liquid crystalline molecules by polymerization, it is necessary to bond a polymerizable group as a substituent to the discotic core of the discotic liquid crystalline molecules.

円盤状コアと重合性基は、連結基を介して結合する化合物が好ましく、これにより重合反応においても配向状態を保つことが出来る。   A compound in which the discotic core and the polymerizable group are bonded via a linking group is preferable, whereby the orientation state can be maintained even in the polymerization reaction.

例えば、特開2000−155216号公報中の段落番号[0151]〜「0168」記載の化合物等が挙げられる。   Examples thereof include compounds described in paragraph numbers [0151] to “0168” in JP-A No. 2000-155216.

ハイブリッド配向では、円盤状液晶性分子の長軸(円盤面)と偏光膜の面との角度が、光学異方性層の深さ方向でかつ偏光膜の面からの距離の増加と共に増加または減少している。角度は、距離の増加と共に減少することが好ましい。   In the hybrid alignment, the angle between the major axis (disk surface) of the discotic liquid crystalline molecule and the surface of the polarizing film increases or decreases in the depth direction of the optically anisotropic layer and with increasing distance from the surface of the polarizing film. doing. The angle preferably decreases with increasing distance.

さらに、角度の変化としては、連続的増加、連続的減少、間欠的増加、間欠的減少、連続的増加と連続的減少を含む変化、あるいは、増加及び減少を含む間欠的変化が可能である。間欠的変化は、厚さ方向の途中で傾斜角が変化しない領域を含んでいる。   Further, the change in angle can be a continuous increase, a continuous decrease, an intermittent increase, an intermittent decrease, a change including a continuous increase and a continuous decrease, or an intermittent change including an increase and a decrease. The intermittent change includes a region where the inclination angle does not change in the middle of the thickness direction.

角度は、角度が変化しない領域を含んでいても、全体として増加または減少していればよい。さらに、角度は連続的に変化することが好ましい。   Even if the angle includes a region where the angle does not change, the angle only needs to increase or decrease as a whole. Furthermore, it is preferable that the angle changes continuously.

偏光膜側の円盤状液晶性分子の長軸の平均方向は、一般に円盤状液晶性分子あるいは配向膜の材料を選択することにより、またはラビング処理方法の選択することにより、調整することができる。   The average direction of the major axis of the discotic liquid crystalline molecules on the polarizing film side can be generally adjusted by selecting a discotic liquid crystalline molecule or an alignment film material, or by selecting a rubbing treatment method.

また、表面側(空気側)の円盤状液晶性分子の長軸(円盤面)方向は、一般に円盤状液晶性分子あるいは円盤状液晶性分子と共に使用する添加剤の種類を選択することにより調整することができる。   In addition, the major axis (disk surface) direction of the surface-side (air-side) discotic liquid crystalline molecules is generally adjusted by selecting the type of additive used together with the discotic liquid crystalline molecules or discotic liquid crystalline molecules. be able to.

円盤状液晶性分子と共に使用する添加剤の例としては、可塑剤、界面活性剤、重合性モノマー及びポリマーなどを挙げることができる。   Examples of the additive used together with the discotic liquid crystalline molecule include a plasticizer, a surfactant, a polymerizable monomer and a polymer.

長軸配向方向の変化の程度も、前記と同様に、液晶性分子と添加剤との選択により調整できる。   The degree of change in the major axis orientation direction can also be adjusted by selecting liquid crystalline molecules and additives as described above.

(光学異方性層の他の成分)
前記の液晶性分子と共に、可塑剤、界面活性剤、重合性モノマー等を併用して、塗工膜の均一性、膜の強度、液晶分子の配向性等を向上することが出来る。液晶性分子と相溶性を有し、液晶性分子の傾斜角の変化を与えられるか、あるいは配向を阻害しないことが好ましい。
(Other components of optically anisotropic layer)
Along with the liquid crystal molecules, a plasticizer, a surfactant, a polymerizable monomer, and the like can be used in combination to improve the uniformity of the coating film, the strength of the film, the orientation of the liquid crystal molecules, and the like. It is preferable that the compound has compatibility with the liquid crystal molecules and can change the tilt angle of the liquid crystal molecules or does not inhibit the alignment.

重合性モノマーとしては、ラジカル重合性若しくはカチオン重合性の化合物が挙げられる。好ましくは、多官能性ラジカル重合性モノマーであり、前記の重合性基含有の液晶化合物と共重合性のものが好ましい。   Examples of the polymerizable monomer include radically polymerizable or cationically polymerizable compounds. Preferably, it is a polyfunctional radically polymerizable monomer and is preferably copolymerizable with the polymerizable group-containing liquid crystal compound.

例えば、特開2002−296423号公報中の段落番号[0018]〜[0020]記載のものが挙げられる。前記化合物の添加量は、円盤状液晶性分子に対して一般に1〜50質量%の範囲にあり、5〜30質量%の範囲にあることが好ましい。   Examples thereof include those described in paragraph numbers [0018] to [0020] in JP-A No. 2002-296423. The amount of the compound added is generally in the range of 1 to 50% by mass and preferably in the range of 5 to 30% by mass with respect to the discotic liquid crystalline molecules.

界面活性剤としては、従来公知の化合物が挙げられるが、特にフッ素系化合物が好ましい。   Examples of the surfactant include conventionally known compounds, and fluorine compounds are particularly preferable.

具体的には、例えば特開2001−330725号公報中の段落番号[0028]〜[0056]記載の化合物が挙げられる。   Specific examples include the compounds described in paragraph numbers [0028] to [0056] in JP-A No. 2001-330725.

円盤状液晶性分子とともに使用するポリマーは、円盤状液晶性分子に傾斜角の変化を与えられることが好ましい。   The polymer used together with the discotic liquid crystalline molecule is preferably capable of changing the tilt angle of the discotic liquid crystalline molecule.

ポリマーの例としては、セルロースアシレートを挙げることができる。セルロースアシレートの好ましい例としては、特開2000−155216号公報中の段落番号[0178]記載のものが挙げられる。   Examples of the polymer include cellulose acylate. Preferable examples of cellulose acylate include those described in paragraph No. [0178] in JP-A No. 2000-155216.

液晶性分子の配向を阻害しないように、前記ポリマーの添加量は、液晶性分子に対して0.1〜10質量%の範囲にあることが好ましく、0.1〜8質量%の範囲にあることがより好ましい。   The addition amount of the polymer is preferably in the range of 0.1 to 10% by mass, and preferably in the range of 0.1 to 8% by mass with respect to the liquid crystal molecule so as not to disturb the alignment of the liquid crystal molecules. It is more preferable.

円盤状液晶性分子のディスコティックネマティック液晶相−固相転移温度は、70〜300℃が好ましく、70〜170℃がさらに好ましい。   The discotic nematic liquid crystal phase-solid phase transition temperature of the discotic liquid crystalline molecules is preferably 70 to 300 ° C, more preferably 70 to 170 ° C.

(光学異方性層の形成)
光学異方性層は、液晶性分子および必要に応じて後述の重合性開始剤や任意の成分を含む塗布液を、配向膜の上に塗布することで形成できる。
(Formation of optically anisotropic layer)
The optically anisotropic layer can be formed by applying a coating liquid containing liquid crystalline molecules and, if necessary, a polymerization initiator described later and optional components on the alignment film.

塗布液の調製に使用する溶媒としては、有機溶媒が好ましく用いられる。   As a solvent used for preparing the coating solution, an organic solvent is preferably used.

有機溶媒の例には、アミド(例、N,N−ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン、テトラクロロエタン)、アシレート(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2−ジメトキシエタン)が含まれる。アルキルハライドおよびケトンが好ましい。二種類以上の有機溶媒を併用してもよい。   Examples of organic solvents include amides (eg, N, N-dimethylformamide), sulfoxides (eg, dimethyl sulfoxide), heterocyclic compounds (eg, pyridine), hydrocarbons (eg, benzene, hexane), alkyl halides (eg, , Chloroform, dichloromethane, tetrachloroethane), acylates (eg, methyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone), ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane). Alkyl halides and ketones are preferred. Two or more organic solvents may be used in combination.

塗布液の塗布は、公知の方法(例、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実施できる。   The coating liquid can be applied by a known method (eg, wire bar coating method, extrusion coating method, direct gravure coating method, reverse gravure coating method, die coating method).

光学異方性層の厚さは、0.1〜20μmであることが好ましく、0.5〜15μmであることがさらに好ましく、1〜10μmであることが最も好ましい。   The thickness of the optically anisotropic layer is preferably 0.1 to 20 μm, more preferably 0.5 to 15 μm, and most preferably 1 to 10 μm.

(液晶性分子の配向状態の固定)
配向させた液晶性分子を、配向状態を維持して固定することができる。
(Fixing the alignment state of liquid crystalline molecules)
The aligned liquid crystal molecules can be fixed while maintaining the alignment state.

固定化は、重合反応により実施することが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれる。光重合反応が好ましい。   The immobilization is preferably performed by a polymerization reaction. The polymerization reaction includes a thermal polymerization reaction using a thermal polymerization initiator and a photopolymerization reaction using a photopolymerization initiator. A photopolymerization reaction is preferred.

光重合開始剤の例には、α−カルボニル化合物(米国特許2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許2448828号明細書記載)、α−炭化水素置換芳香族アシロイン化合物(米国特許2722512号明細書記載)、多核キノン化合物(米国特許3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(米国特許3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60−105667号公報、米国特許4239850号明細書記載)およびオキサジアゾール化合物(米国特許4212970号明細書記載)が含まれる。   Examples of the photopolymerization initiator include α-carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), α-hydrocarbon substituted aromatic acyloin. Compound (described in US Pat. No. 2,722,512), polynuclear quinone compound (described in US Pat. Nos. 3,046,127 and 2,951,758), a combination of triarylimidazole dimer and p-aminophenyl ketone (US Pat. No. 3,549,367) Acridine and phenazine compounds (JP-A-60-105667, U.S. Pat. No. 4,239,850) and oxadiazole compounds (U.S. Pat. No. 4,212,970).

光重合開始剤の使用量は、塗布液の固形分の0.01〜20質量%の範囲にあることが好ましく、0.5〜5質量%の範囲にあることがさらに好ましい。   The amount of the photopolymerization initiator used is preferably in the range of 0.01 to 20% by mass, more preferably in the range of 0.5 to 5% by mass, based on the solid content of the coating solution.

液晶性分子の重合のための光照射は、紫外線を用いることが好ましい。   It is preferable to use ultraviolet rays for light irradiation for polymerization of liquid crystalline molecules.

照射エネルギーは、20mJ/cm〜50J/cmの範囲にあることが好ましく、20〜5000mJ/cmの範囲にあることがより好ましく、100〜800mJ/cmの範囲にあることがさらに好ましい。 The irradiation energy is preferably in the range of 20mJ / cm 2 ~50J / cm 2 , more preferably in the range of 20~5000mJ / cm 2, more preferably in the range of 100 to 800 mJ / cm 2 .

また、光重合反応を促進するため、加熱条件下で光照射を実施してもよく、保護層を、光学異方性層の上に設けてもよい。   In order to accelerate the photopolymerization reaction, light irradiation may be carried out under heating conditions, and a protective layer may be provided on the optically anisotropic layer.

(バックコート層)
本発明の防眩性フィルムは、基材フィルムの防眩層を設けた側と反対側の面に、カールや防眩性フィルムを巻き状で保管した際のくっつき防止の為に、バックコート層を設けてもよい。
(Back coat layer)
The anti-glare film of the present invention is a back coat layer for preventing sticking when a curl or anti-glare film is stored in a roll on the surface opposite to the side on which the anti-glare layer of the base film is provided. May be provided.

