JP5943196B2 - Water treatment facility control method, control program, and water treatment system - Google Patents

Water treatment facility control method, control program, and water treatment system Download PDF

Info

Publication number
JP5943196B2
JP5943196B2 JP2012142973A JP2012142973A JP5943196B2 JP 5943196 B2 JP5943196 B2 JP 5943196B2 JP 2012142973 A JP2012142973 A JP 2012142973A JP 2012142973 A JP2012142973 A JP 2012142973A JP 5943196 B2 JP5943196 B2 JP 5943196B2
Authority
JP
Japan
Prior art keywords
water
treated
concentration
correlation
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012142973A
Other languages
Japanese (ja)
Other versions
JP2014004550A (en
Inventor
大月 孝之
孝之 大月
友野 佐々木
友野 佐々木
飯塚 洋
洋 飯塚
中野 吉雅
吉雅 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2012142973A priority Critical patent/JP5943196B2/en
Publication of JP2014004550A publication Critical patent/JP2014004550A/en
Application granted granted Critical
Publication of JP5943196B2 publication Critical patent/JP5943196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/152Water filtration

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、水処理設備の制御方法及び制御プログラム並びに水処理システムに関する。   The present invention relates to a control method and control program for a water treatment facility, and a water treatment system.

水処理設備を管理する従来技術の一例として、通信回線で水処理設備に接続された管理センタにおいて、水処理設備の稼働状態を監視するとともに、その稼働状態を評価し、その評価結果に基づいて稼働条件を変更する設備管理システムが公知である(例えば特許文献1を参照)。このような水処理設備の設備管理システムにおいて、水処理設備の稼働状態の評価は、水処理設備に設けられたセンサによる計測値等に基づいて行われる。   As an example of conventional technology for managing water treatment facilities, the management center connected to the water treatment facility via a communication line monitors the operation status of the water treatment facility, evaluates the operation status, and based on the evaluation result A facility management system that changes operating conditions is known (see, for example, Patent Document 1). In such a facility management system for water treatment facilities, the evaluation of the operating state of the water treatment facility is performed based on the measured values by sensors provided in the water treatment facility.

一般的に水処理設備に設置されるセンサとしては、一般的な工業計器が用いられる。具体的には被処理水の導電率を計測する導電率計、被処理水の濁度を計測する濁度計、被処理水の吸光度を計測する吸光光度計、被処理水の水素イオン指数(potential Hydrogen:pH)を計測するpH計、被処理水の酸化還元電位(Oxidation-reduction Potential:ORP)を計測する酸化還元電位計等の安価なセンサが一般的に用いられる。   Generally, a general industrial instrument is used as a sensor installed in a water treatment facility. Specifically, a conductivity meter that measures the conductivity of the treated water, a turbidity meter that measures the turbidity of the treated water, an absorptiometer that measures the absorbance of the treated water, a hydrogen ion index of the treated water ( Inexpensive sensors such as a pH meter that measures potential hydrogen (pH) and an oxidation-reduction potential meter that measures oxidation-reduction potential (ORP) of water to be treated are generally used.

特許第3624940号公報Japanese Patent No. 3624940

上記の一般的な工業計器(導電率計、濁度計、吸光光度計、pH計、酸化還元電位計等)では、水処理設備の運転に悪影響を及ぼす汚濁成分のうち、計測する水質指標(導電率、濁度、吸光度、pH、酸化還元電位等)との間に因果関係がない汚濁成分(例えばシリカ、カルシウム等の無機物等)の濃度を直接的に計測することができない。またこのような汚濁成分を直接的に計測可能な計測装置は、一般に極めて高価であるため、水処理設備に設置するのはコスト的な制約等から実際上困難な場合が多い。そのため上記のような汚濁成分の計測は、作業者の手作業によって、定期的に被処理水のサンプルを採取して分析することにより行われている。   In the above general industrial instruments (conductivity meter, turbidity meter, absorptiometer, pH meter, oxidation-reduction potential meter, etc.), among the pollutants that adversely affect the operation of water treatment facilities, It is not possible to directly measure the concentration of pollutant components (for example, inorganic substances such as silica and calcium) that have no causal relationship with conductivity, turbidity, absorbance, pH, redox potential, and the like. In addition, such a measuring device that can directly measure a pollutant component is generally very expensive. Therefore, it is often difficult to install in a water treatment facility due to cost restrictions. Therefore, the measurement of the pollutant as described above is performed by periodically collecting and analyzing samples of water to be treated manually by the operator.

しかしながら作業者の手作業による被処理水のサンプル採取及び分析は、その作業に要する手間や時間等を考慮すると、例えば週に一回あるいは月に一回程度の頻度で実施することしかできない。そのためサンプル採取した被処理水の分析結果だけでは、被処理水の水質変動を的確に把握することは困難であり、例えば被処理水の水質が短期間に変動したような場合に、対応が遅れて水処理設備に異常が生じてしまう虞がある。   However, sampling and analysis of the water to be treated by the operator's manual operation can be performed only once a week or once a month, for example, considering the labor and time required for the operation. For this reason, it is difficult to accurately grasp the water quality fluctuation of the treated water only by analyzing the sampled treated water.For example, if the quality of the treated water fluctuates in a short period of time, the response is delayed. Therefore, there is a risk that an abnormality will occur in the water treatment facility.

このような状況に鑑み本発明はなされたものであり、その目的は、高価な計測装置を設けることなく、被処理水の水質変動に的確に対応した最適な運転条件で水処理設備を運用できるようにすることにある。   In view of such circumstances, the present invention has been made, and the object thereof is to operate the water treatment facility under the optimum operating condition that accurately corresponds to the water quality fluctuation of the treated water without providing an expensive measuring device. There is in doing so.

被処理水の水質指標と汚濁成分の濃度との間に因果関係がない場合、理論的には、その水質指標から汚濁成分の濃度を直接的に推定することはできない。しかし例えば工業用水、上水、井水等の用水やこれらを処理した純水、これらが単に濃縮されるプロセスを経た冷却水、ボイラー水、RO濃縮水等、発生源が一定で成分変動が少ない被処理水では、その被処理水に含まれる複数の成分の比率が略一定である場合が多い。このことは例えば単一の食品や飲料品、鉄鋼、紙パルプ等を量産する工場の排水についても同じことが言える。さらに半導体製造工場や液晶パネル製造工場、化学コンビナート等、複数のプロセスが同時に稼働する工場の総合排水や主要製造プロセス系統排水等は、その排水の性状が概ね安定している場合が多く、その成分比率が略一定である場合が多い。   If there is no causal relationship between the water quality index of the treated water and the concentration of the pollutant, theoretically, the concentration of the pollutant cannot be directly estimated from the water quality index. However, for example, water for industrial use, clean water, well water, etc., pure water treated with these, cooling water that has undergone a process in which these are simply concentrated, boiler water, RO concentrated water, etc., the source of generation is constant and there are few component fluctuations In the water to be treated, the ratio of the plurality of components contained in the water to be treated is often substantially constant. The same can be said for, for example, wastewater from a factory that mass-produces a single food or beverage, steel, paper pulp, or the like. In addition, general wastewater and wastewater from major manufacturing process systems, such as semiconductor manufacturing plants, liquid crystal panel manufacturing plants, and chemical complexes, operate at the same time. In many cases, the ratio is substantially constant.

そして被処理水に含まれる複数の成分の成分比率が略一定である場合には、ある水質指標に対して因果関係がある成分と、その水質指標に対して因果関係がない成分との比率は、略一定になるはずである。したがって被処理水の成分比率が略一定である場合には、ある水質指標とある成分との間の因果関係を介して、その水質指標とその水質指標に対して因果関係がない他の成分との間に一定の相関関係が成立し得る。つまり被処理水の発生源や発生プロセスによっては、その被処理水の成分比率が略一定になる場合があり、そのような場合には、ある水質指標とその水質指標に対して因果関係がない汚濁成分との間に一定の相関関係が成立し得る。このような知見に基づいて本発明はなされたものである。   And when the component ratio of the plurality of components contained in the water to be treated is substantially constant, the ratio of the component that has a causal relationship to a certain water quality index and the component that has no causal relationship to that water quality index is Should be nearly constant. Therefore, when the component ratio of the water to be treated is substantially constant, the water quality index and other components that are not causally related to the water quality index are connected via a causal relationship between the water quality index and a certain component. A certain correlation can be established between the two. In other words, depending on the source and process of the treated water, the component ratio of the treated water may be substantially constant. In such a case, there is no causal relationship between a water quality index and the water quality index. A certain correlation can be established between the pollutant components. The present invention has been made based on such findings.

<本発明の第1の態様>
本発明の第1の態様は、水質指標と前記水質指標に対して因果関係がない汚濁成分の濃度との相関が被処理水にあるか否かを定期的に行う前記被処理水のサンプル分析の結果から判定する相関判定工程と、前記相関があることを条件として、前記被処理水の直近一定期間における前記水質指標の計測値の分布を統計解析し、その統計解析の結果と前記相関に基づいて、前記被処理水の前記汚濁成分の濃度を推定する第1汚濁成分濃度推定工程と、推定した前記被処理水の前記汚濁成分の濃度に基づいて、前記被処理水を処理する水処理設備の運転条件を決定する運転条件決定工程と、を含む、水処理設備の制御方法である。
<First Aspect of the Present Invention>
The first aspect of the present invention is the sample analysis of the water to be treated which periodically performs whether or not the water to be treated has a correlation between the water quality index and the concentration of the pollutant component which has no causal relationship with the water quality index. And a correlation determination step for determining from the result of the analysis, and on the condition that there is the correlation, statistically analyze the distribution of the measured value of the water quality index in the immediate fixed period of time, the results of the statistical analysis and the correlation And a water treatment for treating the treated water based on the estimated concentration of the contaminated component of the treated water, and a first pollutant component concentration estimating step for estimating the concentration of the contaminated component of the treated water. An operation condition determining step for determining an operation condition of the facility.

