JP5939174B2 - Engine aftertreatment device using liquid - Google Patents

Engine aftertreatment device using liquid Download PDF

Info

Publication number
JP5939174B2
JP5939174B2 JP2013028852A JP2013028852A JP5939174B2 JP 5939174 B2 JP5939174 B2 JP 5939174B2 JP 2013028852 A JP2013028852 A JP 2013028852A JP 2013028852 A JP2013028852 A JP 2013028852A JP 5939174 B2 JP5939174 B2 JP 5939174B2
Authority
JP
Japan
Prior art keywords
liquid
gas
exhaust
liquid contact
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013028852A
Other languages
Japanese (ja)
Other versions
JP2014156837A (en
Inventor
恵司 野田
恵司 野田
衣川 真澄
真澄 衣川
矢羽田 茂人
茂人 矢羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013028852A priority Critical patent/JP5939174B2/en
Priority to DE102014101634.3A priority patent/DE102014101634B4/en
Publication of JP2014156837A publication Critical patent/JP2014156837A/en
Application granted granted Critical
Publication of JP5939174B2 publication Critical patent/JP5939174B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/30Ionic liquids and zwitter-ions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/38Honeycomb supports characterised by their structural details flow channels with means to enhance flow mixing,(e.g. protrusions or projections)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Description

本発明は、排気中の特定成分ガスを湿式吸収する後処理装置、特にNOx成分をイオン液体と接触させて吸収分離するエンジン用後処理装置に関する。   The present invention relates to an aftertreatment device that wet-absorbs specific component gas in exhaust gas, and more particularly to an aftertreatment device for an engine that absorbs and separates NOx components by contacting them with an ionic liquid.

エンジンから排出される窒素酸化物(NOx)成分の後処理装置は、従来、触媒を用いて還元浄化する方式が一般的であり、例えば、尿素水を還元剤として排気に添加する選択還元型触媒が採用されている。この方式は、NOx浄化性能を発揮する触媒の作動温度(約200℃以上)に昇温する必要があり、また、尿素水を排気中に拡散させるために装置が大型となりやすい。特に、排気の熱を利用するために、排気通路に排熱回収装置を設置したシステムでは、後処理装置に流入する排気温度は低下する傾向にある。   Conventionally, a post-treatment device for a nitrogen oxide (NOx) component discharged from an engine is generally a method of reducing and purifying using a catalyst. For example, a selective reduction catalyst that adds urea water to exhaust as a reducing agent Is adopted. In this method, it is necessary to increase the temperature to the operating temperature (about 200 ° C. or higher) of the catalyst that exhibits the NOx purification performance, and the apparatus tends to be large in order to diffuse the urea water into the exhaust gas. In particular, in a system in which an exhaust heat recovery device is installed in the exhaust passage in order to use the heat of exhaust gas, the exhaust temperature flowing into the aftertreatment device tends to decrease.

後処理装置の小型化を図りつつ、より低い温度においてNOx成分を除去する技術として、NOxを吸収可能な液体を用いることが提案されている。NOx吸収液体としては、例えば水やアルカリ水溶液、イオン液体が知られ、気液接触手段にて排気と接触させることで、NOx成分を吸収除去した後、排気を外部へ放出することができる。NOx吸収液体は、回収、再生されて貯蔵手段に戻され、再び気液接触手段に供給される。   As a technique for removing the NOx component at a lower temperature while reducing the size of the post-processing apparatus, it has been proposed to use a liquid capable of absorbing NOx. As the NOx absorbing liquid, for example, water, an alkaline aqueous solution, or an ionic liquid is known, and the exhaust can be discharged to the outside after the NOx component is absorbed and removed by contacting the exhaust with a gas-liquid contact means. The NOx absorbing liquid is recovered, regenerated, returned to the storage means, and supplied again to the gas-liquid contact means.

気液接触手段の具体的構成としては、特許文献1に、複数の列が設けられ各列の両面全体に波状凹凸を形成した気液接触板を備える気液接触装置が開示されている。気液接触板の隣り合う列は、凹凸を逆位相として列と列の間に表裏面を繋ぐ開孔部を形成し、液体を拡散しやすくしている。この装置は、一般的なプラント等から排出される二酸化炭素用として構成されるもので、塔内に複数の気液接触板を略平行となるように設置して、上部から吸収液体を流し、下部から燃焼排ガスを導入して、気液接触板の間を自由に流通させながら、気体と液体を接触させるようになっている。   As a specific configuration of the gas-liquid contact means, Patent Literature 1 discloses a gas-liquid contact device provided with a gas-liquid contact plate provided with a plurality of rows and having wavy irregularities formed on both surfaces of each row. Adjacent rows of the gas-liquid contact plates form openings that connect the front and back surfaces between the rows, with the unevenness being in opposite phases, to facilitate liquid diffusion. This device is configured for carbon dioxide discharged from a general plant, etc., and a plurality of gas-liquid contact plates are installed in the tower so as to be substantially parallel, and the absorbing liquid is allowed to flow from the top, Combustion exhaust gas is introduced from the lower part, and gas and liquid are brought into contact with each other while freely flowing between the gas-liquid contact plates.

特開2002−306958号公報JP 2002-306958 A

特許文献1の気液接触装置は、定置式の燃焼装置に用いられる大規模な吸収塔には適するが、車両用エンジンにそのまま適用した場合に、以下のような問題が生じることが判明した。この装置は、気体と液体が対向方向に流れる方式であり、車両用に小型化するとガス流速が早くなることで、液体が流れ落ちにくくなる。このため、吸収液体が飽和に達して吸収率が低下し、所望のNOx除去性能が得られないおそれがある。また、気液接触板は、両面全体に開口部で連通する凹凸が形成された複雑な形状で、製作に手間がかかる上、圧損が大きくなる。   The gas-liquid contact device of Patent Document 1 is suitable for a large-scale absorption tower used in a stationary combustion device, but it has been found that the following problems occur when applied directly to a vehicle engine. This apparatus is a system in which a gas and a liquid flow in opposite directions. When the apparatus is miniaturized for a vehicle, the gas flow rate is increased, so that the liquid is less likely to flow down. For this reason, there is a possibility that the absorbing liquid reaches saturation and the absorptance decreases, and the desired NOx removal performance cannot be obtained. In addition, the gas-liquid contact plate has a complicated shape in which unevenness communicating with the opening is formed on both surfaces, and it takes time to manufacture and pressure loss increases.

本願発明の目的は、エンジンからの排気に含まれる特定ガス成分を気液接触により吸収除去する後処理装置において、車両エンジンに適した小型化を図ること、そして、特定ガス成分を吸収液体と効率よく接触させ、製作コストを抑制しつつ、高吸収率かつ低圧損の気液接触部を実現することにある。   An object of the present invention is to achieve downsizing suitable for a vehicle engine in an aftertreatment device that absorbs and removes a specific gas component contained in exhaust from an engine by gas-liquid contact, and to reduce the efficiency of the specific gas component and the absorption liquid. The object is to realize a gas-liquid contact portion having a high absorption rate and a low pressure loss while making good contact and suppressing manufacturing costs.