バックコート層は、上記目的のため、微粒子を含有することが好ましく、微粒子としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、酸化錫、酸化インジウム、酸化亜鉛、ITO、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウムおよびリン酸カルシウムを挙げることができる。また、前記微粒子を分散する目的や後述するバインダーを溶解して塗布組成物とするために、溶剤を含有することが好ましい。溶剤としては、機能性層で説明した溶剤が好ましい。バックコート層に含まれる粒子は、バインダーに対して0.1〜50質量%が好ましい。バックコート層を設けた場合のヘイズの増加は1.5%以下であることが好ましく、0.5%以下である。またバインダーとして、ジアセチルセルロース等のセルロースエステル樹脂を用いることが好ましい。   The back coat layer preferably contains fine particles for the above purpose, and the fine particles include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined silicic acid. Mention may be made of calcium, tin oxide, indium oxide, zinc oxide, ITO, hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate. Moreover, it is preferable to contain a solvent in order to disperse the fine particles and to dissolve a binder described later to form a coating composition. As the solvent, the solvent described in the functional layer is preferable. The particles contained in the backcoat layer are preferably 0.1 to 50% by mass with respect to the binder. When the back coat layer is provided, the increase in haze is preferably 1.5% or less, and 0.5% or less. Further, it is preferable to use a cellulose ester resin such as diacetyl cellulose as the binder.

(反射防止層)
本発明の防眩性フィルムは、防眩層の上層に反射防止層を塗設して、外光反射防止機能を有する反射防止フィルムとして用いることができる。
(Antireflection layer)
The antiglare film of the present invention can be used as an antireflection film having an external light antireflection function by coating an antireflection layer on the antiglare layer.

反射防止層は、光学干渉によって反射率が減少するように屈折率、膜厚、層の数、層順等を考慮して積層されていることが好ましい。反射防止層は、支持体よりも屈折率の低い低屈折率層、もしくは支持体よりも屈折率の高い高屈折率層と低屈折率層を組み合わせて構成されていることが好ましい。特に好ましくは、3層以上の屈折率層から構成される反射防止層であり、支持体側から屈折率の異なる3層を、中屈折率層(支持体よりも屈折率が高く、高屈折率層よりも屈折率の低い層)/高屈折率層/低屈折率層の順に積層されているものが好ましく用いられる。または、2層以上の高屈折率層と2層以上の低屈折率層とを交互に積層した4層以上の層構成の反射防止層も好ましく用いられる。反射防止フィルムの層構成としては下記のような構成が考えられるが、これに限定されるものではない。   The antireflection layer is preferably laminated in consideration of the refractive index, the film thickness, the number of layers, the layer order, and the like so that the reflectance is reduced by optical interference. The antireflection layer is preferably composed of a low refractive index layer having a refractive index lower than that of the support, or a combination of a high refractive index layer having a refractive index higher than that of the support and a low refractive index layer. Particularly preferably, it is an antireflection layer composed of three or more refractive index layers, and three layers having different refractive indexes from the support side are divided into medium refractive index layers (high refractive index layers having a higher refractive index than the support). Are preferably laminated in the order of a layer having a lower refractive index) / a high refractive index layer / a low refractive index layer. Alternatively, an antireflection layer having a layer structure of four or more layers in which two or more high refractive index layers and two or more low refractive index layers are alternately laminated is also preferably used. As the layer structure of the antireflection film, the following structure is conceivable, but is not limited thereto.

基材フィルム/防眩層/低屈折率層
基材フィルム/防眩層/中屈折率層/低屈折率層
基材フィルム/防眩層/中屈折率層/高屈折率層/低屈折率層
基材フィルム/防眩層/高屈折率層(導電性層)/低屈折率層
(低屈折率層)
反射防止フィルムには必須である低屈折率層は、シリカ系微粒子を含有することが好ましく、その屈折率は、支持体である基材フィルムの屈折率より低く、23℃、波長550nm測定で、1.30〜1.45の範囲であることが好ましい。
Base film / Anti-glare layer / Low refractive index layer Base film / Anti-glare layer / Medium refractive index layer / Low refractive index layer Base film / Anti-glare layer / Medium refractive index layer / High refractive index layer / Low refractive index Layer Base film / Anti-glare layer / High refractive index layer (conductive layer) / Low refractive index layer (Low refractive index layer)
The low refractive index layer essential for the antireflection film preferably contains silica-based fine particles, and the refractive index is lower than the refractive index of the substrate film as a support, measured at 23 ° C. and a wavelength of 550 nm. A range of 1.30 to 1.45 is preferred.

低屈折率層の膜厚は、5nm〜0.5μmであることが好ましく、10nm〜0.3μmであることが更に好ましく、30nm〜0.2μmであることが最も好ましい。   The film thickness of the low refractive index layer is preferably 5 nm to 0.5 μm, more preferably 10 nm to 0.3 μm, and most preferably 30 nm to 0.2 μm.

低屈折率層形成用組成物については、シリカ系微粒子として、特に外殻層を有し内部が多孔質または空洞の粒子を少なくとも1種類以上含むことが好ましい。特に該外殻層を有し内部が多孔質または空洞である粒子が、中空シリカ系微粒子であることが好ましい。   The composition for forming a low refractive index layer preferably contains at least one kind of particles having an outer shell layer and porous or hollow inside as silica-based fine particles. In particular, the particles having the outer shell layer and having a porous or hollow interior are preferably hollow silica-based fine particles.

なお、低屈折率層形成用組成物には、下記一般式(OSi−1)で表される有機珪素化合物もしくはその加水分解物、或いは、その重縮合物を併せて含有させても良い。   The composition for forming a low refractive index layer may contain an organosilicon compound represented by the following general formula (OSi-1) or a hydrolyzate thereof, or a polycondensate thereof.

一般式(OSi−1):Si(OR)
前記一般式で表される有機珪素化合物は、式中、Rは炭素数1〜4のアルキル基を表す。具体的には、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等が好ましく用いられる。
General formula (OSi-1): Si (OR) 4
In the organic silicon compound represented by the general formula, R represents an alkyl group having 1 to 4 carbon atoms. Specifically, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane and the like are preferably used.

他に溶剤、必要に応じて、シランカップリング剤、硬化剤、界面活性剤等を添加してもよい。   In addition, a silane coupling agent, a curing agent, a surfactant and the like may be added as necessary.

(高屈折率層)
高屈折率層の屈折率は、23℃、波長550nm測定で、屈折率を1.4〜2.2の範囲に調整することが好ましい。また、高屈折率層の厚さは5nm〜1μmが好ましく、10nm〜0.2μmであることが更に好ましく、30nm〜0.1μmであることが最も好ましい。屈折率を調整する手段は、金属酸化物微粒子等を添加することで達成できる。金属酸化また、用いる金属酸化物微粒子の屈折率は1.80〜2.60であるものが好ましく、1.85〜2.50であるものが更に好ましい。
(High refractive index layer)
The refractive index of the high refractive index layer is preferably adjusted to a refractive index in the range of 1.4 to 2.2 by measuring at 23 ° C. and a wavelength of 550 nm. The thickness of the high refractive index layer is preferably 5 nm to 1 μm, more preferably 10 nm to 0.2 μm, and most preferably 30 nm to 0.1 μm. The means for adjusting the refractive index can be achieved by adding metal oxide fine particles and the like. Metal oxide The metal oxide fine particles used preferably have a refractive index of 1.80 to 2.60, more preferably 1.85 to 2.50.

金属酸化物微粒子の種類は特に限定されるものではなく、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物を用いることができ、これらの金属酸化物微粒子はAl、In、Sn、Sb、Nb、ハロゲン元素、Taなどの微量の原子をドープしてあっても良い。また、これらの混合物でもよい。本発明においては、中でも酸化ジルコニウム、酸化アンチモン、酸化錫、酸化亜鉛、酸化インジウム−スズ(ITO)、アンチモンドープ酸化スズ(ATO)、及びアンチモン酸亜鉛から選ばれる少なくとも1種の金属酸化物微粒子を主成分として用いることが特に好ましい。特にアンチモン酸亜鉛粒子を含有することが好ましい。   The kind of metal oxide fine particles is not particularly limited, and Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P and S A metal oxide having at least one element selected from the group consisting of Al, In, Sn, Sb, Nb, a halogen element, Ta and the like is doped with a minute amount of atoms. May be. A mixture of these may also be used. In the present invention, at least one metal oxide fine particle selected from among zirconium oxide, antimony oxide, tin oxide, zinc oxide, indium-tin oxide (ITO), antimony-doped tin oxide (ATO), and zinc antimonate is used. It is particularly preferable to use it as the main component. In particular, it is preferable to contain zinc antimonate particles.

これら金属酸化物微粒子の一次粒子の平均粒子径は10nm〜200nmの範囲であり、10〜150nmであることが特に好ましい。金属酸化物微粒子の平均粒子径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。粒径が小さ過ぎると凝集しやすくなり、分散性が劣化する。粒径が大き過ぎるとヘイズが著しく上昇し好ましくない。金属酸化物微粒子の形状は、米粒状、球形状、立方体状、紡錘形状、針状或いは不定形状であることが好ましい。   The average particle diameter of the primary particles of these metal oxide fine particles is in the range of 10 nm to 200 nm, particularly preferably 10 to 150 nm. The average particle diameter of the metal oxide fine particles can be measured from an electron micrograph taken with a scanning electron microscope (SEM) or the like. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc. If the particle size is too small, aggregation tends to occur and the dispersibility deteriorates. If the particle size is too large, the haze is remarkably increased. The shape of the metal oxide fine particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an indefinite shape.

金属酸化物微粒子は有機化合物により表面処理してもよい。金属酸化物微粒子の表面を有機化合物で表面修飾することによって、有機溶媒中での分散安定性が向上し、分散粒径の制御が容易になるとともに、経時での凝集、沈降を抑えることもできる。このため、好ましい有機化合物での表面修飾量は金属酸化物粒子に対して0.1質量%〜5質量%、より好ましくは0.5質量%〜3質量%である。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が含まれる。この中でもシランカップリング剤が好ましい。二種以上の表面処理を組み合わせてもよい。また高屈折率層は、π共役系導電性ポリマーを含有しても良い。π共役系導電性ポリマーとは、主鎖がπ共役系で構成されている有機高分子であれば使用することができる。例えば、ポリチオフェン類、ポリピロール類、ポリアニリン類、ポリフェニレン類、ポリアセチレン類、ポリフェニレンビニレン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体が挙げられる。重合の容易さ、安定性点からは、ポリチオフェン類、ポリアニリン類、ポリアセチレン類が好ましい。   The metal oxide fine particles may be surface-treated with an organic compound. By modifying the surface of the metal oxide fine particles with an organic compound, the dispersion stability in an organic solvent is improved, the dispersion particle size can be easily controlled, and aggregation and sedimentation over time can be suppressed. . For this reason, the surface modification amount with a preferable organic compound is 0.1 mass%-5 mass% with respect to metal oxide particle, More preferably, it is 0.5 mass%-3 mass%. Examples of the organic compound used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Of these, silane coupling agents are preferred. Two or more kinds of surface treatments may be combined. The high refractive index layer may contain a π-conjugated conductive polymer. The π-conjugated conductive polymer can be used as long as it is an organic polymer having a main chain composed of a π-conjugated system. Examples thereof include polythiophenes, polypyrroles, polyanilines, polyphenylenes, polyacetylenes, polyphenylene vinylenes, polyacenes, polythiophene vinylenes, and copolymers thereof. From the viewpoint of ease of polymerization and stability, polythiophenes, polyanilines, and polyacetylenes are preferable.

π共役系導電性ポリマーは、無置換のままでも十分な導電性やバインダー樹脂への溶解性が得られるが、導電性や溶解性をより高めるために、アルキル基、カルボキシ基、スルホ基、アルコキシ基、ヒドロキシ基、シアノ基等の官能基を導入してもよい。   The π-conjugated conductive polymer can provide sufficient conductivity and solubility in a binder resin even if it is not substituted, but in order to further improve conductivity and solubility, an alkyl group, a carboxy group, a sulfo group, an alkoxy group. A functional group such as a group, a hydroxy group, or a cyano group may be introduced.

