JP5943897B2 - Tube expansion jig and tube expansion method - Google Patents

Tube expansion jig and tube expansion method Download PDF

Info

Publication number
JP5943897B2
JP5943897B2 JP2013236162A JP2013236162A JP5943897B2 JP 5943897 B2 JP5943897 B2 JP 5943897B2 JP 2013236162 A JP2013236162 A JP 2013236162A JP 2013236162 A JP2013236162 A JP 2013236162A JP 5943897 B2 JP5943897 B2 JP 5943897B2
Authority
JP
Japan
Prior art keywords
tube expansion
mold
tube
expansion
molds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013236162A
Other languages
Japanese (ja)
Other versions
JP2015093321A5 (en
JP2015093321A (en
Inventor
聡大 清水
聡大 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013236162A priority Critical patent/JP5943897B2/en
Priority to CN201420682105.5U priority patent/CN204412938U/en
Priority to CN201410646187.2A priority patent/CN104624823B/en
Publication of JP2015093321A publication Critical patent/JP2015093321A/en
Publication of JP2015093321A5 publication Critical patent/JP2015093321A5/ja
Application granted granted Critical
Publication of JP5943897B2 publication Critical patent/JP5943897B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/08Tube expanders
    • B21D39/20Tube expanders with mandrels, e.g. expandable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/10Die sets; Pillar guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Compressor (AREA)

Description

本発明は、拡管治具及び拡管方法に関するものである。 The present invention relates to a tube expanding jig and tube expanding how.

従来より、例えば圧縮機の圧力密閉容器等の所望の内径の円筒体を製造するにあたり、円筒部材をその内側から押圧して拡管する拡管治具が用いられている。拡管治具は、略円筒形状に構成された拡管金型を有しており、拡管金型を円周方向に分割して構成された複数の分割金型を径方向外側に移動させることにより、円筒部材を内側から拡管するようにしている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, when manufacturing a cylindrical body having a desired inner diameter, such as a pressure sealed container of a compressor, a tube expansion jig that expands a tube by pressing a cylindrical member from the inside has been used. The tube expansion jig has a tube expansion mold configured in a substantially cylindrical shape, and by moving a plurality of divided molds formed by dividing the tube expansion mold in the circumferential direction, radially outward, The cylindrical member is expanded from the inside (see, for example, Patent Document 1).

この種の拡管治具には、互いに隣接する分割金型同士の対向面の形状を平面状としたストレート型や、特許文献1のように拡管金型の軸方向に交互に凹凸の櫛歯状とした櫛歯型(クランク型)等としたものがある。   In this type of tube expansion jig, there are a straight type in which the shape of the opposing surfaces of the adjacent divided dies are flat, and a comb-teeth shape with irregularities alternately in the axial direction of the tube expansion die as in Patent Document 1. Comb-tooth type (crank type) and the like.

特開昭60−18239号公報(第186−187頁、第3図)Japanese Patent Laid-Open No. 60-18239 (pages 186-187, FIG. 3)

この種の拡管治具を用いた拡管加工では、複数の分割金型を径方向外側に移動した際に、分割金型同士の間に隙間ができる。よって、その隙間に対向する、円筒部材の内周面部分が押圧されずに凸部となって残ってしまう。この凸部は、互いに隣接する分割金型同士の対向面の形状を上記ストレート型、櫛歯型(クランク型)のどちらにしたにしても発生してしまうものであり、内径真円度を要求される、例えば圧力密閉容器等の円筒体の製造においては問題となる。   In the tube expansion process using this type of tube expansion jig, a gap is formed between the divided dies when the plurality of divided dies are moved radially outward. Therefore, the inner peripheral surface portion of the cylindrical member facing the gap remains as a convex portion without being pressed. This convex portion is generated regardless of whether the shape of the opposing surfaces of the adjacent divided dies is the above straight type or comb type (crank type), and requires a roundness of the inner diameter. This is a problem in the manufacture of cylindrical bodies such as pressure-sealed containers.

このように円筒部材の内周面に凸部が発生した場合、要求された内径真円度を得るために、別途、内周面を切削加工(機械加工)する必要性が生じ、加工工程数が増えるといった課題がある。   When a convex portion is generated on the inner peripheral surface of the cylindrical member in this way, it is necessary to separately cut (machine) the inner peripheral surface in order to obtain the required inner diameter roundness. There is a problem that increases.

本発明は、上記のような課題を解決するためになされたもので、内径真円度の良好な円筒部材を製造することが可能な拡管治具及びこの拡管治具を用いた拡管方法に関するものである。 The present invention has been made to solve the above problems, the tube expanding how the using the tube expanding jig and the tube expanding jig capable to produce a good cylindrical member having an inner diameter circularity It is related.

本発明に係る拡管治具は、円筒形状に構成された拡管金型を有し、拡管金型を円周方向に分割して構成された複数の分割金型を径方向外側に移動させることにより、円筒部材を内側から拡管する拡管治具であって、複数の分割金型において互いに隣接する分割金型同士の対向面の形状が、直線状の複数の線分を拡管金型の軸方向に交互に逆方向に傾斜して繋がるジグザグ型形状となっているものである。 The tube expansion jig according to the present invention has a tube expansion mold configured in a cylindrical shape, and moves a plurality of divided molds configured by dividing the tube expansion mold in the circumferential direction to the outside in the radial direction. A tube expansion jig for expanding the cylindrical member from the inside, wherein the shape of the opposed surfaces of the divided molds adjacent to each other in the plurality of divided molds is a straight line segment in the axial direction of the tube expansion mold It has a zigzag shape that is alternately inclined and connected in the opposite direction .

本発明によれば、分割金型同士の対向面の形状をジグザグ型形状としたので、内径真円度の良好な円筒体の製造が可能となる。   According to the present invention, since the shape of the opposed surfaces of the divided molds is a zigzag shape, it is possible to manufacture a cylindrical body having a good inner diameter roundness.

本発明の実施の形態1に係る圧縮機の断面図である。It is sectional drawing of the compressor which concerns on Embodiment 1 of this invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. 本発明の実施の形態1に係る圧縮機の圧力密閉容器の製造工程のうち、巻き加工、縮管加工、突き合わせ溶接を説明するための工程図である。It is process drawing for demonstrating winding process, a reduced tube process, and butt welding among the manufacturing processes of the pressure sealed container of the compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る拡管治具を示す説明図である。It is explanatory drawing which shows the pipe expansion jig which concerns on Embodiment 1 of this invention. 図4の拡管治具による拡管工程の概要の説明図である。It is explanatory drawing of the outline | summary of the pipe expansion process by the pipe expansion jig of FIG. 図5(b)の上側の図(平面図)の拡大図で、巻き鋼管8の内周面に発生する凸部の説明図である。FIG. 6 is an enlarged view of the upper view (plan view) of FIG. 5B, and is an explanatory view of a convex portion generated on the inner peripheral surface of the wound steel pipe 8. 図4の分割金型のジグザグ型形状の拡大図である。It is an enlarged view of the zigzag shape of the split mold of FIG. 図4の分割金型による拡管加工後の巻き鋼管の説明図である。It is explanatory drawing of the wound steel pipe after the pipe expansion process by the split mold of FIG. 図8の各位置において分割金型から巻き鋼管へ作用する力を平面的に表現した図である。It is the figure which expressed planarly the force which acts on a winding steel pipe from a split mold in each position of Drawing 8. 比較のため、従来のストレート型形状を用いた場合に、軸方向の各位置において分割金型71aから作用する力を平面的に表現した図である。For comparison, when a conventional straight mold shape is used, the force acting from the split mold 71a at each position in the axial direction is represented in a planar manner. 比較のため、従来の櫛歯型(クランク型)形状を用いた場合に、軸方向の各位置において分割金型から作用する力を平面的に表現した図である。For comparison, when a conventional comb-teeth shape (crank shape) is used, the force acting from the split mold at each position in the axial direction is represented in a planar manner. 分割金型同士の対向面の形状をジグザグ型形状とした場合と、櫛歯型(クランク型)形状とした場合の凸部の高さを計測した実験結果を示す図である。It is a figure which shows the experimental result which measured the height of the convex part at the time of making the shape of the opposing surface of division molds into a zigzag type shape, and making it a comb-tooth type | mold (crank type | mold) shape. 図4の分割金型による拡管加工後に生じる凸部及び分割金型から作用する力を平面的に表現した図である。It is the figure which expressed planarly the force which acts from the convex part produced after the pipe expansion process by the split mold of FIG. 4, and a split mold. 本発明の実施の形態2に係る拡管方法の各工程における分割金型と巻き鋼管の状態を模式的に示す一部拡大説明図である。It is a partially expanded explanatory view which shows typically the state of the division | segmentation metal mold | die and a wound steel pipe in each process of the pipe expansion method which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る拡管方法の各工程における分割金型と巻き鋼管の状態を模式的に示す一部拡大説明図である。It is a partially expanded explanatory view which shows typically the state of the division | segmentation metal mold | die and a wound steel pipe in each process of the pipe expansion method which concerns on Embodiment 2 of this invention. 巻き加工、縮管加工及び突き合わせ溶接後の巻き鋼管の断面図である。It is sectional drawing of the wound steel pipe after a winding process, a reduced tube process, and butt welding. 本発明の実施の形態3に係る拡管治具の分割金型の説明図である。It is explanatory drawing of the split mold of the tube expansion jig which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る拡管治具による拡管加工の各工程における分割金型と巻き鋼管の状態を示す説明図である。It is explanatory drawing which shows the state of the division | segmentation die and a wound steel pipe in each process of the pipe expansion process by the pipe expansion jig which concerns on Embodiment 3 of this invention. 図18の一部拡大図である。FIG. 19 is a partially enlarged view of FIG. 18. 図18の一部拡大図である。FIG. 19 is a partially enlarged view of FIG. 18. 拡管治具の変形例を示す図である。It is a figure which shows the modification of a pipe expansion jig. 鋼管の拡管治具によって拡管される圧力密閉容器の他の構成例を示す図である。It is a figure which shows the other structural example of the pressure sealed container expanded by the pipe expansion jig of a steel pipe. 異径分割金型を用いた1回拡管の拡管方法の各工程における分割金型と巻き鋼管の状態を示す説明図である。It is explanatory drawing which shows the state of the division | segmentation die and a wound steel pipe in each process of the pipe expansion method of 1 time pipe expansion using a different diameter division | segmentation metal mold | die.