上記課題を解決するために、請求項1に記載の発明は、エンジンの排気通路の途中に配
設され、エンジン燃焼排気ガスに含まれる特定ガス成分を、該特定ガス成分を吸収可能な吸収液体と接触させる気液接触手段と、該気液接触手段に吸収液体を供給する液体供給装置を備える後処理装置において、
上記気液接触手段は、内部を気液接触通路とする多孔性基体を筒状体に収容し、該筒状体の一端側に上記液体供給装置を配設して、上記多孔性基体の一端面と対向させるとともに、上記一端側に排気を導入する排気導入手段を設け、
上記排気導入手段は、上記多孔性基体の一端面と上記液体供給装置の供給口の間の空間を排気導入部とし、該排気導入部と排気通路を仕切る仕切り壁に、排気の流通および液体の供給を妨げない開口部を備えており、
上記多孔性基体は、表面を気液接触面とする気液接触板(21)を複数積層して、内部に多数の上記気液接触通路を形成したハニカム構造体であり、通路壁となる上記気液接触板を貫通して隣り合う通路間を連通する多数の通孔(24)を有するとともに、該通孔の形成箇所を、液体供給方向の上流側に対して下流側で少なくしている。
In order to solve the above-mentioned problem, the invention according to claim 1 is an absorbent liquid that is disposed in the middle of the exhaust passage of the engine and can absorb the specific gas component contained in the engine combustion exhaust gas. In a post-processing apparatus comprising a gas-liquid contact means for contact with the liquid supply device for supplying the liquid-liquid contact means to the gas-liquid contact means,
The gas-liquid contact means accommodates a porous substrate having a gas-liquid contact passage inside in a cylindrical body, and the liquid supply device is disposed on one end side of the cylindrical body so that one of the porous substrates is provided. An exhaust introduction means for introducing exhaust to the one end side is provided while facing the end surface,
The exhaust introduction means has a space between one end face of the porous substrate and the supply port of the liquid supply device as an exhaust introduction portion, and a partition wall that divides the exhaust introduction portion and the exhaust passage has a flow of exhaust gas and a liquid Has an opening that does not interfere with the supply ,
The porous substrate is a honeycomb structure in which a plurality of gas-liquid contact plates (21) whose surfaces are gas-liquid contact surfaces are stacked to form a large number of gas-liquid contact passages therein, and the above-mentioned porous substrate serves as a passage wall. It has a large number of through holes (24) that pass through the gas-liquid contact plate and communicates between adjacent passages, and the number of through holes formed is reduced on the downstream side relative to the upstream side in the liquid supply direction . .

請求項2に記載の発明において、上記多孔性基体は、上記通孔の形成箇所を、液体供給方向の上流側のみとしたIn the invention according to claim 2, in the porous substrate, the through hole is formed only on the upstream side in the liquid supply direction .

請求項3に記載の発明において、上記排気導入手段は、上記筒状体の上記一端側の筒内であって上記液体供給装置の供給口より上流に、上記開口部となる多数の開孔を設けた上記仕切り壁を配置し、上記排気導入部に上流側から排気を導入する。   In the invention according to claim 3, the exhaust introduction means includes a plurality of openings serving as the openings in the cylinder on the one end side of the cylindrical body and upstream from the supply port of the liquid supply device. The provided partition wall is arranged, and exhaust gas is introduced into the exhaust gas introduction portion from the upstream side.

請求項4に記載の発明において、上記排気導入手段は、上記筒状体の上記一端側を二重筒状として、内筒(44)内に上記排気導入部を形成し、内外筒間に、排気通路が接続される環状通路(47)を構成するとともに、上記仕切り壁となる内筒壁に、上記環状通路と上記排気導入部を連通する上記開口部(46)を設けて、上記排気導入部に外周側から排気を導入するIn the invention according to claim 4, the exhaust introduction means has the one end side of the cylindrical body formed as a double cylinder, the exhaust introduction part is formed in the inner cylinder (44), and between the inner and outer cylinders, The exhaust passage is connected to the annular passage (47), and the opening (46) communicating the annular passage and the exhaust introduction portion is provided in the inner cylindrical wall serving as the partition wall. Exhaust gas is introduced into the part from the outer periphery .

請求項5に記載の発明において、上記ハニカム構造体は、上記気液接触板となる波板状の気液接触板(21a)と平板状の気液接触板(21b)を交互に積層した積層体からなり、上記波板状の気液接触板と上記平板状の気液接触板の少なくとも一方に、上記通孔を有するIn the invention according to claim 5, the honeycomb structure is a laminate in which corrugated gas-liquid contact plates (21a) and flat gas-liquid contact plates (21b) serving as the gas-liquid contact plates are alternately stacked. The through-hole is formed in at least one of the corrugated gas-liquid contact plate and the flat gas-liquid contact plate .

請求項6に記載の発明において、上記多孔性基体の上記通孔は、上記気液接触板の所定箇所を切り開いて形成され、切り開いた切欠片(25)を、液体供給方向に整列させるIn the invention according to claim 6, the through-hole of the porous substrate is formed by cutting a predetermined portion of the gas-liquid contact plate, and the cut-out notches (25) are aligned in the liquid supply direction .

請求項7に記載の発明において、上記吸収液体は、水よりも粘性が大きく、使用環境下において液体状態を維持するイオン液体である。   In the invention according to claim 7, the absorbing liquid is an ionic liquid having a viscosity higher than that of water and maintaining a liquid state in a use environment.

請求項8に記載の発明において、上記特定ガス成分は、窒素酸化物成分である。   In the invention according to claim 8, the specific gas component is a nitrogen oxide component.

請求項1のエンジン用後処理装置は、排気中の特定ガス成分とその吸収液体を、多孔性基体内に形成される気液接触通路を同一方向に通過させながら吸収除去する。排気導入部は、液体供給装置の供給口と多孔性基体の一端面の間に設けられ、仕切り壁によって排気通路と区画されるので、供給される吸収液体の噴霧を乱すことなく、開口部から排気を流入させることができる。吸収液体は、多孔性基体の一端面に均一に供給され、内部の気液接触通路の表面に拡がる。   The engine aftertreatment device according to claim 1 absorbs and removes the specific gas component in the exhaust gas and the absorption liquid while passing the gas liquid contact passage formed in the porous substrate in the same direction. The exhaust introduction part is provided between the supply port of the liquid supply device and one end face of the porous substrate, and is partitioned from the exhaust passage by the partition wall, so that the spray of the supplied absorbing liquid is not disturbed from the opening part. Exhaust can be introduced. The absorbing liquid is uniformly supplied to one end face of the porous substrate and spreads on the surface of the gas-liquid contact passage inside.

したがって、ハニカム構造体等の多孔性基体内の気液接触通路壁を伝って流れるイオン液体等の吸収液体に、排気を効果的に接触させてNOx成分等の特定ガス成分を吸収除去することができる。よって、排気流速の大きい車両用エンジンにも好適に使用されて、小型で高効率な後処理装置性能を実現する。また、気液接触通路の壁面を複雑な形状とする必要がなく、製作コストを低減できる。   Therefore, exhaust gas is effectively brought into contact with an absorbing liquid such as an ionic liquid flowing along a gas-liquid contact passage wall in a porous substrate such as a honeycomb structure to absorb and remove a specific gas component such as a NOx component. it can. Therefore, it is suitably used for a vehicular engine having a large exhaust flow velocity, and realizes a small and highly efficient after-treatment device performance. Moreover, it is not necessary to make the wall surface of a gas-liquid contact path into a complicated shape, and manufacturing cost can be reduced.

本発明の第1実施形態におけるエンジン用後処理装置の全体構成を示す概略図である。It is the schematic which shows the whole structure of the engine aftertreatment apparatus in 1st Embodiment of this invention. 第1実施形態のエンジン用後処理装置におけるNOx吸収部の構造を示す概略斜視図である。It is a schematic perspective view which shows the structure of the NOx absorption part in the engine aftertreatment apparatus of 1st Embodiment. 本発明のエンジン用後処理装置が適用されるエンジン全体のシステム構成図である。1 is a system configuration diagram of an entire engine to which an engine aftertreatment device of the present invention is applied. 第1実施形態におけるエンジン用後処理装置の要部概略断面図である。It is a principal part schematic sectional drawing of the engine aftertreatment apparatus in 1st Embodiment. 第2実施形態におけるエンジン用後処理装置の要部概略断面図である。It is a principal part schematic sectional drawing of the engine aftertreatment apparatus in 2nd Embodiment. 第3実施形態におけるエンジン用後処理装置の主要部構造を示す断面図である。It is sectional drawing which shows the principal part structure of the engine aftertreatment apparatus in 3rd Embodiment. 第4実施形態におけるエンジン用後処理装置の要部概略断面図である。It is a principal part schematic sectional drawing of the engine aftertreatment apparatus in 4th Embodiment. 第5実施形態におけるエンジン用後処理装置の要部概略断面図である。It is a principal part schematic sectional drawing of the engine aftertreatment apparatus in 5th Embodiment. 第6実施形態におけるエンジン用後処理装置の要部概略断面図である。It is a principal part schematic sectional drawing of the engine aftertreatment apparatus in 6th Embodiment.