また、イオン性化合物を含有しても良い。イオン性化合物としては、イミダゾリウム系、ピリジウム系、脂環式アミン系、脂肪族アミン系、脂肪族ホスホニウム系の陽イオンとBF−、PF−等の無機イオン系、CFSO−、(CFSON−、CFCO−等のフッ素系の陰イオンとからなる化合物等が挙げられる。該ポリマーとバインダーの比率はポリマー100質量部に対して、バインダーが10〜400質量部が好ましく、特に好ましくは、ポリマー100質量部に対して、バインダーが100〜200質量部である。 Moreover, you may contain an ionic compound. Examples of the ionic compound include imidazolium-based, pyridium-based, alicyclic amine-based, aliphatic amine-based, aliphatic phosphonium-based cations and inorganic ion-based compounds such as BF 4 -and PF 6- , CF 3 SO 2-, and the like. , (CF 3 SO 2 ) 2 N—, and a compound comprising a fluorine-based anion such as CF 3 CO 2 —. The ratio of the polymer to the binder is preferably 10 to 400 parts by mass of the binder with respect to 100 parts by mass of the polymer, and particularly preferably 100 to 200 parts by mass of the binder with respect to 100 parts by mass of the polymer.

<偏光板>
本発明の防眩性フィルムを用いた本発明の偏光板について述べる。偏光板は一般的な方法で作製することができる。本発明の防眩性フィルムの裏面側をアルカリ鹸化処理し、処理した防眩性フィルムを、ヨウ素溶液中に浸漬延伸して作製した偏光膜の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。
<Polarizing plate>
The polarizing plate of the present invention using the antiglare film of the present invention will be described. The polarizing plate can be produced by a general method. The back side of the antiglare film of the present invention is subjected to alkali saponification treatment, and a completely saponified polyvinyl alcohol aqueous solution is applied to at least one surface of a polarizing film prepared by immersing and stretching the treated antiglare film in an iodine solution. It is preferable to use and bond together.

もう一方の面に該防眩性フィルムを用いても、別の偏光板保護フィルムを用いてもよい。本発明の防眩性フィルムに対して、もう一方の面に用いられる偏光板保護フィルムは、前述した基材フィルムであるセルローストリアセテートフィルムや熱可塑性アクリル樹脂とセルロースエステル樹脂の含有質量比が、熱可塑性アクリル樹脂:セルロースエステル樹脂=95:5〜50:50である保護フィルムを用いることが好ましい。構成の詳細は前述の通りであり、具体的には、リターデーションRoが590nmで0〜5nm、Rtが−20〜+20nmの無配向フィルムが一例として挙げられる。   The antiglare film may be used on the other surface, or another polarizing plate protective film may be used. With respect to the antiglare film of the present invention, the polarizing plate protective film used on the other surface has a cellulose triacetate film or thermoplastic acrylic resin and cellulose ester resin content mass ratio, which is the base film described above. It is preferable to use a protective film of plastic acrylic resin: cellulose ester resin = 95: 5 to 50:50. Details of the configuration are as described above. Specifically, a non-oriented film having a retardation Ro of 590 nm of 0 to 5 nm and an Rt of -20 to +20 nm is exemplified.

また、市販の偏光板保護フィルムを用いることも好ましく、KC8UX2MW、KC4UX、KC5UX、KC4UY、KC8UY、KC12UR、KC4UEW、KC8UCR−3、KC8UCR−4、KC8UCR−5、KC4FR−1、KC4FR−2、KC8UE、KC4UE(コニカミノルタオプト(株)製)等が挙げられる。   Moreover, it is also preferable to use a commercially available polarizing plate protective film, KC8UX2MW, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC4UEW, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4FR-1, KC4FR-2, KC8FR-2, KC8FR-2 KC4UE (Konica Minolta Opto Co., Ltd.) etc. are mentioned.

偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがあるがこれのみに限定されるものではない。偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。偏光膜の膜厚は5〜30μm、好ましくは8〜15μmの偏光膜が好ましく用いられる。   The polarizing film, which is the main component of the polarizing plate, is an element that transmits only light having a polarization plane in a certain direction. A typical polarizing film known at present is a polyvinyl alcohol polarizing film, which is a polyvinyl alcohol film. There are ones in which iodine is dyed on a system film and ones in which a dichroic dye is dyed, but it is not limited to this. As the polarizing film, a polyvinyl alcohol aqueous solution is formed and dyed by uniaxially stretching or dyed, or uniaxially stretched after dyeing, and then preferably subjected to a durability treatment with a boron compound. A polarizing film having a thickness of 5 to 30 μm, preferably 8 to 15 μm, is preferably used.

該偏光膜の面上に、本発明の防眩性フィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせる。   On the surface of the polarizing film, one side of the antiglare film of the present invention is bonded to form a polarizing plate. It is preferably bonded with an aqueous adhesive mainly composed of completely saponified polyvinyl alcohol or the like.

(粘着層)
液晶セルの基板と貼り合わせるために保護フィルムの片面に用いられる粘着剤層は、光学的に透明であることはもとより、適度な粘弾性や粘着特性を示すものが好ましい。
(Adhesive layer)
The pressure-sensitive adhesive layer used on one side of the protective film to be bonded to the substrate of the liquid crystal cell is preferably optically transparent and exhibits moderate viscoelasticity and adhesive properties.

具体的な粘着層としては、例えばアクリル系共重合体やエポキシ系樹脂、ポリウレタン、シリコーン系ポリマー、ポリエーテル、ブチラール系樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂、合成ゴムなどの接着剤もしくは粘着剤等のポリマーを用いて、乾燥法、化学硬化法、熱硬化法、熱熔融法、光硬化法等により膜形成させ、硬化せしめることができる。なかでも、アクリル系共重合体は、最も粘着物性を制御しやすく、かつ透明性や耐候性、耐久性などに優れていて好ましく用いることができる。   Specific examples of the adhesive layer include adhesives or adhesives such as acrylic copolymers, epoxy resins, polyurethane, silicone polymers, polyethers, butyral resins, polyamide resins, polyvinyl alcohol resins, and synthetic rubbers. A film such as a drying method, a chemical curing method, a thermal curing method, a thermal melting method, a photocuring method, or the like can be formed and cured using a polymer such as the above. Among them, the acrylic copolymer can be preferably used because it is most easy to control the physical properties of the adhesive and is excellent in transparency, weather resistance, durability and the like.

<液晶表示装置>
本発明の防眩性フィルムを用いて作製した本発明の偏光板を表示装置に組み込むことによって、種々の視認性に優れた液晶表示装置を作製することができる。
<Liquid crystal display device>
By incorporating the polarizing plate of the present invention produced using the antiglare film of the present invention into a display device, various liquid crystal display devices having excellent visibility can be produced.

本発明の防眩性フィルムは偏光板に組み込まれ、反射型、透過型、半透過型液晶表示装置またはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型、OCB型等の各種駆動方式の液晶表示装置で好ましく用いられる。   The antiglare film of the present invention is incorporated in a polarizing plate, and is a reflective type, transmissive type, transflective liquid crystal display device or TN type, STN type, OCB type, HAN type, VA type (PVA type, MVA type), IPS. It is preferably used in liquid crystal display devices of various drive systems such as a type and an OCB type.

(立体画像表示装置)
また、本発明の防眩性フィルムは、立体画像表示装置において、種々の態様において用いることができる。例えば、液晶表示装置と液晶シャッタメガネとからなる立体画像表示装置であって、当該液晶シャッタメガネが、(1)λ/4板(本発明の防眩性フィルム)、液晶セル、及び偏光子がこの順に設けられている、又は(2)λ/4板(本発明の防眩性フィルム)、偏光子、液晶セル、及び偏光子がこの順に設けられている液晶シャッタメガネであることを特徴とする態様の立体画像表示装置において用いることができる。
(Stereoscopic image display device)
Moreover, the anti-glare film of this invention can be used in a various aspect in a stereo image display apparatus. For example, a stereoscopic image display device including a liquid crystal display device and liquid crystal shutter glasses, wherein the liquid crystal shutter glasses include (1) a λ / 4 plate (antiglare film of the present invention), a liquid crystal cell, and a polarizer. Or (2) λ / 4 plate (antiglare film of the present invention), polarizer, liquid crystal cell, and liquid crystal shutter glasses in which the polarizer is provided in this order. It can use in the stereo image display apparatus of the aspect to carry out.

なお、いずれの態様の場合も、液晶表示装置の前側偏光板は、λ/4板(本発明の防眩性フィルム)、偏光子、及び光学フィルムセル、及び偏光子がこの順に設けられている構成になっている。   In any case, the front polarizing plate of the liquid crystal display device is provided with a λ / 4 plate (antiglare film of the present invention), a polarizer, an optical film cell, and a polarizer in this order. It is configured.

本発明においては、上記の態様・構成により、立体(3D)画像観賞時に首を傾けた際のクロストーク若しくは輝度低下及び色味変化を低減でき、使用環境に対して優れた視認性を保つことが可能で、使用環境に対してより耐久性が高い立体画像表示装置とすることができる。   In the present invention, with the above-described aspect and configuration, crosstalk or luminance reduction and color change when tilting the head when viewing a stereoscopic (3D) image can be reduced, and excellent visibility with respect to the use environment can be maintained. Therefore, a stereoscopic image display device with higher durability against the use environment can be obtained.

(有機エレクトロルミネッセンス素子を用いたバックライト)
本発明は、液晶表示装置のバックライトとして有機エレクトロルミネッセンス素子(有機EL素子)を使用することが、薄型の立体画像表示装置を作成する観点から好ましい。
(Backlight using organic electroluminescence device)
In the present invention, it is preferable to use an organic electroluminescence element (organic EL element) as a backlight of a liquid crystal display device from the viewpoint of creating a thin stereoscopic image display device.

本発明に係る有機EL素子を使用したバックライトについては、特開2006−269515号公報に詳細に記載されている仕様を好ましく用いることができる。   For the backlight using the organic EL device according to the present invention, the specifications described in detail in JP-A-2006-269515 can be preferably used.

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

実施例1
<基材フィルム1の作製>
(エステル化合物1の調製)
1,2−プロピレングリコール251g、無水フタル酸278g、アジピン酸91g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。15時間脱水縮合反応させ、反応終了後200℃で未反応の1,2−プロピレングリコールを減圧留去することにより、エステル化合物1を得た。酸価0.10mgKOH/g、数平均分子量450であった。
Example 1
<Preparation of base film 1>
(Preparation of ester compound 1)
251 g of 1,2-propylene glycol, 278 g of phthalic anhydride, 91 g of adipic acid, 610 g of benzoic acid, 0.191 g of tetraisopropyl titanate as an esterification catalyst, 2 L four-neck equipped with a thermometer, stirrer, and slow cooling tube The flask is charged and gradually heated with stirring until it reaches 230 ° C. in a nitrogen stream. The ester compound 1 was obtained by making it dehydrate-condense for 15 hours, and depressurizingly distilling unreacted 1, 2- propylene glycol at 200 degreeC after completion | finish of reaction. The acid value was 0.10 mg KOH / g, and the number average molecular weight was 450.

(二酸化珪素分散液の調製)
・アエロジルR812(日本アエロジル(株)製、一次粒子の平均径7nm)
10質量部
・エタノール 90質量部
以上をディゾルバーで30分間撹拌混合した後、マントンゴーリンで分散を行った。二酸化珪素分散液に88質量部のメチレンクロライドを撹拌しながら投入し、ディゾルバーで30分間撹拌混合し、二酸化珪素分散希釈液を作製した。微粒子分散希釈液濾過器(アドバンテック東洋(株):ポリプロピレンワインドカートリッジフィルターTCW−PPS−1N)で濾過した。
(Preparation of silicon dioxide dispersion)
Aerosil R812 (Nippon Aerosil Co., Ltd., average primary particle diameter of 7 nm)
10 parts by mass / 90 parts by mass of ethanol The above was stirred and mixed with a dissolver for 30 minutes, and then dispersed with Manton Gorin. 88 parts by mass of methylene chloride was added to the silicon dioxide dispersion while stirring, and the mixture was stirred and mixed for 30 minutes with a dissolver to prepare a silicon dioxide dispersion dilution. It filtered with the fine particle dispersion | distribution dilution liquid filter (Advantech Toyo Co., Ltd .: Polypropylene wind cartridge filter TCW-PPS-1N).