実施の形態1.
図1は、本発明の実施の形態1に係る圧縮機の断面図である。また、図2は、図1のA−A断面図である。図1、図2及び後述の図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。更に、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view of a compressor according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view taken along the line AA in FIG. In FIG. 1, FIG. 2, and the figure mentioned later, what attached | subjected the same code | symbol is the same or it corresponds, and this is common in the whole text of a specification. Furthermore, the forms of the constituent elements appearing in the entire specification are merely examples and are not limited to these descriptions.

シングルロータリー圧縮機式圧縮機である圧縮機1は、鉄製の圧力密閉容器2を備えている。この圧力密閉容器2は上部圧力密閉容器2a、中央圧力密閉容器2b及び底部圧力密閉容器2cの3ピースで構成され、円筒形状に形成されている。そして、圧力密閉容器2の内部には、冷媒圧縮手段である圧縮部3、この圧縮部3の駆動源であるモーター4、及びモーター4の駆動力を圧縮部3に伝達する回転軸5が備えられて構成されている。なお、中央圧力密閉容器2bを構成する円筒体の製造方法の詳細については、後述する。   A compressor 1, which is a single rotary compressor type compressor, includes a pressure sealed container 2 made of iron. The pressure sealed container 2 is composed of three pieces, an upper pressure sealed container 2a, a central pressure sealed container 2b, and a bottom pressure sealed container 2c, and is formed in a cylindrical shape. The pressure sealed container 2 includes a compression unit 3 that is a refrigerant compression unit, a motor 4 that is a driving source of the compression unit 3, and a rotating shaft 5 that transmits the driving force of the motor 4 to the compression unit 3. Is configured. In addition, the detail of the manufacturing method of the cylindrical body which comprises the central pressure sealed container 2b is mentioned later.

圧縮部3は、上部軸受け部31、下部軸受け部32及びシリンダー33等を備えている。シリンダー33には、圧縮室30となる略円筒状の貫通孔33aが形成されている。   The compression unit 3 includes an upper bearing portion 31, a lower bearing portion 32, a cylinder 33, and the like. The cylinder 33 is formed with a substantially cylindrical through hole 33 a that becomes the compression chamber 30.

上部軸受け部31は、シリンダー33の上面部に設けられており、貫通孔33aの上部開口を塞ぐ。また、下部軸受け部32は、シリンダー33の下面部に設けられており、貫通孔33aの下部開口を塞ぐ。このように、上部軸受け部31、シリンダー33及び下部軸受け部32は、この順に積層され、貫通孔33aの上下開口を上部軸受け部31と下部軸受け部32とで塞ぐことによって、貫通孔33a内の気密性が確保されている。   The upper bearing portion 31 is provided on the upper surface portion of the cylinder 33 and closes the upper opening of the through hole 33a. The lower bearing portion 32 is provided on the lower surface portion of the cylinder 33 and closes the lower opening of the through hole 33a. Thus, the upper bearing part 31, the cylinder 33, and the lower bearing part 32 are laminated in this order, and the upper and lower openings of the through hole 33a are closed by the upper bearing part 31 and the lower bearing part 32, so that the inside of the through hole 33a. Airtightness is ensured.

順次積層された上部軸受け部31、シリンダー33及び下部軸受け部32には、回転軸5が貫通している。この回転軸5は、上部軸受け部31及び下部軸受け部32によって回転自在に支持されている。また、回転軸5には、シリンダー33と対応する位置に偏芯部5aが形成されている。また、偏芯部5aの外周には略円筒状のピストン34が設けられている。ピストン34は、モーター4によって回転軸5が回転(この例では反時計回りに回転)すると、シリンダー33内をその内周面に沿って回転する。   The rotating shaft 5 passes through the upper bearing portion 31, the cylinder 33, and the lower bearing portion 32 that are sequentially stacked. The rotating shaft 5 is rotatably supported by the upper bearing portion 31 and the lower bearing portion 32. In addition, an eccentric portion 5 a is formed on the rotary shaft 5 at a position corresponding to the cylinder 33. A substantially cylindrical piston 34 is provided on the outer periphery of the eccentric portion 5a. When the rotating shaft 5 is rotated by the motor 4 (in this example, counterclockwise), the piston 34 rotates in the cylinder 33 along its inner peripheral surface.

これらにより構成された圧縮部3は、シリンダー33の外周部が圧力密閉容器2に溶接されることにより、圧力密閉容器2内に固定されている。また、圧縮部3の回転軸5を回転駆動するモーター4も、そのステーター41が圧力密閉容器2に圧入又は溶接されることにより、圧力密閉容器2内に固定されている。   The compression part 3 constituted by these is fixed in the pressure sealed container 2 by welding the outer peripheral part of the cylinder 33 to the pressure sealed container 2. The motor 4 that rotationally drives the rotary shaft 5 of the compression unit 3 is also fixed in the pressure sealed container 2 by the stator 41 being press-fitted or welded to the pressure sealed container 2.

また、図2に示すように、シリンダー33内には、その半径方向に摺動自在にベーン35が設けられている。ベーン35は、ベーンスプリング35aによってピストン34側に押圧されており、その先端部が常にピストン34の外周部に当接する構成となっている。これにより、シリンダー33内の圧縮室30が低圧室30aと高圧室30bとに仕切られる。   Further, as shown in FIG. 2, a vane 35 is provided in the cylinder 33 so as to be slidable in the radial direction. The vane 35 is pressed to the piston 34 side by a vane spring 35 a, and has a configuration in which a tip portion thereof is always in contact with an outer peripheral portion of the piston 34. Thereby, the compression chamber 30 in the cylinder 33 is partitioned into the low pressure chamber 30a and the high pressure chamber 30b.

シリンダー33内に形成された圧縮室30には、外部から冷媒を吸入するための吸入穴61が連通しており、この吸入穴61を介してマフラー66が低圧室30aに接続されている。詳しくは、マフラー66は内部に貯留された冷媒(例えば、二酸化炭素(CO2))のうちのガス状冷媒を低圧室30aに吸入させるための吸入管65を有し、この吸入管65が、中央圧力密閉容器2bの外周面に固定された接続管63及びリング62を介して、吸入穴61内の延長管64に接続されている。   A suction hole 61 for sucking refrigerant from the outside communicates with the compression chamber 30 formed in the cylinder 33, and a muffler 66 is connected to the low pressure chamber 30a via the suction hole 61. Specifically, the muffler 66 has a suction pipe 65 for sucking a gaseous refrigerant out of a refrigerant (for example, carbon dioxide (CO2)) stored therein into the low-pressure chamber 30a. It is connected to an extension pipe 64 in the suction hole 61 via a connection pipe 63 and a ring 62 fixed to the outer peripheral surface of the pressure sealed container 2b.

このように構成された圧縮機1には、マフラー66を通った冷媒(つまり、冷凍サイクル回路の低圧側の冷媒)が、吸入穴61から低圧室30aに吸入される。その後、ピストン34の回転に伴い、低圧室30aが高圧室30bになるに従って、冷媒を圧縮し、この冷媒の圧力が所定値に達すると、上部軸受け部31のフランジ部に形成された弁(図示せず)から圧力密閉容器2内に吐出される。圧力密閉容器2内に吐出された冷媒は、モーター4のステーター41とローター42との間等を通過し、吐出管67から圧力密閉容器2外へ吐出される。   In the compressor 1 configured as described above, the refrigerant that has passed through the muffler 66 (that is, refrigerant on the low-pressure side of the refrigeration cycle circuit) is sucked into the low-pressure chamber 30a from the suction hole 61. Thereafter, as the piston 34 rotates, the refrigerant is compressed as the low pressure chamber 30a becomes the high pressure chamber 30b. When the pressure of the refrigerant reaches a predetermined value, a valve formed on the flange portion of the upper bearing portion 31 (see FIG. (Not shown) is discharged into the pressure sealed container 2. The refrigerant discharged into the pressure sealed container 2 passes between the stator 41 and the rotor 42 of the motor 4 and is discharged from the discharge pipe 67 to the outside of the pressure sealed container 2.

続いて、圧力密閉容器2の中央圧力密閉容器2bを構成する円筒体の製造方法の詳細について説明する。   Then, the detail of the manufacturing method of the cylindrical body which comprises the central pressure sealed container 2b of the pressure sealed container 2 is demonstrated.

中央圧力密閉容器2bを構成する円筒体の一例としての巻き鋼管は、矩形状の鋼板に対して巻き加工、縮管加工、突き合わせ溶接、拡管加工を行って製造される。ここではまず、巻き加工、縮管加工、突き合わせ溶接の各工程について説明し、その後、本発明の特徴部分である拡管加工について説明する。   A wound steel pipe as an example of a cylindrical body constituting the central pressure sealed container 2b is manufactured by performing a winding process, a contraction process, a butt welding, and a pipe expansion process on a rectangular steel plate. Here, each process of a winding process, a reduced tube process, and butt-welding is demonstrated first, Then, the pipe expansion process which is the characterizing part of this invention is demonstrated.

図3は、本発明の実施の形態1に係る圧縮機の圧力密閉容器の製造工程のうち、巻き加工、縮管加工、突き合わせ溶接を説明するための工程図である。なお、図3において細矢印は移動方向を示している。   FIG. 3 is a process diagram for explaining winding processing, contraction processing, and butt welding among the manufacturing steps of the pressure sealed container of the compressor according to Embodiment 1 of the present invention. In FIG. 3, the thin arrows indicate the moving direction.

(巻き加工)
巻き加工では、矩形状の鋼板100を上二つ、下一つのローラ110で挟み、ローラ110の動きに連動して鋼板100を移動させることで鋼板100をロール状に形成する。
(Rolling process)
In the winding process, the steel plate 100 is formed into a roll shape by sandwiching the rectangular steel plate 100 between the upper and lower rollers 110 and moving the steel plate 100 in conjunction with the movement of the rollers 110.

(縮管加工)
縮管加工では、巻き加工後のロール状の鋼板100を、円柱状の貫通孔120aを有し、軸方向に2分割された金型120内にセットして押圧する。これにより、鋼板100の両縁同士が当接した状態に加工される。
(Reduced tube processing)
In the reduced tube processing, the rolled steel plate 100 after winding is set and pressed into a mold 120 having a cylindrical through hole 120a and divided into two in the axial direction. Thereby, it processes to the state which both edges of the steel plate 100 contact | abutted.