以下、本発明を車両エンジンに適用した第1実施形態を図面に基づいて説明する。図1、2は、液体を用いたエンジン用後処理装置の全体構成とその要部構造をそれぞれ示しており、図3に示すエンジンEの排気通路に設置されて、燃焼排気ガス中の特定ガス成分を、吸収液体を用いて除去するための後処理装置(以下、湿式後処理装置と称する)1として使用される。エンジンEは、過給機付ディーゼルエンジンで、排気通路としての排気管EXの途中には、DPF(ディーゼルパティキュレートフィルタ)101、排熱回収装置102が配置され、その下流に、本実施形態の湿式後処理装置1が配置される。本実施形態の湿式後処理装置1は、排気中の特定ガス成分、特に、窒素酸化物(NOx)成分を、NOx吸収液体を用いて吸収除去する。   Hereinafter, a first embodiment in which the present invention is applied to a vehicle engine will be described with reference to the drawings. FIGS. 1 and 2 respectively show the overall configuration of the engine aftertreatment device using liquid and the structure of the main parts thereof. The specific gas in the combustion exhaust gas is installed in the exhaust passage of the engine E shown in FIG. It is used as an aftertreatment device (hereinafter referred to as a wet aftertreatment device) 1 for removing components using an absorbing liquid. The engine E is a diesel engine with a supercharger, and a DPF (diesel particulate filter) 101 and an exhaust heat recovery device 102 are arranged in the middle of an exhaust pipe EX as an exhaust passage, and downstream of the present embodiment. A wet aftertreatment device 1 is arranged. The wet aftertreatment device 1 of the present embodiment absorbs and removes a specific gas component in exhaust gas, particularly a nitrogen oxide (NOx) component, using a NOx absorbing liquid.

エンジンEは、コンプレッサー103と排気タービン104で構成される過給機を備える。吸気管入口IN1から取り込まれた空気は、コンプレッサー103で加圧され、加圧により高温となった空気は、吸気管INに設置したインタークーラー106で冷却された後、吸気マニフォルド107の各ポートからエンジンEの燃焼室に吸入される。エンジンEの燃焼室では空気と燃料が混合され、燃焼することによってエンジン出力軸108の回転力として動力を生み出す。   The engine E includes a supercharger that includes a compressor 103 and an exhaust turbine 104. The air taken in from the intake pipe inlet IN1 is pressurized by the compressor 103, and the air that has become hot due to the pressurization is cooled by the intercooler 106 installed in the intake pipe IN, and then is sent from each port of the intake manifold 107 to the engine. Inhaled into E's combustion chamber. In the combustion chamber of the engine E, air and fuel are mixed and burned to generate power as a rotational force of the engine output shaft 108.

燃焼を終わった排気は、エンジンEの燃焼室から排気マニフォルド105に排気される。その後、排気はコンプレッサー103と直結した排気タービン104を回して、空気を加圧する仕事をした後、排気管EXに排出される。排気はここでDPF101を通過し、排気中のパティキュレートマター(PM)をDPF101によってろ過捕集する。同時に、排気が通過するDPF101表面にコーティングされた酸化触媒によって、HC成分やCO成分も浄化される。その後、排気は、排熱回収装置102を通り、冷却されて通常では排気温度が100℃〜180℃の間に下がる。   The exhaust after the combustion is exhausted from the combustion chamber of the engine E to the exhaust manifold 105. After that, the exhaust gas is discharged to the exhaust pipe EX after rotating the exhaust turbine 104 directly connected to the compressor 103 and performing the work of pressurizing the air. The exhaust gas passes through the DPF 101 here, and particulate matter (PM) in the exhaust gas is collected by filtration with the DPF 101. At the same time, the HC component and the CO component are also purified by the oxidation catalyst coated on the surface of the DPF 101 through which the exhaust passes. Thereafter, the exhaust gas passes through the exhaust heat recovery device 102, is cooled, and the exhaust gas temperature usually falls between 100 ° C and 180 ° C.

ここで用いるDPF101は、セラミックで形成された多孔質の壁がフィルタとして働く、公知のウォールフロータイプの排気フィルタである。排熱回収装置102は、公知のランキンサイクル方式の排熱回収システムであり、例えば、排気の冷却で得た熱エネルギーは冷媒を蒸発させ高圧ガスとなってガスタービンを回し、ガスタービンと直結した発電機により電気エネルギーに変換されバッテリーに蓄えられるというようなものである。   The DPF 101 used here is a known wall flow type exhaust filter in which a porous wall formed of ceramic works as a filter. The exhaust heat recovery device 102 is a known Rankine cycle exhaust heat recovery system. For example, the heat energy obtained by cooling the exhaust gas evaporates the refrigerant to become a high-pressure gas, and is directly connected to the gas turbine. It is like being converted into electrical energy by a generator and stored in a battery.

冷却された排気は、湿式後処理装置1に導入される。ここで、排気中に含まれるNOx成分は、湿式後処理装置1内においてNOx吸収液体と接触して吸収される。ここまででPM、HC、CO、そしてNOxが除去され、クリーンな排気となって排気管出口EX1から大気中に排出される。湿式後処理装置1の上流に、図示しないオゾン供給手段を設置して、排気中に含まれるNOxを供給されるオゾンと反応させ、硝酸(HNO)またはその前駆体(N)に変換させることもできる。本発明では、窒素酸化物(NO、NO)とこれらから生成される化合物(HNO、N)を合わせてNOx成分と称する。 The cooled exhaust gas is introduced into the wet aftertreatment device 1. Here, the NOx component contained in the exhaust gas is absorbed in contact with the NOx absorbing liquid in the wet aftertreatment device 1. Up to this point, PM, HC, CO, and NOx are removed, and the exhaust becomes clean and exhausted from the exhaust pipe outlet EX1 into the atmosphere. An ozone supply means (not shown) is installed upstream of the wet aftertreatment device 1 to react NOx contained in the exhaust gas with the supplied ozone, thereby converting it into nitric acid (HNO 3 ) or its precursor (N 2 O 5 ). It can also be converted. In the present invention, nitrogen oxides (NO, NO 2 ) and compounds generated from these (HNO 3 , N 2 O 5 ) are collectively referred to as NOx components.

吸気系には、吸気管入口IN1の直下流に空気流量センサS1が配置される。また、吸気スロットル110のスロットル開度を検出するスロットル開度センサS2が配置され、吸気マニフォルド107の合流部には吸気圧センサS3が配置される。エンジン1の出力軸108の近傍には、エンジン回転数を測るエンジン回転センサS4が配置され、排気系には、DPF101の下流に排気温度を測る温度センサS5が配置される。また、図示しないアクセルペダルの開度を検出するアクセル開度センサS6が設けられ、これら各センサは、測定した情報をそれぞれ電気信号に変換して、接続された電気線を通して電子制御ユニット(ECU)111に送る。   In the intake system, an air flow rate sensor S1 is disposed immediately downstream of the intake pipe inlet IN1. In addition, a throttle opening sensor S2 for detecting the throttle opening of the intake throttle 110 is disposed, and an intake pressure sensor S3 is disposed at the junction of the intake manifold 107. In the vicinity of the output shaft 108 of the engine 1, an engine rotation sensor S4 that measures the engine speed is arranged, and in the exhaust system, a temperature sensor S5 that measures the exhaust temperature is arranged downstream of the DPF 101. In addition, an accelerator opening sensor S6 for detecting the opening of an accelerator pedal (not shown) is provided. Each of these sensors converts the measured information into an electric signal, and an electronic control unit (ECU) through a connected electric wire. To 111.