〈基材フィルム1の作製〉
(ドープ組成物)
・セルローストリアセテート 90質量部
(リンター綿から合成されたセルローストリアセテート、アセチル基置換度2.88、Mn=140000)
・エステル化合物1 10質量部
・チヌビン928(BASFジャパン(株)製) 2.5質量部
・二酸化珪素分散希釈液 4質量部
・メチレンクロライド 432質量部
・エタノール 38質量部
以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、安積濾紙(株)製の安積濾紙No.24を使用して濾過し、ドープ液を調製した。
<Preparation of base film 1>
(Dope composition)
・ 90 parts by mass of cellulose triacetate (cellulose triacetate synthesized from linter cotton, acetyl group substitution degree 2.88, Mn = 14000)
-Ester compound 1 10 parts by mass-Tinuvin 928 (manufactured by BASF Japan Ltd.) 2.5 parts by mass-Silicon dioxide dispersion diluent 4 parts by mass-Methylene chloride 432 parts by mass-Ethanol 38 parts by mass The solution was completely dissolved while being heated and stirred, and Azumi Filter Paper No. No. 24 was used for filtration to prepare a dope solution.

次に、ベルト流延装置を用い、ステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が100%になるまで溶剤を蒸発させ、ステンレスバンド支持体上から剥離した。セルロースエステルフィルムのウェブを35℃で溶剤を蒸発させ、1.65m幅にスリットし、テンターでTD方向(フィルムの幅手方向)に1.3倍、MD方向の延伸倍率は1.01倍で延伸しながら、160℃の乾燥温度で乾燥させた。乾燥を始めたときの残留溶剤量は20%であった。その後、120℃の乾燥装置内を多数のロールで搬送させながら15分間乾燥させた後、1.49m幅にスリットし、フィルム両端に幅15mm、高さ10μmのナーリング加工を施し、巻芯に巻き取り、基材フィルム1を得た。基材フィルムの残留溶剤量は0.2%であり、膜厚は40μm、巻数は3900mであった。   Next, the belt casting apparatus was used to uniformly cast on a stainless steel band support. With the stainless steel band support, the solvent was evaporated until the residual solvent amount reached 100%, and the stainless steel band support was peeled off. The cellulose ester film web was evaporated at 35 ° C., slit to 1.65 m width, and stretched 1.3 times in the TD direction (film width direction) with a tenter, and the MD direction draw ratio was 1.01 times. While stretching, the film was dried at a drying temperature of 160 ° C. The residual solvent amount at the start of drying was 20%. Then, after drying for 15 minutes while transporting the inside of a drying device at 120 ° C. with a number of rolls, slitting to a width of 1.49 m, applying a knurling process with a width of 15 mm and a height of 10 μm at both ends of the film, and winding it around a core The base film 1 was obtained. The residual solvent amount of the base film was 0.2%, the film thickness was 40 μm, and the number of turns was 3900 m.

基材フィルム1の配向角θは、王子計測器社製KOBRA−21ADHを用いて測定した結果、フィルム長手方向に対して90°±1°の範囲にあった。   As a result of measuring the orientation angle θ of the base film 1 using KOBRA-21ADH manufactured by Oji Scientific Instruments, it was in the range of 90 ° ± 1 ° with respect to the longitudinal direction of the film.

<基材フィルム2の作製>
<原反(ロール状の長尺フィルム)の作製>
(エステル化合物2の調製)
窒素雰囲気下、テレフタル酸ジメチル4.85g、1,2−プロピレングリコール4.4g、p−トルイル酸6.8g、テトライソプロピルチタネート10mgを混合し、140℃で2時間攪拌を行った後、更に210℃で16時間攪拌を行った。次に、170℃まで降温し、未反応物の1,2−プロピレングリコールを減圧留去することにより、比較ポリエステルBを得た。
<Preparation of base film 2>
<Preparation of raw fabric (roll-shaped long film)>
(Preparation of ester compound 2)
In a nitrogen atmosphere, 4.85 g of dimethyl terephthalate, 4.4 g of 1,2-propylene glycol, 6.8 g of p-toluic acid, and 10 mg of tetraisopropyl titanate were mixed and stirred at 140 ° C. for 2 hours. Stirring was carried out at ° C for 16 hours. Next, the temperature was lowered to 170 ° C., and unreacted 1,2-propylene glycol was distilled off under reduced pressure to obtain comparative polyester B.

酸価 :0.1
数平均分子量:490
分散度 :1.4
分子量300〜1800の成分含有率:90%
ヒドロキシル(水酸基)価:0.1
水酸基含有量:0.04%
エステル化合物3はジカルボン酸に対してモノカルボン酸が2倍モル使用されているので末端がトルイル酸エステルになっている。
Acid value: 0.1
Number average molecular weight: 490
Dispersity: 1.4
Component content of molecular weight 300-1800: 90%
Hydroxyl (hydroxyl) value: 0.1
Hydroxyl content: 0.04%
Since the ester compound 3 uses twice the amount of monocarboxylic acid relative to dicarboxylic acid, the terminal is a toluic acid ester.

〈微粒子分散液1〉
微粒子(アエロジル R812 日本アエロジル(株)製) 11質量部
エタノール 89質量部
以上をディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散を行った。
<Fine particle dispersion 1>
Fine particles (Aerosil R812 manufactured by Nippon Aerosil Co., Ltd.) 11 parts by weight Ethanol 89 parts by weight The above was stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin.

〈微粒子添加液1〉
メチレンクロライドを入れた溶解タンクに十分攪拌しながら、微粒子分散液1をゆっくりと添加した。更に、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液1を調製した。
<Fine particle addition liquid 1>
The fine particle dispersion 1 was slowly added to the dissolution tank containing methylene chloride with sufficient stirring. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution 1.

メチレンクロライド 50質量部
微粒子分散液1 50質量部
下記組成の主ドープ液を調製した。まず加圧溶解タンクにメチレンクロライドとエタノールを添加した。溶剤の入った加圧溶解タンクにセルロースエステル、糖エステル化合物、ポリエステルA、TINUVIN928、微粒子添加液1を攪拌しながら投入した。これを加熱し、攪拌しながら、完全に溶解し。これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープ液を調製した。
Methylene chloride 50 parts by mass Fine particle dispersion 1 50 parts by mass A main dope solution having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Cellulose ester, sugar ester compound, polyester A, TINUVIN 928, and fine particle additive solution 1 were charged into a pressure dissolution tank containing a solvent while stirring. This is completely dissolved with heating and stirring. This was designated as Azumi Filter Paper No. The main dope solution was prepared by filtration using 244.

〈主ドープ液の組成〉
メチレンクロライド 340質量部
エタノール 64質量部
セルロースエステル(セルロースアセテートプロピオネート:アセチル基置換度1.5、プロピオニル基0.9、総置換度2.4;重量平均分子量19万) 100質量部
エステル化合物1 5.0質量部
エステル化合物2 5.0質量部
TINUVIN928(BASFジャパン社製) 1.5質量部
微粒子添加液1 3.5質量部
以上を密閉容器に投入し、攪拌しながら溶解してドープ液を調製した。次いで、無端ベルト流延装置を用い、ドープ液を温度33℃、2000mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は30℃に制御した。
<Composition of main dope solution>
Methylene chloride 340 parts by weight Ethanol 64 parts by weight Cellulose ester (cellulose acetate propionate: acetyl group substitution degree 1.5, propionyl group 0.9, total substitution degree 2.4; weight average molecular weight 190,000) 100 parts by weight ester compound 1 5.0 parts by mass Ester compound 2 5.0 parts by mass TINUVIN 928 (manufactured by BASF Japan) 1.5 parts by mass Particulate additive solution 1 3.5 parts by mass A liquid was prepared. Next, an endless belt casting apparatus was used to uniformly cast the dope solution on a stainless steel belt support at a temperature of 33 ° C. and a width of 2000 mm. The temperature of the stainless steel belt was controlled at 30 ° C.

ステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が75%になるまで溶媒を蒸発させ、次いで剥離張力110N/mで、ステンレスベルト支持体上から剥離した。   On the stainless steel belt support, the solvent was evaporated until the residual solvent amount in the cast (cast) film became 75%, and then peeled off from the stainless steel belt support with a peeling tension of 110 N / m.

剥離したセルロースエステルフィルムを、160℃の熱をかけながらテンターを用いて幅方向に1%延伸した。延伸開始時の残留溶媒は15%であった。   The peeled cellulose ester film was stretched 1% in the width direction using a tenter while applying heat at 160 ° C. The residual solvent at the start of stretching was 15%.

次いで、乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させた。乾燥温度は130℃で、搬送張力は100N/mとした。   Next, drying was terminated while the drying zone was conveyed by a number of rolls. The drying temperature was 130 ° C. and the transport tension was 100 N / m.

以上のようにして、乾燥膜厚102μmのロール状の基材フィルム2を得た。   As described above, a roll-shaped base film 2 having a dry film thickness of 102 μm was obtained.

ロール状の基材フィルム2を、スライド可能な繰出装置にセットし、図4の装置の斜め延伸機に供給した。そのとき、斜め延伸装置の入口部に最も近いガイドロールの主軸と斜め延伸装置の把持具(クリップつかみ部)との距離を80cmとした。クリップは搬送方向の長さが2インチのものを、上記ガイドロールは直径10cmのものを使用した。テンターで延伸温度185℃、延伸倍率1.8倍で巾手方向に延伸を行い、その後、レールが45°屈曲する際に延伸と垂直方向に0.71倍に収縮した。延伸後のフィルムは、斜め延伸テンター出口側第一ロールで測定した張力の変動を引取モーター回転数に反映させるフィードバック制御を行って、引取張力の変動が3%未満となるように制御した。その後、フィルム両端をトリミングして、エアーフローロールからなる搬送方向変更装置で搬送方向を変更し、スライド可能な巻取装置で巻き取り、2000mm幅のロール状の長尺状基材フィルム2を得た。   The roll-shaped base film 2 was set in a slidable feeding device and supplied to the oblique stretching machine of the device shown in FIG. At that time, the distance between the main shaft of the guide roll closest to the inlet of the oblique stretching apparatus and the gripping tool (clip gripping part) of the oblique stretching apparatus was 80 cm. A clip with a length of 2 inches in the conveying direction was used, and a guide roll with a diameter of 10 cm was used. The tenter was stretched in the transverse direction at a stretching temperature of 185 ° C. and a stretching ratio of 1.8 times, and then contracted 0.71 times in the direction perpendicular to the stretching when the rail was bent 45 °. The stretched film was controlled so that the fluctuation in the take-up tension was less than 3% by performing feedback control in which the change in the tension measured with the first roll on the outlet side of the obliquely stretched tenter was reflected in the take-up motor rotation speed. Thereafter, both ends of the film are trimmed, the conveyance direction is changed by a conveyance direction changing device composed of an airflow roll, and the film is wound by a slidable winding device to obtain a roll-like long base film 2 having a width of 2000 mm. It was.

基材フィルム1の配向角θは、王子計測器社製KOBRA−21ADHを用いて測定した結果、フィルム長手方向に対して45°±1°の範囲にあった。   As a result of measuring the orientation angle θ of the base film 1 using KOBRA-21ADH manufactured by Oji Scientific Instruments, it was in the range of 45 ° ± 1 ° with respect to the film longitudinal direction.

<基材フィルム3〜10の作製>
基材フィルム2の原反膜厚、延伸温度と倍率を表1のように変化させて、基材フィルム3〜10を作製した。
<Preparation of base film 3-10>
Substrate films 3 to 10 were produced by changing the raw film thickness, stretching temperature, and magnification of the substrate film 2 as shown in Table 1.

<基材フィルム11の作製>
基材フィルム2の〈主ドープ液の組成〉からTINUVIN928(BASFジャパン社製)を除いた以外は、フィルム2と同様にしてフィルム11を作製した。
<Preparation of base film 11>
A film 11 was produced in the same manner as the film 2 except that TINUVIN 928 (manufactured by BASF Japan) was removed from the <main dope composition> of the base film 2.

<基材フィルム12の作製>
トリアセチルセルロースフィルム(膜厚60μm、Ro=0nm、Rt=55nm)の上にステロイド変性ポリアミック酸の希釈液を、バーコーターを用いて1μmの厚さに塗布した。塗布層を、60℃の温風で2分間乾燥し、その表面をトリアセチルセルロースフィルムの搬送方向との角度が45°の方向にラビング処理して、下記の変性ポリイミドからなる垂直配向膜を形成した。
<Preparation of base film 12>
A diluted solution of steroid-modified polyamic acid was applied to a thickness of 1 μm on a triacetylcellulose film (film thickness 60 μm, Ro = 0 nm, Rt = 55 nm) using a bar coater. The coating layer is dried with hot air at 60 ° C. for 2 minutes, and the surface is rubbed in an angle of 45 ° with the transport direction of the triacetyl cellulose film to form a vertical alignment film made of the following modified polyimide. did.