まず定期的に行う被処理水のサンプル分析の結果から、ある水質指標とその水質指標に対して因果関係がない汚濁成分の濃度との間に相関関係が成立するか否かを判定する。そして両者の間に相関関係が成立することを条件として、被処理水の直近一定期間における水質指標の計測値の分布を統計解析し、その統計解析の結果とその相関関係に基づいて、その汚濁成分の濃度を推定する。それによってある水質指標から、その水質指標に対して因果関係がない汚濁成分の濃度を高精度に推定することができるので、高価な計測装置を設けることなく、被処理水の水質変動を的確に把握することができる。そして推定したその汚濁成分の濃度に基づいて、その被処理水を処理する水処理設備の運転条件を決定する。それによって被処理水の水質変動に的確に対応した最適な運転条件で水処理設備を運用することができる。   First, it is determined whether or not a correlation is established between a certain water quality index and the concentration of a pollutant component that has no causal relationship with the water quality index from the results of the sample analysis of the treated water that is periodically performed. Then, on the condition that a correlation is established between the two, the distribution of the measured value of the water quality index in the latest fixed period is statistically analyzed, and based on the result of the statistical analysis and the correlation, the pollution Estimate the concentration of ingredients. As a result, it is possible to accurately estimate the concentration of pollutant components that are not causally related to the water quality index. I can grasp it. And based on the density | concentration of the estimated contaminant component, the operating condition of the water treatment facility which processes the to-be-processed water is determined. As a result, the water treatment facility can be operated under optimum operating conditions that accurately correspond to the water quality fluctuation of the treated water.

これにより本発明の第1の態様によれば、高価な計測装置を設けることなく、被処理水の水質変動に的確に対応した最適な運転条件で水処理設備を運用できるという作用効果が得られる。   As a result, according to the first aspect of the present invention, there is obtained an effect that the water treatment facility can be operated under the optimum operation condition corresponding to the water quality fluctuation accurately without providing an expensive measuring device. .

<本発明の第2の態様>
本発明の第2の態様は、前述した本発明の第1の態様において、前記第1汚濁成分濃度推定工程は、前記被処理水のサンプル分析の結果を回帰分析して回帰直線及びその予測限界を求め、前記被処理水の直近一定期間における前記水質指標の計測値の分布の平均値と標準偏差を統計解析によって求め、その平均値と標準偏差に基づいて設定した出現確率に収まる前記水質指標の計測値の最大値を求め、前記回帰直線の予測限界及び前記水質指標の計測値の最大値に基づいて、前記被処理水の前記汚濁成分の濃度を推定する工程を含む、ことを特徴とする水処理設備の制御方法である。
本発明の第2の態様によれば、被処理水の水質指標に対して因果関係がない汚濁成分の濃度を推定誤差の範囲内の最大値(最悪値)として推定することができるので、最適な運転条件での水処理設備の運用をより安全に行うことが可能になる。
<Second Aspect of the Present Invention>
According to a second aspect of the present invention, in the first aspect of the present invention described above, the first pollutant component concentration estimating step performs regression analysis on a sample analysis result of the treated water, and sets a regression line and a prediction limit thereof. The water quality index that falls within the appearance probability set based on the average value and the standard deviation is obtained by statistical analysis, and the average value and standard deviation of the measured value distribution of the water quality index in the immediate fixed period of time is obtained And determining the concentration of the pollutant component of the treated water based on the prediction limit of the regression line and the maximum value of the measured value of the water quality index. It is the control method of the water treatment facility.
According to the second aspect of the present invention, it is possible to estimate the concentration of the pollutant component having no causal relationship with the water quality index of the treated water as the maximum value (worst value) within the estimation error range. The water treatment facility can be operated more safely under various operating conditions.

<本発明の第3の態様>
本発明の第3の態様は、前述した本発明の第1の態様又は第2の態様において、前記相関がないことを条件として、過去の全ての前記被処理水のサンプル分析における前記汚濁成分の濃度の分布を統計解析し、その統計解析の結果に基づいて、前記被処理水の前記汚濁成分の濃度を推定する第2汚濁成分濃度推定工程をさらに含む、ことを特徴とする水処理設備の制御方法である。
<Third Aspect of the Present Invention>
According to a third aspect of the present invention, in the first aspect or the second aspect of the present invention described above, on the condition that there is no correlation, the contamination component in the sample analysis of all past treated water is determined. A water treatment facility characterized by further comprising a second pollutant component concentration estimating step of statistically analyzing the concentration distribution and estimating the concentration of the pollutant component of the treated water based on the result of the statistical analysis It is a control method.

例えば被処理水の発生源や発生プロセスに一時的に何らかの変動が生ずると、被処理水の成分比率に変動が生ずる可能性があり、それによってある水質指標とその水質指標に対して因果関係がない汚濁成分の濃度との間の相関関係が一時的に成立しなくなることもあり得る。そしてある水質指標とその水質指標に対して因果関係がない汚濁成分の濃度との間に相関関係が成立しない場合には、その水質指標に基づいてその汚濁成分の濃度を推定することが困難になる。   For example, if there is a temporary change in the source or process of treated water, the component ratio of the treated water may change, and there is a causal relationship between a water quality index and the water quality index. It is possible that the correlation between the concentration of the non-polluting component is temporarily not established. If there is no correlation between a water quality index and the concentration of a pollutant component that has no causal relationship to the water quality index, it is difficult to estimate the concentration of the pollutant component based on the water quality index. Become.

したがってそのような場合には、暫定的に、過去の全ての被処理水のサンプル分析における汚濁成分の濃度の分布を統計解析し、その統計解析の結果に基づいて、その汚濁成分の濃度を推定する。つまり過去のサンプル分析におけるその汚濁成分の濃度の蓄積データに基づいて、その汚濁成分の濃度を統計的に推定する。それによって例えば被処理水の発生源や発生プロセスに一時的に何らかの変動が生じて、その水質指標とその汚濁成分の濃度との間の相関関係が一時的に成立しなくなったときでも、適切な運転条件を設定して水処理設備の運用を安全に継続することができる。   Therefore, in such a case, tentatively analyze the concentration distribution of the pollutant components in the sample analysis of all past treated water and estimate the concentration of the pollutant components based on the results of the statistical analysis. To do. That is, the concentration of the pollutant component is statistically estimated based on the accumulated data of the concentration of the pollutant component in the past sample analysis. As a result, for example, when there is a temporary change in the source or process of treated water and the correlation between the water quality indicator and the concentration of the pollutant component is temporarily not established, Operation conditions can be set to continue the operation of the water treatment facility safely.

<本発明の第4の態様>
本発明の第4の態様は、前述した本発明の第3の態様において、前記第2汚濁成分濃度推定工程は、過去の全ての前記被処理水のサンプル分析における前記汚濁成分の濃度の分布の平均値と標準偏差を統計解析によって求め、その平均値と標準偏差に基づいて設定した出現確率に収まる前記汚濁成分の濃度の最大値を求め、それを前記被処理水の前記汚濁成分の濃度と推定する工程を含む、ことを特徴とする水処理設備の制御方法である。
本発明の第4の態様によれば、水質指標とその水質指標に対して因果関係がない汚濁成分の濃度との間に相関関係が成立しない場合であっても、その被処理水の水質指標に対して因果関係がない汚濁成分の濃度を推定誤差の範囲内の最大値(最悪値)として推定することができるので、適切な運転条件での水処理設備の運用をより安全に行うことが可能になる。
<Fourth aspect of the present invention>
According to a fourth aspect of the present invention, in the third aspect of the present invention described above, the second pollutant component concentration estimating step includes the distribution of the concentration of the pollutant component in the sample analysis of all the past water to be treated. The average value and the standard deviation are obtained by statistical analysis, the maximum value of the concentration of the pollutant component that falls within the appearance probability set based on the average value and the standard deviation is obtained, and is calculated as the concentration of the pollutant component of the treated water. It is the control method of the water treatment facility characterized by including the process to estimate.
According to the fourth aspect of the present invention, even if there is no correlation between the water quality index and the concentration of the pollutant component that has no causal relationship with the water quality index, the water quality index of the treated water The concentration of pollutant components that have no causal relationship to can be estimated as the maximum value (worst value) within the estimation error range, so that water treatment facilities can be operated more safely under appropriate operating conditions. It becomes possible.

<本発明の第5の態様>
本発明の第5の態様は、前述した本発明の第1〜第4の態様のいずれかにおいて、前記水質指標は前記被処理水の導電率である、ことを特徴とする水処理設備の制御方法である。
<Fifth aspect of the present invention>
According to a fifth aspect of the present invention, in any one of the first to fourth aspects of the present invention described above, the water quality indicator is a conductivity of the water to be treated. Is the method.

被処理水に含まれるイオン性成分の濃度変動は、その被処理水の導電率に影響する。つまり被処理水の導電率とイオン性成分の濃度との間には因果関係がある。そして被処理水の成分比率が略一定になる場合には、被処理水の導電率と被処理水の導電率に対して因果関係がない汚濁成分の濃度との間に一定の相関関係が成立し得る。したがって本発明の第5の態様によれば、その相関関係に基づいて、被処理水の導電率に対して因果関係がない汚濁成分の濃度をその被処理水の導電率から高精度に推定することができるので、高価な計測装置を設けることなく、被処理水の水質変動を的確に把握することができる。   The concentration fluctuation of the ionic component contained in the water to be treated affects the conductivity of the water to be treated. That is, there is a causal relationship between the conductivity of the water to be treated and the concentration of the ionic component. If the component ratio of the treated water is substantially constant, a certain correlation is established between the conductivity of the treated water and the concentration of pollutant components that are not causally related to the conductivity of the treated water. Can do. Therefore, according to the 5th aspect of this invention, based on the correlation, the density | concentration of the pollution component which has no causal relationship with the electrical conductivity of to-be-processed water is estimated from the electrical conductivity of the to-be-processed water with high precision. Therefore, it is possible to accurately grasp the water quality variation of the water to be treated without providing an expensive measuring device.

<本発明の第6の態様>
本発明の第6の態様は、前述した本発明の第1〜第4の態様のいずれかにおいて、前記水質指標は前記被処理水の濁度である、ことを特徴とする水処理設備の制御方法である。
<Sixth aspect of the present invention>
A sixth aspect of the present invention is the control of a water treatment facility according to any one of the first to fourth aspects of the present invention described above, wherein the water quality index is turbidity of the treated water. Is the method.