次に、湿式後処理装置1の具体的な構成例を説明する。図1において、湿式後処理装置1は、排気管EXの途中に介設される、気液接触手段としてのNOx吸収部2と、NOx吸収部2にNOx吸収液体を供給する液体供給装置3を備える。NOx吸収部2は、筒状体としての筒状ハウジングH内に、多孔性基体としてのハニカム構造体23を収容してなる。ハニカム構造体23は、多数の気液接触板21を積層して構成され、隣り合う気液接触板21間に、上下方向に延びる多数の気液接触通路22を有している。筒状ハウジングHの上方には、液体供給装置3となるインジェクタ31が取り付けられて、ハニカム構造体23と間隔をおいて対向している。ハニカム構造体23の上方には排気導入手段4が、下方には吸収液体回収手段5が設けられる。   Next, a specific configuration example of the wet aftertreatment device 1 will be described. In FIG. 1, a wet aftertreatment device 1 includes a NOx absorption unit 2 serving as a gas-liquid contact means and a liquid supply device 3 that supplies a NOx absorption liquid to the NOx absorption unit 2 that are provided in the middle of the exhaust pipe EX. Prepare. The NOx absorber 2 is configured by accommodating a honeycomb structure 23 as a porous substrate in a cylindrical housing H as a cylindrical body. The honeycomb structure 23 is configured by laminating a large number of gas-liquid contact plates 21, and has a large number of gas-liquid contact passages 22 extending in the vertical direction between adjacent gas-liquid contact plates 21. An injector 31 serving as the liquid supply device 3 is attached above the cylindrical housing H, and is opposed to the honeycomb structure 23 with a gap. The exhaust gas introduction means 4 is provided above the honeycomb structure 23, and the absorbing liquid recovery means 5 is provided below the honeycomb structure 23.

図2に示すように、本実施形態では、気液接触板21は、波板状の気液接触板21aと平板状の気液接触板21bの2種類の組み合わせであり、これらを水平方向に交互に複数積層してハニカム構造体23を構成している。気液接触板21a、21bは、通常、耐食性を有するステンレス鋼等の金属板であり、ハニカム構造体23の内部に、気液接触板21aの波板のピッチに応じた大きさで、多数の平行な気液接触通路22を形成する。気液接触通路22に面する気液接触板21a、21bの両表面は、気液接触面として機能し、吸収液体が気液接触面を伝って流下する間に、気液接触通路22に流入する排気と接触する。   As shown in FIG. 2, in this embodiment, the gas-liquid contact plate 21 is a combination of two types, a corrugated gas-liquid contact plate 21a and a flat gas-liquid contact plate 21b. A honeycomb structure 23 is formed by alternately stacking a plurality of layers. The gas-liquid contact plates 21a and 21b are usually metal plates such as stainless steel having corrosion resistance. The honeycomb structure 23 has a size corresponding to the pitch of the corrugated plates of the gas-liquid contact plate 21a and a large number of them. Parallel gas-liquid contact passages 22 are formed. Both surfaces of the gas-liquid contact plates 21a and 21b facing the gas-liquid contact passage 22 function as gas-liquid contact surfaces, and flow into the gas-liquid contact passage 22 while the absorbing liquid flows down along the gas-liquid contact surface. Contact with exhaust.

図1において、筒状ハウジングHの上端部内空間は、排気導入手段4の排気導入部41となり、筒状ハウジングHの上端開口に接続される排気管EXから排気導入部41を経て、NOx吸収部2に排気を導入する。液体供給装置3は、供給口となるインジェクタ31の噴射口32が、排気導入部41となる空間を挟んで、ハニカム構造体23の上端面(一端面)と対向し、液体配管33から供給される吸収液体を噴射する。吸収液体と排気は、NOx吸収部2内を同一方向(図の上下方向)に流れて、筒状ハウジングHの下端部に至り、吸収液体回収手段5の気液分離部51にて気液分離される。   In FIG. 1, the space in the upper end portion of the cylindrical housing H becomes the exhaust introduction portion 41 of the exhaust introduction means 4, and passes through the exhaust introduction portion 41 from the exhaust pipe EX connected to the upper end opening of the cylindrical housing H, and then the NOx absorption portion 2 introduces exhaust. In the liquid supply device 3, the injection port 32 of the injector 31 serving as the supply port faces the upper end surface (one end surface) of the honeycomb structure 23 across the space serving as the exhaust introduction portion 41, and is supplied from the liquid pipe 33. Spray the absorbing liquid. The absorbing liquid and the exhaust gas flow in the same direction (vertical direction in the figure) in the NOx absorbing portion 2 to reach the lower end portion of the cylindrical housing H, and gas-liquid separation is performed in the gas-liquid separating portion 51 of the absorbing liquid recovery means 5. Is done.

NOx吸収液体は、NOx成分を吸収可能であり、水よりも粘性が大きく、使用環境下において液体状態を維持する液体であれば、特に制限されない。好適には、NOxまたはHNO等のNOx成分を化学吸収するイオン液体、例えばカルボン酸塩を含むイオン液体が用いられる。好適には、カルボン酸塩のアニオンとして、C2n+1COO(nは0〜10の整数)で表されるアルキルカルボン酸イオンおよびその誘導体が挙げられ、少なくとも1種または2種以上を組み合わせて所望の吸収性能および粘性を有する吸収液体に調製することができる。 The NOx absorbing liquid is not particularly limited as long as it is capable of absorbing the NOx component, has a higher viscosity than water, and maintains a liquid state in the use environment. Preferably, an ionic liquid that chemically absorbs NOx components such as NOx or HNO 3 , for example, an ionic liquid containing a carboxylate is used. Preferable examples of the carboxylate anion include an alkylcarboxylate ion represented by C n H 2n + 1 COO (n is an integer of 0 to 10) and derivatives thereof, and a combination of at least one or two or more thereof. To an absorbent liquid having a desired absorption performance and viscosity.

このようなイオン液体は、高温環境下においても蒸発しないので、排気導入部41で微粒化して浮遊することがなく、比較的粘性が大きいので、噴射口32形状に応じた噴射角度で排気導入部41内に広がり、ハニカム構造体23の上端面に付着する。そして、気液接触通路22の壁面をゆっくり流下しながら、排気中のNOx成分と接触し、化学的に吸収してその状態を安定に維持する。このため、例えば液体を冷却するための冷却装置等を設ける必要がなく、分離回収が容易で、装置全体を小型にできる。   Since such ionic liquid does not evaporate even in a high temperature environment, it does not atomize and float in the exhaust introduction part 41, and is relatively high in viscosity. Therefore, the exhaust introduction part has an injection angle corresponding to the shape of the injection port 32. 41 spreads and adheres to the upper end surface of the honeycomb structure 23. Then, while slowly flowing down the wall surface of the gas-liquid contact passage 22, the NOx component in the exhaust gas is contacted and chemically absorbed to maintain the state stably. For this reason, for example, it is not necessary to provide a cooling device or the like for cooling the liquid, separation and recovery are easy, and the entire device can be made compact.

回収された吸収液体は、気液分離部51の底部に接続する液体配管52から吸収液体タンクTに戻され、吸収液体と分離された排気は、気液分離部51の側方に接続される排気管EXへ排出される。吸収液体タンクTは、ポンプPを介して吸収液体供給装置3の液体配管33に接続され、吸収液体の循環路を形成している。   The collected absorption liquid is returned to the absorption liquid tank T from the liquid pipe 52 connected to the bottom of the gas-liquid separation unit 51, and the exhaust gas separated from the absorption liquid is connected to the side of the gas-liquid separation unit 51. It is discharged to the exhaust pipe EX. The absorption liquid tank T is connected to the liquid pipe 33 of the absorption liquid supply device 3 via the pump P, and forms a circulation path for the absorption liquid.