垂直配向膜の上に、下記の組成の塗布液を塗布し、ディスコティック液晶性分子をホモジニアスに垂直配向させた。形成された層の厚さは、1.3μmであった。次に、500w/cmの照度の水銀ランプで紫外線を1秒間照射してディスコティック液晶性分子を重合させた。このようにして光学異方性層を形成した。 On the vertical alignment film, a coating liquid having the following composition was applied, and the discotic liquid crystal molecules were homogeneously aligned vertically. The thickness of the formed layer was 1.3 μm. Next, ultraviolet rays were irradiated for 1 second with a mercury lamp having an illuminance of 500 w / cm 2 to polymerize the discotic liquid crystalline molecules. In this way, an optically anisotropic layer was formed.

(光学異方性層塗布液)
ディスコティック液晶性化合物(1) 41.01質量部
エチレンオキサイド変成トリメチロールプロパントリアクリレート(V#360、大阪有機化学(株)製) 4.06質量部
セルロースアセテートブチレート(CAB551−0.2、イーストマンケミカル社製) 0.90質量部
セルロースアセテートブチレート(CAB531−1、イーストマンケミカル社製)
0.23質量部
光重合開始剤(イルガキュア907、BASFジャパン(株)製) 1.35質量部
増感剤(カヤキュアーDETX、日本化薬(株)製) 0.45質量部
メチルエチルケトン 102質量部
(Optical anisotropic layer coating solution)
Discotic liquid crystalline compound (1) 41.01 parts by mass Ethylene oxide modified trimethylolpropane triacrylate (V # 360, manufactured by Osaka Organic Chemical Co., Ltd.) 4.06 parts by mass Cellulose acetate butyrate (CAB551-0.2, 0.90 parts by mass Cellulose acetate butyrate (CAB531-1, manufactured by Eastman Chemical Co.)
0.23 parts by mass Photopolymerization initiator (Irgacure 907, manufactured by BASF Japan) 1.35 parts by mass Sensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) 0.45 parts by mass Methyl ethyl ketone 102 parts by mass

得られた基材フィルムの屈折率異方性、波長550nmにおける面内のリターデーションRo550、波長550nmにおける厚み方向のリタデーショRt550、配向角θは、王子計測器社製KOBRA−21ADHを用いて測定した。表1に示す。   The refractive index anisotropy of the obtained base film, in-plane retardation Ro550 at a wavelength of 550 nm, retardation Rt550 in the thickness direction at a wavelength of 550 nm, and orientation angle θ were measured using KOBRA-21ADH manufactured by Oji Scientific Instruments. . Table 1 shows.

Ro(550)=(nx−ny)×d
Rt(550)={(nx+ny)/2−nz}×d
(式中、nxはフィルム面内における遅相軸x方向における屈折率、nyはフィルム面内方向であり、x方向に直行するy方向における屈折率、nzはフィルム厚み方向の屈折率、dはフィルムの膜厚(nm)を表す。屈折率は23℃・55%RHにおいて、測定波長550nmで測定する。)
Ro (550) = (nx−ny) × d
Rt (550) = {(nx + ny) / 2−nz} × d
(Where nx is the refractive index in the slow axis x direction in the film plane, ny is the film in-plane direction, the refractive index in the y direction perpendicular to the x direction, nz is the refractive index in the film thickness direction, and d is (This represents the film thickness (nm). The refractive index is measured at 23 ° C. and 55% RH at a measurement wavelength of 550 nm.)

<防眩性フィルム1−1の作製>
上記作製した基材フィルム2上に孔径0.4μmのポリプロピレン製フィルターで濾過した下記防眩層組成物1を、押出しコーターを用いて塗布し、恒率乾燥区間温度95℃、減率乾燥区間温度95℃で乾燥後、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら、紫外線ランプを用い照射部の照度が100mW/cmで、照射量を0.25J/cmとして塗布層を硬化させ、ドライ膜厚6μmの防眩層を形成した。防眩層を形成後、巻き取り、防眩性フィルム1−1を作製した。
<Preparation of antiglare film 1-1>
The following anti-glare layer composition 1 filtered through a polypropylene filter having a pore diameter of 0.4 μm is applied on the prepared base film 2 using an extrusion coater, and the constant rate drying zone temperature is 95 ° C., the decreasing rate drying zone temperature. After drying at 95 ° C., while purging with nitrogen so that the atmosphere has an oxygen concentration of 1.0% by volume or less, using an ultraviolet lamp, the illuminance of the irradiated part is 100 mW / cm 2 and the irradiation amount is 0.25 J / cm 2. The coating layer was cured to form an antiglare layer having a dry film thickness of 6 μm. After forming the antiglare layer, it was wound up to produce an antiglare film 1-1.

[防眩層組成物1]
〈フッ素−シロキサングラフトポリマーの調製〉
フッ素−シロキサングラフトポリマーの調製に用いた素材の市販品名を示す。
・ラジカル重合性フッ素樹脂(A):セフラルコートCF−803(水酸基価60、平均分子量15,000;セントラル硝子(株)製)
・片末端ラジカル重合性ポリシロキサン(B):サイラプレーンFM−0721
(数平均分子量5,000;チッソ(株)製)
・ラジカル重合開始剤:パーブチルO(t−ブチルパーオキシ−2−エチルヘキサノエート;日本油脂(株)製)
・硬化剤:スミジュールN3200(ヘキサメチレンジイソシアネートのビウレット型プレポリマー;住化バイエルウレタン(株)製)
(ラジカル重合性フッ素樹脂の合成)
機械式撹拌装置、温度計、コンデンサー及び乾燥窒素ガス導入口を備えたガラス製反応器に、セフラルコートCF−803(1554質量部)、キシレン(233質量部)、及び2−イソシアナトエチルメタクリレート(6.3質量部)を入れ、乾燥窒素雰囲気下で80℃に加熱した。80℃で2時間反応し、サンプリング物の赤外吸収スペクトルによりイソシアネートの吸収が消失したことを確認した後、反応混合物を取り出し、ウレタン結合を介して50質量%のラジカル重合性フッ素樹脂を得た。
[Anti-glare layer composition 1]
<Preparation of fluorine-siloxane graft polymer>
The commercial name of the raw material used for the preparation of the fluorine-siloxane graft polymer is shown.
Radical polymerizable fluororesin (A): Cephalal coated CF-803 (hydroxyl value 60, average molecular weight 15,000; manufactured by Central Glass Co., Ltd.)
Single-end radical polymerizable polysiloxane (B): Silaplane FM-0721
(Number average molecular weight 5,000; manufactured by Chisso Corporation)
-Radical polymerization initiator: Perbutyl O (t-butylperoxy-2-ethylhexanoate; manufactured by NOF Corporation)
Curing agent: Sumidur N3200 (hexuremethylene diisocyanate biuret type prepolymer; manufactured by Sumika Bayer Urethane Co., Ltd.)
(Synthesis of radical polymerizable fluororesin)
In a glass reactor equipped with a mechanical stirrer, thermometer, condenser and dry nitrogen gas inlet, cefal coat CF-803 (1554 parts by mass), xylene (233 parts by mass), and 2-isocyanatoethyl methacrylate (6 3 parts by mass) and heated to 80 ° C. in a dry nitrogen atmosphere. After reacting at 80 ° C. for 2 hours and confirming that the absorption of isocyanate disappeared by the infrared absorption spectrum of the sampled material, the reaction mixture was taken out to obtain 50% by mass of a radically polymerizable fluororesin via a urethane bond. .

(フッ素−シロキサングラフトポリマーの調製)
機械式撹拌装置、温度計、コンデンサー及び乾燥窒素ガス導入口を備えたガラス製反応器に、上記合成したラジカル重合性フッ素樹脂(26.1質量部)、キシレン(19.5質量部)、酢酸n−ブチル(16.3質量部)、メチルメタクリレート(2.4質量部)、n−ブチルメタクリレート(1.8質量部)、ラウリルメタクリレート(1.8質量部)、2−ヒドロキシエチルメタクリレート(1.8質量部)、FM−0721(5.2質量部)、及びパーブチルO(0.1質量部)を入れ、窒素雰囲気中で90℃まで加熱した後、90℃で2時間保持した。パーブチルO(0.1部)を追加し、さらに90℃で5時間保持することによって、重量平均分子量が171,000である35質量%フッ素−シロキサングラフトポリマーの溶液を得た。重量平均分子量はGPCにより求めた。また、フッ素−シロキサングラフトポリマーの質量%はHPLC(液体クロマトグラフィー)により求めた。
・ペンタエリスリトールトリ/テトラアクリレート 90質量部
(NKエステルA−TMM−3L、新中村化学工業(株)製)
・4−ヒドロキシブチルアクリレート 10質量部
(日本化成工業(株)製)
・イルガキュア184(BASFジャパン(株)製) 5質量部
・フッ素−シロキサングラフトポリマー(35質量%) 2質量部
・プロピレングリコールモノメチルエーテル 10質量部
・酢酸メチル 55質量部
・メチルエチルケトン 55質量部
上記防眩層組成物1の活性線硬化型樹脂だけをディスパーにて撹拌混合して、25℃の条件にてB型粘度計を用いて測定したところ、樹脂粘度は、440mPa・sであった。
(Preparation of fluorine-siloxane graft polymer)
In a glass reactor equipped with a mechanical stirrer, thermometer, condenser and dry nitrogen gas inlet, the above synthesized radical polymerizable fluororesin (26.1 parts by mass), xylene (19.5 parts by mass), acetic acid n-butyl (16.3 parts by mass), methyl methacrylate (2.4 parts by mass), n-butyl methacrylate (1.8 parts by mass), lauryl methacrylate (1.8 parts by mass), 2-hydroxyethyl methacrylate (1 .8 parts by mass), FM-0721 (5.2 parts by mass), and perbutyl O (0.1 parts by mass) were heated to 90 ° C. in a nitrogen atmosphere, and held at 90 ° C. for 2 hours. Perbutyl O (0.1 part) was added, and the solution was further maintained at 90 ° C. for 5 hours to obtain a 35 mass% fluorine-siloxane graft polymer solution having a weight average molecular weight of 171,000. The weight average molecular weight was determined by GPC. The mass% of the fluorine-siloxane graft polymer was determined by HPLC (liquid chromatography).
・ 90 parts by mass of pentaerythritol tri / tetraacrylate (NK ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.)
・ 10 parts by mass of 4-hydroxybutyl acrylate (manufactured by Nippon Kasei Kogyo Co., Ltd.)
・ Irgacure 184 (manufactured by BASF Japan Ltd.) 5 mass parts ・ Fluoro-siloxane graft polymer (35 mass%) 2 mass parts ・ Propylene glycol monomethyl ether 10 mass parts ・ Methyl acetate 55 mass parts ・ Methyl ethyl ketone 55 mass parts Only the actinic radiation curable resin of the layer composition 1 was stirred and mixed with a disper and measured using a B-type viscometer at 25 ° C., and the resin viscosity was 440 mPa · s.

また、防眩性フィルム1−1の防眩層表面を光学干渉式表面粗さ計(Zygo社製 New View 5030)で観察した結果、図5のように不規則な突起形状が不規則に長手方向及び幅方向に配列していることが分かった。   In addition, as a result of observing the surface of the antiglare layer of the antiglare film 1-1 with an optical interference surface roughness meter (New View 5030, manufactured by Zygo), irregular projection shapes are irregularly long as shown in FIG. It turned out that it arranged in the direction and the width direction.

<防眩性フィルム1−2〜8の作製>
防眩性フィルム1−1の作製において、減率乾燥区間の温度を表2に記載したように条件変更した以外は、防眩性フィルム1−1と同様にして、防眩性フィルム1−2〜8を作製した。
<Preparation of anti-glare film 1-2-8>
In the production of the antiglare film 1-1, the antiglare film 1-2 was made in the same manner as the antiglare film 1-1 except that the temperature of the decreasing rate drying section was changed as described in Table 2. ~ 8 were made.