被処理水に含まれる固形成分の濃度変動は、その被処理水の濁度に影響する。つまり被処理水の濁度と固形成分の濃度との間には因果関係がある。そして被処理水の成分比率が略一定になる場合には、被処理水の濁度と被処理水の濁度に対して因果関係がない汚濁成分の濃度との間に一定の相関関係が成立し得る。したがって本発明の第6の態様によれば、その相関関係に基づいて、被処理水の濁度に対して因果関係がない汚濁成分の濃度をその被処理水の濁度から高精度に推定することができるので、高価な計測装置を設けることなく、被処理水の水質変動を的確に把握することができる。   The concentration fluctuation of the solid component contained in the water to be treated affects the turbidity of the water to be treated. That is, there is a causal relationship between the turbidity of the water to be treated and the concentration of the solid component. If the ratio of the component of the water to be treated is substantially constant, a certain correlation is established between the turbidity of the water to be treated and the concentration of the pollutant that has no causal relationship with the turbidity of the water to be treated. Can do. Therefore, according to the sixth aspect of the present invention, based on the correlation, the concentration of pollutant components that are not causally related to the turbidity of the water to be treated is estimated with high accuracy from the turbidity of the water to be treated. Therefore, it is possible to accurately grasp the water quality variation of the water to be treated without providing an expensive measuring device.

<本発明の第7の態様>
本発明の第7の態様は、前述した本発明の第1〜第4の態様のいずれかにおいて、前記水質指標は前記被処理水の吸光度である、ことを特徴とする水処理設備の制御方法である。
<Seventh aspect of the present invention>
A seventh aspect of the present invention is the water treatment facility control method according to any one of the first to fourth aspects of the present invention described above, wherein the water quality index is the absorbance of the treated water. It is.

被処理水に含まれる有機・無機性の溶解成分及び固形成分の濃度変動は、その被処理水の吸光度に影響する。つまり被処理水の吸光度と有機・無機性の溶解成分及び固形成分の濃度との間には因果関係がある。そして被処理水の成分比率が略一定になる場合には、被処理水の吸光度と被処理水の吸光度に対して因果関係がない汚濁成分の濃度との間に一定の相関関係が成立し得る。したがって本発明の第7の態様によれば、その相関関係に基づいて、被処理水の吸光度に対して因果関係がない汚濁成分の濃度をその被処理水の吸光度から高精度に推定することができるので、高価な計測装置を設けることなく、被処理水の水質変動を的確に把握することができる。   Changes in the concentration of organic and inorganic dissolved components and solid components contained in the water to be treated affect the absorbance of the water to be treated. In other words, there is a causal relationship between the absorbance of the water to be treated and the concentrations of organic and inorganic dissolved components and solid components. And when the component ratio of to-be-treated water becomes substantially constant, a certain correlation can be established between the absorbance of to-be-treated water and the concentration of pollutant components that are not causally related to the absorbance of to-be-treated water. . Therefore, according to the seventh aspect of the present invention, based on the correlation, it is possible to accurately estimate the concentration of the pollutant component having no causal relationship with the absorbance of the water to be treated from the absorbance of the water to be treated. Therefore, it is possible to accurately grasp the water quality variation of the treated water without providing an expensive measuring device.

<本発明の第8の態様>
本発明の第8の態様は、前述した本発明の第1〜第4の態様のいずれかにおいて、前記水質指標は前記被処理水の水素イオン指数である、ことを特徴とする水処理設備の制御方法である。
<Eighth aspect of the present invention>
An eighth aspect of the present invention is the water treatment facility according to any one of the first to fourth aspects of the present invention, wherein the water quality index is a hydrogen ion index of the treated water. It is a control method.

被処理水に含まれる酸成分及びアルカリ成分の濃度変動は、その被処理水の水素イオン指数(pH)に影響する。つまり被処理水の水素イオン指数と酸成分及びアルカリ成分の濃度との間には因果関係がある。そして被処理水の成分比率が略一定になる場合には、被処理水の水素イオン指数と被処理水の水素イオン指数に対して因果関係がない汚濁成分の濃度との間に一定の相関関係が成立し得る。したがって本発明の第8の態様によれば、その相関関係に基づいて、被処理水の水素イオン指数に対して因果関係がない汚濁成分の濃度をその被処理水の水素イオン指数から高精度に推定することができるので、高価な計測装置を設けることなく、被処理水の水質変動を的確に把握することができる。   Variations in the concentrations of the acid component and the alkali component contained in the water to be treated affect the hydrogen ion index (pH) of the water to be treated. That is, there is a causal relationship between the hydrogen ion index of the water to be treated and the concentrations of the acid component and the alkali component. And, when the component ratio of treated water is almost constant, there is a certain correlation between the hydrogen ion index of treated water and the concentration of pollutant components that are not causal to the hydrogen ion index of treated water Can hold. Therefore, according to the eighth aspect of the present invention, based on the correlation, the concentration of pollutant components that are not causally related to the hydrogen ion index of the water to be treated can be accurately determined from the hydrogen ion index of the water to be treated. Since it can be estimated, it is possible to accurately grasp the water quality fluctuation of the treated water without providing an expensive measuring device.

<本発明の第9の態様>
本発明の第9の態様は、前述した本発明の第1〜第4の態様のいずれかにおいて、前記水質指標は前記被処理水の酸化還元電位である、ことを特徴とする水処理設備の制御方法である。
<Ninth aspect of the present invention>
A ninth aspect of the present invention is the water treatment facility according to any one of the first to fourth aspects of the present invention described above, wherein the water quality indicator is a redox potential of the treated water. It is a control method.

被処理水に含まれる酸化還元物質の濃度変動は、その被処理水の酸化還元電位(ORP)に影響する。つまり被処理水の酸化還元電位と酸化還元物質の濃度との間には因果関係がある。そして被処理水の成分比率が略一定になる場合には、被処理水の酸化還元電位と被処理水の酸化還元電位に対して因果関係がない汚濁成分の濃度との間に一定の相関関係が成立し得る。したがって本発明の第9の態様によれば、その相関関係に基づいて、被処理水の酸化還元電位に対して因果関係がない汚濁成分の濃度をその被処理水の酸化還元電位から高精度に推定することができるので、高価な計測装置を設けることなく、被処理水の水質変動を的確に把握することができる。   Variation in the concentration of the redox material contained in the water to be treated affects the redox potential (ORP) of the water to be treated. That is, there is a causal relationship between the redox potential of the water to be treated and the concentration of the redox substance. When the component ratio of treated water is substantially constant, a constant correlation exists between the oxidation-reduction potential of the treated water and the concentration of pollutant components that are not causally related to the oxidation-reduction potential of the treated water. Can hold. Therefore, according to the ninth aspect of the present invention, based on the correlation, the concentration of the pollutant component that is not causally related to the oxidation-reduction potential of the water to be treated is determined with high accuracy from the oxidation-reduction potential of the water to be treated. Since it can be estimated, it is possible to accurately grasp the water quality fluctuation of the treated water without providing an expensive measuring device.

<本発明の第10の態様>
本発明の第10の態様は、水質指標と前記水質指標に対して因果関係がない汚濁成分の濃度との相関が被処理水にあるか否かを定期的に行う前記被処理水のサンプル分析の結果から判定する相関判定手順と、前記相関があることを条件として、前記被処理水の直近一定期間における前記水質指標の計測値の分布を統計解析し、その統計解析の結果と前記相関に基づいて、前記被処理水の前記汚濁成分の濃度を推定する第1汚濁成分濃度推定手順と、推定した前記被処理水の前記汚濁成分の濃度に基づいて、前記被処理水を処理する水処理設備の運転条件を決定する運転条件決定手順と、をコンピュータに実行させる、水処理設備の制御プログラムである。
本発明の第10の態様によれば、この制御プログラムを実行するコンピュータにより制御される水処理設備において、前述した本発明の第1の態様と同様の作用効果が得られる。
<Tenth aspect of the present invention>
The tenth aspect of the present invention is the sample analysis of the water to be treated which periodically performs whether or not the water to be treated has a correlation between the water quality index and the concentration of the pollutant component which is not causally related to the water quality index. And a correlation determination procedure determined from the result of the analysis, and on the condition that there is the correlation, statistically analyze the distribution of the measured value of the water quality index in the immediate fixed period of time, and the result of the statistical analysis and the correlation Based on the first contamination component concentration estimation procedure for estimating the concentration of the contaminated component of the treated water, and the water treatment for treating the treated water based on the estimated concentration of the contaminated component of the treated water A control program for a water treatment facility that causes a computer to execute an operation condition determination procedure for determining an operation condition of the facility.
According to the tenth aspect of the present invention, in the water treatment facility controlled by the computer that executes this control program, the same operational effects as those of the first aspect of the present invention described above can be obtained.

<本発明の第11の態様>
本発明の第11の態様は、前述した本発明の第10の態様において、前記相関がないことを条件として、過去の全ての前記被処理水のサンプル分析における前記汚濁成分の濃度の分布を統計解析し、その統計解析の結果に基づいて、前記被処理水の前記汚濁成分の濃度を推定する第2汚濁成分濃度推定手順をコンピュータに実行させる、ことを特徴とする水処理設備の制御プログラムである。
本発明の第11の態様によれば、この制御プログラムを実行するコンピュータにより制御される水処理設備において、前述した本発明の第3の態様と同様の作用効果が得られる。
<Eleventh aspect of the present invention>
According to an eleventh aspect of the present invention, in the tenth aspect of the present invention described above, on the condition that there is no correlation, the distribution of the concentration of the pollutant component in the sample analysis of all past treated water is statistically determined. A control program for a water treatment facility, characterized in that the computer executes a second pollution component concentration estimation procedure for analyzing and estimating the concentration of the pollution component of the treated water based on the result of statistical analysis. is there.
According to the eleventh aspect of the present invention, in the water treatment facility controlled by the computer that executes this control program, the same effects as those of the third aspect of the present invention described above can be obtained.