NOx吸収部2となるハニカム構造体23は、通路壁となる気液接触板21に、板面を貫通して隣り合う通路間を連通する多数の通孔24を設けて、通孔24を介して気液接触面となる両表面が連通する構成としている。この時、インジェクタ31の噴射口32から排気導入部41に噴射される吸収液体は、径方向に拡がる噴霧となってハニカム構造体23の上端面に達し、さらに多数の通孔24を介して気液接触板21の両面に拡がる。図示するように、多数の通孔24は、少なくともハニカム構造体23の上流側に設けられることで、製作の手間を少なくしながら吸収液体を良好に拡散させる効果が得られる。   The honeycomb structure 23 serving as the NOx absorbing portion 2 is provided with a large number of through holes 24 passing through the plate surface and communicating between adjacent passages in the gas-liquid contact plate 21 serving as a passage wall. Thus, both surfaces serving as gas-liquid contact surfaces are configured to communicate with each other. At this time, the absorbing liquid sprayed from the injection port 32 of the injector 31 to the exhaust gas introduction portion 41 becomes a spray that expands in the radial direction and reaches the upper end surface of the honeycomb structure 23, and further passes through a large number of through holes 24. It spreads on both surfaces of the liquid contact plate 21. As shown in the figure, the large number of through holes 24 are provided at least on the upstream side of the honeycomb structure 23, so that the effect of favorably diffusing the absorbing liquid can be obtained while reducing the manufacturing effort.

図4は、NOx吸収部2への排気導入手段4の構成例である。本実施形態は、液体供給装置3の液体供給方向に対して上流側から同一方向に排気を流入させる構成であり、筒状ハウジングHの上端開口部内(一端側の筒内)に、排気通路と区画するための仕切り壁として仕切り板42を配設している。仕切り板42は、板面を貫通する多数の開孔にて形成される開口部43を有しており、これら多数の開孔からなる開口部43を介して、その下方の排気導入部41に排気が流入する。インジェクタ31の噴射口32は、仕切り板42と同一面内ないしその下方に突出位置して、吸収液体の噴射を妨げないように配置されている。多数の開孔からなる開口部43は、排気導入部41に排気が偏りなく流入し、また排気が滞りなく通過して圧損を増加させない十分な開口面積を確保するように、仕切り板42の全体に均等に設けられる。   FIG. 4 is a configuration example of the exhaust gas introduction means 4 to the NOx absorber 2. The present embodiment is configured to allow exhaust to flow in the same direction from the upstream side with respect to the liquid supply direction of the liquid supply apparatus 3, and in the upper end opening of the cylindrical housing H (in the cylinder on one end side) A partition plate 42 is provided as a partition wall for partitioning. The partition plate 42 has an opening 43 formed by a large number of apertures penetrating the plate surface, and the exhaust introduction portion 41 below the aperture 43 formed by the numerous apertures. Exhaust flows in. The injection port 32 of the injector 31 protrudes in the same plane as or below the partition plate 42 and is arranged so as not to prevent the absorption liquid from being injected. The opening 43 made up of a large number of openings ensures that the entire partition plate 42 has a sufficient opening area so that the exhaust flows evenly into the exhaust introduction part 41 and does not pass through the exhaust without increasing the pressure loss. Are equally provided.

筒状ハウジングH内に上方から排気が流入する場合、排気流量が大きいと、排気が噴霧に衝突して乱れが生じるおそれがある。上記構成によれば、仕切り板42によって排気の勢いが弱められ、図に矢印で示すように、仕切り板42の多数の開孔からなる開口部43から均等に排気導入部41に流れ込む。したがって、排気の流通が妨げられず、かつ噴射口32からの噴霧を乱すことがなく、ハニカム構造体23の気液接触通路22内へ均等に流入する。そして、気液接触通路22内を同一方向に流れる間に、排気中のNOx成分が吸収液体に吸収される。   When the exhaust gas flows into the cylindrical housing H from above, if the exhaust gas flow rate is large, the exhaust gas may collide with the spray to cause turbulence. According to the above configuration, the momentum of exhaust is weakened by the partition plate 42, and as shown by arrows in the figure, the exhaust plate 41 flows evenly into the exhaust introduction portion 41 from the openings 43 formed by a large number of openings in the partition plate 42. Therefore, the flow of the exhaust gas is not hindered and the spray from the injection port 32 is not disturbed, and flows uniformly into the gas-liquid contact passage 22 of the honeycomb structure 23. Then, while flowing in the gas-liquid contact passage 22 in the same direction, the NOx component in the exhaust is absorbed by the absorbing liquid.

図5に、NOx吸収部2への排気導入手段4の他の構成例を第2実施形態として示す。図示するように、液体供給装置3の液体供給方向に対して側方に排気通路を配置し、排気導入部41に排気が向きを変えて流入する構成とすることもできる。本実施形態では、筒状ハウジングHの上端部を二重筒状として、ハウジングHの延長上にある内筒44内に排気導入部41を設け、外筒45に側方から排気通路を接続する。内筒44は上端が開口し、上端閉鎖の外筒45との間に、環状隙間を形成して開口部46とする。インジェクタ31は外筒45の閉鎖端面に取り付けられ、噴射口32は外筒45の閉鎖端面を貫通して排気導入部41内に突出位置している。   FIG. 5 shows another configuration example of the exhaust gas introduction means 4 to the NOx absorption unit 2 as a second embodiment. As shown in the figure, an exhaust passage may be disposed laterally with respect to the liquid supply direction of the liquid supply device 3 so that the exhaust flows into the exhaust introduction portion 41 while changing its direction. In the present embodiment, the upper end portion of the cylindrical housing H is formed in a double cylinder shape, the exhaust introduction portion 41 is provided in the inner cylinder 44 on the extension of the housing H, and the exhaust passage is connected to the outer cylinder 45 from the side. . The inner cylinder 44 has an upper end that is open, and an annular gap is formed between the inner cylinder 44 and the outer cylinder 45 that is closed at the upper end. The injector 31 is attached to the closed end surface of the outer cylinder 45, and the injection port 32 projects through the closed end surface of the outer cylinder 45 into the exhaust introduction part 41.

図に矢印で示すように、仕切り壁としての内外筒44、45壁間に形成される環状空間47に、側方から流入した排気は、上方に向きを変えて内筒44壁上端の環状の開口部46に到達する。さらに、径方向内方に向きを変えて、排気導入部41に外周側から流入する。したがって、排気導入部41の全体に排気が偏りなく流入し、流れる噴霧を乱すことなく、排気導入部41からハニカム構造体23へ向けて同一方向に流れる。ここでは、仕切り壁となる内筒44上端全周に隙間を設けたが、例えば内筒44壁の上端側を貫通する多数の開孔を設けて、開口部43としてもよい。   As shown by the arrows in the figure, the exhaust gas flowing from the side into the annular space 47 formed between the inner and outer cylinders 44 and 45 as the partition wall changes its direction upward, The opening 46 is reached. Further, the direction is changed inward in the radial direction and flows into the exhaust introduction portion 41 from the outer peripheral side. Therefore, the exhaust gas flows uniformly into the entire exhaust gas introduction portion 41 and flows in the same direction from the exhaust gas introduction portion 41 toward the honeycomb structure 23 without disturbing the flowing spray. Here, a gap is provided in the entire circumference of the upper end of the inner cylinder 44 serving as a partition wall. However, for example, a large number of openings penetrating the upper end side of the wall of the inner cylinder 44 may be provided as the opening 43.