<防眩性フィルム1−9の作製>
防眩性フィルム1−1の作製において、防眩層組成物1を下記防眩層組成物2とし、かつ乾燥工程における減率乾燥区間の温度を100℃に変更した以外は、同様にして防眩性フィルム1−9を作製した。
<Preparation of antiglare film 1-9>
In the production of the antiglare film 1-1, the antiglare layer composition 1 was changed to the following antiglare layer composition 2, and the temperature in the decreasing rate drying section in the drying step was changed to 100 ° C. in the same manner. Dazzle film 1-9 was produced.

[防眩層組成物2]
・ジトリメチロールプロパンテトラアクリレート 70質量部
(NKエステルAD−TMP、新中村化学工業(株)製)
・エトキシ化ペンタエリスリトールテトラアクリレート 30質量部
(NKエステルATM−35E、新中村化学工業(株)製)
・イルガキュア184(BASFジャパン(株)製) 5質量部
・フッ素−シロキサングラフトポリマー(35質量%) 2質量部
・プロピレングリコールモノメチルエーテル 10質量部
・酢酸メチル 55質量部
・メチルエチルケトン 55質量部
上記防眩層組成物2の活性線硬化型樹脂だけをディスパーにて撹拌混合して、25℃の条件にてB型粘度計を用いて測定したところ、樹脂粘度は、800mPa・sであった。
[Anti-glare layer composition 2]
・ 70 parts by mass of ditrimethylolpropane tetraacrylate (NK ester AD-TMP, manufactured by Shin-Nakamura Chemical Co., Ltd.)
-30 parts by mass of ethoxylated pentaerythritol tetraacrylate (NK ester ATM-35E, manufactured by Shin-Nakamura Chemical Co., Ltd.)
・ Irgacure 184 (manufactured by BASF Japan Ltd.) 5 mass parts ・ Fluoro-siloxane graft polymer (35 mass%) 2 mass parts ・ Propylene glycol monomethyl ether 10 mass parts ・ Methyl acetate 55 mass parts ・ Methyl ethyl ketone 55 mass parts When only the actinic radiation curable resin of the layer composition 2 was stirred and mixed with a disper and measured using a B-type viscometer at 25 ° C., the resin viscosity was 800 mPa · s.

<防眩性フィルム1−10〜15の作製>
防眩性フィルム1−7の作製において、減率乾燥区間の温度を表2に記載したように条件変更した以外は、防眩性フィルム1−7と同様にして、防眩性フィルム1−10〜15を作製した。
<Preparation of antiglare films 1-10-15>
In the production of the antiglare film 1-7, the antiglare film 1-10 was prepared in the same manner as the antiglare film 1-7, except that the temperature of the decreasing rate drying section was changed as described in Table 2. ~ 15 were made.

<防眩性フィルム1−16の作製>
防眩性フィルム1−7の作製において、防眩層組成物2を特開2006−106290号公報の実施例1を参考にして調製した防眩層組成物3に変更し、更に乾燥温度を特開2006−106290号公報の実施例1と同じ70℃とした以外は同様にして防眩層を作製した。次に、防眩層上に押出しコーターを用いて、熱硬化性含フッ素化合物塗工液(日産化学(株)製、LR−202B、固形分1質量%)を、乾燥後の膜厚が100nmとなるように塗布し、90℃で5分間乾燥させることで熱硬化させ、防眩性フィルム1−16を作製した。
<Preparation of antiglare film 1-16>
In the production of the antiglare film 1-7, the antiglare layer composition 2 was changed to the antiglare layer composition 3 prepared with reference to Example 1 of JP-A-2006-106290, and further the drying temperature was specified. An antiglare layer was prepared in the same manner except that the temperature was set to 70 ° C. as in Example 1 of Kaikai 2006-106290. Next, using an extrusion coater on the antiglare layer, a thermosetting fluorine-containing compound coating solution (manufactured by Nissan Chemical Co., Ltd., LR-202B, solid content 1 mass%) is dried to a film thickness of 100 nm. Then, it was cured by drying at 90 ° C. for 5 minutes to produce an antiglare film 1-16.

[防眩層組成物3]
・サイクロマーP(ACA)320(不飽和基含有アクリル樹脂混合物、ダイセル化学工業(株)製) 5.04質量部
・セルロースアセテートプロピオネート(CAP−482−20、イーストマンケミカル社製) 0.9質量部
・ジペンタエリスリトールヘキサアクリレート(DPHA、ダイセル・サイテック(株)製) 6.4質量部
・イルガキュア184(BASFジャパン(株)製) 0.2質量部
・メチルエチルケトン 20質量部
・シクロヘキサノン 5質量部
上記防眩層組成物3の活性線硬化型樹脂だけをディスパーにて撹拌混合して、25℃の条件にてB型粘度計を用いて測定したところ、樹脂粘度は、10600mPa・sであった。尚、セルロースアセテートプロピオネートは本発明でいう非相溶性樹脂である。
[Anti-glare layer composition 3]
Cyclomer P (ACA) 320 (unsaturated group-containing acrylic resin mixture, manufactured by Daicel Chemical Industries, Ltd.) 5.04 parts by mass Cellulose acetate propionate (CAP-482-20, manufactured by Eastman Chemical Co.) 0 .9 parts by mass-Dipentaerythritol hexaacrylate (DPHA, manufactured by Daicel-Cytec Corp.) 6.4 parts by mass-Irgacure 184 (manufactured by BASF Japan Ltd.) 0.2 parts by mass-Methyl ethyl ketone 20 parts by mass-Cyclohexanone 5 Part by mass Only the actinic radiation curable resin of the antiglare layer composition 3 was stirred and mixed with a disper and measured using a B-type viscometer at 25 ° C., and the resin viscosity was 10600 mPa · s. there were. Cellulose acetate propionate is an incompatible resin referred to in the present invention.

<防眩性フィルム1−17の作製>
防眩性フィルム1−7の作製において、防眩層組成物2を特開2008−225195号公報の実施例1を参考にして調整した防眩層組成物4に変更し、更に乾燥温度を特開2008−225195号公報の実施例1と同じ70℃とした以外は同様にして、防眩性フィルム1−17を作製した。
<Preparation of antiglare film 1-17>
In the production of the antiglare film 1-7, the antiglare layer composition 2 was changed to the antiglare layer composition 4 prepared with reference to Example 1 of JP-A-2008-225195, and further the drying temperature was specified. An anti-glare film 1-17 was produced in the same manner except that the temperature was set to 70 ° C. as in Example 1 of Kai 2008-225195.

[防眩層組成物4]
・サイクロマーP(ACA)320(不飽和基含有アクリル樹脂混合物、ダイセル化学工業(株)製) 5.65質量部
・ポリメタクリル酸メチル(重量平均分子量480000;三菱レイヨン(株)製、BR88) 0.9質量部
・ジペンタエリスリトールヘキサアクリレート(DPHA、ダイセル・サイテック(株)製) 6.3質量部
・イルガキュア184(BASFジャパン(株)製) 0.5質量部
・メチルエチルケトン(MEK) 0.1質量部
・1−ブタノール 5.4質量部
・1−メトキシ−2−プロパノール 1.89質量部
上記防眩層組成物4の活性線硬化型樹脂だけをディスパーにて撹拌混合して、25℃の条件にてB型粘度計を用いて測定したところ、樹脂粘度は、10500mPa・sであった。
[Anti-Glare Layer Composition 4]
Cyclomer P (ACA) 320 (unsaturated acrylic resin mixture, manufactured by Daicel Chemical Industries, Ltd.) 5.65 parts by mass Polymethyl methacrylate (weight average molecular weight 480000; manufactured by Mitsubishi Rayon Co., Ltd., BR88) 0.9 parts by mass-dipentaerythritol hexaacrylate (DPHA, manufactured by Daicel-Cytec) 6.3 parts by mass-Irgacure 184 (manufactured by BASF Japan) 0.5 parts by mass-methyl ethyl ketone (MEK) 1 part by mass, 1-butanol 5.4 parts by mass, 1-methoxy-2-propanol 1.89 parts by mass Only the actinic radiation curable resin of the antiglare layer composition 4 was stirred and mixed with a disper at 25 ° C When measured using a B-type viscometer under the conditions, the resin viscosity was 10500 mPa · s.

<防眩性フィルム1−18の作製>
防眩性フィルム7の作製において、防眩層組成物2を特開2007−58204号公報の実施例3を参考にして調整した防眩層組成物5に変更し、更に乾燥温度を特開2007−58204号公報の実施例3と同じ80℃に変更した以外は同様にして、防眩性フィルム1−18を作製した。
<Preparation of antiglare film 1-18>
In the production of the antiglare film 7, the antiglare layer composition 2 was changed to the antiglare layer composition 5 adjusted with reference to Example 3 of JP-A-2007-58204, and the drying temperature was changed to JP-A-2007. An antiglare film 1-18 was produced in the same manner except that the temperature was changed to 80 ° C., which was the same as that in Example 3 of JP-58204.

[防眩層組成物5]
・ジペンタエリスリトールヘキサアクリレート(DPHA、ダイセル・サイテック(株)製) 92質量部
・メタアクリレート共重合ポリマー(サフトマーST3600,三菱化学株式会社製)
15質量部
・イルガキュア184(BASFジャパン(株)製) 4質量部
・エタノール 45質量部
・トルエン 15質量部
上記防眩層組成物5の活性線硬化型樹脂だけをディスパーにて撹拌混合して、25℃の条件にてB型粘度計を用いて測定したところ、樹脂粘度は、6000mPa・sであった。
[Anti-Glare Layer Composition 5]
・ Dipentaerythritol hexaacrylate (DPHA, manufactured by Daicel Cytec Co., Ltd.) 92 parts by mass ・ Methacrylate copolymer (Saftmer ST3600, manufactured by Mitsubishi Chemical Corporation)
15 parts by mass-Irgacure 184 (manufactured by BASF Japan Ltd.) 4 parts by mass-Ethanol 45 parts by mass-Toluene 15 parts by mass Only the actinic radiation curable resin of the antiglare layer composition 5 is stirred and mixed with a disper, When measured using a B-type viscometer at 25 ° C., the resin viscosity was 6000 mPa · s.

<防眩性フィルム1−19の作製>
特開2006−53371号公報の実施例1を参考にして凹凸付きロールを作製した。次に、特開2006−53371号公報の実施例1を参考にして、基材フィルム1上に防眩層組成物1を塗布後、80℃で乾燥し、更に防眩層表面にロールの凹凸を押し当て、防眩層とロールを密着させた。この密着した状態で、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら、紫外線ランプを用い照射部の照度が100mW/cmで、照射量を0.25J/cmとして塗布層を硬化させ、ドライ膜厚6μmの防眩層を形成した。防眩層を形成後、巻き取り、防眩性フィルム1−19を作製した。
<Preparation of antiglare film 1-19>
An uneven roll was produced with reference to Example 1 of JP-A-2006-53371. Next, referring to Example 1 of JP-A-2006-53371, after applying the antiglare layer composition 1 on the base film 1, it is dried at 80 ° C., and further, the surface of the antiglare layer is uneven. Was pressed to bring the antiglare layer and the roll into close contact. In this close contact state, while purging with nitrogen so that the oxygen concentration is 1.0 volume% or less, the illuminance of the irradiated part is 100 mW / cm 2 and the irradiation amount is 0.25 J / cm 2 using an ultraviolet lamp. The coating layer was cured to form an antiglare layer having a dry film thickness of 6 μm. After forming the antiglare layer, it was wound up to produce an antiglare film 1-19.

防眩性フィルム1−19の防眩層表面を光学干渉式表面粗さ計(Zygo社製 New View 5030)で観察した結果、防眩性フィルム1−19のみ規則的な突起形状が規則的に長手方向及び幅方向に配列していることが分かった。   As a result of observing the surface of the anti-glare layer of the anti-glare film 1-19 with an optical interference surface roughness meter (New View 5030, manufactured by Zygo), only the anti-glare film 1-19 has regular protrusion shapes regularly. It turned out that it has arranged in the longitudinal direction and the width direction.