(突き合わせ溶接)
突き合わせ溶接では、縮管加工によって当接した前記両縁同士の継ぎ目を溶接機(溶接トーチ)130で溶接する。
(Butt welding)
In the butt welding, the seam between the two edges that are in contact with each other by the reduced tube processing is welded by a welding machine (welding torch) 130.

以上のようにして製造された円筒部材(巻き鋼管)を、次の拡管加工に供することになる。以下、巻き加工、縮管加工及び突き合わせ溶接を終えて、拡管加工に供される前の巻き鋼管8という。   The cylindrical member (rolled steel pipe) manufactured as described above is subjected to the next pipe expansion process. Hereinafter, the wound steel tube 8 before being subjected to the tube expansion processing after finishing the winding processing, the reduced tube processing, and the butt welding will be referred to.

図4は、本発明の実施の形態1に係る拡管治具を示す説明図である。なお、図4(a)は、拡管治具の正面図である。また、図4(b)は、図4(a)の縦断面図である。図4(c)は図4(a)の平面図である。図5は、図4の拡管治具による拡管工程の概要の説明図で、図5(a)は拡管動作前の拡管治具を示す図、図5(b)は拡管動作後の拡管治具を示す図である。   FIG. 4 is an explanatory view showing a tube expansion jig according to Embodiment 1 of the present invention. FIG. 4A is a front view of the tube expansion jig. Moreover, FIG.4 (b) is a longitudinal cross-sectional view of Fig.4 (a). FIG. 4C is a plan view of FIG. FIG. 5 is an explanatory view of the outline of the tube expansion process by the tube expansion jig of FIG. 4, FIG. 5 (a) is a diagram showing the tube expansion jig before the tube expansion operation, and FIG. 5 (b) is the tube expansion jig after the tube expansion operation. FIG.

拡管治具7は、円筒形状の拡管金型71と、拡管金型71の中心部に配置された角錐状のテーパーロッド72と、これらの一端側(図4においては下端側)を収納するハウジング73とを備えている。ハウジング73は拡管設備(図示せず)に固定されている。拡管金型71は、円筒を円周方向に分割した複数の分割金型71aから構成されている。拡管金型71の分割数は奇数とすることが望ましいが、その理由については改めて説明する。拡管金型71の内周面は、テーパーロッド72の外周面の傾斜と逆の傾斜を有しており、拡管金型71に対してテーパーロッド72が相対的に移動(ここでは上下方向に移動)することで、テーパーロッド72の動きを、拡管金型71の径方向の動きに変換する作用を有する。   The tube expansion jig 7 is a housing that houses a cylindrical tube expansion die 71, a pyramidal taper rod 72 disposed at the center of the tube expansion die 71, and one end side thereof (the lower end side in FIG. 4). 73. The housing 73 is fixed to a pipe expansion facility (not shown). The tube expansion mold 71 is composed of a plurality of divided molds 71a obtained by dividing a cylinder in the circumferential direction. The number of divisions of the tube expansion mold 71 is preferably an odd number, and the reason will be described again. The inner peripheral surface of the tube expansion die 71 has an inclination opposite to the inclination of the outer peripheral surface of the taper rod 72, and the taper rod 72 moves relative to the tube expansion die 71 (in this case, moves up and down). ) To convert the movement of the taper rod 72 into the radial movement of the tube expansion mold 71.

(拡管加工)
拡管加工は、以上のように構成された略円筒状の拡管治具7を、図5(a)に示すように巻き鋼管8内に挿入する。そして、拡管金型71を拡開する。すなわち、図5(b)に示すように、テーパーロッド72を設備側に軸方向に引き込み(引き型拡管)(図5においては下側に押し込む)、これにより、分割金型71aを径方向外側に移動させる。これにより、巻き鋼管8がその内径側から外径側に向けて押圧され、所望の内径まで拡管され、圧力密閉容器2の中央圧力密閉容器2bとなる円筒体が製造される。なお、このとき、巻き鋼管8の内周面には、分割金型71aが径方向外側に移動することにより生じた隙間74によって次の図6に示すように凸部8aが形成される。
(Tube expansion processing)
In the pipe expansion process, the substantially cylindrical pipe expansion jig 7 configured as described above is inserted into the wound steel pipe 8 as shown in FIG. And the pipe expansion die 71 is expanded. That is, as shown in FIG. 5 (b), the taper rod 72 is pulled in the equipment side in the axial direction (pull mold expansion) (pushing down in FIG. 5), and thereby the split mold 71a is moved radially outward. Move to. Thereby, the wound steel pipe 8 is pressed from the inner diameter side toward the outer diameter side, and is expanded to a desired inner diameter, whereby a cylindrical body that becomes the central pressure sealed container 2b of the pressure sealed container 2 is manufactured. At this time, a convex portion 8a is formed on the inner peripheral surface of the wound steel pipe 8 as shown in the next FIG. 6 by a gap 74 generated by moving the split mold 71a radially outward.

図6は、図5(b)の上側の図(平面図)の拡大図で、巻き鋼管8の内周面に発生する凸部の説明図である。
図6に示すように、隣接する分割金型71a同士の間の隙間74によって凸部8aが形成されている。
FIG. 6 is an enlarged view of the upper view (plan view) of FIG. 5B, and is an explanatory view of a convex portion generated on the inner peripheral surface of the wound steel pipe 8.
As shown in FIG. 6, the convex part 8a is formed of the clearance gap 74 between adjacent division mold 71a.

本実施の形態1では、このような拡管加工時に形成される凸部8aの高さを低くできることを特徴としており、以下、凸部8aの高さを低くすることを可能とする具体的な構成について説明する。   The first embodiment is characterized in that the height of the convex portion 8a formed at the time of such tube expansion processing can be reduced, and hereinafter, a specific configuration that can reduce the height of the convex portion 8a. Will be described.

本実施の形態1においては、拡管金型71において互いに隣接する分割金型71a同士の対向面の形状を、図4及び次の図7に示すようにジグザグ型形状としている。   In the first embodiment, the shape of the facing surface of the divided molds 71a adjacent to each other in the tube expansion mold 71 is a zigzag type as shown in FIG. 4 and the next FIG.

図7は、図4の分割金型のジグザグ型形状の拡大図である。
ジグザグ型形状は、直線状の複数の線分を拡管金型71の軸方向に角度を持たせて繋げた形状であり、次の(1)式を満足するようなジグザグ型形状となっている。
FIG. 7 is an enlarged view of the zigzag shape of the split mold of FIG.
The zigzag shape is a shape in which a plurality of straight line segments are connected with an angle in the axial direction of the tube expansion die 71, and is a zigzag shape that satisfies the following equation (1). .

S<L=T/tanθ ・・・(1)
ここで、
S:分割金型を径方向外側に移動させた状態における分割金型同士の隙間の幅
L:線分の軸方向と直交する方向の長さ
T:線分の軸方向の長さ
θ:軸方向と直行する方向と線分とがなす角度
S <L = T / tan θ (1)
here,
S: Width of the gap between the divided molds when the divided molds are moved radially outward L: Length in the direction perpendicular to the axial direction of the line segment T: Length in the axial direction of the line segment θ: Axis The angle between the direction and the direction perpendicular to the line

このように拡管金型71の分割部形状をジグザグ型形状とすることで、ストレート型や櫛歯型(クランク型)とした場合に巻き鋼管8の内周面に生じる凸部よりも、凸部の高さを低くすることができる。この点について以下に説明する。   In this way, by forming the divided portion shape of the pipe expansion die 71 in a zigzag shape, the convex portion is formed rather than the convex portion generated on the inner peripheral surface of the wound steel pipe 8 when it is a straight type or a comb type (crank type). Can be reduced in height. This will be described below.

まず、互いに隣接する分割金型71a同士の対向面の形状をジグザグ型にしたことによって凸部8aの高さを低くできる理由を説明し、続いて、(1)式を満たすジグザグ型形状とした理由について説明する。   First, the reason why the height of the convex portion 8a can be reduced by making the shape of the opposing surfaces of the adjacent divided molds 71a into a zigzag shape will be described, and then the zigzag shape satisfying the formula (1) is adopted. The reason will be explained.

(ジグザグ型とした理由)
図8は、図4の分割金型による拡管加工後の巻き鋼管の説明図である。図8に示すように、凸部8aは、軸方向にジグザグ状に延びるように形成される。図8において細矢印は、分割金型71a(71aa、71ab)から巻き鋼管8に作用する力を示している。図8において8bは、軸方向に延びるジグザグの角部分の分割金型71aa、71abの位置(周方向の位置)を示している。図9は、図8の各位置において分割金型から巻き鋼管へ作用する力を平面的に表現した図である。図10は、比較のため、従来のストレート型形状を用いた場合に、軸方向の各位置において分割金型から作用する力を平面的に表現した図である。図11は、比較のため、従来の櫛歯型(クランク型)形状を用いた場合に、軸方向の各位置において分割金型から作用する力を平面的に表現した図である。
(Reason for the zigzag type)
FIG. 8 is an explanatory diagram of a wound steel pipe after pipe expansion processing by the split mold of FIG. As shown in FIG. 8, the convex portion 8a is formed to extend in a zigzag shape in the axial direction. In FIG. 8, the thin arrows indicate the force acting on the wound steel pipe 8 from the divided mold 71a (71aa, 71ab). In FIG. 8, 8b indicates the positions (circumferential positions) of the split molds 71aa and 71ab at the corner portions of the zigzag extending in the axial direction. FIG. 9 is a plan view of the force acting on the wound steel pipe from the split mold at each position in FIG. For comparison, FIG. 10 is a plan view of the force acting from the split mold at each position in the axial direction when the conventional straight mold shape is used. For comparison, FIG. 11 is a plan view illustrating forces acting from the split mold at each position in the axial direction when a conventional comb-shaped (crank) shape is used.

従来のストレート型形状の場合、図10に示すように、軸方向に直線状に延びる凸部80aが形成される。つまり、この凸部80a部分が、軸方向全体に亘って拡管されていない領域として残ることになる。   In the case of the conventional straight type shape, as shown in FIG. 10, the convex part 80a extended linearly in an axial direction is formed. That is, the convex portion 80a portion remains as a region that is not expanded over the entire axial direction.