図6は、本発明の第3実施形態であり、図1のNOx吸収部2、液体供給装置3を基本構成とし、図5の排気導入手段4を適用した詳細構成例である。図中、ハウジングHの上端部を構成し仕切り壁となる内外筒44、45は、下端部から径方向外方へ突設したフランジ442、452を衝合して固定することにより一体化される。液体供給装置3は、筒状のインジェクタハウジング33内にインジェクタ31を収容し、インジェクタハウジング33の下端開口縁部から外方に突設したフランジ331と、外筒45の上端開口縁部から外方に突設したフランジ451を衝合固定している。外筒45は、フランジ451に続く上端開口部が縮径して、内筒44の上端部に隙間を有して外挿される。内筒44は、上端部から外方に突設したフランジ441を有し、外筒45の段付きの上端部との間に隙間を形成している。   FIG. 6 shows a third embodiment of the present invention, which is a detailed configuration example in which the NOx absorption unit 2 and the liquid supply device 3 of FIG. 1 are basic configurations and the exhaust introduction means 4 of FIG. 5 is applied. In the drawing, inner and outer cylinders 44 and 45 that constitute the upper end portion of the housing H and serve as partition walls are integrated by abutting and fixing flanges 442 and 452 projecting radially outward from the lower end portion. . The liquid supply device 3 accommodates an injector 31 in a cylindrical injector housing 33, a flange 331 protruding outward from a lower end opening edge of the injector housing 33, and an outer side from an upper end opening edge of the outer cylinder 45. The flange 451 projecting from is fixed by abutting. The outer cylinder 45 is extrapolated with a gap at the upper end of the inner cylinder 44 with the upper end opening continuing from the flange 451 having a reduced diameter. The inner cylinder 44 has a flange 441 that protrudes outward from the upper end portion, and forms a gap with the stepped upper end portion of the outer cylinder 45.

これにより、内外筒44、45間に環状空間47が形成され、内外筒44、45の上端部間に、開口部46となる環状隙間が形成される。外筒45の下端部には、排気管EXに連通するガス入口453が開口し、流入した排気は環状空間47内を上方に流れて、環状の開口部46を通過し、ハウジングH上端部の排気導入部41に、外周側から導入される。ここで、排気導入部41に面する内筒44内周面は、ハニカム構造体23の収容部から上方へ向けて拡径するテーパ面であり、排気導入部41の外周部に比較的大きな空間が形成されるので、インジェクタ31からの噴霧を乱すおそれが小さい。また、インジェクタ31の噴射角度を比較的大きく設定することができ、ハニカム構造体23の全体に噴霧が拡がるようにして、ハニカム構造体23内の気液接触通路22に吸収液体を均等に供給することができる。   As a result, an annular space 47 is formed between the inner and outer cylinders 44 and 45, and an annular gap serving as the opening 46 is formed between the upper ends of the inner and outer cylinders 44 and 45. A gas inlet 453 communicating with the exhaust pipe EX is opened at the lower end portion of the outer cylinder 45, and the inflowing exhaust gas flows upward in the annular space 47, passes through the annular opening portion 46, and reaches the upper end portion of the housing H. It introduces into the exhaust introduction part 41 from the outer peripheral side. Here, the inner peripheral surface of the inner cylinder 44 facing the exhaust introduction portion 41 is a tapered surface that expands upward from the accommodating portion of the honeycomb structure 23, and a relatively large space is formed in the outer peripheral portion of the exhaust introduction portion 41. Therefore, the possibility of disturbing the spray from the injector 31 is small. Further, the injection angle of the injector 31 can be set to be relatively large, and the sprayed liquid spreads over the entire honeycomb structure 23 so that the absorbing liquid is evenly supplied to the gas-liquid contact passage 22 in the honeycomb structure 23. be able to.

気液接触板21の積層体からなるハニカム構造体23の断面形状は、特に制限されず、本実施形態では、ハニカム構造体23を角の丸い略矩形の断面形状としている。略矩形とすることで、波板状と平板状の気液接触板21を用いた積層体の製作が容易にでき、設置スペースに対してNO吸収部2の容積を比較的大きくすることができる。図2に示した略円形や、略楕円形その他の断面形状でももちろんよく、設置スペース等に応じて任意に選択することができる。   The cross-sectional shape of the honeycomb structure 23 formed of the laminate of the gas-liquid contact plates 21 is not particularly limited, and in the present embodiment, the honeycomb structure 23 has a substantially rectangular cross-sectional shape with rounded corners. By making it substantially rectangular, it is possible to easily manufacture a laminate using corrugated and flat gas-liquid contact plates 21 and to relatively increase the volume of the NO absorbing portion 2 with respect to the installation space. . Of course, it may be the substantially circular shape shown in FIG. 2, the substantially elliptical shape, or other cross-sectional shapes, and can be arbitrarily selected according to the installation space or the like.

本実施形態では、ハニカム構造体23を構成する平板状の気液接触板21bに、板面を貫通する多数の通孔24を設ける。多数の通孔24は、気液接触通路22に面するように、例えば液体供給方向の上流側から流路長の半分程度までの範囲で、所定箇所を穿設することにより形成されて、気液接触板21の両面を連通する。これにより、上流側から供給される吸収液体が、通孔24を介して行き来しながら気液接触面全体に拡がり、気液接触通路22を通過する排気との接触機会を増大させることができる。   In the present embodiment, the flat gas-liquid contact plate 21b constituting the honeycomb structure 23 is provided with a large number of through holes 24 penetrating the plate surface. The large number of through holes 24 are formed by drilling predetermined portions so as to face the gas-liquid contact passage 22, for example, in the range from the upstream side in the liquid supply direction to about half of the flow path length. Both surfaces of the liquid contact plate 21 are communicated. As a result, the absorbing liquid supplied from the upstream side spreads over the entire gas-liquid contact surface while going back and forth through the through hole 24, and the chance of contact with the exhaust gas passing through the gas-liquid contact passage 22 can be increased.

図7は、本発明の第4実施形態であり、図6のハニカム構造体23に設ける多数の通孔24を、波板状の気液接触板21aに設けている。多数の通孔24は、図示するように、山型の傾斜面の頂部近傍に、等間隔で整列形成される。また、通孔24を穿設する際に、通孔周縁部形状に沿う一部(ここでは谷部側)を残して板面を切り開き、切欠片25を略垂直に起こして立壁状に整列させている。板面を打ち抜かず、切欠片25を残すことで、気液接触通路22の表面積を減少させることがなく、吸収液体の拡散を促進することができる。   FIG. 7 shows a fourth embodiment of the present invention. A large number of through holes 24 provided in the honeycomb structure 23 of FIG. 6 are provided in the corrugated gas-liquid contact plate 21a. As shown in the figure, the large number of through holes 24 are formed at regular intervals in the vicinity of the top of the mountain-shaped inclined surface. Further, when the through-hole 24 is formed, the plate surface is cut open while leaving a part along the shape of the peripheral edge of the through-hole (here, the trough side), and the notch piece 25 is raised substantially vertically and aligned in a standing wall shape. ing. By leaving the notched piece 25 without punching the plate surface, the surface area of the gas-liquid contact passage 22 is not reduced, and the diffusion of the absorbing liquid can be promoted.

このような通孔24は、波板状の気液接触板21aに対し、傾斜面を側方に切り起こすことで形成することができ、製作が容易で加工屑が生じず材料の無駄がない。切欠片25は、山型の傾斜面の両側に形成することもできるが、切欠片25が気液接触通路22に突出して圧損の原因となりやすい。このため、上図のように、山型の傾斜面の一方にのみ通孔24を設けており、通孔24を介して隣り合う気液接触通路22へ吸収液体を拡散可能となる。下図のように、隣り合う気液接触通路22についても対称位置に通孔24を形成し、1つの気液接触通路22に1つの切欠片25が位置する構成としてもよい。   Such a through-hole 24 can be formed by cutting and raising the inclined surface laterally with respect to the corrugated gas-liquid contact plate 21a. . The notch pieces 25 can be formed on both sides of the mountain-shaped inclined surface, but the notch pieces 25 protrude into the gas-liquid contact passage 22 and easily cause pressure loss. For this reason, as shown in the upper figure, the through hole 24 is provided only in one of the mountain-shaped inclined surfaces, and the absorbing liquid can be diffused to the adjacent gas-liquid contact passage 22 through the through hole 24. As shown in the figure below, the adjacent gas-liquid contact passages 22 may also be formed in the symmetrical positions so that one notch piece 25 is positioned in one gas-liquid contact passage 22.