<防眩性フィルム1−20〜27の作製>
防眩性フィルム1−1〜8の作製において、基材フィルムを12に変更した以外は、同様にして、防眩性フィルム1−20〜27を作製した。
<Preparation of antiglare film 1-20-27>
In the production of the antiglare films 1-1 to 8, the antiglare films 1-20 to 27 were produced in the same manner except that the base film was changed to 12.

<防眩性フィルム1−28の作製>
防眩性フィルム1−4の作製において、基材フィルムを1に変更した以外は、同様にして、防眩性フィルム1−28を作製した。
<Preparation of antiglare film 1-28>
In the production of the antiglare film 1-4, an antiglare film 1-28 was produced in the same manner except that the base film was changed to 1.

<防眩性フィルムの評価>
得られた防眩性フィルム1〜28について、以下の項目を評価した。結果を表2に示す。
<Evaluation of antiglare film>
The following items were evaluated for the obtained antiglare films 1 to 28. The results are shown in Table 2.

a.内部ヘイズ測定
以下の測定により、上記作製した防眩性フィルム1〜28の内部ヘイズ(Hi)を測定した。得られた結果を表2に示した。
a. Internal haze measurement The internal haze (Hi) of the antiglare films 1 to 28 produced above was measured by the following measurement. The obtained results are shown in Table 2.

<内部ヘイズ測定方法>
防眩性フィルムの表裏面にシリコーンオイルを数滴滴下した。次にシリコーンオイルを滴下した防眩性フィルムを厚さ1mmのガラス板(ミクロスライドガラス品番S 9111、MATSUNAMI製)2枚で裏表より挟み、完全に2枚のガラス板と得られた防眩性フィルムを光学的に密着させた。この光学的に密着させ、表面ヘイズを除去したサンプルのヘイズ(Ha)を測定した。次いで、ガラス板2枚の間にシリコーンオイルのみを挟みこんでガラスヘイズ(Hb)測定した。Haから、Hbを引き、防眩性フィルムの内部ヘイズ(Hi)を算出した。
<Internal haze measurement method>
A few drops of silicone oil were dropped on the front and back surfaces of the antiglare film. Next, the antiglare film to which silicone oil was dropped was sandwiched between two glass plates (micro slide glass product number S 9111, manufactured by MATSUNAMI) having a thickness of 1 mm from the front and back, and the resulting antiglare property was obtained with two glass plates. The film was optically adhered. The haze (Ha) of this optically adhered sample from which surface haze was removed was measured. Next, glass haze (Hb) was measured by sandwiching only silicone oil between two glass plates. Hb was subtracted from Ha, and the internal haze (Hi) of the antiglare film was calculated.

b.算術平均粗さRa測定
上記作製した防眩性フィルム1〜28の防眩層の算術平均粗さRaを光学干渉式表面粗さ計(RST/PLUS、WYKO社製)を用いて10回測定し、その測定結果の平均から各防眩性フィルムの算術平均粗さRaを求め、表2に示した。
b. Arithmetic average roughness Ra measurement The arithmetic average roughness Ra of the antiglare layer of the antiglare films 1 to 28 produced above was measured 10 times using an optical interference surface roughness meter (RST / PLUS, manufactured by WYKO). From the average of the measurement results, the arithmetic average roughness Ra of each antiglare film was obtained and shown in Table 2.

<湿熱耐久密着>
上記作製した防眩性フィルム1−1〜28を80℃90%RHの環境下に100時間保管後、JIS D 0202−1988の規格に従い、実施した。碁盤目テープ剥離試験により、セロハンテープ(ニチバン株式会社製)を用いて、指の腹でフィルムに密着させた後、剥離した。判定は100マスのうち、剥離しないマス目の数で表わす。得られた結果を表2に示した。
<Wet heat durability adhesion>
The antiglare films 1-1 to 28 produced above were stored in an environment of 80 ° C. and 90% RH for 100 hours, and then carried out according to the standard of JIS D 0202-1988. In the cross-cut tape peeling test, cellophane tape (manufactured by Nichiban Co., Ltd.) was used to adhere to the film with the belly of the finger and then peeled. The determination is represented by the number of squares that do not peel out of 100 squares. The obtained results are shown in Table 2.

<防眩性>
耐久性試験後の防眩性フィルムについて目視による官能評価で防眩性を評価し、結果を表2に示した。判定基準は以下の通り。
<Anti-glare property>
The antiglare film after the durability test was evaluated by visual sensory evaluation, and the results are shown in Table 2. Judgment criteria are as follows.

○ :蛍光灯の輪郭が僅かに認められるがあまり気にならない
△ :蛍光灯の輪郭が認められるが許容できる
× :蛍光灯の輪郭がはっきり分かり、写り込みが気になる
以下の方法で偏光板を作成し、立体画像に於けるクロストークと色相を評価した。
○: The outline of the fluorescent lamp is slightly noticeable but not so much △: The outline of the fluorescent lamp is recognized but acceptable X: The outline of the fluorescent lamp is clearly understood, and the reflection is worrisome. Were created and evaluated for crosstalk and hue in stereoscopic images.

<偏光板1−1〜28の作製>
厚さ、120μmのポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率5倍)した。
<Preparation of polarizing plates 1-1 to 28>
A polyvinyl alcohol film having a thickness of 120 μm was uniaxially stretched (temperature: 110 ° C., stretch ratio: 5 times).

これをヨウ素0.075g、ヨウ化カリウム5g、水100gからなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gからなる68℃の水溶液に浸漬した。これを水洗、乾燥し偏光子を得た。   This was immersed in an aqueous solution composed of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water for 60 seconds, and then immersed in an aqueous solution of 68 ° C. composed of 6 g of potassium iodide, 7.5 g of boric acid and 100 g of water. This was washed with water and dried to obtain a polarizer.

次いで、下記工程1〜5に従って表2のλ/4板と、裏面側フィルムを貼り合わせて偏光板1−1〜1−28を作製した。   Next, according to the following steps 1 to 5, the λ / 4 plate of Table 2 and the back surface film were bonded to produce polarizing plates 1-1 to 1-28.

工程1:表2のλ/4板と、裏面側フィルムを60℃の2モル/Lの水酸化ナトリウム溶液に90秒間浸漬し、次いで水洗、乾燥して、鹸化したフィルムを得た。   Step 1: The λ / 4 plate of Table 2 and the back side film were immersed in a 2 mol / L sodium hydroxide solution at 60 ° C. for 90 seconds, then washed with water and dried to obtain a saponified film.

工程2:前記偏光子を固形分2質量%のポリビニルアルコール接着剤槽中に1〜2秒浸漬した。   Process 2: The said polarizer was immersed in the polyvinyl alcohol adhesive tank of 2 mass% of solid content for 1-2 seconds.

工程3:工程2で偏光子に付着した過剰の接着剤を軽く拭き除き、これを工程1で処理したλ/4板の上にのせて配置した。   Step 3: Excess adhesive adhered to the polarizer in Step 2 was gently wiped off and placed on the λ / 4 plate treated in Step 1.

工程4:工程3で積層したλ/4板と偏光子と裏面側フィルムを圧力20〜30N/cm、搬送スピードは約2m/分で貼合した。 Step 4: The λ / 4 plate, the polarizer, and the back side film laminated in Step 3 were bonded at a pressure of 20 to 30 N / cm 2 and a conveyance speed of about 2 m / min.

工程5:80℃の乾燥機中に工程4で作製した偏光子とλ/4板と裏面側フィルムとを貼り合わせた試料を2分間乾燥し、偏光板1−1〜28を作製した。   Step 5: A sample obtained by bonding the polarizer, the λ / 4 plate, and the back side film prepared in Step 4 in a dryer at 80 ° C. was dried for 2 minutes to prepare polarizing plates 1-1 to 28.

<液晶表示装置の作製>
視野角測定を行う液晶パネルを以下のようにして作製し、液晶表示装置としての特性を評価した。
<Production of liquid crystal display device>
A liquid crystal panel for viewing angle measurement was produced as follows, and the characteristics as a liquid crystal display device were evaluated.

SONY製60型ディスプレイBRAVIA LX900の予め貼合されていた前面板を剥がして、パネル前面の偏光板と前面板の間にあった充填剤を除去し、予め貼合されていたパネル前側の偏光板を剥がして、上記作製した偏光板1−1〜1−28をそれぞれ液晶セルのガラス面の前面に貼合した。その際、バックライトとして特開2006−269515号公報に記載の有機EL素子を用いたバックライトに変更した。   Remove the pre-bonded front plate of Sony 60-type display BRAVIA LX900, remove the filler between the front plate and the polarizing plate on the front of the panel, and peel off the pre-bonded front polarizing plate of the panel And the produced said polarizing plates 1-1 to 1-28 were each bonded on the front surface of the glass surface of a liquid crystal cell. At that time, the backlight was changed to a backlight using an organic EL element described in JP-A-2006-269515.

また、上記偏光板の貼合の向きは、本発明の防眩性フィルムの面が、視認側となるように、かつ、予め貼合されていた偏光板と同一の方向に吸収軸が向くように行い、それぞれの偏光板に対応する液晶表示装置を各々作製した。   Moreover, the direction of bonding of the polarizing plate is such that the surface of the antiglare film of the present invention is on the viewing side, and the absorption axis is oriented in the same direction as the polarizing plate previously bonded. The liquid crystal display device corresponding to each polarizing plate was produced.

<3Dメガネ>
SONY性3DメガネTDG−BR100のパネル側に実施例1で作製した防眩性フィルム1−1を貼合した。
<3D glasses>
The anti-glare film 1-1 produced in Example 1 was bonded to the panel side of the SONY 3D glasses TDG-BR100.

作製した液晶表示装置について3D映像視聴時のクロストーク、黒表示の色相について評価した。   The produced liquid crystal display device was evaluated for crosstalk and black display hue when viewing 3D video.

<クロストークの評価>
23℃・55%RHの環境で、各々の液晶表示装置を点灯させ、3Dメガネをかけて、メガネが25°傾いた状態になるよう首を傾けた状態で3D映像を視聴し、クロストークを下記基準で評価し、結果を表2に示した。
<Evaluation of crosstalk>
In an environment of 23 ° C and 55% RH, turn on each liquid crystal display device, wear 3D glasses, watch 3D images with the neck tilted so that the glasses are tilted 25 °, and crosstalk Evaluation was performed according to the following criteria, and the results are shown in Table 2.

◎:クロストークがまったくない。   A: There is no crosstalk at all.

○:非常に弱いクロストークがに見える。   ○: Very weak crosstalk appears.

△:弱いクロストークが見える。   Δ: Weak crosstalk is visible.

×:クロストークがはっきり見える。   X: Crosstalk is clearly visible.

<色相の評価>
23℃・55%RHの環境で、各々の液晶表示装置を点灯させ、3Dメガネをかけて、メガネが25°傾いた状態になるよう首を傾けた状態で3D映像を視聴し、黒表示の色相を下記基準で評価し、結果を表2に示した。
<Evaluation of hue>
In an environment of 23 ° C and 55% RH, each liquid crystal display device is turned on, 3D glasses are worn, 3D images are viewed with the neck tilted so that the glasses are tilted 25 °, and black display The hue was evaluated according to the following criteria, and the results are shown in Table 2.

◎:黒がクリアに見える。   A: Black looks clear.

○:黒が僅かにボケて見える。   ○: Black appears slightly blurred.

△:わずかに赤みがかっている。   Δ: Slightly reddish

×:明らかに赤みがかっている。   X: Clearly reddish.

本発明の防眩性フィルムは、内部ヘイズが小さく、3D画像に於ける防眩性と視認性を両立させる。特に、基材フィルム12を使用してRtを低減した防眩性フィルムは視認性が優れている。   The antiglare film of the present invention has a small internal haze and achieves both antiglare property and visibility in 3D images. In particular, the antiglare film using the substrate film 12 and having reduced Rt has excellent visibility.

実施例2
<防眩性フィルム2−1〜18の作製>
防眩性フィルム1−4の作製において、基材フィルムを表3のように変更した以外は、同様にして防眩性フィルム2−1〜18を作製した。
Example 2
<Preparation of antiglare films 2-1 to 18>
In the production of the antiglare film 1-4, the antiglare films 2-1 to 18 were similarly produced except that the base film was changed as shown in Table 3.

<偏光板2−1〜18の作製>
偏光板1−4の作製において、基材フィルムと裏面側フィルムを表3のように変更した以外は、同様にして偏光板2−1〜18を作製した。
<Preparation of polarizing plates 2-1 to 18>
Polarizers 2-1 to 18 were produced in the same manner except that the base film and the back film were changed as shown in Table 3 in the production of the polarizer 1-4.

実施例1と同様にして液晶表示装置を作製し、クロストークと色相を評価した。結果を表3に示す。   A liquid crystal display device was produced in the same manner as in Example 1, and crosstalk and hue were evaluated. The results are shown in Table 3.

裏面側にもλ/4板機能を有するフィルムを用いた本発明の偏光板は、特に視認性が優れている。   The polarizing plate of the present invention using a film having a λ / 4 plate function on the back side is particularly excellent in visibility.

DR1 繰出し方向
DR2 巻取り方向
θi 繰出し角度(繰出し方向と巻取り方向のなす角度)
CR,CL 把持具
Wo 延伸前のフィルムの幅
W 延伸後のフィルムの幅
1 未延伸フィルム
2−1 右側のフィルム保持開始点
2−2 左側のフィルム保持開始点
3−1 右側のフィルム保持手段の軌跡
3−2 左側のフィルム保持手段の軌跡
4 テンター
5−1 右側のフィルム保持終了点
5−2 左側のフィルム保持終了点
6 斜め延伸フィルム
7−1 フィルムの送り方向
8−1 テンター入り口側のガイドロール
8−2 テンター出口側のガイドロール
9 フィルムの延伸方向
DR1 Feeding direction DR2 Winding direction θi Feeding angle (An angle formed between the feeding direction and the winding direction)
CR, CL Gripping tool Wo Width of the film before stretching W Width of the film after stretching 1 Unstretched film 2-1 Right film holding start point 2-2 Left film holding start point 3-1 Right film holding means Trajectory 3-2 Trajectory of left film holding means 4 Tenter 5-1 Right film holding end point 5-2 Left film holding end point 6 Diagonally stretched film 7-1 Film feed direction 8-1 Guide on the tenter entrance side Roll 8-2 Guide roll on the tenter exit side 9 Stretch direction of the film

Claims (6)

下記面内リターデーションRo(550)が100〜160nmの範囲内にあり、基材フィルム長手方向に対する配向角θが40〜50°の範囲内にある基材フィルム上に、防眩層を有する防眩性フィルムであって、
該防眩層が、活性線硬化樹脂を含有し、
該防眩層が突起形状を有し、該突起形状が基材フィルムの長手方向に周期を持たず不規則な形状で不規則に配置されており、かつ防眩層の算術平均粗さRaが25〜300nmであり、かつ防眩層の内部散乱に起因するヘイズが0〜1.0%であり、
該防眩層は、前記活性線硬化樹脂に対し非相溶性である樹脂を実質的に含有しておらず、前記活性線硬化樹脂の融解温度Tm又はガラス転移点Tgを測定・観察したときに、ピークが1個以下観察され
前記防眩層が実質的に微粒子を含有しないことを特徴とする防眩性フィルム。
Ro(550)=(nx−ny)×d (式中、nxはフィルム面内における遅相軸x方向における屈折率、nyはフィルム面内方向であり、x方向に直行するy方向における屈折率、dはフィルムの膜厚(nm)を表す。屈折率は23℃・55%RHにおいて、測定波長550nmで測定する。)
An antiglare layer having an antiglare layer on a base film having the following in-plane retardation Ro (550) in the range of 100 to 160 nm and an orientation angle θ with respect to the longitudinal direction of the base film in the range of 40 to 50 °. A dazzling film,
The antiglare layer contains an actinic radiation curable resin,
The antiglare layer has a protrusion shape, the protrusion shape has an irregular shape without a period in the longitudinal direction of the base film, and the arithmetic average roughness Ra of the antiglare layer is 25 to 300 nm, and haze due to internal scattering of the antiglare layer is 0 to 1.0%,
The antiglare layer does not substantially contain a resin that is incompatible with the actinic radiation curable resin, and when the melting temperature Tm or the glass transition point Tg of the actinic radiation curable resin is measured and observed. , 1 peak or less is observed ,
Antiglare film the antiglare layer has a that it will not substantially free of particulate.
Ro (550) = (nx−ny) × d (where nx is the refractive index in the slow axis x direction in the film plane, ny is the film in-plane direction, and the refractive index in the y direction perpendicular to the x direction) D represents the film thickness (nm), and the refractive index is measured at 23 ° C. and 55% RH at a measurement wavelength of 550 nm.)
前記基材フィルムは液晶性分子から形成された光学異方性層を有し、該光学異方性層上に直接前記防眩層を設けたことを特徴とする請求項1に記載の防眩性フィルム。 2. The antiglare layer according to claim 1, wherein the base film has an optically anisotropic layer formed of liquid crystalline molecules, and the antiglare layer is provided directly on the optically anisotropic layer. Sex film. 偏光子の一方の面に請求項1または2に記載の防眩性フィルムを有することを特徴とする偏光板。 A polarizing plate comprising the antiglare film according to claim 1 or 2 on one surface of a polarizer. 請求項に記載の偏光板を有することを特徴とする立体画像表示装置。 A stereoscopic image display apparatus comprising the polarizing plate according to claim 3 . バックライトとして有機EL素子を使用したことを特徴とする請求項に記載の立体画像表示装置。 The stereoscopic image display device according to claim 4 , wherein an organic EL element is used as a backlight. 請求項1または2に記載の防眩性フィルムを製造する防眩性フィルムの製造方法であって、25℃における粘度が30〜2500mPa・sの範囲内にある活性線硬化型樹脂を含有する防眩層を、少なくとも塗布工程、乾燥工程及び硬化工程を経由して形成し、かつ前記乾燥工程における減率乾燥区間の温度を90〜140℃の範囲内に維持した条件下で処理することを特徴とする防眩性フィルムの製造方法。 It is a manufacturing method of the anti-glare film which manufactures the anti-glare film of Claim 1 or 2 , Comprising: The anti-glare containing the active ray curable resin which has a viscosity in the range of 30-2500 mPa * s in 25 degreeC. A dazzling layer is formed through at least a coating process, a drying process, and a curing process, and is processed under a condition in which the temperature of the decreasing rate drying section in the drying process is maintained within a range of 90 to 140 ° C. A method for producing an antiglare film.
JP2011157616A 2011-07-19 2011-07-19 Antiglare film, method for producing antiglare film, polarizing plate and stereoscopic image display device Active JP5948750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011157616A JP5948750B2 (en) 2011-07-19 2011-07-19 Antiglare film, method for producing antiglare film, polarizing plate and stereoscopic image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011157616A JP5948750B2 (en) 2011-07-19 2011-07-19 Antiglare film, method for producing antiglare film, polarizing plate and stereoscopic image display device

Publications (2)

Publication Number Publication Date
JP2013024964A JP2013024964A (en) 2013-02-04
JP5948750B2 true JP5948750B2 (en) 2016-07-06

Family

ID=47783401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011157616A Active JP5948750B2 (en) 2011-07-19 2011-07-19 Antiglare film, method for producing antiglare film, polarizing plate and stereoscopic image display device

Country Status (1)

Country Link
JP (1) JP5948750B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014141734A1 (en) * 2013-03-12 2017-02-16 コニカミノルタ株式会社 Organic electroluminescence display device and manufacturing method thereof
WO2014178231A1 (en) * 2013-04-30 2014-11-06 リンテック株式会社 Display optical-diffusion film and display device using same
CN105874360A (en) * 2013-11-25 2016-08-17 住友化学株式会社 Optical member and display device
US20180059833A1 (en) * 2015-12-25 2018-03-01 Panasonic Intellectual Property Management Co., Ltd. Touch panel and display device using the same
TWI744325B (en) 2016-05-10 2021-11-01 日商住化分析中心股份有限公司 Method of inspecting organic electronic device,method of analyzing the same,and use of the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201942A (en) * 1995-01-27 1996-08-09 Sanyo Electric Co Ltd Liquid crystal shutter and three-dimensional image recognizing spectacles
JPH11231132A (en) * 1998-02-12 1999-08-27 Nitto Denko Corp 1/4-wavelength plate, circular polarizing plate, and liquid crystal display device
JP2003302503A (en) * 2002-01-09 2003-10-24 Konica Minolta Holdings Inc Antireflection film for artificial illumination, method of forming antireflection layer for artificial illumination, polarizing plate for artificial illumination, display device and antireflection method for display device
JP3843427B2 (en) * 2002-09-13 2006-11-08 ソニーケミカル&インフォメーションデバイス株式会社 3D image display member and manufacturing method thereof
JP4237544B2 (en) * 2003-05-19 2009-03-11 日東電工株式会社 Optical element, condensing backlight system, and liquid crystal display device
JP2005049586A (en) * 2003-07-28 2005-02-24 Nitto Denko Corp Optical element, condensing backlight system, and liquid crystal display device
JP5175468B2 (en) * 2005-11-04 2013-04-03 富士フイルム株式会社 Optical film, polarizing plate and image display device
JP2008083307A (en) * 2006-09-27 2008-04-10 Konica Minolta Opto Inc Polarizing plate, manufacturing method of polarizing plate, and liquid crystal display device
JP5237745B2 (en) * 2007-10-26 2013-07-17 日本ビー・ケミカル株式会社 Weather-resistant anti-glare coating composition, weather-resistant anti-glare film and method for producing the same
JP5415742B2 (en) * 2008-11-07 2014-02-12 帝人デュポンフィルム株式会社 Anti-glare hard coat film
JPWO2011055624A1 (en) * 2009-11-06 2013-03-28 コニカミノルタアドバンストレイヤー株式会社 Polarizing plate and liquid crystal display device
JP5707856B2 (en) * 2010-10-27 2015-04-30 コニカミノルタ株式会社 Method for producing antiglare film

Also Published As

Publication number Publication date
JP2013024964A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
JP5751249B2 (en) Hard coat film, method for producing the same, polarizing plate, and liquid crystal display device
JP5544269B2 (en) Optical film, polarizing plate and liquid crystal display device
JP5799954B2 (en) Antiglare film, method for producing antiglare film, polarizing plate and liquid crystal display device
CN100590458C (en) Optical resin film and polarizing film and liquid crystal display device using the same
JPWO2015076101A1 (en) Polarizing plate and liquid crystal display device using the same
KR20080082540A (en) Transparent protective film, optical compensation film, polarizing plate, and liquid crystal display device
KR20060051547A (en) Polarizing plate and liquid crystal display device
WO2006030954A1 (en) Cellulose acylate film, polarizing plate and liquid crystal display
WO2020149206A1 (en) Method for producing acrylic resin film
JP5948750B2 (en) Antiglare film, method for producing antiglare film, polarizing plate and stereoscopic image display device
KR20130069736A (en) Hard-coat film, polarizing plate, and liquid-crystal display device
JPWO2006117981A1 (en) Optical film, polarizing plate, and transverse electric field switching mode type liquid crystal display device
JP4800894B2 (en) Transparent protective film, optical compensation film, polarizing plate, and liquid crystal display device
JP5579129B2 (en) Transparent protective film, optical compensation film, polarizing plate, and liquid crystal display device
WO2011055624A1 (en) Polarizing plate and liquid crystal display device
JP2013064821A (en) Hard coat film, polarizing plate and image display apparatus
TWI537129B (en) Acylated cellulose film, polarizing plate and liquid crystal display device
JP4686247B2 (en) Polymer film and optical film, polarizing plate and image display device using the same
WO2012026192A1 (en) Hardcoat film, polarizing plate, and liquid crystal display device
JP4931539B2 (en) Optical compensation film, polarizing plate, and liquid crystal display device
WO2006095921A1 (en) Method for producing cellulose acylate film, cellulose acylate film, retardation film, polarizing plate and liquid crystal display
JP5980465B2 (en) Polarizing plate and liquid crystal display device using the same
JP6164050B2 (en) Optical film, polarizing plate, manufacturing method thereof, and image display device
JP6048506B2 (en) Optical film
KR20110009094A (en) Drawn film, drawn film manufacturing method, and polarizer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R150 Certificate of patent or registration of utility model

Ref document number: 5948750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150