<本発明の第12の態様>
本発明の第12の態様は、水処理設備と、前記水処理設備で処理される被処理水の水質指標を計測する計測器と、前記水処理設備を制御する制御装置と、を備え、前記制御装置は、前記水質指標と前記水質指標に対して因果関係がない汚濁成分の濃度との相関が被処理水にあるか否かを定期的に行う前記被処理水のサンプル分析の結果から判定する相関判定手段と、前記相関があることを条件として、前記被処理水の直近一定期間における前記水質指標の計測値の分布を統計解析し、その統計解析の結果と前記相関に基づいて、前記被処理水の前記汚濁成分の濃度を推定する第1汚濁成分濃度推定手段と、推定した前記被処理水の前記汚濁成分の濃度に基づいて、前記水処理設備の運転条件を決定する運転条件決定手段と、を含む、ことを特徴とする水処理システムである。
本発明の第12の態様によれば、水処理設備において、前述した本発明の第1の態様と同様の作用効果が得られる。
<Twelfth aspect of the present invention>
A twelfth aspect of the present invention includes a water treatment facility, a measuring instrument that measures a water quality index of water to be treated that is treated in the water treatment facility, and a control device that controls the water treatment facility, The control device determines whether or not the water to be treated has a correlation between the water quality index and the concentration of the pollutant component that is not causally related to the water quality index from the result of the sample analysis of the water to be treated. And the correlation determination means, and on the condition that there is the correlation, statistically analyze the distribution of the measured value of the water quality index in the immediate fixed period of time, based on the result of the statistical analysis and the correlation, First pollutant component concentration estimating means for estimating the concentration of the pollutant component of the water to be treated, and operating condition determination for determining the operating condition of the water treatment facility based on the estimated concentration of the pollutant component of the water to be treated Means including A water treatment system that.
According to the twelfth aspect of the present invention, the same effect as the first aspect of the present invention described above can be obtained in the water treatment facility.

<本発明の第13の態様>
本発明の第13の態様は、前述した本発明の第12の態様において、前記制御装置は、前記相関がないことを条件として、過去の全ての前記被処理水のサンプル分析における前記汚濁成分の濃度の分布を統計解析し、その統計解析の結果に基づいて、前記被処理水の前記汚濁成分の濃度を推定する第2汚濁成分濃度推定手段をさらに含む、ことを特徴とする水処理システムである。
本発明の第13の態様によれば、水処理設備において、前述した本発明の第3の態様と同様の作用効果が得られる。
<13th aspect of this invention>
According to a thirteenth aspect of the present invention, in the twelfth aspect of the present invention described above, the control device sets the contamination component in the sample analysis of all the treated water in the past on condition that the correlation does not exist. A water treatment system characterized by further comprising a second pollutant component concentration estimating means for statistically analyzing the concentration distribution and estimating the concentration of the pollutant component of the treated water based on the result of the statistical analysis is there.
According to the thirteenth aspect of the present invention, the same effect as the third aspect of the present invention described above can be obtained in the water treatment facility.

本発明によれば、高価な計測装置を設けることなく、被処理水の水質変動に的確に対応した最適な運転条件で水処理設備を運用することができる。   ADVANTAGE OF THE INVENTION According to this invention, a water treatment facility can be operate | used on the optimal driving | running condition which respond | corresponded to the water quality change of to-be-processed water exactly, without providing an expensive measuring device.

水処理装置の構成を図示したブロック図。The block diagram which illustrated the structure of the water treatment apparatus. 水処理装置の制御手順を図示したフローチャート。The flowchart which illustrated the control procedure of the water treatment apparatus. 被処理水の導電率とシリカ濃度とのサンプル分析データの散布図及び直近1ヶ月における被処理水の導電率計測値の度数分布図。A scatter diagram of sample analysis data of conductivity of treated water and silica concentration and a frequency distribution diagram of conductivity measured values of treated water in the last month. 過去の全ての被処理水のサンプル分析におけるシリカ濃度の度数分布図。The frequency distribution figure of the silica concentration in the sample analysis of all the to-be-treated water in the past.

以下、本発明の実施の形態について図面を参照しながら説明する。
<水処理装置の構成>
「水処理設備」の一例として水処理装置10の構成について、図1を参照しながら説明する。
図1は、水処理装置10の構成を図示したブロック図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<Configuration of water treatment device>
A configuration of the water treatment apparatus 10 as an example of “water treatment facility” will be described with reference to FIG.
FIG. 1 is a block diagram illustrating the configuration of the water treatment apparatus 10.

水処理装置10は、RO(Reverse Osmosis)膜分離装置11、導電率センサ12、給水加温装置13、温度センサ14、高圧ポンプ15、第1流量センサ16、第2流量センサ17及び制御装置20を備える。   The water treatment device 10 includes an RO (Reverse Osmosis) membrane separation device 11, a conductivity sensor 12, a feed water warming device 13, a temperature sensor 14, a high pressure pump 15, a first flow rate sensor 16, a second flow rate sensor 17, and a control device 20. Is provided.

RO膜分離装置11は、水は透過するが水以外の不純物は透過しない性質を有するRO膜を用いた水濾過装置である。ここでRO膜は、逆浸透膜を意味するが、いわゆるナノ濾過膜も含む。RO膜分離装置11に供給される被処理水は、RO膜を透過した透過水とRO膜を透過せずに濃縮された濃縮水とに分離される。   The RO membrane separation device 11 is a water filtration device using an RO membrane having a property of allowing water to pass through but not allowing impurities other than water to pass through. Here, the RO membrane means a reverse osmosis membrane, but also includes a so-called nanofiltration membrane. The treated water supplied to the RO membrane separation device 11 is separated into permeated water that has permeated through the RO membrane and concentrated water that has been concentrated without permeating through the RO membrane.

「計測器」としての導電率センサ12は、RO膜分離装置11へ被処理水を供給する流路(以下、「被処理水供給路」という。)に設けられており、被処理水の導電率を計測するセンサである。給水加温装置13は、被処理水供給路に設けられており、RO膜分離装置11に供給される被処理水の温度を調整する装置である。温度センサ14は、被処理水供給路の給水加温装置13より下流側に設けられており、給水加温装置13から出力される被処理水の温度を検出するセンサである。高圧ポンプ15は、被処理水供給路に設けられており、RO膜分離装置11へ被処理水を加圧送出するポンプである。第1流量センサ16は、RO膜分離装置11から透過水が排出される流路に設けられており、RO膜分離装置11から排出される透過水の流量を検出するセンサである。第2流量センサ17は、RO膜分離装置11から濃縮水が排出される流路に設けられており、RO膜分離装置11から排出される濃縮水の流量を検出するセンサである。制御装置20は、公知のマイコン制御装置であり、導電率センサ12、温度センサ14、第1流量センサ16及び第2流量センサ17の出力信号に基づいて、RO膜分離装置11、給水加温装置13及び高圧ポンプ15を制御する。   The conductivity sensor 12 as a “measuring instrument” is provided in a flow path for supplying treated water to the RO membrane separation device 11 (hereinafter referred to as “treated water supply path”), and conducts the treated water. It is a sensor that measures the rate. The feed water warming device 13 is provided in the treated water supply path and is a device that adjusts the temperature of the treated water supplied to the RO membrane separation device 11. The temperature sensor 14 is provided on the downstream side of the feed water warming device 13 in the treated water supply path, and detects the temperature of the treated water output from the feed water warming device 13. The high-pressure pump 15 is a pump that is provided in the treated water supply path and pressurizes and feeds the treated water to the RO membrane separation device 11. The first flow rate sensor 16 is provided in a flow path through which the permeated water is discharged from the RO membrane separation device 11, and is a sensor that detects the flow rate of the permeated water discharged from the RO membrane separation device 11. The second flow rate sensor 17 is provided in a flow path through which concentrated water is discharged from the RO membrane separation device 11, and is a sensor that detects the flow rate of concentrated water discharged from the RO membrane separation device 11. The control device 20 is a known microcomputer control device, and based on the output signals of the conductivity sensor 12, the temperature sensor 14, the first flow rate sensor 16 and the second flow rate sensor 17, the RO membrane separation device 11, the feed water heating device 13 and the high-pressure pump 15 are controlled.

<水処理装置の制御>
制御装置20は、RO膜分離装置11へ供給される被処理水の温度が所望の温度になるように、温度センサ14の出力信号に基づいて給水加温装置13を制御する。また制御装置20は、RO膜分離装置11による水回収率が所望の水回収率となるように、第1流量センサ16及び第2流量センサ17の出力信号に基づいて、RO膜分離装置11及び高圧ポンプ15を制御する。そして制御装置20は、RO膜分離装置11へ供給される被処理水の温度、RO膜分離装置11による水回収率を、導電率センサ12が検出する被処理水の導電率に基づいて最適な値に設定する。導電率センサ12による被処理水の導電率の計測は、一定の周期で繰り返し行われ、その導電率計測値のデータは、制御装置20の記憶装置(図示せず)に全て記憶されて蓄積される。
<Control of water treatment equipment>
The control device 20 controls the feed water warming device 13 based on the output signal of the temperature sensor 14 so that the temperature of the water to be treated supplied to the RO membrane separation device 11 becomes a desired temperature. In addition, the control device 20 controls the RO membrane separation device 11 and the RO based on the output signals of the first flow rate sensor 16 and the second flow rate sensor 17 so that the water recovery rate by the RO membrane separation device 11 becomes a desired water recovery rate. The high pressure pump 15 is controlled. Then, the control device 20 optimizes the temperature of the treated water supplied to the RO membrane separation device 11 and the water recovery rate by the RO membrane separation device 11 based on the conductivity of the treated water detected by the conductivity sensor 12. Set to value. The measurement of the conductivity of the water to be treated by the conductivity sensor 12 is repeatedly performed at a constant cycle, and the data of the measured conductivity values are all stored and accumulated in a storage device (not shown) of the control device 20. The

ところでRO膜分離装置11による水回収率は、高圧ポンプ15による被処理水の供給圧力、あるいは供給する被処理水の温度によって変動する。そしてRO膜分離装置11による水回収率は、RO膜分離装置11にスケールが発生するリスク(以下、「スケール発生リスク」という。)を一定の許容範囲に抑制しつつ、可能な限り高く設定するのが節水の観点からは望ましい。   Incidentally, the water recovery rate by the RO membrane separation device 11 varies depending on the supply pressure of the water to be treated by the high-pressure pump 15 or the temperature of the water to be treated to be supplied. The water recovery rate by the RO membrane separation device 11 is set as high as possible while suppressing the risk of scale generation in the RO membrane separation device 11 (hereinafter referred to as “scale generation risk”) within a certain allowable range. This is desirable from the viewpoint of saving water.