これに対して、図9に示したジグザグ型形状では、図9中の矢印から分かるように、凸部8aを有する周方向の幅W分の軸方向領域S1を軸方向(図9の上下方向、図8の白抜き矢印方向)に見たとき、分割金型71aaと分割金型71abとが、周方向の幅Wのどこをとっても軸方向に重なっており、全体的に拡管されている。   On the other hand, in the zigzag shape shown in FIG. 9, as can be seen from the arrow in FIG. 9, the axial direction region S1 corresponding to the circumferential width W having the convex portion 8a is axial (the vertical direction in FIG. 9). When viewed in the direction of the white arrow in FIG. 8, the split mold 71aa and the split mold 71ab overlap in the axial direction regardless of the width W in the circumferential direction, and are expanded as a whole.

一方、図11に示した櫛歯型(クランク型)形状においても、凸部81aを有する周方向の幅W10分の軸方向領域S10を軸方向(図11の上下方向)に見たとき、分割金型710aaと分割金型710abとが、周方向の幅W10のどこをとっても軸方向に重なっており、本発明のジグザグ型形状と同様に全体的に拡管されている。しかし、分割金型710aaと分割金型710abとが噛み合う箇所が、櫛歯型は軸方向に断続的に切り替わっているのに対して、ジグザグ型では連続的に変化している。このため、ジグザグ型形状に拡管した際に、ねじれるように変形してより凸部8aの高さが低くなり、安定した内周面精度を得ることができる。   On the other hand, the comb-teeth shape (crank shape) shown in FIG. 11 is divided when the axial region S10 having the convex portion 81a and having a circumferential width W10 is viewed in the axial direction (vertical direction in FIG. 11). The mold 710aa and the split mold 710ab overlap in the axial direction regardless of the circumferential width W10, and are expanded as a whole in the same manner as the zigzag shape of the present invention. However, where the split mold 710aa and the split mold 710ab mesh with each other, the comb-teeth mold is intermittently switched in the axial direction, whereas the zigzag mold continuously changes. For this reason, when the tube is expanded into a zigzag shape, it is deformed so as to be twisted, so that the height of the convex portion 8a is further lowered, and stable inner peripheral surface accuracy can be obtained.

図12は、分割金型同士の対向面の形状をジグザグ型形状とした場合と、櫛歯型(クランク型)形状とした場合の凸部の高さを計測した実験結果を示す図である。図12において横軸は凸部の幅、縦軸は凸部の高さを示している。
図12に示したように、ジグザグ型形状とした場合の方が、櫛歯型(クランク型)形状とした場合よりも凸部8aの高さを低くできる。
FIG. 12 is a diagram showing an experimental result of measuring the height of the convex portion when the shape of the opposed surfaces of the divided dies is a zigzag shape and a comb-tooth shape (crank shape). In FIG. 12, the horizontal axis indicates the width of the convex portion, and the vertical axis indicates the height of the convex portion.
As shown in FIG. 12, the height of the convex portion 8a can be made lower in the case of the zigzag shape than in the case of the comb shape (crank shape).

(S<L=T/tanθを満たすようなジグザグ型形状とした理由)
次に、上記(1)式を満たすようなジグザグ型形状とした理由について説明する。
(Reason for the zigzag shape satisfying S <L = T / tan θ)
Next, the reason why the zigzag shape that satisfies the above formula (1) is used will be described.

図13は、図4の分割金型による拡管加工後に生じる凸部及び分割金型から作用する力を平面的に表現した図で、図13(a)はS>Lとした場合、図13(b)はS=Lとした場合、図13(c)はS<Lとした場合を示している。
図13(a)に示すように、S>Lとした場合、網目状のハッチングで示される領域82aが、拡管されない領域となる。また、図13(b)に示すように、S=Lとした場合、直線領域83aが拡管されない領域となる。これに対し、図13(c)に示すようにS<Lとした場合、軸方向に見たときに分割金型71aa、71abが重なっており、軸方向で拡管されていない領域がない。よって、上記(1)式を満たすようなジグザグ型形状としている。
FIG. 13 is a diagram that expresses in plan view the projections generated after tube expansion processing by the split mold of FIG. 4 and the force acting from the split mold. FIG. FIG. 13B shows a case where S = L, and FIG. 13C shows a case where S <L.
As shown in FIG. 13A, when S> L, a region 82a indicated by mesh-like hatching is a region that is not expanded. Further, as shown in FIG. 13B, when S = L, the straight region 83a is a region that is not expanded. On the other hand, when S <L as shown in FIG. 13C, the divided molds 71aa and 71ab overlap when viewed in the axial direction, and there is no region that is not expanded in the axial direction. Therefore, a zigzag shape that satisfies the above equation (1) is adopted.

(拡管金型71の分割数)
拡管金型71の分割数は上述したように奇数(図4では9つの例を示してる)とする。これは、拡管金型71の分割数を奇数とすることで、拡管金型71の拡開時に、隣接する分割金型71a同士の間の各隙間74のそれぞれを、他の分割金型71aの内周面の中央部P(図6参照)と対向させるためである。言い換えれば、拡管金型71の分割数を偶数とすると、各隙間74のそれぞれが他の隙間74と対向してしまい、つまりは凸部8a同士が巻き鋼管8の内周面において対向して形成されることになる。このように凸部8a同士が対向すると、その部分の内径は、2つの凸部8aの高さ分、短くなる。つまり、内径寸法の大小の差が大きくなり内径真円度が低下する。これを避けるため、拡管金型71の分割数を奇数とする。
(Number of divisions of tube expansion mold 71)
As described above, the number of divisions of the tube expansion mold 71 is an odd number (nine examples are shown in FIG. 4). This is because by setting the number of divisions of the pipe expansion mold 71 to an odd number, when the pipe expansion mold 71 is expanded, each gap 74 between the adjacent division molds 71a is replaced with that of the other division mold 71a. This is because it is opposed to the central portion P (see FIG. 6) of the inner peripheral surface. In other words, if the number of divisions of the tube expansion mold 71 is an even number, each of the gaps 74 faces the other gap 74, that is, the convex portions 8 a are formed facing each other on the inner peripheral surface of the wound steel pipe 8. Will be. Thus, when the convex parts 8a oppose each other, the inner diameter of the part becomes shorter by the height of the two convex parts 8a. That is, the difference in the inner diameter size increases and the inner diameter roundness decreases. In order to avoid this, the number of divisions of the tube expansion mold 71 is an odd number.

以上説明したように、本実施の形態1によれば、分割金型71a同士の対向面の形状をジグザグ型形状としたので、従来のストレート形状及び櫛歯型(クランク型)形状とした場合よりも凸部8aの高さを低くでき、内径真円度の高い円筒体を製造することが可能となる。   As described above, according to the first embodiment, the shape of the opposed surfaces of the divided molds 71a is a zigzag shape, so that the conventional straight shape and the comb shape (crank shape) shape are used. Further, the height of the convex portion 8a can be reduced, and a cylindrical body having a high inner diameter roundness can be manufactured.

なお、本実施の形態1では、互いに隣接する分割金型同士の対向面の形状を、上記(1)式を満たすジグザグ型形状とした例を示したが、必ずしも上記(1)式を満たしていなくとも、ジグザグ型形状であれば、ストレート型形状及び櫛歯型(クランク型)形状とした場合に比べて十分に凸部8aの高さ低減に効果がある。   In the first embodiment, the example in which the shape of the facing surface between the adjacent divided molds is a zigzag shape that satisfies the above formula (1) is shown, but the above formula (1) is not necessarily satisfied. Even if it is not, the zigzag shape is sufficiently effective in reducing the height of the convex portion 8a as compared with the straight shape and the comb shape (crank shape).

また、巻き鋼管8の内周面の凸部8aの高さを低くでき、巻き鋼管8の内径精度を改善できるので、従来の、内周面を切削加工(機械加工)する工程が不要となり、圧縮機の組立性の向上という効果を有する。   Moreover, since the height of the convex part 8a of the inner peripheral surface of the wound steel pipe 8 can be reduced and the inner diameter accuracy of the wound steel pipe 8 can be improved, the conventional process of cutting (machining) the inner peripheral surface becomes unnecessary, This has the effect of improving the assembly of the compressor.

また、従来の、内周面を切削加工(機械加工)する工程不要で圧力密閉容器の内径精度を改善することができるため、圧縮機内部のモータ部及び圧縮部の組立精度が向上され、圧縮機の性能改善という効果を有する。   In addition, since the inner diameter accuracy of the pressure-sealed container can be improved without the need for a conventional process of cutting (machining) the inner peripheral surface, the assembly accuracy of the motor unit and the compression unit inside the compressor is improved, and the compression is performed. It has the effect of improving the performance of the machine.

実施の形態2.
実施の形態1では、拡管加工における拡管回数が1回であったが、実施の形態2では拡管回数を少なくとも2回とし、巻き鋼管8の内周面の更なる内径真円度向上を図るようにしたものである。以下、実施の形態2が実施の形態1と相違する部分を中心に説明する。
Embodiment 2. FIG.
In the first embodiment, the number of times of pipe expansion in the pipe expansion process is one, but in the second embodiment, the number of times of pipe expansion is set to at least two times so as to further improve the inner diameter roundness of the inner peripheral surface of the wound steel pipe 8. It is a thing. In the following, the second embodiment will be described focusing on the differences from the first embodiment.

図14及び図15は、本発明の実施の形態2に係る拡管方法の各工程における分割金型と巻き鋼管の状態を模式的に示す一部拡大説明図である。
実施の形態2の拡管加工は、一次拡管と二次拡管の2回、実施する。まず、図14(a)に示すように、巻き鋼管8の内部に収束状態の分割金型71aを挿入する。次に、テーパーロッド72(図4参照)を下方に押し込み、一次拡管を行う。すなわち、図14(b)に示すように、分割金型71aを径方向外側に移動させ、巻き鋼管8をその内側から押し広げることにより、巻き鋼管8が拡管される一方、巻き鋼管8の内周面には上述したように凸部8aが発生する。
14 and 15 are partially enlarged explanatory views schematically showing the states of the split mold and the wound steel pipe in each step of the pipe expansion method according to Embodiment 2 of the present invention.
The pipe expansion process of Embodiment 2 is implemented twice, a primary pipe expansion and a secondary pipe expansion. First, as shown in FIG. 14A, a split mold 71 a in a converged state is inserted inside the wound steel pipe 8. Next, the taper rod 72 (see FIG. 4) is pushed downward to perform primary expansion. That is, as shown in FIG. 14 (b), the split mold 71 a is moved outward in the radial direction, and the wound steel pipe 8 is expanded from the inside thereof, whereby the wound steel pipe 8 is expanded, while the inside of the wound steel pipe 8 is expanded. As described above, the convex portion 8a is generated on the peripheral surface.

そこで、続いて図14(c)に示すように、分割金型71aを収束方向に移動させて分割金型71aを巻き鋼管8から離した後、図14(d)に示すように拡管金型を周方向に回転移動させる。この回転量は特に限定するものではなく、分割金型71aの外周面の中央部Pが凸部8aに対向するように回転させればよい。なお、ここでは拡管金型71を周方向に回転移動させるとしたが、巻き鋼管8側を回転移動させるようにしてもよい。   Then, as shown in FIG. 14 (c), after the split mold 71a is moved in the convergence direction to separate the split mold 71a from the wound steel pipe 8, the expanded pipe mold as shown in FIG. 14 (d). Is rotated in the circumferential direction. The amount of rotation is not particularly limited, and may be rotated so that the central portion P of the outer peripheral surface of the split mold 71a faces the convex portion 8a. Here, although the pipe expansion mold 71 is rotated in the circumferential direction, the wound steel pipe 8 side may be rotated.

そして、二次拡管を行う。すなわち、図15(e)に示すように、再度拡管金型を拡開し、分割金型71aを径方向外側に移動させ、巻き鋼管8をその内側から押し広げる(二次拡管)。これにより、凸部8aが分割金型71aの外周面によって押圧され、図15(f)に示すように分割金型71aによる押圧を解除したときには、巻き鋼管8の内周面が滑らかな状態となる。   Then, secondary expansion is performed. That is, as shown in FIG. 15 (e), the pipe expansion mold is expanded again, the split mold 71a is moved outward in the radial direction, and the wound steel pipe 8 is pushed out from the inner side (secondary expansion). Thereby, when the convex part 8a is pressed by the outer peripheral surface of the split mold 71a and the pressing by the split mold 71a is released as shown in FIG. 15 (f), the inner peripheral surface of the wound steel pipe 8 is in a smooth state. Become.

以上説明したように本実施の形態2によれば、実施の形態1と同様の効果が得られると共に、拡管加工を上記の様に、一次拡管と二次拡管の2回実施するようにしたので、更に巻き鋼管8の内周面が滑らかになり、内径真円度が向上し、内径精度を向上することができる。   As described above, according to the second embodiment, the same effects as those of the first embodiment can be obtained, and the pipe expansion processing is performed twice as described above, ie, the primary expansion pipe and the secondary expansion pipe. Furthermore, the inner peripheral surface of the wound steel pipe 8 becomes smooth, the inner diameter roundness is improved, and the inner diameter accuracy can be improved.

実施の形態2の拡管加工は、一次拡管と二次拡管の2回、行うとしたが、拡管金型71又は巻き鋼管8を回転移動させつつ、更に複数回、拡管を行ってもよい。   Although the pipe expansion process of the second embodiment is performed twice for the primary pipe expansion and the secondary pipe expansion, the pipe expansion may be further performed a plurality of times while rotating the pipe expansion mold 71 or the wound steel pipe 8.

実施の形態3.
拡管加工前に、巻き加工、縮管加工及び突き合わせ溶接が行われるのは上述した通りであるが、これらの工程後(つまり拡管加工前)の巻き鋼管8には、次の図16に示す巻き痕100a及び溶接熱硬化部102が発生している。
Embodiment 3 FIG.
As described above, the winding process, the contraction process, and the butt welding are performed before the pipe expansion process. However, the winding shown in FIG. 16 is applied to the wound steel pipe 8 after these processes (that is, before the pipe expansion process). The trace 100a and the welding thermosetting part 102 are generated.

図16は、巻き加工、縮管加工及び突き合わせ溶接後の巻き鋼管の断面図である。
巻き鋼管8は、巻き加工での巻き始め部分で生じる巻き痕100a(図3も併せて参照)と、突き合わせ溶接で溶接部101の両側に生じる溶接熱硬化部102とを有している。この巻き痕100a及び溶接熱硬化部102は、他の部分に比べて拡管加工時に伸び難く、拡管し難い。よって、何の対策も取らない拡管加工を行った場合、他の部分よりも内径が小さくなり、内径真円度が悪くなる。なお、巻き痕100a及び溶接熱硬化部102とこれらの間の領域が、本発明の「拡管が相対的に容易でない第1領域」に相当し、それ以外の領域が「拡管が相対的に容易な第2領域」に相当する。
FIG. 16 is a cross-sectional view of a wound steel pipe after winding, shrinking, and butt welding.
The wound steel pipe 8 includes a winding mark 100a (see also FIG. 3) generated at a winding start portion in winding processing, and a weld thermosetting portion 102 generated on both sides of the welded portion 101 by butt welding. The winding marks 100a and the welded thermosetting portion 102 are less likely to extend during tube expansion than other portions, and are difficult to expand. Therefore, when pipe expansion processing is performed without taking any measures, the inner diameter becomes smaller than other portions, and the inner diameter roundness deteriorates. The winding marks 100a and the welded thermosetting portion 102 and the region between them correspond to the “first region where tube expansion is relatively easy” of the present invention, and other regions are “relatively easy tube expansion”. Corresponds to a "second region".

実施の形態3はこのような点を鑑み、拡管加工の際、巻き痕100a及び溶接熱硬化部102に、他の部分よりも強く外向きの力を作用させることができるように、拡管金型71の形状を工夫し、巻き痕100a及び溶接熱硬化部102を他の部分と同様の内径に拡管(拡径)できるようにしたものである。以下、実施の形態3が実施の形態1と相違する部分を中心に説明する。   In view of these points, the third embodiment has a tube expansion die so that an outward force can be applied to the winding marks 100a and the weld thermosetting portion 102 more strongly than other portions during tube expansion. The shape of 71 is devised so that the winding marks 100a and the welded thermosetting portion 102 can be expanded (expanded) to the same inner diameter as other portions. Hereinafter, the third embodiment will be described with a focus on the differences from the first embodiment.

実施の形態3では、拡管加工の際、巻き痕100a及び溶接熱硬化部102に、他の部分よりも強く外向きの力が作用するように、複数の分割金型71aのうち、巻き痕100a及び溶接熱硬化部102に接触する分割金型71aの径を、他の部分よりも大きくするか、又は径方向の厚みを厚くするか、又はその両方を採用した構成とする。次の図17に具体的な形状を図示する。なお、以下では、このように径及び厚みの少なくとも一方を変更した分割金型71aを異径分割金型と呼ぶ。 In the third embodiment, at the time of tube expansion processing, the winding trace 100a among the plurality of split molds 71a is applied so that an outward force acts on the winding trace 100a and the weld thermosetting portion 102 more strongly than other portions. And the diameter of the split mold 71a in contact with the welding thermosetting part 102 is made larger than the other part, or the thickness in the radial direction is increased, or both are adopted. A specific shape is shown in FIG. Hereinafter, the split mold 71a which is changing at least one of the thus diameter and thickness is referred to as a different-diameter split mold.

図17は、本発明の実施の形態3に係る拡管治具の分割金型の説明図である。
図17(a)は、分割金型の形状を変更しない基本の分割金型を示しており、基本径R0、基本厚みt0である。図17(b)は、径を大きくした分割金型を示しており、径がR1(>R0)となっている。図17(c)は、厚みを厚くした分割金型を示しており、厚みがt1(>t0)となっている。図17(d)は、径と厚みの両方をアップした分割金型を示しており、径がR1(>R0)、厚みがt1(>t0)となっている。
FIG. 17 is an explanatory view of a split mold of the tube expansion jig according to Embodiment 3 of the present invention.
FIG. 17A shows a basic split mold in which the shape of the split mold is not changed, and has a basic diameter R0 and a basic thickness t0. FIG. 17B shows a split mold having a larger diameter, and the diameter is R1 (> R0). FIG. 17 (c) shows a split mold having a large thickness, and the thickness is t1 (> t0). FIG. 17 (d) shows a split mold in which both the diameter and the thickness are increased. The diameter is R1 (> R0) and the thickness is t1 (> t0).

図18は、本発明の実施の形態3に係る拡管治具による拡管加工の各工程における分割金型と巻き鋼管の状態を示す説明図である。図19及び図20は、図18の一部拡大図である。
実施の形態3の拡管加工は、実施の形態2と同様、一次拡管と二次拡管の2回、実施する。まず、図18(a)及び図19(a)に示すように、巻き鋼管8の内部に、収束状態の拡管金型71を挿入する。このとき、巻き鋼管8の溶接部101が、拡管金型71の分割金型の中央部と接触し、且つ、異径分割金型71ac、71adが、巻き痕100a及び溶接熱硬化部102とは180度反対の位置となるように拡管金型71を挿入する。
FIG. 18 is an explanatory view showing the state of the split mold and the wound steel pipe in each step of the pipe expansion processing by the pipe expansion jig according to Embodiment 3 of the present invention. 19 and 20 are partially enlarged views of FIG.
As in the second embodiment, the pipe expansion process of the third embodiment is performed twice, that is, primary expansion and secondary expansion. First, as shown in FIGS. 18 (a) and 19 (a), a converging tube expansion mold 71 is inserted into the wound steel pipe 8. At this time, the welded part 101 of the wound steel pipe 8 is in contact with the center part of the split mold of the pipe expansion mold 71, and the different diameter split molds 71ac and 71ad are the winding trace 100a and the weld thermosetting part 102. The tube expansion die 71 is inserted so as to be at a position opposite to 180 degrees.

そして、次に、テーパーロッド72(図4参照)を下方に押し込み、一次拡管を行う。すなわち、図18(b)及び図19(b)に示すように、分割金型71aを径方向外側に移動させ、巻き鋼管8をその内側から押し広げた後、図18(c)及び図19(c)に示すように、分割金型71aを収束方向に移動させて分割金型71aを巻き鋼管8から離す。これにより、巻き鋼管8が拡管される一方、巻き鋼管8の内周面には上述したように凸部8aが発生する。また、異径分割金型71ac、71adは、上述したように他の分割金型71aよりも径及び厚みの少なくとも一方が大きく形成されているため、異径分割金型71ac、71adに対向する巻き鋼管8の内周面部分8cc、8cdの内径は、一次拡管後、その大きくした分だけ他の部分よりも内径が大きくなっている。 Then, the taper rod 72 (see FIG. 4) is pushed downward to perform primary expansion. That is, as shown in FIGS. 18 (b) and 19 (b), the split mold 71a is moved outward in the radial direction, and the wound steel pipe 8 is pushed out from the inside thereof, and then FIGS. 18 (c) and 19 are used. As shown in (c), the split mold 71 a is moved in the convergence direction to separate the split mold 71 a from the wound steel pipe 8. Thereby, while the wound steel pipe 8 is expanded, the convex part 8a generate | occur | produces on the inner peripheral surface of the wound steel pipe 8 as mentioned above. Further, since the different diameter split molds 71ac, 71ad are formed to have at least one of a diameter and a thickness larger than that of the other split mold 71a as described above, the windings facing the different diameter split molds 71ac, 71ad are arranged. The inner diameters of the inner peripheral surface portions 8 cc and 8 cd of the steel pipe 8 are larger than the other portions by the increased amount after the primary expansion.

続いて、図18(d)及び図19(d)に示すように拡管金型71を周方向に180度回転移動させ、巻き鋼管8の溶接部101が分割金型71a同士の隣接部分と対向し、異径分割金型71ac、71adが巻き痕100a及び溶接熱硬化部102付近に対向するようにする。なお、ここでは、拡管金型71を周方向に回転移動させるとしたが、巻き鋼管8側を回転移動させるようにしてもよい。また、ここでは180度回転移動させているが、これは以下の理由による。 Subsequently, as shown in FIGS. 18 (d) and 19 (d), the tube expansion die 71 is rotated 180 degrees in the circumferential direction, and the welded portion 101 of the wound steel tube 8 faces the adjacent portion of the divided dies 71a. Then, the different diameter split molds 71ac and 71ad are made to face the winding marks 100a and the vicinity of the welding thermosetting portion 102. Here, although the pipe expansion die 71 is rotationally moved in the circumferential direction, the wound steel pipe 8 side may be rotationally moved. Moreover, although it is rotated 180 degree | times here, this is based on the following reasons.

拡管加工時に伸び難く、拡管し難いのは、巻き痕100a及び溶接熱硬化部102に加え、実際上は更にその周辺部分(図18においてドットで示した領域)も拡管し難い。つまり、巻き痕100a及び溶接熱硬化部102の周辺部分も「拡管が相対的に容易でない第1領域」に相当する。この第1領域が、巻き鋼管8の中心を中心として大体180度の領域であることから、ここでは180度回転させるようにしている。   In addition to the winding marks 100a and the welded thermosetting portion 102, it is difficult to expand the tube at the time of the tube expansion process. That is, the winding mark 100a and the peripheral portion of the weld thermosetting portion 102 also correspond to “a first region where tube expansion is relatively easy”. Since the first region is a region of about 180 degrees centering on the center of the wound steel pipe 8, the first region is rotated 180 degrees here.

そして、二次拡管を行う。すなわち、図18(e)及び図20(e)に示すように、再度、分割金型71aを径方向外側に移動させ、巻き鋼管8をその内側から押し広げる。これにより、凸部8aが分割金型71aの外周面によって押圧され、図18(f)及び図20(f)に示すように分割金型71aによる押圧を解除したときには、巻き鋼管8の内周面が滑らかな状態となる。   Then, secondary expansion is performed. That is, as shown in FIGS. 18 (e) and 20 (e), the split mold 71a is again moved radially outward, and the wound steel pipe 8 is spread from the inside. Thereby, when the convex part 8a is pressed by the outer peripheral surface of the split mold 71a and the pressing by the split mold 71a is released as shown in FIGS. 18 (f) and 20 (f), the inner periphery of the wound steel pipe 8 The surface becomes smooth.

二次拡管では、上述したように、異径分割金型71ac、71adを、巻き痕100a及び溶接熱硬化部102に対向する位置に位置させた上で拡管を行っている。これにより、拡開し難い巻き痕100a及び溶接熱硬化部102は異径分割金型71ac、71adによって強く押圧されることで、巻き痕100a及び溶接熱硬化部102も他の部分と同様に拡径される。 In the secondary pipe expansion, as described above, the different diameter split molds 71ac and 71ad are positioned at positions facing the winding marks 100a and the welding thermosetting portion 102, and then the pipe expansion is performed. As a result, the winding marks 100a and the weld thermosetting portion 102 that are difficult to expand are strongly pressed by the different diameter split molds 71ac and 71ad, so that the winding marks 100a and the welding thermosetting portion 102 are also expanded in the same manner as the other portions. Diameter.

なお、一次拡管後、上述したように内周面部分8cc、8cdの内径が他の部分よりも大きくなっている。このため、二次拡管では、この内周面部分8cc、8cdの内径に、最終的に得られる円筒体の内径を合わせるように他の部分を拡管する必要がある。すなわち、二次拡管では、異径分割金型71ac、71adにおいて他の分割金型71aよりも径、厚みを大きくした分(つまり、図17のt1−t0)を拡管寸法幅として拡管を行う。これにより、異径分割金型71ac、71adと対向する部分以外の部分は、その大きくした分だけ二次拡管で拡管され、内周面全体の径が揃う状態となる。 After the primary expansion, as described above, the inner peripheral surface portions 8cc and 8cd have larger inner diameters than the other portions. For this reason, in the secondary expansion, it is necessary to expand the other portion so that the inner diameter of the cylindrical body finally obtained is matched with the inner diameter of the inner peripheral surface portions 8cc and 8cd. That is, in secondary pipe expansion, pipe expansion is performed with the diameter and thickness of the different diameter split molds 71ac and 71ad larger than the other split molds 71a (that is, t1-t0 in FIG. 17). Thereby, parts other than the part facing the different diameter split molds 71ac and 71ad are expanded by the secondary expansion by the increased amount, so that the diameters of the entire inner peripheral surface are uniform.

以上より、二次拡管後の巻き鋼管8の内周面は、周方向全体に渡って一様な内径に形成される。   From the above, the inner peripheral surface of the wound steel pipe 8 after the secondary expansion is formed with a uniform inner diameter over the entire circumferential direction.

なお、溶接部101も、巻き痕100a及び溶接熱硬化部102と同様に拡管し難いが、突き合わせ溶接後の巻き鋼管8は、図16に示すように、一方側(溶接部101側)が他方側よりも尖った略涙型形状の断面を有している。つまり、溶接部101の内径D1は、巻き痕100a及び溶接熱硬化部102の内径D2よりも大きくなっている。よって、溶接部101については、異径分割金型によって拡管しなくても、いわば既に拡径された状態となっているため、本実施の形態3では、巻き痕100a及び溶接熱硬化部102に対応する部分だけを異径分割金型としている。しかし、巻き痕100a及び溶接熱硬化部102に対応する部分に加えて、溶接部101に対応する部分71c、71d(図18(a)参照)も異径分割金型としてもよい。 The welded part 101 is also difficult to expand like the winding marks 100a and the welded thermosetting part 102, but the wound steel pipe 8 after butt welding has one side (welded part 101 side) on the other side as shown in FIG. It has a substantially tear-shaped cross section that is sharper than the side. That is, the inner diameter D1 of the welded part 101 is larger than the inner diameter D2 of the winding mark 100a and the welding thermosetting part 102. Therefore, the welded portion 101 is already in a state where the diameter has already been expanded without being expanded by the different-diameter divided mold. Therefore, in the third embodiment, the winding mark 100a and the welded thermosetting portion 102 Only the corresponding part is a different diameter split mold. However, in addition to the portions corresponding to the winding marks 100a and the welded thermosetting portion 102, the portions 71c and 71d (see FIG. 18A) corresponding to the welded portion 101 may be different diameter split molds.

以上説明したように本実施の形態3によれば、実施の形態1、2と同様の効果が得られると共に、拡管し難い巻き痕100a及び溶接熱硬化部102を他の部分と同様に拡径でき、内径真円度を向上することができる。   As described above, according to the third embodiment, the same effects as those of the first and second embodiments can be obtained, and the winding marks 100a and the weld thermosetting portion 102 that are difficult to expand can be expanded in the same manner as other portions. And the roundness of the inner diameter can be improved.

以上には、本発明の特徴事項を説明したが、拡管治具の構造、圧縮機1の構造等は上記の内容に限定されるものではなく、本発明の課題の範囲内で、例えば以下のように適宜変更可能である。   Although the characteristic matter of the present invention has been described above, the structure of the tube expansion jig, the structure of the compressor 1 and the like are not limited to the above contents, and within the scope of the problem of the present invention, for example, It can be changed as appropriate.

(変形例1)
図21は、拡管治具の変形例を示す図である。
上記図5では、拡管治具7はテーパーロッド72を設備側軸方向に引き込む引き型拡管について説明したが、図21に示すように設備側の軸方向からテーパーロッド72を押し込む押し型拡管であっても良い。
(Modification 1)
FIG. 21 is a view showing a modification of the tube expansion jig.
In FIG. 5, the tube expansion jig 7 has been described with respect to the pull-type tube expansion that pulls the taper rod 72 in the equipment-side axial direction. However, as shown in FIG. May be.

(変形例2)
図22は、拡管治具によって拡管される円筒部材の他の構成例を示す図である。
上記では、矩形状の鋼板を巻き加工、縮管加工、突き合わせ溶接することによって製造された巻き鋼管8を、拡管治具7によって拡管する例を説明したが、これに限られたものではない。すなわち、図22に示すように、円形状の金属部材である円形鋼板を絞り加工することによって形成された絞り鋼管9を、拡管治具7によって拡管するようにしてもよい。
(Modification 2)
FIG. 22 is a diagram illustrating another configuration example of the cylindrical member expanded by the tube expansion jig.
Although the example which expands the wound steel pipe 8 manufactured by winding, shrinking, and butt-welding a rectangular steel plate with the pipe expansion jig 7 was demonstrated above, it is not restricted to this. That is, as shown in FIG. 22, a drawn steel pipe 9 formed by drawing a circular steel plate that is a circular metal member may be expanded by a pipe expanding jig 7.

絞り鋼管9の場合は、巻き鋼管8で問題となっている巻き加工の巻き痕100a及び溶接熱硬化部102が無い。このため、拡管金型71において異径分割金型71ac、71adを設ける必要はなく、全ての分割金型71aを同じ形状としてよい。 In the case of the drawn steel pipe 9, there are no winding traces 100 a and the welded thermosetting part 102, which are problematic in the wound steel pipe 8. For this reason, it is not necessary to provide the different diameter split molds 71ac and 71ad in the tube expansion mold 71, and all the split molds 71a may have the same shape.

(変形例3)
上記では、圧縮機1の圧力密閉容器2が3ピースの構成であり、そのうちの中央圧力密閉容器2bが、巻き加工、縮管加工、突き合わせ溶接で製造された巻き鋼管8に拡管加工を行うことで製造された円筒体で構成される場合について説明した。しかしこれに限られたものではなく、圧力密閉容器2が下部圧力密閉容器9bと上部圧力密閉容器9aの2ピースの構成であってもよい。この場合、下部圧力密閉容器9b及び上部圧力密閉容器9aを、上記の絞り鋼管9で構成すればよい。
(Modification 3)
In the above, the pressure-sealed container 2 of the compressor 1 has a three-piece configuration, and the central pressure-sealed container 2b of the compressor 1 performs the pipe expansion process on the wound steel pipe 8 manufactured by winding, shrinking, and butt welding. The case where it is comprised with the cylindrical body manufactured by (1) was demonstrated. However, the present invention is not limited to this, and the pressure sealed container 2 may have a two-piece configuration of the lower pressure sealed container 9b and the upper pressure sealed container 9a. In this case, the lower pressure sealed container 9b and the upper pressure sealed container 9a may be configured by the drawn steel pipe 9 described above.

(変形例4)
上記実施の形態3では、異径分割金型を用いた2回拡管について説明したが、次の図23に示すように、1回拡管としてもよい。
(Modification 4)
In the third embodiment, the two-time pipe expansion using the different-diameter divided mold has been described. However, as shown in FIG.

図23は、異径分割金型を用いた1回拡管の拡管方法の各工程における分割金型と巻き鋼管の状態を示す説明図である。
図23(a)に示すように、巻き鋼管8の内部に、収束状態の拡管金型71を挿入する。このとき、異径分割金型71ac、71adが、巻き痕100a及び溶接熱硬化部102付近と対向するように拡管金型71を挿入する。
FIG. 23 is an explanatory view showing the state of the split mold and the wound steel pipe in each step of the pipe expansion method for single pipe expansion using the different diameter split mold.
As shown in FIG. 23 (a), a tube expansion mold 71 in a converged state is inserted into the wound steel pipe 8. At this time, the tube expansion die 71 is inserted so that the different diameter split dies 71ac and 71ad face the winding marks 100a and the vicinity of the welding thermosetting portion 102.

そして、次に、テーパーロッド72(図4参照)を下方に押し込み、図23(b)に示すように、分割金型71aを径方向外側に移動させ、巻き鋼管8をその内側から押し広げた後、図24(c)に示すように、分割金型71aを収束方向に移動させて分割金型71aを巻き鋼管8から離す。   Next, the taper rod 72 (see FIG. 4) is pushed downward, and as shown in FIG. 23 (b), the split mold 71a is moved outward in the radial direction, and the wound steel pipe 8 is pushed out from the inside. Thereafter, as shown in FIG. 24 (c), the split mold 71 a is moved in the convergence direction to separate the split mold 71 a from the wound steel pipe 8.

異径分割金型71ac、71adを、巻き痕100a及び溶接熱硬化部102に対向する位置に位置させた上で拡管を行うため、拡径し難い巻き痕100a及び溶接熱硬化部102は異径分割金型71ac、71adによって強く押圧されることで、巻き痕100a及び溶接熱硬化部102も他の部分と同様に拡径される。 Since the pipes are expanded after the different diameter split molds 71ac and 71ad are positioned at positions facing the winding marks 100a and the welding thermosetting part 102, the winding marks 100a and the welding thermosetting part 102 which are difficult to expand are different in diameter. By being strongly pressed by the divided molds 71ac and 71ad, the winding marks 100a and the welded thermosetting portion 102 are also enlarged in the same manner as other portions.

なお、2回拡管の方が1回拡管に比べて内径真円度の向上に効果的であるものの、1回拡管でも十分に効果的である。   Although the two-time expansion is more effective for improving the inner diameter roundness than the first expansion, the one-time expansion is sufficiently effective.

(変形例5)
上記実施の形態3では、拡管治具7が一つの拡管金型71を有する構成として説明したが、二つの拡管金型を備え、一方の拡管金型を同じ形状の複数の分割金型を備えた構成とし、他方の分割金型を、異径分割金型を備えた構成としてもよい。この場合、図18(d)及び図19(d)の回転移動の工程は不要であり、この回転移動の工程に代えて、拡管加工に用いる拡管金型を一方から他方に差し替える工程を行えばよい。
(Modification 5)
In Embodiment 3 described above, the tube expansion jig 7 has been described as having a single tube expansion die 71. However, the tube expansion jig 7 includes two tube expansion dies, and one tube expansion die includes a plurality of divided dies having the same shape. The other split mold may have a different diameter split mold. In this case, the rotational movement step shown in FIGS. 18 (d) and 19 (d) is unnecessary, and instead of this rotational movement step, a step of replacing the tube expansion die used for tube expansion processing from one to the other is performed. Good.

(変形例6)
上記では、拡管治具7によって拡管される円筒部材が圧縮機の圧力密閉容器として用いられる鋼管(巻き鋼管、絞り鋼管)であるとして説明したが、本発明の拡管治具によって製造される円筒部材は、圧縮機の圧力密閉容器に限られたものではなく、内径真円度が要求される円筒部材であればよく、また、その素材も鋼に限られたものではない。
(Modification 6)
In the above description, it has been described that the cylindrical member expanded by the tube expansion jig 7 is a steel pipe (rolled steel pipe, drawn steel pipe) used as a pressure sealed container of the compressor, but the cylindrical member manufactured by the tube expansion jig of the present invention. Is not limited to a pressure sealed container of a compressor, but may be a cylindrical member that requires a roundness of inner diameter, and a material thereof is not limited to steel.

(変形例7)
また、上記では、圧縮機1としてシングルロータリー式圧縮機について説明したが、ツインロータリー式圧縮機でもよい。圧縮部3についても、圧縮機構はロータリー式について説明したが、スクロール式やスクリュー式等、種々の機構を採用してもよい。また、圧縮部3を複数設置し、冷媒を順次圧縮していく多段式の圧縮機としてもよい。
(Modification 7)
Moreover, although the single rotary type compressor was demonstrated as the compressor 1 above, a twin rotary type compressor may be sufficient. As for the compression unit 3, the compression mechanism has been described as the rotary type, but various mechanisms such as a scroll type and a screw type may be employed. Moreover, it is good also as a multistage compressor which installs multiple compression parts 3 and compresses a refrigerant | coolant sequentially.

(変形例8)
上記の実施の形態1〜3及び変形例1〜7を適宜組み合わせて用いることも可能である。
(Modification 8)
Embodiments 1 to 3 and Modifications 1 to 7 may be used in appropriate combination.

1 圧縮機、2 圧力密閉容器、2a 上部圧力密閉容器、2b 中央圧力密閉容器、2c 底部圧力密閉容器、3 圧縮部、4 モーター、5 回転軸、5a 偏芯部、7 拡管治具、8 巻き鋼管、8a 凸部、8b 周方向領域、8cc 巻き鋼管の内周面部分、8cd 巻き鋼管の内周面部分、9 絞り鋼管、9a 上部圧力密閉容器、9b 下部圧力密閉容器、30 圧縮室、30a 低圧室、30b 高圧室、31 上部軸受け部、32 下部軸受け部、33 シリンダー、33a 貫通孔、34 ピストン、35 ベーン、35a ベーンスプリング、41 ステーター、42 ローター、61 吸入穴、62 リング、63 接続管、64 延長管、65 吸入管、66 マフラー、67 吐出管、71 拡管金型、71a 分割金型、71aa 分割金型、71ab 分割金型、71ac 異径分割金型、71ad 異径分割金型、71c 溶接部に対応する部分、72 テーパーロッド、73 ハウジング、74 隙間、80a 凸部、81a 凸部、83a 直線領域、100 鋼板、100a 巻き痕、101 溶接部、102 溶接熱硬化部、110 ローラ、110a 巻き痕、120 金型、120a 貫通孔、130 溶接機(溶接トーチ)、710aa 分割金型、710ab 分割金型。 1 compressor, 2 pressure sealed container, 2a top pressure sealed container, 2b central pressure sealed container, 2c bottom pressure sealed container, 3 compression section, 4 motor, 5 rotating shaft, 5a eccentric part, 7 tube expansion jig, 8 windings Steel pipe, 8a convex part, 8b circumferential region, inner peripheral surface part of 8cc wound steel pipe, inner peripheral surface part of 8cd wound steel pipe, 9 drawn steel pipe, 9a upper pressure sealed container, 9b lower pressure sealed container, 30 compression chamber, 30a Low pressure chamber, 30b High pressure chamber, 31 Upper bearing portion, 32 Lower bearing portion, 33 Cylinder, 33a Through hole, 34 Piston, 35 vane, 35a Vane spring, 41 Stator, 42 Rotor, 61 Suction hole, 62 Ring, 63 Connecting pipe 64 extension pipe, 65 suction pipe, 66 muffler, 67 discharge pipe, 71 pipe expansion mold, 71a split mold, 71aa split mold, 71ab split mold, 7 ac different diameter mold blocks, 71Ad different diameter split mold, the portion corresponding to 71c weld 72 tapered rod, 73 housing, 74 gaps, 80a protrusions, 81a protrusions, 83a linear region, 100 steel, 100a wound scar , 101 welded part, 102 welded thermosetting part, 110 roller, 110a winding trace, 120 mold, 120a through hole, 130 welder (welding torch), 710aa split mold, 710ab split mold.

Claims (8)

円筒形状に構成された拡管金型を有し、前記拡管金型を円周方向に分割して構成された複数の分割金型を径方向外側に移動させることにより、円筒部材を内側から拡管する拡管治具であって、
前記複数の分割金型において互いに隣接する前記分割金型同士の対向面の形状が、直線状の複数の線分を前記拡管金型の軸方向に交互に逆方向に傾斜して繋がるジグザグ型形状となっている
ことを特徴とする拡管治具。
A cylindrical member is expanded from the inner side by moving a plurality of divided molds formed by dividing the pipe expanding die in a circumferential direction. A tube expansion jig,
In the plurality of divided molds, the shape of the opposed surfaces of the divided molds adjacent to each other is a zigzag shape in which a plurality of linear segments are alternately inclined and connected in the opposite direction in the axial direction of the tube expansion mold. The tube expansion jig characterized by becoming.
前記ジグザグ型形状は、以下の式を満足する形状である
ことを特徴とする請求項1記載の拡管治具。
S<L=T/tanθ
ここで、
S:前記分割金型を前記径方向外側に移動させた状態における前記分割金型同士の隙間の幅
L:前記線分の前記軸方向と直交する方向の長さ
T:前記線分の前記軸方向の長さ
θ:前記軸方向と直する方向と前記線分とがなす角度
The zigzag shape, the tube expanding jig according to claim 1, wherein the a shape that satisfies the equation below.
S <L = T / tan θ
here,
S: Width of a gap between the divided molds in a state where the divided molds are moved outward in the radial direction L: Length in a direction orthogonal to the axial direction of the line segment T: The axis of the line segment the length in the direction theta: angle formed between the axis and the direction of Cartesian and the line segment
前記分割金型の数は奇数である
ことを特徴とする請求項1又は請求項2記載の拡管治具。
The tube expansion jig according to claim 1 or 2, wherein the number of the divided molds is an odd number.
前記複数の分割金型のうちの一部が、他の前記分割金型よりも外周面の径が大きく、又は、他の前記分割金型よりも径方向の厚みが厚く、又は、他の前記分割金型よりも外周面の径が大きく且つ他の前記分割金型よりも径方向の厚みが厚く、形成された異形分割金型となっている
ことを特徴とする請求項1〜請求項3の何れか一項に記載の拡管治具。
A part of the plurality of split molds has a larger outer peripheral surface diameter than the other split molds, or a radial thickness larger than the other split molds, or the other 4. The deformed divided mold is formed, wherein the outer peripheral surface has a larger diameter than the divided mold and the radial thickness is thicker than the other divided molds. The tube expansion jig according to any one of the above.
請求項1〜請求項4の何れか一項に記載の拡管治具を用いた拡管方法であって、
前記拡管金型を円筒部材の内部に挿入した後、前記複数の分割金型を径方向外側に移動させることで、前記円筒部材を内側から拡管する
ことを特徴とする拡管方法。
A tube expansion method using the tube expansion jig according to any one of claims 1 to 4,
After the tube expansion mold is inserted into the inside of the cylindrical member, the cylindrical member is expanded from the inside by moving the plurality of divided molds radially outward.
請求項1〜請求項4の何れか一項に記載の拡管治具を用いた拡管方法であって、
前記拡管金型を円筒部材の内部に挿入した後、前記複数の分割金型を径方向外側に移動させることで、前記円筒部材を内側から拡管する第1拡管工程と、
前記第1拡管工程によって前記円筒部材の内周面に形成された凸部に前記分割金型が対向するように、前記拡管金型又は前記円筒部材を回転移動させ、その回転移動後の位置で前記複数の分割金型を径方向外側に移動させる第2拡管工程とを行う
ことを特徴とする拡管方法。
A tube expansion method using the tube expansion jig according to any one of claims 1 to 4,
A first tube expanding step of expanding the cylindrical member from the inside by moving the plurality of divided molds radially outward after the tube expanding die is inserted into the cylindrical member;
The tube expansion mold or the cylindrical member is rotationally moved so that the split mold faces the convex portion formed on the inner peripheral surface of the cylindrical member by the first tube expansion step, and at the position after the rotational movement. A tube expansion method comprising: performing a second tube expansion step of moving the plurality of split molds radially outward.
前記円筒部材は、拡管が相対的に容易でない第1領域と、拡管が相対的に容易な第2領域とを有し、
前記第1拡管工程では、前記異形分割金型が前記第2領域に対向するように位置させて拡管を行い、
前記第2拡管工程では、前記異形分割金型が前記第1領域に対向するように位置させて拡管を行う
ことを特徴とする請求項4に従属する請求項5又は請求項6記載の拡管方法。
The cylindrical member has a first region that is relatively easy to expand, and a second region that is relatively easy to expand,
In the first tube expansion step, the irregular division mold is positioned so as to face the second region, and the tube is expanded.
The tube expansion method according to claim 5 or 6 depending on claim 4, wherein in the second tube expansion step, tube expansion is performed by positioning the irregularly divided mold so as to face the first region. .
前記回転移動の際、周方向に180度回転させることを特徴とする請求項7記載の拡管方法。   8. The tube expansion method according to claim 7, wherein the tube is rotated 180 degrees in the circumferential direction during the rotational movement.
JP2013236162A 2013-11-14 2013-11-14 Tube expansion jig and tube expansion method Active JP5943897B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013236162A JP5943897B2 (en) 2013-11-14 2013-11-14 Tube expansion jig and tube expansion method
CN201420682105.5U CN204412938U (en) 2013-11-14 2014-11-14 expanding tool
CN201410646187.2A CN104624823B (en) 2013-11-14 2014-11-14 Expanding tool, method of expanding, cylinder and compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013236162A JP5943897B2 (en) 2013-11-14 2013-11-14 Tube expansion jig and tube expansion method

Publications (3)

Publication Number Publication Date
JP2015093321A JP2015093321A (en) 2015-05-18
JP2015093321A5 JP2015093321A5 (en) 2015-09-17
JP5943897B2 true JP5943897B2 (en) 2016-07-05

Family

ID=53196092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013236162A Active JP5943897B2 (en) 2013-11-14 2013-11-14 Tube expansion jig and tube expansion method

Country Status (2)

Country Link
JP (1) JP5943897B2 (en)
CN (2) CN104624823B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101843949B1 (en) * 2016-11-15 2018-03-30 두산중공업 주식회사 Retaining ring expansion system with detachable wedge and base rail.
KR101845699B1 (en) * 2016-11-15 2018-04-05 두산중공업 주식회사 Retaining ring expansion system with detachable wedge.
KR101902901B1 (en) * 2017-09-11 2018-10-01 양재원 Apparatus for expanding cylilndrical body of missile

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5943897B2 (en) * 2013-11-14 2016-07-05 三菱電機株式会社 Tube expansion jig and tube expansion method
WO2017199438A1 (en) * 2016-05-20 2017-11-23 三菱電機株式会社 Compressor, method for manufacturing compressor, and pipe enlarging tool
CN106216537B (en) * 2016-09-29 2018-05-08 大连海事大学 A kind of marmem reduction nipple expander
KR101985678B1 (en) * 2018-12-11 2019-06-04 알텍 주식회사 Method of manufacturing a fastening socket for a muffler
CN110315287A (en) * 2019-06-14 2019-10-11 厦门日上集团股份有限公司 A kind of hub manufacturing technology

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5290146A (en) * 1976-01-22 1977-07-28 Fusou Denki Kougiyou Kk Automatic door opening and closing device
JPS5417909U (en) * 1977-07-07 1979-02-05
JPS6018239A (en) * 1983-07-12 1985-01-30 Inoue Sangyo Kk Cylindrical body with variable outside diameter
JPH08300068A (en) * 1995-04-28 1996-11-19 Nkk Corp Device and method for expanding metallic tube
JPH0924433A (en) * 1995-07-11 1997-01-28 Nkk Corp Expanding device of steel tube and manufacture of steel tube
JP3372754B2 (en) * 1996-05-20 2003-02-04 東芝キヤリア株式会社 Hermetic compressor and method for manufacturing hermetic case in hermetic compressor
JP3250466B2 (en) * 1996-09-13 2002-01-28 住友金属工業株式会社 Expansion dies for mechanical expansion machines
JP2001009524A (en) * 1999-06-30 2001-01-16 Toyota Motor Corp Manufacture of cylinder element
JP2002224743A (en) * 2001-02-01 2002-08-13 Fuji Kikai Kosakusho:Kk Cylindrical body radial expanding or contracting method
JP5234102B2 (en) * 2010-12-22 2013-07-10 三菱電機株式会社 Manufacturing method of hermetic refrigerant compressor
CN201969786U (en) * 2010-12-23 2011-09-14 杨泽宇 Intermeshing type accurate pipe-expanding die
US20130251551A1 (en) * 2012-03-23 2013-09-26 Bitzer Kuehlmaschinenbau Gmbh Compressor shell with multiple diameters
JP5943897B2 (en) * 2013-11-14 2016-07-05 三菱電機株式会社 Tube expansion jig and tube expansion method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101843949B1 (en) * 2016-11-15 2018-03-30 두산중공업 주식회사 Retaining ring expansion system with detachable wedge and base rail.
KR101845699B1 (en) * 2016-11-15 2018-04-05 두산중공업 주식회사 Retaining ring expansion system with detachable wedge.
KR101902901B1 (en) * 2017-09-11 2018-10-01 양재원 Apparatus for expanding cylilndrical body of missile

Also Published As

Publication number Publication date
CN104624823A (en) 2015-05-20
JP2015093321A (en) 2015-05-18
CN104624823B (en) 2016-09-28
CN204412938U (en) 2015-06-24

Similar Documents

Publication Publication Date Title
JP5943897B2 (en) Tube expansion jig and tube expansion method
JP2015093321A5 (en)
KR102249115B1 (en) Compressor
CN104028606B (en) A kind of spinning portion brace type bellows spinning machine and forming method
KR20180066086A (en) METHOD AND APPARATUS FOR MANUFACTURING RING-SHAPED-molded parts
JP2010284008A (en) Stator core of rotating electrical machine
JP6445779B2 (en) Preliminary body and method for manufacturing axisymmetric parts
JP2009125759A (en) Method of manufacturing cylindrical body
JP2003311466A (en) Method of producing annular body
JP2007069245A (en) Method for producing tappet roller
CN113597359B (en) Method for manufacturing compressor
JP6617640B2 (en) Method for manufacturing stator core of rotating electric machine
JP6628872B2 (en) Compressor manufacturing method and pipe expansion device
JP5012038B2 (en) Metal ring manufacturing method
JP6512937B2 (en) Method and apparatus for forming curled portion of paper container
US9995392B2 (en) Method for manufacturing unitary hollow pistons
JP6293488B2 (en) Folding device
CN205714767U (en) The pump assembly of rotary compressor and rotary compressor
US20110296895A1 (en) Manufacturing method for nozzle vane
US9968984B2 (en) Porous metal body manufacturing method and porous metal body
JP5566327B2 (en) Hermetic compressor
JP6482400B2 (en) Tube expansion device
JP2018192521A (en) Method for manufacturing weld steel pipe
US20190143746A1 (en) Wheel disc manufacturing method and wheel disc
JP2005308021A (en) Cylindrical bearing member and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150730

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160524

R150 Certificate of patent or registration of utility model

Ref document number: 5943897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250