図8は、本発明の第5実施形態であり、図7の構成において、波板状の気液接触板21aに形成する多数の通孔24の形成箇所を変更している。上述したように、切欠片25付きの多数の通孔24が形成されることで圧損が増加するため、ここでは通孔24を、排気の流れ方向に対して、上流側で密に配置し、下流側ほど間隔が大きくなるようにしている。
吸収液体となるイオン液体は粘性が比較的大きく、上流側で速やかに気液接触板21の両表面に拡げるために、多数の通孔24を近接配置することが有効となる。一方、表面に拡がった吸収液体は排気流れと自重でそのまま流れるため、下流側の通孔24の数を減らして圧損の増加を抑制することができる。
FIG. 8 shows a fifth embodiment of the present invention. In the configuration shown in FIG. 7, the formation positions of a large number of through holes 24 formed in the corrugated gas-liquid contact plate 21a are changed. As described above, since the pressure loss is increased by forming a large number of through holes 24 with the notch pieces 25, here, the through holes 24 are densely arranged on the upstream side with respect to the flow direction of the exhaust gas. The interval is increased toward the downstream side.
The ionic liquid serving as the absorbing liquid has a relatively large viscosity, and it is effective to dispose a large number of through holes 24 close to each other in order to spread quickly on both surfaces of the gas-liquid contact plate 21 on the upstream side. On the other hand, since the absorbing liquid spread on the surface flows as it is with the exhaust flow and its own weight, the number of downstream through holes 24 can be reduced to suppress an increase in pressure loss.

図9は、本発明の第6実施形態であり、図7の構成において、波板状の気液接触板21aに形成する多数の通孔24を、上流側にのみ形成している。図示するように略等間隔で形成しても、図8のように間隔が徐々に大きくなるように形成してもよい。より圧損の低減を重視する場合には、このように下流側に通孔24を形成しないことで、切欠片25による圧損の増加を抑制することができる。また、図7〜9に示すように、通孔24を排気の流れに対して切欠片25の幅方向が直交するように形成すると、排気や吸収液体が切欠片25の両面に沿って流れやすく、圧損の増加も抑制できる。   FIG. 9 shows a sixth embodiment of the present invention. In the configuration of FIG. 7, a large number of through holes 24 formed in the corrugated gas-liquid contact plate 21a are formed only on the upstream side. As shown in the figure, the gaps may be formed at substantially equal intervals, or the intervals may be gradually increased as shown in FIG. In the case where the reduction of pressure loss is more important, the increase in pressure loss due to the notch piece 25 can be suppressed by not forming the through hole 24 on the downstream side in this way. Also, as shown in FIGS. 7 to 9, if the through hole 24 is formed so that the width direction of the cutout piece 25 is orthogonal to the flow of exhaust gas, the exhaust gas and the absorbing liquid can easily flow along both surfaces of the cutout piece 25. In addition, an increase in pressure loss can be suppressed.

上記実施形態では、多孔性基体としてハニカム構造体23を用いたが、内部に多数の気液接触通路22を形成可能な構造であればよい。例えば、互いに連通する多数の通気孔を有する金属フォーム体や、金属細線を編んで構成される金属多孔体等を用いることができる。   In the above embodiment, the honeycomb structure 23 is used as the porous substrate, but any structure that can form a large number of gas-liquid contact passages 22 may be used. For example, a metal foam body having a large number of ventilation holes communicating with each other, a metal porous body formed by knitting metal thin wires, or the like can be used.

本発明の液体を用いたエンジン用後処理装置は、小型で低コストであり、環境温度や運転状態の変化が大きいエンジンであっても適用可能である。このため、使用環境が厳しくスペース的な制約の大きい車両用エンジンに好適であるが、車両用またはディーゼルエンジンに限らず任意のエンジンに適用される。また、排気中の特定成分としては、NOx成分に限らず、特定のガス成分と吸収液体を組み合わせることで、同様の高い処理性能を実現する。   The engine aftertreatment device using the liquid of the present invention is applicable to even an engine having a small size and low cost and having a large change in environmental temperature and operating state. For this reason, although it is suitable for a vehicular engine having a severe use environment and a large space restriction, it is applicable not only to a vehicular or a diesel engine but also to any engine. Further, the specific component in the exhaust gas is not limited to the NOx component, and a similar high processing performance is realized by combining a specific gas component and an absorbing liquid.

E エンジン
EX 排気管(排気通路)
H 筒状ハウジング(筒状体)
1 湿式後処理装置(後処理装置)
2 NOx吸収部(気液接触手段)
21 気液接触板
22 気液接触通路
23 ハニカム構造体(多孔性基体)
3 液体供給装置
4 排気導入手段
41 排気導入部
42 仕切り板(仕切り壁)
43 開口部
44 内筒
47 環状通路
E Engine EX Exhaust pipe (exhaust passage)
H Tubular housing (tubular body)
1 Wet post-processing equipment (post-processing equipment)
2 NOx absorption part (gas-liquid contact means)
21 Gas-liquid contact plate 22 Gas-liquid contact passage 23 Honeycomb structure (porous substrate)
3 Liquid supply device 4 Exhaust introduction means 41 Exhaust introduction part 42 Partition plate (partition wall)
43 Opening 44 Inner cylinder 47 Annular passage

Claims (8)