しかしRO膜分離装置11による水回収率を高くしていくと、それに従ってスケール発生リスクは高まることになる。またRO膜分離装置11のスケール発生リスクは、供給される被処理水の温度も影響する。例えばカルシウム系のスケール生成成分は、被処理水の温度が高い方が発生リスクは高まり、逆にシリカ系のスケール生成成分は、被処理水の温度が低い方が発生リスクは高まる。つまりRO膜分離装置11へ供給する被処理水の温度は、スケール発生リスクを抑制する観点からすれば、ある一定の範囲に維持するのが望ましい。他方、節電の観点からすれば、RO膜分離装置11へ供給する被処理水の温度は可能な限り低い方が望ましい。   However, if the water recovery rate by the RO membrane separator 11 is increased, the risk of scale generation increases accordingly. Further, the scale generation risk of the RO membrane separation device 11 also affects the temperature of the treated water to be supplied. For example, a calcium-based scale generating component has a higher risk of occurrence when the temperature of the water to be treated is higher, and conversely, a silica-based scale generating component has a higher risk of occurrence when the temperature of the water to be treated is lower. That is, it is desirable to maintain the temperature of the water to be treated supplied to the RO membrane separation device 11 within a certain range from the viewpoint of suppressing the scale generation risk. On the other hand, from the viewpoint of power saving, it is desirable that the temperature of the water to be treated supplied to the RO membrane separation device 11 is as low as possible.

そしてRO膜分離装置11のスケール発生リスクは、その被処理水に含まれるスケール生成成分(例えばシリカ、カルシウムイオン、マグネシウムイオン、炭酸水素イオン等の無機物質)の濃度によっても変動する。ここで例えば被処理水のシリカ濃度は、その被処理水の導電率との間には因果関係がないため、理論的には、被処理水の導電率から直接的に推定することはできない。しかし前述したように、被処理水の発生源や発生プロセスによっては、その被処理水の成分比率が略一定になる場合がある。そして被処理水に含まれる複数の成分の成分比率が略一定である場合には、被処理水の導電率に対して因果関係がある成分と、被処理水の導電率に対して因果関係がないシリカ等のスケール生成成分との比率は、略一定になるはずである。   The scale generation risk of the RO membrane separation device 11 also varies depending on the concentration of scale generation components (for example, inorganic substances such as silica, calcium ions, magnesium ions, hydrogen carbonate ions) contained in the water to be treated. Here, for example, since the silica concentration of the water to be treated has no causal relationship with the conductivity of the water to be treated, theoretically, it cannot be directly estimated from the conductivity of the water to be treated. However, as described above, the component ratio of the water to be treated may be substantially constant depending on the source and process of the water to be treated. And when the component ratio of the several component contained in to-be-processed water is substantially constant, there exists a causal relationship to the to-be-processed water's electrical conductivity and the component which has causal relation to to-be-processed water's electrical conductivity. The ratio with no scale-generating component such as silica should be substantially constant.

したがって被処理水の成分比率が略一定である場合には、被処理水の導電率とある成分との間の因果関係を介して、被処理水の導電率とシリカ等のスケール生成成分との間に一定の相関関係が成立し得る。このような被処理水の具体的な例としては、例えばイオン成分や有機酸等の有機性汚濁物質、塩化物イオン等の無機イオンを含有する工業用水、上水、井水等が挙げられる。   Therefore, when the component ratio of the water to be treated is substantially constant, the conductivity of the water to be treated and the scale-generating component such as silica are obtained through a causal relationship between the conductivity of the water to be treated and a certain component. A certain correlation can be established between them. Specific examples of such water to be treated include industrial water, water, well water, and the like containing organic pollutants such as ionic components and organic acids, and inorganic ions such as chloride ions.

以下、水処理装置10の制御手順について、図2〜図4を参照しながら説明する。
図2は、水処理装置10の制御手順を図示したフローチャートである。
Hereinafter, the control procedure of the water treatment apparatus 10 will be described with reference to FIGS.
FIG. 2 is a flowchart illustrating a control procedure of the water treatment apparatus 10.

1.相関判定手順
まず被処理水の導電率とシリカ(SiO2)濃度との間に相関があるか否かを定期的に行う被処理水のサンプル分析の結果から判定する。このサンプル分析は、例えば作業者が一日、一週間あるいは一ヶ月に一回程度の頻度で、被処理水のサンプルを採取し、その採取したサンプルの導電率の計測とシリカ濃度の分析を行う。そして一定数蓄積されたサンプル分析結果のデータから、被処理水の導電率とシリカ濃度との相関係数を算出し、その相関係数から両者の間に相関があるか否かを判定する(図2のステップS1)。
1. Correlation determination procedure First, whether or not there is a correlation between the conductivity of the water to be treated and the silica (SiO 2 ) concentration is determined from the results of a sample analysis of the water to be treated periodically. In this sample analysis, for example, a sample of water to be treated is collected at a frequency of about once a day, a week or a month, and the conductivity of the collected sample is measured and the silica concentration is analyzed. . Then, a correlation coefficient between the conductivity of the water to be treated and the silica concentration is calculated from the data of the sample analysis results accumulated in a certain number, and it is determined from the correlation coefficient whether there is a correlation between the two ( Step S1) in FIG.

一般的には、相関係数の絶対値が0.2〜0.4でやや相関があり、0.4〜0.7でかなり相関があり、0.7〜1.0で強い相関があると言われている。本発明において、どの程度の相関を基準に相関の有無を判定するかは、水処理装置10において、どの程度のリスクを許容できるか等に応じて適宜決定すればよい。例えば当該実施例において被処理水の導電率とシリカ濃度との間に相関があるか否かは、相関係数の絶対値が0.5以上であるか否かをもって判定する(図2のステップS2)。この相関係数の演算及び相関の有無の判定は、例えばサンプル分析結果のデータに基づいて作業者が手作業で行い、その結果を制御装置20に入力してもよいし、サンプル分析結果のデータを制御装置20に入力し、制御装置20のコンピュータで実行されるプログラムによって演算処理するようにしてもよい。   In general, there is a slight correlation when the absolute value of the correlation coefficient is 0.2 to 0.4, there is a considerable correlation between 0.4 and 0.7, and a strong correlation between 0.7 and 1.0. It is said. In the present invention, what level of correlation is used as a criterion for determining whether or not there is a correlation may be appropriately determined according to how much risk can be tolerated in the water treatment apparatus 10. For example, in this embodiment, whether or not there is a correlation between the conductivity of the water to be treated and the silica concentration is determined by whether or not the absolute value of the correlation coefficient is 0.5 or more (step in FIG. 2). S2). The calculation of the correlation coefficient and the determination of the presence / absence of correlation may be performed manually by an operator based on the data of the sample analysis result, and the result may be input to the control device 20, or the data of the sample analysis result May be input to the control device 20 and processed by a program executed by a computer of the control device 20.

2.第1汚濁成分濃度推定手順
図3は、被処理水の導電率とシリカ濃度とのサンプル分析データの一例を図示した散布図及び直近1ヶ月における被処理水の導電率計測値の度数分布を図示したものである。
2. First Contamination Component Concentration Estimation Procedure FIG. 3 is a scatter diagram illustrating an example of sample analysis data of the water to be treated and the silica concentration, and a frequency distribution of measured values of the water to be treated in the most recent month. It is a thing.

被処理水の導電率とシリカ濃度との相関係数の絶対値が0.5以上であることを条件として(図2のステップS2でYes)、被処理水の直近一定期間における導電率計測値(導電率センサ12で計測した被処理水の導電率)の分布を統計解析する(図2のステップS3)。そしてその統計解析の結果と、被処理水の導電率とシリカ濃度との間の相関に基づいて、被処理水のシリカ濃度を推定する(図2のステップS4)。   On the condition that the absolute value of the correlation coefficient between the conductivity of the water to be treated and the silica concentration is 0.5 or more (Yes in step S2 in FIG. 2), the measured conductivity value in the immediate fixed period of time. The distribution of (the conductivity of the water to be treated measured by the conductivity sensor 12) is statistically analyzed (step S3 in FIG. 2). Then, the silica concentration of the water to be treated is estimated based on the result of the statistical analysis and the correlation between the conductivity of the water to be treated and the silica concentration (Step S4 in FIG. 2).

より具体的には、まず被処理水のサンプル分析の結果を回帰分析して回帰直線(図3の実線A)及びその予測限界(図3の波線B、C)を求める。次に被処理水の直近1ヶ月における導電率計測値の度数分布(図3の符合Dを付したグラフ)の平均値μと標準偏差σを統計解析によって求め、その平均値μと標準偏差σに基づいて設定した出現確率に収まる導電率計測値の最大値Xmを求める。この出現確率は、例えば平均値μからのずれが2σの範囲に導電率計測値が含まれる確率とすると約95.44%となる。この場合、被処理水の実際の導電率が最大値Xmを超えるリスクは約4.56%ということになる。そして回帰直線Aの上限の予測限界B及び導電率計測値の最大値Xmに基づいて、被処理水の導電率計測値の最大値Xmに対応するシリカ濃度の最大値(最悪値)Ymを求め、これを被処理水のシリカ濃度と推定する。   More specifically, first, a regression analysis is performed on the result of the sample analysis of the water to be treated to obtain a regression line (solid line A in FIG. 3) and its prediction limit (dashed lines B and C in FIG. 3). Next, the average value μ and standard deviation σ of the frequency distribution of the measured conductivity values in the most recent month for the water to be treated (the graph with the symbol D in FIG. 3) are obtained by statistical analysis, and the average value μ and the standard deviation σ are calculated. The maximum value Xm of the conductivity measurement value that falls within the appearance probability set based on is obtained. The appearance probability is about 95.44%, for example, when the conductivity measurement value is included in the range where the deviation from the average value μ is 2σ. In this case, the risk that the actual conductivity of the treated water exceeds the maximum value Xm is about 4.56%. Then, based on the prediction limit B of the upper limit of the regression line A and the maximum value Xm of the measured conductivity value, the maximum value (worst value) Ym of the silica concentration corresponding to the maximum value Xm of the measured conductivity value of the water to be treated is obtained. This is estimated as the silica concentration of the water to be treated.

上記説明した被処理水のサンプル分析の結果の回帰分析、被処理水の直近1ヶ月における導電率計測値の度数分布の統計解析、及びこの回帰分析と統計解析に基づいてシリカ濃度の最大値Ymを求める手順は、例えば作業者が手作業で行ってもよいし、制御装置20のコンピュータで実行されるプログラムによって演算処理するようにしてもよい。   Regression analysis of the results of the sample analysis of the treated water described above, statistical analysis of the frequency distribution of the measured conductivity values in the last month of the treated water, and the maximum value Ym of the silica concentration based on this regression analysis and statistical analysis For example, the operator may perform the procedure manually, or may perform arithmetic processing by a program executed by the computer of the control device 20.

3.第2汚濁成分濃度推定手順
例えば被処理水の発生源や発生プロセスに一時的に何らかの変動が生ずると、被処理水の成分比率に変動が生ずる可能性があり、それによって被処理水の導電率とシリカ濃度との間の相関関係が一時的に成立しなくなることもあり得る。そして被処理水の導電率とシリカ濃度との間に相関関係が成立しない場合には、前述した第1汚濁成分濃度推定手順によって、つまり被処理水の導電率に基づいて被処理水のシリカ濃度を推定することが困難になる。したがってそのような場合には、例えば被処理水の導電率とシリカ濃度との相関係数の絶対値が0.5未満であることを条件として(図2のステップS2でNo)、暫定的に、過去の全ての被処理水のサンプル分析における被処理水のシリカ濃度の分布を統計解析する(図2のステップS5)。そしてその統計解析の結果に基づいて被処理水のシリカ濃度を推定する(図2のステップS6)。つまり過去のサンプル分析におけるシリカ濃度の蓄積データに基づいて、被処理水のシリカ濃度を統計的に推定する。
3. Second pollution component concentration estimation procedure For example, if any fluctuation occurs temporarily in the source or process of the treated water, the component ratio of the treated water may be changed, and thereby the conductivity of the treated water It is possible that the correlation between silica and silica concentration temporarily fails. If the correlation between the conductivity of the water to be treated and the silica concentration does not hold, the silica concentration of the water to be treated is determined by the above-described first pollutant component concentration estimation procedure, that is, based on the conductivity of the water to be treated. Is difficult to estimate. Therefore, in such a case, for example, on condition that the absolute value of the correlation coefficient between the conductivity of the water to be treated and the silica concentration is less than 0.5 (No in step S2 in FIG. 2), provisionally Then, statistical analysis is performed on the distribution of silica concentration of the water to be treated in the sample analysis of all the past water to be treated (step S5 in FIG. 2). Based on the result of the statistical analysis, the silica concentration of the water to be treated is estimated (step S6 in FIG. 2). That is, the silica concentration of water to be treated is statistically estimated based on the accumulated data of silica concentration in the past sample analysis.

図4は、過去の全ての被処理水のサンプル分析における被処理水のシリカ濃度の度数分布を図示したグラフである。   FIG. 4 is a graph illustrating the frequency distribution of the silica concentration of the water to be treated in the sample analysis of all past water to be treated.

より具体的には、まず過去の全ての被処理水のサンプル分析におけるシリカ濃度の度数分布の平均値μと標準偏差σを統計解析によって求め、その平均値μと標準偏差σに基づいて設定した出現確率に収まるシリカ濃度の最大値Ymを求める。この出現確率は、例えば平均値μからのずれが2σの範囲にシリカ濃度が含まれる確率とすると約95.44%となる。この場合、被処理水の実際のシリカ濃度が最大値Ymを超えるリスクは約4.56%ということになる。そしてそのシリカ濃度の最大値Ymを被処理水のシリカ濃度と推定する。   More specifically, first, the average value μ and standard deviation σ of the frequency distribution of silica concentration in the sample analysis of all past treated water were obtained by statistical analysis, and set based on the average value μ and standard deviation σ. The maximum value Ym of the silica concentration that falls within the appearance probability is obtained. The appearance probability is about 95.44%, for example, when the silica concentration is included in the range where the deviation from the average value μ is 2σ. In this case, the risk that the actual silica concentration of the treated water exceeds the maximum value Ym is about 4.56%. And the maximum value Ym of the silica concentration is estimated as the silica concentration of the water to be treated.

上記説明した過去の全ての被処理水のサンプル分析における被処理水のシリカ濃度の分布の統計解析、及びこの統計解析に基づいてシリカ濃度の最大値Ymを求める手順は、例えば作業者が手作業で行ってもよいし、制御装置20のコンピュータで実行されるプログラムによって演算処理するようにしてもよい。   The statistical analysis of the silica concentration distribution in the sample analysis of all the past treated water described above and the procedure for obtaining the maximum value Ym of the silica concentration based on this statistical analysis are performed manually by, for example, an operator. Or may be calculated by a program executed by a computer of the control device 20.

4.運転条件決定手順
上記説明した第1汚濁成分濃度推定手順又は第2汚濁成分濃度推定手順のいずれかによって推定した被処理水のシリカ濃度に基づいて、被処理水を処理する水処理設備10の運転条件を決定する(図2のステップS7)。より具体的には、被処理水のシリカ濃度の最大値Ymに基づいて、例えばRO膜分離装置11の水回収率を設定し、例えばRO膜分離装置11へ供給する処理水の温度を設定する。このRO膜分離装置11の水回収率の設定、RO膜分離装置11へ供給する処理水の温度の設定は、例えば作業者が手作業で行ってもよいし、制御装置20のコンピュータで実行されるプログラムによって自動設定するようにしてもよい。
4). Operation condition determination procedure Operation of the water treatment facility 10 that treats the water to be treated based on the silica concentration of the water to be treated estimated by either the first pollution component concentration estimation procedure or the second pollution component concentration estimation procedure described above. Conditions are determined (step S7 in FIG. 2). More specifically, based on the maximum value Ym of the silica concentration of the water to be treated, for example, the water recovery rate of the RO membrane separation device 11 is set, and for example, the temperature of the treated water supplied to the RO membrane separation device 11 is set. . The setting of the water recovery rate of the RO membrane separation device 11 and the setting of the temperature of the treated water supplied to the RO membrane separation device 11 may be performed manually by an operator or executed by the computer of the control device 20, for example. It may be automatically set according to a program.

5.作用効果
上記説明した水処理装置の制御手順によれば、被処理水の導電率から、その導電率に対して因果関係がない被処理水のシリカ濃度を高精度に推定することができるので、高価な計測装置を設けることなく、被処理水のシリカ濃度の変動を的確に把握することができる。そして推定したそのシリカ濃度に基づいて、RO膜分離装置11の水回収率やRO膜分離装置11へ供給する被処理水の温度を決定することによって、被処理水のシリカ濃度の変動に的確に対応した最適な運転条件で水処理装置10を運用して大幅な節水を実現することができる。
5. According to the control procedure of the water treatment apparatus described above, the silica concentration of the water to be treated that has no causal relationship with the conductivity can be estimated with high accuracy from the conductivity of the water to be treated. Without providing an expensive measuring device, it is possible to accurately grasp the change in the silica concentration of the water to be treated. Then, based on the estimated silica concentration, the water recovery rate of the RO membrane separation device 11 and the temperature of the water to be treated supplied to the RO membrane separation device 11 are determined, so that the fluctuation of the silica concentration of the water to be treated is accurately determined. The water treatment device 10 can be operated under the corresponding optimum operating conditions to realize significant water saving.

また被処理水の導電率とシリカ濃度との間に相関関係が成立しない場合には、上記説明したように、過去のサンプル分析の蓄積データに基づいて、被処理水のシリカ濃度を統計的に推定するのが好ましい。それによって例えば被処理水の発生源や発生プロセスに一時的に何らかの変動が生じて、被処理水の導電率とシリカ濃度との間の相関関係が一時的に成立しなくなったときでも、適切な運転条件を設定して水処理設備10の運用を安全に継続することができる。さらに被処理水のシリカ濃度は、上記説明したように、統計解析により被処理水のシリカ濃度の最大値(最悪値)を求め、これを被処理水のシリカ濃度と推定するのが好ましい。それによって最適な運転条件での水処理装置10の運用をより安全に行うことが可能になる。   If there is no correlation between the conductivity of the water to be treated and the silica concentration, as described above, the silica concentration of the water to be treated is statistically calculated based on the accumulated data of the past sample analysis. It is preferable to estimate. As a result, for example, when there is a temporary change in the source or process of the water to be treated, and the correlation between the conductivity of the water to be treated and the silica concentration is temporarily not established, an appropriate The operation conditions can be set and the operation of the water treatment facility 10 can be safely continued. Furthermore, as described above, the silica concentration of the water to be treated is preferably estimated by calculating the maximum value (worst value) of the silica concentration of the water to be treated by statistical analysis. As a result, the water treatment apparatus 10 can be operated more safely under optimum operating conditions.

<他の実施例、変形例>
本発明は、上記説明した実施例に特に限定されるものではなく、特許請求の範囲に記載された発明の範囲内で種々の変形が可能であることは言うまでもない。
<Other embodiments and modifications>
The present invention is not particularly limited to the embodiments described above, and it goes without saying that various modifications are possible within the scope of the invention described in the claims.

例えば上記の実施例では、被処理水の導電率に基づいてシリカ濃度を推定する例を挙げて説明したが、本発明は特にこれに限定されない。例えばカルシウム(Ca)、マグネシウム(Mg)、鉄(Fe)等、シリカ以外の無機物の濃度を推定することもできる。また例えば生物化学的酸素要求量(Biochemical Oxygen Demand:BOD)、化学的酸素要求量(Chemical Oxygen Demand:COD)、全有機炭素(Total Organic Carbon:TOC)等が指標となる有機性汚濁物質の濃度を推定することもできる。また例えばアンモニウム態窒素(NH4−N)、亜硝酸態窒素(NO2−N)、硝酸態窒素(NO3−N)等の窒素系汚濁物質の濃度を推定することもできる。また例えばリン酸態リン(PO4−P)、全リン(T−P)等のリン系汚濁物質、工業生産に使われる原料物質等の排水中の化学物質等を推定することもできる。   For example, in the above embodiment, the silica concentration is estimated based on the conductivity of the water to be treated. However, the present invention is not particularly limited to this. For example, the density | concentration of inorganic substances other than silica, such as calcium (Ca), magnesium (Mg), and iron (Fe), can also be estimated. In addition, for example, the concentration of organic pollutants whose index is Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Organic Carbon (TOC), etc. Can also be estimated. For example, the concentration of nitrogen pollutants such as ammonium nitrogen (NH 4 -N), nitrite nitrogen (NO 2 -N), nitrate nitrogen (NO 3 -N) can be estimated. In addition, for example, phosphorus-based pollutants such as phosphate phosphorus (PO4-P) and total phosphorus (TP), chemical substances in wastewater such as raw material used in industrial production, and the like can also be estimated.

また例えば上記の実施例では、被処理水の導電率を水質指標とする例を挙げて説明したが、本発明は特にこれに限定されない。例えば固形汚濁物質を含有する紙パルプ関連排水等においては、被処理水の濁度を水質指標とすることもできる。また例えば有機性汚濁物質を含有する排水全般、染色排水等の無機・有機着色排水全般、固形汚濁物質を含有する紙パルプ関連排水等においては、被処理水の吸光度を水質指標とすることもできる。また例えば無機・有機の酸・アルカリ性汚濁物質を含有する排水全般においては、被処理水の水素イオン指数(pH)を水質指標とすることもできる。また例えば酸化還元性汚濁物質を含有する排水全般、無機・有機の酸・アルカリ性汚濁物質を含有する排水全般においては、被処理水の酸化還元電位(ORP)を水質指標とすることもできる。   Further, for example, in the above-described embodiment, the example in which the conductivity of the water to be treated is used as the water quality index has been described, but the present invention is not particularly limited thereto. For example, the turbidity of water to be treated can be used as a water quality indicator for paper pulp related wastewater containing solid pollutants. For example, in general wastewater containing organic pollutants, inorganic and organic colored wastewater such as dyed wastewater, and pulp and paper wastewater containing solid pollutants, the absorbance of treated water can be used as a water quality indicator. . For example, in general waste water containing inorganic / organic acid / alkaline pollutants, the hydrogen ion index (pH) of water to be treated can be used as a water quality index. In addition, for example, in general wastewater containing redox pollutants, and in general wastewater containing inorganic / organic acid / alkaline pollutants, the redox potential (ORP) of water to be treated can be used as a water quality indicator.

10 水処理装置
11 RO膜分離装置
12 導電率センサ
13 給水加温装置
14 温度センサ
15 高圧ポンプ
16 第1流量センサ
17 第2流量センサ
20 制御装置
DESCRIPTION OF SYMBOLS 10 Water treatment apparatus 11 RO membrane separator 12 Conductivity sensor 13 Feed water heating apparatus 14 Temperature sensor 15 High pressure pump 16 1st flow sensor 17 2nd flow sensor 20 Control apparatus

Claims (13)

水質指標と前記水質指標に対して因果関係がない汚濁成分の濃度との相関が被処理水にあるか否かを定期的に行う前記被処理水のサンプル分析の結果から判定する相関判定工程と、
前記相関があることを条件として、前記被処理水の直近一定期間における前記水質指標の計測値の分布を統計解析し、その統計解析の結果と前記相関に基づいて、前記被処理水の前記汚濁成分の濃度を推定する第1汚濁成分濃度推定工程と、
前記相関がないことを条件として、過去の前記被処理水のサンプル分析における前記汚濁成分の蓄積データの濃度分布を統計解析し、その統計解析の結果に基づいて、前記被処理水の前記汚濁成分の濃度を推定する第2汚濁成分濃度推定工程と、
前記相関判定工程の判定結果に基づき前記第1汚濁成分濃度推定工程又は前記第2汚濁成分濃度推定工程のいずれかを選択し、該選択した推定工程によって推定した前記被処理水の前記汚濁成分の濃度に基づいて、前記被処理水を処理する水処理設備の運転条件を決定する運転条件決定工程と、を含む、水処理設備の制御方法。
A correlation determination step of periodically determining whether or not there is a correlation between a water quality index and a concentration of a pollutant component that has no causal relationship with the water quality index, from the sample analysis result of the treated water; ,
On the condition that there is the correlation, statistically analyze the distribution of the measured value of the water quality index in the latest fixed period of time, and based on the result of the statistical analysis and the correlation, the contamination of the treated water A first pollutant component concentration estimating step for estimating the concentration of the component;
On the condition that there is no correlation, statistical analysis of the concentration distribution of the accumulated data of the pollutant component in the past sample analysis of the treated water, and based on the result of the statistical analysis, the pollutant component of the treated water A second pollutant component concentration estimating step for estimating the concentration of
Based on the determination result of the correlation determination step, either the first contamination component concentration estimation step or the second contamination component concentration estimation step is selected, and the contamination component of the treated water estimated by the selected estimation step is selected . An operation condition determination step for determining an operation condition of the water treatment facility for treating the water to be treated based on the concentration.
請求項1に記載の水処理設備の制御方法において、前記第1汚濁成分濃度推定工程は、前記被処理水のサンプル分析の結果を回帰分析して回帰直線及びその予測限界を求め、前記被処理水の直近一定期間における前記水質指標の計測値の分布の平均値と標準偏差を統計解析によって求め、その平均値と標準偏差に基づいて設定した出現確率に収まる前記水質指標の計測値の最大値を求め、前記回帰直線の予測限界及び前記水質指標の計測値の最大値に基づいて、前記被処理水の前記汚濁成分の濃度を推定する工程を含む、ことを特徴とする水処理設備の制御方法。   2. The method for controlling a water treatment facility according to claim 1, wherein the first pollutant component concentration estimating step performs regression analysis on a sample analysis result of the water to be treated to obtain a regression line and a prediction limit thereof, and performs the treatment. The average value and standard deviation of the measured value distribution of the water quality index over the most recent fixed period of water is obtained by statistical analysis, and the maximum value of the measured value of the water quality index that falls within the appearance probability set based on the average value and standard deviation And a step of estimating the concentration of the pollutant component of the treated water based on the prediction limit of the regression line and the maximum value of the measured value of the water quality index. Method. 請求項1又は2に記載の水処理設備の制御方法において、前記第2汚濁成分濃度推定工程は、前記相関がないことを条件として、過去の全ての前記被処理水のサンプル分析における前記汚濁成分の蓄積データの濃度分布を統計解析し、その統計解析の結果に基づいて、前記被処理水の前記汚濁成分の濃度を推定する、ことを特徴とする水処理設備の制御方法。 3. The method for controlling a water treatment facility according to claim 1, wherein the second pollutant component concentration estimation step is performed on the condition that the correlation does not exist , and the pollutant component in the past sample analysis of all the treated water. accumulated statistical analysis the concentration distribution of the data, based on the result of the statistical analysis of the you estimate the concentration of the pollutant components of the water to be treated, method of controlling the water treatment facility, characterized in that. 請求項3に記載の水処理設備の制御方法において、前記第2汚濁成分濃度推定工程は、過去の全ての前記被処理水のサンプル分析における前記汚濁成分の濃度の分布の平均値と標準偏差を統計解析によって求め、その平均値と標準偏差に基づいて設定した出現確率に収まる前記汚濁成分の濃度の最大値を求め、それを前記被処理水の前記汚濁成分の濃度と推定する工程を含む、ことを特徴とする水処理設備の制御方法。   4. The method for controlling a water treatment facility according to claim 3, wherein the second pollutant component concentration estimating step calculates an average value and a standard deviation of a concentration distribution of the pollutant component in a sample analysis of all the treated water in the past. Obtaining the maximum value of the concentration of the pollutant component that falls within the appearance probability set based on the average value and standard deviation, obtained by statistical analysis, and including the step of estimating it as the concentration of the pollutant component of the treated water, A method for controlling a water treatment facility. 請求項1〜4のいずれかに記載の水処理設備の制御方法において、前記水質指標は前記被処理水の導電率である、ことを特徴とする水処理設備の制御方法。   The method for controlling a water treatment facility according to any one of claims 1 to 4, wherein the water quality index is a conductivity of the water to be treated. 請求項1〜4のいずれかに記載の水処理設備の制御方法において、前記水質指標は前記被処理水の濁度である、ことを特徴とする水処理設備の制御方法。   The method for controlling a water treatment facility according to any one of claims 1 to 4, wherein the water quality index is turbidity of the water to be treated. 請求項1〜4のいずれかに記載の水処理設備の制御方法において、前記水質指標は前記被処理水の吸光度である、ことを特徴とする水処理設備の制御方法。   The method for controlling a water treatment facility according to any one of claims 1 to 4, wherein the water quality index is an absorbance of the water to be treated. 請求項1〜4のいずれかに記載の水処理設備の制御方法において、前記水質指標は前記被処理水の水素イオン指数である、ことを特徴とする水処理設備の制御方法。   The method for controlling a water treatment facility according to any one of claims 1 to 4, wherein the water quality index is a hydrogen ion index of the water to be treated. 請求項1〜4のいずれかに記載の水処理設備の制御方法において、前記水質指標は前記被処理水の酸化還元電位である、ことを特徴とする水処理設備の制御方法。   The method for controlling a water treatment facility according to any one of claims 1 to 4, wherein the water quality index is an oxidation-reduction potential of the water to be treated. 水質指標と前記水質指標に対して因果関係がない汚濁成分の濃度との相関が被処理水にあるか否かを定期的に行う前記被処理水のサンプル分析の結果から判定する相関判定手順と、
前記相関があることを条件として、前記被処理水の直近一定期間における前記水質指標の計測値の分布を統計解析し、その統計解析の結果と前記相関に基づいて、前記被処理水の前記汚濁成分の濃度を推定する第1汚濁成分濃度推定手順と、
前記相関がないことを条件として、過去の前記被処理水のサンプル分析における前記汚濁成分の蓄積データの濃度分布を統計解析し、その統計解析の結果に基づいて、前記被処理水の前記汚濁成分の濃度を推定する第2汚濁成分濃度推定手順と、
前記相関判定手順の判定結果に基づき前記第1汚濁成分濃度推定手順又は前記第2汚濁成分濃度推定手順のいずれかを選択し、該選択した推定手順によって推定した前記被処理水の前記汚濁成分の濃度に基づいて、前記被処理水を処理する水処理設備の運転条件を決定する運転条件決定手順と、をコンピュータに実行させる、水処理設備の制御プログラム。
A correlation determination procedure for determining whether or not there is a correlation between a water quality index and a concentration of a pollutant component that has no causal relationship with the water quality index, from the result of sample analysis of the water to be treated that is periodically performed; ,
On the condition that there is the correlation, statistically analyze the distribution of the measured value of the water quality index in the latest fixed period of time, and based on the result of the statistical analysis and the correlation, the contamination of the treated water A first pollutant component concentration estimation procedure for estimating the concentration of the component;
On the condition that there is no correlation, statistical analysis of the concentration distribution of the accumulated data of the pollutant component in the past sample analysis of the treated water, and based on the result of the statistical analysis, the pollutant component of the treated water A second pollution component concentration estimation procedure for estimating the concentration of
Based on the determination result of the correlation determination procedure, either the first pollution component concentration estimation procedure or the second pollution component concentration estimation procedure is selected, and the contamination component of the treated water estimated by the selected estimation procedure is selected . A control program for a water treatment facility that causes a computer to execute an operation condition determination procedure for determining an operation condition of a water treatment facility that treats the water to be treated based on the concentration.
請求項10に記載の水処理設備の制御プログラムにおいて、前記第2汚濁成分濃度推定手順は、前記相関がないことを条件として、過去の全ての前記被処理水のサンプル分析における前記汚濁成分の蓄積データの濃度分布を統計解析し、その統計解析の結果に基づいて、前記被処理水の前記汚濁成分の濃度を推定する、ことを特徴とする水処理設備の制御プログラム。 The control program for a water treatment facility according to claim 10, wherein the second pollutant component concentration estimation procedure accumulates the pollutant components in all past sample analyzes of the water to be treated on the condition that there is no correlation. statistically analyzing the density distribution of the data, based on the results of the statistical analysis, the you estimate the concentration of the pollutant components of the water to be treated, the control program of the water treatment facility, characterized in that. 水処理設備と、
前記水処理設備で処理される被処理水の水質指標を計測する計測器と、
前記水処理設備を制御する制御装置と、を備え、
前記制御装置は、前記水質指標と前記水質指標に対して因果関係がない汚濁成分の濃度との相関が被処理水にあるか否かを定期的に行う前記被処理水のサンプル分析の結果から判定する相関判定手段と、
前記相関があることを条件として、前記被処理水の直近一定期間における前記水質指標の計測値の分布を統計解析し、その統計解析の結果と前記相関に基づいて、前記被処理水の前記汚濁成分の濃度を推定する第1汚濁成分濃度推定手段と、
前記相関がないことを条件として、過去の前記被処理水のサンプル分析における前記汚濁成分の蓄積データの濃度分布を統計解析し、その統計解析の結果に基づいて、前記被処理水の前記汚濁成分の濃度を推定する第2汚濁成分濃度推定手段と、
前記相関判定手段の判定結果に基づき前記第1汚濁成分濃度推定手段又は前記第2汚濁成分濃度推定手段のいずれかを選択し、該選択した推定手段によって推定した前記被処理水の前記汚濁成分の濃度に基づいて、前記水処理設備の運転条件を決定する運転条件決定手段と、を含む、ことを特徴とする水処理システム。
Water treatment equipment,
A measuring instrument for measuring a quality indicator of water to be treated which is treated in the water treatment facility;
A control device for controlling the water treatment facility,
From the result of the sample analysis of the water to be treated, the control device periodically determines whether or not the water to be treated has a correlation between the water quality index and the concentration of the pollutant component having no causal relationship with the water quality index. Correlation determining means for determining;
On the condition that there is the correlation, statistically analyze the distribution of the measured value of the water quality index in the latest fixed period of time, and based on the result of the statistical analysis and the correlation, the contamination of the treated water First pollution component concentration estimation means for estimating the concentration of the component;
On the condition that there is no correlation, statistical analysis of the concentration distribution of the accumulated data of the pollutant component in the past sample analysis of the treated water, and based on the result of the statistical analysis, the pollutant component of the treated water Second pollution component concentration estimation means for estimating the concentration of
Based on the determination result of the correlation determination unit, either the first pollution component concentration estimation unit or the second pollution component concentration estimation unit is selected, and the contamination component of the treated water estimated by the selected estimation unit is selected . And an operating condition determining means for determining an operating condition of the water treatment facility based on the concentration.
請求項12に記載の水処理システムにおいて、前記第2汚濁成分濃度推定手段は、前記相関がないことを条件として、過去の全ての前記被処理水のサンプル分析における前記汚濁成分の蓄積データの濃度分布を統計解析し、その統計解析の結果に基づいて、前記被処理水の前記汚濁成分の濃度を推定する、ことを特徴とする水処理システム。 13. The water treatment system according to claim 12, wherein the second pollutant component concentration estimating unit is configured to provide a concentration of accumulated data of the pollutant component in a sample analysis of all past treated water on the condition that there is no correlation. distributed statistical analysis, based on the result of the statistical analysis, the you estimate the concentration of the pollutant components of the water to be treated, a water treatment system, characterized in that.
JP2012142973A 2012-06-26 2012-06-26 Water treatment facility control method, control program, and water treatment system Active JP5943196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012142973A JP5943196B2 (en) 2012-06-26 2012-06-26 Water treatment facility control method, control program, and water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012142973A JP5943196B2 (en) 2012-06-26 2012-06-26 Water treatment facility control method, control program, and water treatment system

Publications (2)

Publication Number Publication Date
JP2014004550A JP2014004550A (en) 2014-01-16
JP5943196B2 true JP5943196B2 (en) 2016-06-29

Family

ID=50102788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012142973A Active JP5943196B2 (en) 2012-06-26 2012-06-26 Water treatment facility control method, control program, and water treatment system

Country Status (1)

Country Link
JP (1) JP5943196B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015075835A1 (en) * 2013-11-25 2015-05-28 栗田工業株式会社 Control method and control program for water treatment facility and water treatment system
EP3428126A4 (en) * 2016-03-11 2019-12-04 Wota Corp. Water treatment device management system and domestic water treatment device
JP6682935B2 (en) * 2016-03-18 2020-04-15 栗田工業株式会社 Proposal support device for water treatment system, proposal support method, and program
US20200200726A1 (en) 2017-03-27 2020-06-25 Kurita Water Industries Ltd. Water quality measurement device
JP6493441B2 (en) 2017-03-27 2019-04-03 栗田工業株式会社 Water quality measurement method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815027B2 (en) * 1979-12-18 1983-03-23 理工協産株式会社 Method and device for detecting and controlling BOD value in wastewater based on wastewater turbidity
JPS6238296A (en) * 1985-08-13 1987-02-19 Kawasaki Steel Corp Method for stable operation of activated sludge treatment equipment
JPS6370150A (en) * 1986-09-11 1988-03-30 Hitachi Ltd Method and apparatus for judging water quality for power plant
JPH0638951B2 (en) * 1990-04-04 1994-05-25 栗田工業株式会社 How to monitor water-based dirt
JP4146610B2 (en) * 2000-10-17 2008-09-10 株式会社山武 Turbidity prediction system, turbidity control system and turbidity management system
JP3990601B2 (en) * 2002-06-27 2007-10-17 オリエンタルエンジニアリング株式会社 Method and apparatus for removing nitrate nitrogen
JP2004275826A (en) * 2003-03-13 2004-10-07 Toshiba Corp Sewage treatment plant water quality monitoring and controlling device
JP3112822U (en) * 2005-05-25 2005-08-25 クリタ分析センター株式会社 Water quality measuring device
JP5110891B2 (en) * 2006-10-02 2012-12-26 シンフォニアテクノロジー株式会社 Statistical prediction method and apparatus for influent water quality in water treatment facilities
JP5194899B2 (en) * 2008-03-10 2013-05-08 新日鐵住金株式会社 Management method of factory wastewater treatment

Also Published As

Publication number Publication date
JP2014004550A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
WO2015075835A1 (en) Control method and control program for water treatment facility and water treatment system
JP5943196B2 (en) Water treatment facility control method, control program, and water treatment system
Ferrero et al. Automatic control systems for submerged membrane bioreactors: A state-of-the-art review
JP4982094B2 (en) Membrane filtration controller
US20150284263A1 (en) Wastewater treatment system
CN104163540B (en) Ozone for ozone-life assemblage technique adds automatic control system
US20140319031A1 (en) Wastewater treatment device
Janson et al. Assessing the biotreatability of produced water from a Qatari gas field
US11932555B2 (en) Water treatment management apparatus and water quality monitoring method
JP5768959B2 (en) Water treatment equipment
US11892393B2 (en) Detection system and method for determining contaminant concentration in feed water stream
JP5287908B2 (en) Water treatment equipment
Robles et al. Advanced control system for optimal filtration in submerged anaerobic MBRs (SAnMBRs)
WO2013160779A1 (en) Method and system for treating waste material
JP2017018940A (en) Control device for wastewater treatment, and wastewater treatment system
JP2012192373A (en) Water treatment apparatus
KR101274983B1 (en) Method and apparatus for determining of the remained chlorine concentration using a sensor, and purified-water treatment system using the same
JP2011110531A (en) Desalination apparatus and desalination method
JP2010044022A (en) Method and apparatus for continuously monitoring test water
JP2018111058A (en) Operating method of water treating apparatus
WO2012162498A1 (en) Oxidation/ reduction measurement
CN107367476A (en) Assess method and system and its application in water process of the biodegradability of water
JP2015221424A (en) Organic wastewater treatment method and apparatus
JP5733034B2 (en) Wastewater treatment equipment
CN114031209B (en) Method for supervising and treating water in thermal power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150615

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20151007

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160510

R150 Certificate of patent or registration of utility model

Ref document number: 5943196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250