エンジン(E)の排気通路(EX)の途中に配設され、エンジン燃焼排気ガスに含まれる特定ガス成分を、該特定ガス成分を吸収可能な吸収液体と接触させる気液接触手段(2)と、該気液接触手段に吸収液体を供給する液体供給装置(3)を備える後処理装置(1)において、
上記気液接触手段は、内部を気液接触通路(22)とする多孔性基体(23)を筒状体(H)に収容し、該筒状体の一端側に上記液体供給装置を配設して、上記多孔性基体の一端面と対向させるとともに、上記一端側に排気を導入する排気導入手段(4)を設け、
上記排気導入手段は、上記多孔性基体の一端面と上記液体供給装置の供給口(32)の間の空間を排気導入部(41)とし、該排気導入部と排気通路を仕切る仕切り壁(42、44)に、排気の流通および液体の供給を妨げない開口部(43、46)を備えており、
上記多孔性基体は、表面を気液接触面とする気液接触板(21)を複数積層して、内部に多数の上記気液接触通路を形成したハニカム構造体であり、通路壁となる上記気液接触板を貫通して隣り合う通路間を連通する多数の通孔(24)を有するとともに、該通孔の形成箇所を、液体供給方向の上流側に対して下流側で少なくしたことを特徴とする液体を用いたエンジン用後処理装置。
Gas-liquid contact means (2) disposed in the middle of the exhaust passage (EX) of the engine (E) and contacting a specific gas component contained in the engine combustion exhaust gas with an absorbing liquid capable of absorbing the specific gas component; In the post-processing device (1) provided with the liquid supply device (3) for supplying the absorbing liquid to the gas-liquid contact means,
The gas-liquid contact means stores a porous substrate (23) having a gas-liquid contact passage (22) inside in a cylindrical body (H), and the liquid supply device is disposed on one end side of the cylindrical body. And an exhaust introduction means (4) for introducing exhaust to the one end side while facing the one end surface of the porous substrate,
The exhaust introduction means uses a space between one end surface of the porous substrate and the supply port (32) of the liquid supply device as an exhaust introduction part (41), and a partition wall (42) that partitions the exhaust introduction part and the exhaust passage. 44) are provided with openings (43, 46) that do not hinder the flow of exhaust and the supply of liquid ,
The porous substrate is a honeycomb structure in which a plurality of gas-liquid contact plates (21) whose surfaces are gas-liquid contact surfaces are stacked to form a large number of gas-liquid contact passages therein, and the above-mentioned porous substrate serves as a passage wall. It has a large number of through holes (24) that pass through the gas-liquid contact plate and communicate with each other between adjacent passages, and the number of through holes formed is reduced on the downstream side relative to the upstream side in the liquid supply direction. An aftertreatment device for an engine using a characteristic liquid.
上記多孔性基体は、上記通孔の形成箇所を、液体供給方向の上流側のみとした請求項1記載の液体を用いたエンジン用後処理装置。 The engine post-processing apparatus using a liquid according to claim 1 , wherein the porous substrate has the through hole formed only on the upstream side in the liquid supply direction . 上記排気導入手段は、上記筒状体の上記一端側の筒内であって上記液体供給装置の供給口より上流に、上記開口部(43)となる多数の開孔を設けた上記仕切り壁(42)を配置し、上記排気導入部に上流側から排気を導入する請求項1または2に記載の液体を用いたエンジン用後処理装置。 The exhaust introduction means includes the partition wall (provided with a number of openings serving as the opening (43) in the cylinder on the one end side of the cylindrical body and upstream from the supply port of the liquid supply device). 42. The aftertreatment device for an engine using the liquid according to claim 1 or 2, wherein exhaust is introduced into the exhaust introduction portion from the upstream side. 上記排気導入手段は、上記筒状体の上記一端側を二重筒状として、内筒(44)内に上記排気導入部を形成し、内外筒間に、排気通路が接続される環状通路(47)を構成するとともに、上記仕切り壁となる内筒壁に、上記環状通路と上記排気導入部を連通する上記開口部(46)を設けて、上記排気導入部に外周側から排気を導入する請求項1または2に記載の液体を用いたエンジン用後処理装置。 The exhaust introduction means has an annular passage in which the one end side of the cylindrical body is formed as a double cylinder, the exhaust introduction portion is formed in the inner cylinder (44), and the exhaust passage is connected between the inner and outer cylinders. 47), and the opening (46) communicating the annular passage and the exhaust introduction part is provided in the inner cylindrical wall serving as the partition wall, and exhaust is introduced into the exhaust introduction part from the outer peripheral side. engine aftertreatment device using the liquid according to claim 1 or 2. 上記ハニカム構造体は、上記気液接触板となる波板状の気液接触板(21a)と平板状の気液接触板(21b)を交互に積層した積層体からなり、上記波板状の気液接触板と上記平板状の気液接触板の少なくとも一方に、上記通孔を有する請求項1ないし4のいずれか1項に記載の液体を用いたエンジン用後処理装置。 The honeycomb structure includes a laminated body in which corrugated gas-liquid contact plates (21a) and flat gas-liquid contact plates (21b) serving as the gas-liquid contact plates are alternately stacked. The engine aftertreatment device using the liquid according to any one of claims 1 to 4, wherein the through hole is provided in at least one of the gas-liquid contact plate and the flat gas-liquid contact plate . 上記多孔性基体の上記通孔は、上記気液接触板の所定箇所を切り開いて形成され、切り開いた切欠片(25)を、液体供給方向に整列させる請求項1ないし5のいずれか1項に記載の液体を用いたエンジン用後処理装置。 The said through-hole of the said porous base | substrate is formed by opening the predetermined location of the said gas-liquid contact plate, The cut-out piece (25) opened is aligned with the liquid supply direction in any one of Claim 1 thru | or 5 An aftertreatment device for an engine using the described liquid. 上記吸収液体は、水よりも粘性が大きく、使用環境下において液体状態を維持するイオン液体である請求項1ないし6のいずれか1項に記載の液体を用いたエンジン用後処理装置。   The engine aftertreatment device using the liquid according to any one of claims 1 to 6, wherein the absorbing liquid is an ionic liquid having a viscosity higher than that of water and maintaining a liquid state in a use environment. 上記特定ガス成分は、窒素酸化物成分である請求項1ないし7のいずれか1項に記載の液体を用いたエンジン用後処理装置。   The engine aftertreatment device using the liquid according to any one of claims 1 to 7, wherein the specific gas component is a nitrogen oxide component.
JP2013028852A 2013-02-18 2013-02-18 Engine aftertreatment device using liquid Expired - Fee Related JP5939174B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013028852A JP5939174B2 (en) 2013-02-18 2013-02-18 Engine aftertreatment device using liquid
DE102014101634.3A DE102014101634B4 (en) 2013-02-18 2014-02-11 Aftertreatment device using liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013028852A JP5939174B2 (en) 2013-02-18 2013-02-18 Engine aftertreatment device using liquid

Publications (2)

Publication Number Publication Date
JP2014156837A JP2014156837A (en) 2014-08-28
JP5939174B2 true JP5939174B2 (en) 2016-06-22

Family

ID=51264048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013028852A Expired - Fee Related JP5939174B2 (en) 2013-02-18 2013-02-18 Engine aftertreatment device using liquid

Country Status (2)

Country Link
JP (1) JP5939174B2 (en)
DE (1) DE102014101634B4 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107303459A (en) * 2016-04-25 2017-10-31 云南民族大学 The innoxious removing low concentration of NO of high-gravity technologyxDevice
CN107174923B (en) * 2017-07-25 2023-10-17 史汉祥 Flue gas purifying reactor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310265Y2 (en) * 1973-07-18 1978-03-18
JPS605335B2 (en) * 1976-10-19 1985-02-09 三菱樹脂株式会社 Filler for gas-liquid contact
JPH0753223B2 (en) * 1993-02-17 1995-06-07 東洋熱工業株式会社 Contaminated air purification method and device
JP2002306958A (en) 2001-04-11 2002-10-22 Kansai Electric Power Co Inc:The Gas liquid contact plate and gas liquid contact apparatus
EP2530269B1 (en) 2004-02-02 2014-12-03 Tokyo Roki Co. Ltd. SCR Muffler
JP5516445B2 (en) 2011-02-01 2014-06-11 株式会社デンソー Exhaust gas purification device for internal combustion engine
JP2012217918A (en) * 2011-04-08 2012-11-12 Denso Corp Gas separating recovery apparatus and gas separating recovery method

Also Published As

Publication number Publication date
JP2014156837A (en) 2014-08-28
DE102014101634A1 (en) 2014-08-21
DE102014101634B4 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
US10190466B2 (en) Pressure differentiated exhaust aftertreatment device
KR100878747B1 (en) Internal combustion engine
JP6074912B2 (en) Exhaust gas purification system and exhaust gas purification method
JP5929780B2 (en) Gas-liquid separator for engine wet aftertreatment equipment
US9689354B1 (en) Engine exhaust gas recirculation system with at least one exhaust recirculation treatment device
EP2826974A1 (en) Exhaust gas purification device
US20130115141A1 (en) Device for discharging exhaust gas from diesel engine, having ammonolysis module
JP5999368B2 (en) Gas reformer, exhaust purification system, air purifier
US20180266300A1 (en) Close coupled single module aftertreatment system
JP2009114879A (en) Exhaust emission control device for internal combustion engine
JP2013142363A (en) Exhaust emission control device of diesel engine
EP3181843B1 (en) Catalyzed particulate filter
US9140155B2 (en) Modular exhaust system
US20170276053A1 (en) After-Treatment System
CN102889108A (en) Exhaust aftertreatment system for compression-ignition engines
EP1697621B1 (en) Apparatus for purifying exhaust gas
JP5939174B2 (en) Engine aftertreatment device using liquid
JP6263928B2 (en) Condensate separator
JP2013174203A (en) Exhaust emission control device
EP2816205A1 (en) Exhaust purification device for internal combustion engine
JP6028673B2 (en) Gas-liquid contact device for engine wet aftertreatment device
JP2007138887A (en) Method and device for purification of exhaust gas containing particulate matter
US10041391B2 (en) Apparatus for purifying exhaust gas
US20170167335A1 (en) Catalyzed particulate filter
CN102482969A (en) Exhaust purifier of internal combustion engine

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20150219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160502

R151 Written notification of patent or utility model registration

Ref document number: 5939174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees