JP5930455B2 - Sample table for core loss measuring device, core loss measuring device - Google Patents

Sample table for core loss measuring device, core loss measuring device Download PDF

Info

Publication number
JP5930455B2
JP5930455B2 JP2011243554A JP2011243554A JP5930455B2 JP 5930455 B2 JP5930455 B2 JP 5930455B2 JP 2011243554 A JP2011243554 A JP 2011243554A JP 2011243554 A JP2011243554 A JP 2011243554A JP 5930455 B2 JP5930455 B2 JP 5930455B2
Authority
JP
Japan
Prior art keywords
core loss
sample
sample table
toroidal coil
loss measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011243554A
Other languages
Japanese (ja)
Other versions
JP2013100995A (en
Inventor
耕至 高野
耕至 高野
石井 仁
仁 石井
泰典 齋藤
泰典 齋藤
Original Assignee
岩通計測株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岩通計測株式会社 filed Critical 岩通計測株式会社
Priority to JP2011243554A priority Critical patent/JP5930455B2/en
Publication of JP2013100995A publication Critical patent/JP2013100995A/en
Application granted granted Critical
Publication of JP5930455B2 publication Critical patent/JP5930455B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

本発明は、コイル部品のコア材のコアロスを測定するコアロス測定装置、該コアロス測定装置に用いられる試料台に関する。   The present invention relates to a core loss measuring device for measuring a core loss of a core material of a coil component, and a sample table used in the core loss measuring device.

産業機器や家電機器の基幹部品である電源トランス、モーター、チョークコイルなどのコイル部品は、コア材として軟磁性体等の磁性体が用いられている(例えば特許文献1を参照)。このようなコイル部品においては、電力損失であるコアロスが問題となる場合がある。ここでコアロスとは、磁性材料からなるコア材そのもので失われる電気エネルギーであり、ヒステリシス損、渦電流損、残留損を含む。したがって上記のようなコイル部品においてコアロスは、可能な限り小さい方が良いのは言うまでもない。そして近年は、軟磁性体コア材のコアロスを低減する技術が進歩するのに伴い、微小なコアロスを高精度に測定可能なコアロス測定装置のニーズが高まりつつある。   Coil parts such as power transformers, motors, and choke coils, which are basic parts of industrial equipment and home appliances, use a magnetic material such as a soft magnetic material as a core material (see, for example, Patent Document 1). In such a coil component, a core loss that is a power loss may be a problem. Here, the core loss is electric energy lost in the core material itself made of a magnetic material, and includes hysteresis loss, eddy current loss, and residual loss. Therefore, it goes without saying that the core loss in the coil component as described above should be as small as possible. In recent years, the need for a core loss measuring apparatus capable of measuring a minute core loss with high accuracy is increasing as the technology for reducing the core loss of the soft magnetic core material advances.

以下、コアロス測定装置の従来技術の一例とその課題について、図11、図12を参照しながら説明する。
図11は、従来技術のコアロス測定装置100の試料台10Pの斜視図である。図12は、従来技術のコアロス測定装置100の要部を図示した概略構成図である。
Hereinafter, an example of the prior art of the core loss measuring apparatus and its problems will be described with reference to FIGS. 11 and 12.
FIG. 11 is a perspective view of the sample stage 10P of the core loss measuring apparatus 100 of the prior art. FIG. 12 is a schematic configuration diagram illustrating the main part of the core loss measuring apparatus 100 of the prior art.

コアロスの被測定対象である公知のトロイダルコイル50は、軟磁性体コア51、一次巻線52及び二次巻線53を含む。測定試料としての軟磁性体コア51は、軟磁性材料を所謂トロイダル形状に加工して形成したものである。一次巻線52は巻線数N1で軟磁性体コア51に巻かれている。二次巻線53は巻線数N2で軟磁性体コア51に巻かれている。   A known toroidal coil 50 that is an object to be measured for core loss includes a soft magnetic core 51, a primary winding 52, and a secondary winding 53. The soft magnetic core 51 as a measurement sample is formed by processing a soft magnetic material into a so-called toroidal shape. The primary winding 52 is wound around the soft magnetic core 51 with the number of windings N1. The secondary winding 53 is wound around the soft magnetic core 51 with the number of windings N2.

コアロス測定装置100は、試料台10P、信号発生器20、第1電圧測定回路30、第2電圧測定回路40及びシャント抵抗31を備える。   The core loss measuring apparatus 100 includes a sample stage 10P, a signal generator 20, a first voltage measuring circuit 30, a second voltage measuring circuit 40, and a shunt resistor 31.

コアロス測定装置100の試料台10Pは、トロイダルコイル50を支持する台であり、筐体11、試料テーブル12、4つの端子13〜16を含む。筐体11は、略直方体形状をなし、電磁放射及び磁化による測定値への影響を防止するため非磁性金属で形成されている。筐体11の上面に配置される試料テーブル12は、トロイダルコイル50を載置する薄板状の部材であり、トロイダルコイル50の巻線と筐体11との電気的絶縁を確実にするため樹脂等の絶縁性を有する材料で形成されている。4つの端子13〜16は、トロイダルコイル50の一次巻線52及び二次巻線53の端部を信号発生器20、第1電圧測定回路30及び第2電圧測定回路40に電気的に接続するために設けられている。より具体的には端子13、14には、一次巻線52の両端が接続され、端子15、16には、二次巻線53の両端が接続される。   The sample table 10P of the core loss measuring apparatus 100 is a table that supports the toroidal coil 50, and includes a housing 11, a sample table 12, and four terminals 13 to 16. The casing 11 has a substantially rectangular parallelepiped shape, and is formed of a nonmagnetic metal in order to prevent influence on measurement values due to electromagnetic radiation and magnetization. The sample table 12 disposed on the upper surface of the housing 11 is a thin plate-like member on which the toroidal coil 50 is placed, and a resin or the like is used to ensure electrical insulation between the winding of the toroidal coil 50 and the housing 11. It is formed with the material which has the insulating property. The four terminals 13 to 16 electrically connect the ends of the primary winding 52 and the secondary winding 53 of the toroidal coil 50 to the signal generator 20, the first voltage measurement circuit 30, and the second voltage measurement circuit 40. It is provided for. More specifically, both ends of the primary winding 52 are connected to the terminals 13 and 14, and both ends of the secondary winding 53 are connected to the terminals 15 and 16.

信号発生器20は、シャント抵抗31を介して端子13、14に接続されており、トロイダルコイル50の一次巻線52に周期Tの正弦波の励磁電流(交流電流)I1を流す。シャント抵抗31は、抵抗値Rsの抵抗器であり、一次巻線52に流れる励磁電流I1を電圧Vsに変換する。第1電圧測定回路30は、その電圧Vs(シャント抵抗31の両端の電位差)を測定する回路であり、シャント抵抗31の両端に接続されている。第2電圧測定回路40は、端子15、16に接続されており、トロイダルコイル50の二次巻線53に生ずる誘起電圧V2を測定する回路である。   The signal generator 20 is connected to the terminals 13 and 14 via the shunt resistor 31, and causes a sinusoidal excitation current (alternating current) I 1 having a period T to flow through the primary winding 52 of the toroidal coil 50. The shunt resistor 31 is a resistor having a resistance value Rs, and converts the exciting current I1 flowing through the primary winding 52 into a voltage Vs. The first voltage measurement circuit 30 is a circuit that measures the voltage Vs (potential difference between both ends of the shunt resistor 31), and is connected to both ends of the shunt resistor 31. The second voltage measurement circuit 40 is connected to the terminals 15 and 16 and is a circuit that measures the induced voltage V <b> 2 generated in the secondary winding 53 of the toroidal coil 50.

上記説明した構成のコアロス測定装置100において、トロイダルコイル50のコアロスは以下のようにして測定することができる。   In the core loss measuring apparatus 100 having the above-described configuration, the core loss of the toroidal coil 50 can be measured as follows.

まず信号発生器20から周期Tの正弦波の励磁信号を発生させる。そして電圧Vsを第1電圧測定回路30で測定し、測定した電圧Vsから以下の式(1)により、一次巻線52に流れる励磁電流I1を算出する。
I1=Vs/Rs …(1)
また二次巻線53の両端に生じる誘起電圧V2を第2電圧測定回路40で測定し、測定した誘起電圧V2、一次巻線52の巻線数N1、二次巻線53の巻線数N2から以下の式(2)により、一次巻線52のインダクタンス分に加わる電圧V1を算出する。
V1=(N1/N2)V2 …(2)
トロイダルコイル50のコアロスPcは、軟磁性体コア51の電力損失であるから、上記の電圧V1、励磁電流I1及び励磁電流I1の周期Tを用いて以下の式(3)により算出することができる。
またトロイダルコイル50のコアロスPcは、上記の式(1)及び式(2)を式(3)に代入して得られる以下の式(4)から求めることもできる。
このようにして求めたトロイダルコイル50のコアロスPcは、前記の通り、ヒステリシス損、渦電流損、残留損を含む。
First, a sine wave excitation signal having a period T is generated from the signal generator 20. Then, the voltage Vs is measured by the first voltage measurement circuit 30, and the excitation current I1 flowing through the primary winding 52 is calculated from the measured voltage Vs by the following equation (1).
I1 = Vs / Rs (1)
The induced voltage V2 generated at both ends of the secondary winding 53 is measured by the second voltage measuring circuit 40, and the measured induced voltage V2, the number N1 of the primary winding 52, and the number N2 of the secondary winding 53 are measured. From the following equation (2), the voltage V1 applied to the inductance of the primary winding 52 is calculated.
V1 = (N1 / N2) V2 (2)
Since the core loss Pc of the toroidal coil 50 is a power loss of the soft magnetic core 51, it can be calculated by the following equation (3) using the voltage V1, the excitation current I1, and the period T of the excitation current I1. .
The core loss Pc of the toroidal coil 50 can also be obtained from the following equation (4) obtained by substituting the above equations (1) and (2) into equation (3).
As described above, the core loss Pc of the toroidal coil 50 obtained in this way includes hysteresis loss, eddy current loss, and residual loss.

特開2009−176974号公報JP 2009-176974 A

出願人は、コアロス測定装置の研究開発を鋭意行う過程で、従来技術のコアロス測定装置は、試料テーブルに対するコイル部品の配置が僅かに異なるだけでコアロスの測定値が大きく変動してしまう場合があるという課題を発見した。さらに出願人は、このコアロスの測定値の変動は、特にコアロスが小さいコイル部品において顕著となることも突き止めた。このようなコアロスの測定値の変動は、コアロス測定装置の測定精度を低下させる要因となり、特にコアロスが小さいコイル部品においては無視できない測定誤差を生じさせることになる。   In the course of earnestly conducting research and development of a core loss measuring device, the applicant may experience a large change in the measured value of the core loss even if the arrangement of the coil components on the sample table is slightly different. I found a problem. Furthermore, the applicant has also found that the fluctuation of the measured value of the core loss becomes remarkable particularly in a coil component having a small core loss. Such fluctuations in the measured value of the core loss cause a decrease in the measurement accuracy of the core loss measuring device, and in particular cause a measurement error that cannot be ignored in a coil component having a small core loss.

このような状況に鑑み本発明はなされたものであり、その目的は、試料テーブルに対するコイル部品の配置に左右されることなくコイル部品のコアロスを高精度に測定可能なコアロス測定装置を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to provide a core loss measuring device capable of measuring the core loss of a coil component with high accuracy without being influenced by the arrangement of the coil component with respect to a sample table. It is in.

<本発明の第1の態様>
本発明の第1の態様は、非磁性金属で形成された筐体と、絶縁性を有する材料で形成され、前記筐体の上面に配置される試料テーブルと、を備え、前記筐体は、前記試料テーブルが配置される領域に凹部が形成されている、ことを特徴とするコアロス測定装置の試料台である。
このような特徴によれば、非磁性金属の筐体で発生する寄生渦電流損(後述)を低減することができるので、試料テーブルに対するコイル部品の配置に左右されることなくコイル部品のコアロスを高精度に測定することができる。
<First Aspect of the Present Invention>
A first aspect of the present invention includes a housing formed of a nonmagnetic metal, and a sample table formed of an insulating material and disposed on an upper surface of the housing. The sample table of the core loss measuring apparatus is characterized in that a recess is formed in a region where the sample table is arranged.
According to such a feature, since the parasitic eddy current loss (described later) generated in the nonmagnetic metal casing can be reduced, the core loss of the coil component can be reduced without being influenced by the arrangement of the coil component with respect to the sample table. It can be measured with high accuracy.

<本発明の第2の態様>
本発明の第2の態様は、前述した本発明の第1の態様において、前記筐体の凹部は、試料となるトロイダルコイルの直径より20mm以上長い直径の円を包含する大きさで、かつ前記試料テーブルの上面から底面までの長さが15mm以上となる深さで形成されている、ことを特徴とするコアロス測定装置の試料台である。
このような特徴によれば、非磁性金属の筐体で発生する寄生渦電流損(後述)をさらに低減することができるので、試料テーブルに対するコイル部品の配置に左右されることなくコイル部品のコアロスをより高精度に測定することができる。
<Second Aspect of the Present Invention>
According to a second aspect of the present invention, in the first aspect of the present invention described above, the recess of the housing has a size including a circle having a diameter that is 20 mm or more longer than the diameter of the toroidal coil serving as a sample, and The sample table of the core loss measuring apparatus is characterized in that the length from the upper surface to the bottom surface of the sample table is formed to a depth of 15 mm or more.
According to such a feature, the parasitic eddy current loss (described later) generated in the non-magnetic metal casing can be further reduced, so that the core loss of the coil component is not affected by the arrangement of the coil component with respect to the sample table. Can be measured with higher accuracy.

<本発明の第3の態様>
本発明の第3の態様は、絶縁性を有する材料で形成された筐体と、絶縁性を有する材料で形成され、前記筐体の上面に配置される試料テーブルと、を備えるコアロス測定装置の試料台である。
本発明の第3の態様によれば、筐体で発生する寄生渦電流損(後述)を低減することができるので、試料テーブルに対するコイル部品の配置に左右されることなくコイル部品のコアロスを高精度に測定することができる。
<Third Aspect of the Present Invention>
According to a third aspect of the present invention, there is provided a core loss measuring apparatus including: a housing formed of an insulating material; and a sample table formed of an insulating material and disposed on an upper surface of the housing. It is a sample stage.
According to the third aspect of the present invention, the parasitic eddy current loss (described later) generated in the housing can be reduced, so that the core loss of the coil component is increased without being influenced by the arrangement of the coil component with respect to the sample table. It can be measured with high accuracy.

<本発明の第4の態様>
本発明の第4の態様は、前述した本発明の第1〜第3の態様のいずれかにおいて、前記筐体に設けられた四つの端子をさらに備える、ことを特徴とするコアロス測定装置の試料台である。
このような特徴によれば、試料台に載置された試料とコアロス測定装置との電気的接続を容易に行うことができるので、コアロス測定装置の操作性を向上させることができる。
<Fourth aspect of the present invention>
A fourth aspect of the present invention is the core loss measuring apparatus sample according to any one of the first to third aspects of the present invention described above, further comprising four terminals provided on the casing. It is a stand.
According to such a feature, since the electrical connection between the sample placed on the sample stage and the core loss measuring device can be easily performed, the operability of the core loss measuring device can be improved.

<本発明の第5の態様>
本発明の第5の態様は、前述した本発明の第1〜第4の態様のいずれかに記載のコアロス測定装置の試料台と、試料となるトロイダルコイルの一次巻線にシャント抵抗を介して正弦波の励磁電流を流す信号発生器と、前記シャント抵抗の両端の電位差を測定する第1電圧測定回路と、試料となるトロイダルコイルの二次巻線に生ずる誘起電圧を測定する第2電圧測定回路と、を備えるコアロス測定装置である。
本発明の第5の態様によれば、コアロス測定装置において、前述した本発明の第1〜第4の態様のいずれかに記載の発明による作用効果を得ることができる。
<Fifth aspect of the present invention>
According to a fifth aspect of the present invention, there is provided a sample stage of the core loss measuring device according to any one of the first to fourth aspects of the present invention described above, and a primary winding of the toroidal coil as a sample via a shunt resistor. A signal generator for passing a sinusoidal excitation current, a first voltage measurement circuit for measuring a potential difference between both ends of the shunt resistor, and a second voltage measurement for measuring an induced voltage generated in a secondary winding of a toroidal coil as a sample. And a core loss measuring device.
According to the fifth aspect of the present invention, in the core loss measuring apparatus, it is possible to obtain the operational effects of the invention according to any one of the first to fourth aspects of the present invention described above.

本発明によれば、試料テーブルに対するコイル部品の配置に左右されることなくコイル部品のコアロスを高精度に測定可能なコアロス測定装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the core loss measuring apparatus which can measure the core loss of a coil component with high precision can be provided, without being influenced by arrangement | positioning of the coil component with respect to a sample table.

本発明に係るコアロス測定装置の試料台の外観斜視図。The external appearance perspective view of the sample stand of the core loss measuring apparatus which concerns on this invention. 本発明に係るコアロス測定装置の試料台の筐体の側面図。The side view of the housing | casing of the sample stand of the core loss measuring apparatus which concerns on this invention. トロイダルコイルの巻線方向の磁束を図示した斜視図。The perspective view which illustrated the magnetic flux of the winding direction of the toroidal coil. トロイダルコイルの巻線方向に直交する方向の磁束を図示した斜視図。The perspective view which illustrated the magnetic flux of the direction orthogonal to the winding direction of a toroidal coil. 1ターンコイルの巻線方向に直交する方向の磁束を図示した斜視図。The perspective view which illustrated the magnetic flux of the direction orthogonal to the winding direction of 1 turn coil. 第3実験に用いたコアロス測定装置の試料台の外観斜視図。The external appearance perspective view of the sample stand of the core loss measuring apparatus used for 3rd experiment. 第3実験の測定結果のグラフ。The graph of the measurement result of 3rd experiment. 第4実験に用いたコアロス測定装置の試料台の外観斜視図。The external appearance perspective view of the sample stand of the core loss measuring apparatus used for 4th experiment. 第4実験の測定結果のグラフ。The graph of the measurement result of 4th experiment. 本発明に係るコアロス測定装置の試料台の変形例の外観斜視図。The external appearance perspective view of the modification of the sample stand of the core loss measuring apparatus which concerns on this invention. 従来技術のコアロス測定装置の試料台の斜視図。The perspective view of the sample stand of the core loss measuring apparatus of a prior art. 従来技術のコアロス測定装置の要部を図示した概略構成図。The schematic block diagram which illustrated the principal part of the core loss measuring apparatus of a prior art.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<コアロス測定装置の試料台の構成>
本発明に係るコアロス測定装置の試料台の構成について、図1、図2を参照しながら説明する。
図1は、本発明に係るコアロス測定装置の試料台10の外観斜視図である。図2は、本発明に係るコアロス測定装置の試料台10の筐体11の側面図である。
<Configuration of sample stand of core loss measuring device>
The configuration of the sample stage of the core loss measuring apparatus according to the present invention will be described with reference to FIGS.
FIG. 1 is an external perspective view of a sample stage 10 of a core loss measuring apparatus according to the present invention. FIG. 2 is a side view of the housing 11 of the sample stage 10 of the core loss measuring apparatus according to the present invention.

本発明に係るコアロス測定装置の試料台10(以下、単に「試料台10」という。)は、「コイル部品」としてのトロイダルコイル50を支持する台であり、筐体11、試料テーブル12、4つの端子13〜16を含む。ここで試料テーブル12、4つの端子13〜16については、図11に図示した従来技術のコアロス測定装置の試料台10Pと同じ構成であるため、同じ符号を付して詳細な説明を省略する。   The sample table 10 (hereinafter simply referred to as “sample table 10”) of the core loss measuring apparatus according to the present invention is a table that supports a toroidal coil 50 as a “coil component”. Two terminals 13 to 16 are included. Here, since the sample table 12 and the four terminals 13 to 16 have the same configuration as the sample table 10P of the conventional core loss measuring apparatus shown in FIG. 11, the same reference numerals are given and detailed description is omitted.

本発明に係る試料台10の筐体11は、略直方体形状をなし、電磁放射及び磁化による測定値への影響を防止するため非磁性金属で形成されている点は、従来と同様である。そして本発明に係る試料台10の筐体11は、試料テーブル12が配置される領域に凹部17が形成されている点に従来にない特徴がある。凹部17は、直径Dの大きさの円形開口を有する円形凹部である。また凹部17は、筐体11の上面から底面までの長さ(深さ)がHに設定されている(以下、「深さH」という。)。
尚、コアロス測定装置の全体構成については、試料台10の構成以外は図12に図示した従来技術のコアロス測定装置100と同じであるため、図示及び説明を省略する。
The case 11 of the sample stage 10 according to the present invention has a substantially rectangular parallelepiped shape and is formed of a nonmagnetic metal in order to prevent the influence of electromagnetic radiation and magnetization on the measured value, which is the same as in the past. And the housing | casing 11 of the sample stand 10 which concerns on this invention has the characteristics which are not in the past in the recessed part 17 being formed in the area | region where the sample table 12 is arrange | positioned. The recess 17 is a circular recess having a circular opening having a diameter D. The recess 17 has a length (depth) from the top surface to the bottom surface of the housing 11 set to H (hereinafter referred to as “depth H”).
The overall configuration of the core loss measuring apparatus is the same as that of the prior art core loss measuring apparatus 100 shown in FIG.

以下、本発明の技術的意義について、図3〜図9を参照しながら説明する。
図3は、トロイダルコイル50の巻線方向の磁束を図示した斜視図である。図4は、トロイダルコイル50の巻線方向に直交する方向の磁束を図示した斜視図である。図5は、1ターンコイルLの巻線方向に直交する方向の磁束を図示した斜視図である。
The technical significance of the present invention will be described below with reference to FIGS.
FIG. 3 is a perspective view illustrating the magnetic flux in the winding direction of the toroidal coil 50. FIG. 4 is a perspective view illustrating the magnetic flux in the direction orthogonal to the winding direction of the toroidal coil 50. FIG. 5 is a perspective view illustrating the magnetic flux in the direction orthogonal to the winding direction of the one-turn coil L. FIG.

出願人は、鋭意研究を重ねた結果、試料テーブル12に対するトロイダルコイル50の配置が僅かに異なるだけでコアロスの測定値が大きく変動してしまう原因を解明した。以下、詳細に説明する。   As a result of intensive studies, the applicant has clarified the reason why the measured value of the core loss greatly fluctuates even if the arrangement of the toroidal coil 50 with respect to the sample table 12 is slightly different. Details will be described below.

コアロス測定装置100(図12)は、コアロス測定時にコイル部品から漏れ磁束があると、コアロス測定装置100を含む周辺の金属に渦電流を発生させ、その渦電流損がコアロスに含まれて測定されてしまう。この渦電流損(以下、「寄生渦電流損」という。)は、コアの渦電流損ではないから、コアロスの測定値に含まれてはならない。そのためコアロス測定装置100で測定する試料として一般的にトロイダルコイル50が採用されている。トロイダルコイル50は、磁路が閉じているため、一次巻線52に流れる電流によって巻線方向の磁束Aが生じ、漏れ磁束はほとんど生じないと従来考えられていたからである(図3)。   The core loss measuring device 100 (FIG. 12) generates an eddy current in the surrounding metal including the core loss measuring device 100 when there is a leakage magnetic flux from the coil component during the core loss measurement, and the eddy current loss is included in the core loss and measured. End up. This eddy current loss (hereinafter referred to as “parasitic eddy current loss”) is not the eddy current loss of the core, and therefore should not be included in the measured value of the core loss. Therefore, the toroidal coil 50 is generally employed as a sample to be measured by the core loss measuring apparatus 100. This is because, since the magnetic path of the toroidal coil 50 is closed, it has been conventionally considered that the magnetic flux A in the winding direction is generated by the current flowing through the primary winding 52 and that almost no leakage magnetic flux is generated (FIG. 3).

ところが漏れ磁束が生じないと従来考えられていたトロイダルコイルにおいて、出願人は、巻線方向と直交する方向の漏れ磁束B(以下、「垂直漏れ磁束B」という。)が発生する可能性があるとの知見を得るに至った(図4)。トロイダルコイル50は、巻線方向に対して直交する方向から見ると、一次巻線52及び二次巻線53がそれぞれ1ターンだけ巻かれたコイルL(以下、「1ターンコイルL」という。)とみなすことができるからである(図5)。これは例えば軟磁性体コア51の断面を無限小にしていくことを考えると理解しやすい。つまり従来技術の試料台10P(図11)を用いたコアロス測定装置100は、トロイダルコイル50の一次巻線52に電流が流れた時にトロイダルコイル50に発生する垂直漏れ磁束Bによって、試料テーブル12の直下の非磁性金属の筐体11で寄生渦電流損が生じ、この寄生渦電流損も含めてコアロスとして測定されてしまうことになる。   However, in a toroidal coil that has been conventionally considered that no leakage magnetic flux occurs, the applicant may generate a leakage magnetic flux B (hereinafter referred to as “vertical leakage magnetic flux B”) in a direction orthogonal to the winding direction. It came to obtain the knowledge (FIG. 4). When viewed from a direction orthogonal to the winding direction, the toroidal coil 50 is a coil L in which the primary winding 52 and the secondary winding 53 are each wound by one turn (hereinafter referred to as “one-turn coil L”). This is because (FIG. 5). This can be easily understood when considering, for example, making the cross section of the soft magnetic core 51 infinitely small. That is, the core loss measuring apparatus 100 using the prior art sample stage 10P (FIG. 11) uses the vertical leakage magnetic flux B generated in the toroidal coil 50 when a current flows through the primary winding 52 of the toroidal coil 50, so that the sample table 12 Parasitic eddy current loss occurs in the nonmagnetic metal casing 11 directly below, and this parasitic eddy current loss is also measured as core loss.

上記の仮説を検証するため、出願人は、平均直径(外径と内径の和の1/2の長さ。以下、同じ。)を39mmとし、コアロスPcが極めて小さいトロイダルコイル50(具体的には、後述する実験用のトロイダルコイルTC)及び1ターンコイルLをそれぞれ作製した。そして従来技術の試料台10Pとコアロス測定装置100を用いて、両者のコアロスPcをそれぞれ測定して対比する実験を行った。具体的には、信号発生器20から一次巻線52に周波数100KHzの正弦波の励磁電流0.5Aを流してトロイダルコイル50と1ターンコイルLのコアロスPcをそれぞれ測定した。また両者の測定条件を同じにするため、1ターンコイルLのコアロスPcの測定は、トロイダルコイル50の平均高さ(高さの1/2の長さ。以下、同じ。)である5mmだけ、試料テーブル12から浮かせた状態で行った。   In order to verify the above hypothesis, the applicant made the toroidal coil 50 (specifically, the average diameter (the length of the sum of the outer diameter and the inner diameter ½, hereinafter the same)) 39 mm and the core loss Pc being extremely small. Produced a toroidal coil TC for experiments and a one-turn coil L, which will be described later. Then, using the sample stage 10P and the core loss measuring apparatus 100 of the prior art, an experiment for measuring and comparing the core loss Pc of both was performed. Specifically, the core loss Pc of the toroidal coil 50 and the one-turn coil L was measured by passing a sine wave excitation current of 0.5 A at a frequency of 100 KHz from the signal generator 20 to the primary winding 52. Moreover, in order to make both measurement conditions the same, the measurement of the core loss Pc of the one-turn coil L is only 5 mm, which is the average height of the toroidal coil 50 (1/2 the height, the same applies hereinafter). The test was performed while floating from the sample table 12.

測定結果は、トロイダルコイル50のコアロスPcは1.30×10-4 Wであり、1ターンコイルLのコアロスPcは1.35×10-4Wであった。つまり両者のコアロスPcは略同じ値であった。この測定結果は、垂直漏れ磁束Bだけに注目すれば、トロイダルコイル50は1ターンコイルLとみなせるという上記仮説が正しいことを意味する。つまり前記の通り、漏れ磁束がないと従来考えられていたトロイダルコイル50においても実は垂直漏れ磁束Bが発生しているということである。 As a result of the measurement, the core loss Pc of the toroidal coil 50 was 1.30 × 10 −4 W, and the core loss Pc of the one-turn coil L was 1.35 × 10 −4 W. That is, both core losses Pc were substantially the same value. This measurement result means that the hypothesis that the toroidal coil 50 can be regarded as a one-turn coil L is correct if attention is paid only to the vertical leakage magnetic flux B. That is, as described above, the vertical leakage magnetic flux B is actually generated even in the toroidal coil 50 that has been conventionally considered to have no leakage magnetic flux.

このようなことから従来技術の試料台10Pにおいては、試料テーブル12に対するコイル部品の配置が異なると、トロイダルコイル50から試料テーブル12直下の非磁性金属の筐体11までの距離が変わるため、筐体11を貫く垂直漏れ磁束Bの大きさが変化し、それに従って寄生渦電流損も変化することになる。すなわち試料テーブル12に対するトロイダルコイル50の配置が僅かに異なるだけでコアロスPcの測定値が大きく変動するという従来技術の試料台10Pの課題は、そのトロイダルコイル50の配置が異なることによって筐体11を貫く垂直漏れ磁束Bに起因する寄生渦電流損が変化するために生ずるという結論に至る。また寄生渦電流損は、コアロスが大きいトロイダルコイル50であるほど、トロイダルコイル50のコアロスに対して相対的に小さくなる。したがって上記結論は、試料テーブル12に対するコイル部品の配置が異なることによるコアロスの測定値の変動が、特にコアロスが小さいコイル部品において顕著になるという現象とも整合することになる。   For this reason, in the sample stage 10P of the prior art, if the arrangement of the coil parts with respect to the sample table 12 is different, the distance from the toroidal coil 50 to the nonmagnetic metal case 11 directly under the sample table 12 changes. The magnitude of the vertical leakage flux B penetrating the body 11 changes, and the parasitic eddy current loss changes accordingly. That is, the problem of the prior art sample table 10P that the measured value of the core loss Pc varies greatly only by slightly different arrangement of the toroidal coil 50 with respect to the sample table 12 is that the casing 11 is made different by the arrangement of the toroidal coil 50 being different. The conclusion is reached that the parasitic eddy current loss due to the penetrating vertical leakage flux B occurs due to the change. Further, the parasitic eddy current loss becomes relatively smaller with respect to the core loss of the toroidal coil 50 as the core loss of the toroidal coil 50 is larger. Therefore, the above conclusion is consistent with the phenomenon that the variation of the measured value of the core loss due to the difference in the arrangement of the coil parts with respect to the sample table 12 becomes remarkable particularly in the coil parts having a small core loss.

本発明に係る試料台10は、筐体11の試料テーブル12が配置される領域に凹部17が形成されているので、非磁性金属の筐体11から一定以上の間隔をもって離れた位置にトロイダルコイル50を支持することができる。それによって非磁性金属の筐体11で発生する寄生渦電流損を大幅に低減することができる。すなわち本発明に係る試料台10によれば、非磁性金属の筐体11で発生する寄生渦電流損を低減することができるので、試料テーブル12に対するトロイダルコイル50の配置に左右されることなくトロイダルコイル50のコアロスを高精度に測定することができる。   In the sample table 10 according to the present invention, since the recess 17 is formed in the region of the housing 11 where the sample table 12 is disposed, the toroidal coil is located at a position spaced apart from the nonmagnetic metal housing 11 by a certain distance or more. 50 can be supported. Thereby, the parasitic eddy current loss generated in the nonmagnetic metal casing 11 can be greatly reduced. That is, according to the sample stage 10 according to the present invention, the parasitic eddy current loss generated in the nonmagnetic metal casing 11 can be reduced, so that the toroidal is not affected by the arrangement of the toroidal coil 50 with respect to the sample table 12. The core loss of the coil 50 can be measured with high accuracy.

本発明の効果を検証するため出願人は、以下説明する第1実験及び第2実験を行った。   In order to verify the effect of the present invention, the applicant conducted a first experiment and a second experiment described below.

以下、第1実験について説明する。
実験用の試料としては、平均直径、高さ、コア材質及び巻線の巻数が異なる三種類のトロイダルコイルTA、TB、TCを作製した(表1)。
第1実験は、まず信号発生器20から一次巻線52に周波数100KHzの正弦波の励磁電流0.5Aを流した状態で、トロイダルコイルTA、TB、TCを本発明に係る試料台10(図1)の試料テーブル12の上に載置し、それぞれのコアロスをコアロス測定装置100で測定した。また同じ条件で、トロイダルコイルTA、TB、TCを従来技術の試料台10P(図11)の試料テーブル12の上に載置し、それぞれのコアロスをコアロス測定装置100で測定した。
Hereinafter, the first experiment will be described.
As samples for experiments, three types of toroidal coils TA, TB, and TC having different average diameters, heights, core materials, and winding numbers were prepared (Table 1).
In the first experiment, first, the toroidal coils TA, TB, and TC are placed on the sample stage 10 according to the present invention (FIG. 5) in a state where a sine wave excitation current of 0.5 A is passed through the primary winding 52 from the signal generator 20. The sample was placed on the sample table 12 of 1), and each core loss was measured with the core loss measuring apparatus 100. Under the same conditions, the toroidal coils TA, TB, and TC were placed on the sample table 12 of the conventional sample stage 10P (FIG. 11), and each core loss was measured by the core loss measuring apparatus 100.

表2は、第1実験の測定結果である。
表2からは、トロイダルコイルTA、TB、TC、いずれにおいても本発明に係る試料台10で測定したコアロスの方が大幅に減少していることが容易に読み取れる。これは本発明に係る試料台10において寄生渦電流損が大幅に減少していることを意味する。また表2からは、特に平均高さが小さいトロイダルコイルほど、より顕著にコアロスが減少していることが分かる。これは従来技術の試料台10Pでは、平均高さが小さいトロイダルコイルほど非磁性金属の筐体11との間の距離が短いため、それによって寄生渦電流損が大きくなって寄生渦電流損に起因するコアロスの増加が顕著になるためと考えられる。
Table 2 shows the measurement results of the first experiment.
From Table 2, it can be easily read that the core loss measured by the sample stage 10 according to the present invention is greatly reduced in any of the toroidal coils TA, TB, and TC. This means that the parasitic eddy current loss is greatly reduced in the sample stage 10 according to the present invention. Moreover, it can be seen from Table 2 that the core loss is more markedly reduced especially with the toroidal coil having a small average height. This is because in the conventional sample stage 10P, the distance between the toroidal coil having a smaller average height and the nonmagnetic metal casing 11 is shorter, which increases the parasitic eddy current loss and causes the parasitic eddy current loss. This is thought to be due to the significant increase in core loss.

以下、第2実験について説明する。
実験用の試料としては、上記のトロイダルコイルTCを用いた。第2実験では、まず信号発生器20から一次巻線52に周波数100KHzの正弦波の励磁電流0.5Aを流した状態で、本発明に係る試料台10(図1)の試料テーブル12の上にトロイダルコイルTCを載置し、コアロス測定装置100でコアロスを測定した。つづいて本発明に係る試料台10において試料テーブル12から20mmだけ上方へトロイダルコイルTCを浮かせた状態でコアロスを測定した。また同じ条件で、従来技術の試料台10P(図11)の試料テーブル12の上にトロイダルコイルTCを載置し、コアロス測定装置100でコアロスを測定した。つづいて従来技術の試料台10Pにおいて試料テーブル12から20mmだけ上方へトロイダルコイルTCを浮かせた状態でコアロスを測定した。
Hereinafter, the second experiment will be described.
The toroidal coil TC described above was used as an experimental sample. In the second experiment, first, on the sample table 12 of the sample stage 10 (FIG. 1) according to the present invention, a sine wave excitation current of 0.5 A having a frequency of 100 KHz is passed through the primary winding 52 from the signal generator 20. The toroidal coil TC was placed on the core, and the core loss was measured with the core loss measuring apparatus 100. Subsequently, the core loss was measured in a state where the toroidal coil TC was floated upward by 20 mm from the sample table 12 in the sample table 10 according to the present invention. Under the same conditions, the toroidal coil TC was placed on the sample table 12 of the conventional sample stage 10P (FIG. 11), and the core loss was measured by the core loss measuring apparatus 100. Subsequently, the core loss was measured in a state where the toroidal coil TC was floated upward by 20 mm from the sample table 12 on the sample table 10P of the prior art.

表3は、第2実験の測定結果である。
従来技術の試料台10Pでは、試料テーブル12の上にトロイダルコイルTCを載置した状態と、試料テーブル12から20mmだけ上方へトロイダルコイルTCを浮かせた状態とで、約20%ものコアロス変化率が生じた。それに対して本発明に係る試料台10では、コアロス変化率が僅か2.8%だった。すなわち本発明に係る試料台10は、試料テーブル12に対するトロイダルコイルの配置に左右されることなくトロイダルコイルのコアロスを高精度に測定できることが第2実験によって裏付けられた。
Table 3 shows the measurement results of the second experiment.
In the sample table 10P of the prior art, the core loss change rate is about 20% between the state where the toroidal coil TC is placed on the sample table 12 and the state where the toroidal coil TC is floated upward by 20 mm from the sample table 12. occured. On the other hand, in the sample stage 10 according to the present invention, the core loss change rate was only 2.8%. That is, it was confirmed by the second experiment that the sample stage 10 according to the present invention can measure the core loss of the toroidal coil with high accuracy without being influenced by the arrangement of the toroidal coil with respect to the sample table 12.

本発明に係る試料台10の筐体11の凹部17は、試料となるトロイダルコイル50の直径より20mm以上長い直径の円を包含する大きさで、かつ試料テーブル12の上面から底面までの長さが15mm以上となる深さで形成されているのが好ましい。例えば当該実施例において、トロイダルコイル50の平均直径は39mmであり、筐体11の凹部17は、直径Dが59mm、深さHが15mmに設定されている。このような特徴によれば、非磁性金属の筐体11で発生する寄生渦電流損をさらに低減することができるので、試料テーブル12に対するトロイダルコイル50の配置に左右されることなくトロイダルコイル50のコアロスをより高精度に測定することができる。これは以下説明する出願人が行った第3実験及び第4実験の結果に基づくものである。   The concave portion 17 of the housing 11 of the sample stage 10 according to the present invention has a size including a circle having a diameter that is 20 mm or more longer than the diameter of the toroidal coil 50 serving as a sample, and the length from the top surface to the bottom surface of the sample table 12. Is preferably formed to a depth of 15 mm or more. For example, in this embodiment, the average diameter of the toroidal coil 50 is 39 mm, and the recess 17 of the housing 11 is set to have a diameter D of 59 mm and a depth H of 15 mm. According to such a feature, the parasitic eddy current loss generated in the nonmagnetic metal casing 11 can be further reduced, so that the toroidal coil 50 is not affected by the arrangement of the toroidal coil 50 with respect to the sample table 12. Core loss can be measured with higher accuracy. This is based on the results of the third and fourth experiments conducted by the applicant described below.

以下、第3実験について図6及び図7を参照しながら説明する。
図6は、第3実験に用いたコアロス測定装置の試料台10Aの外観斜視図である。
出願人は、従来技術の試料台10Pの試料テーブル12を非磁性金属からなる第3実験用の試料テーブル12Aに置き換えた第3実験用の試料台10Aを用いて第3実験を行った(図6)。試料としては、前記の実験用のトロイダルコイルTA、TB、TCを用いた。具体的には、試料テーブル12Aの上にトロイダルコイルを載置し、信号発生器20から一次巻線52に周波数100KHzの正弦波の励磁電流0.5Aを流した状態で、試料テーブル12Aの上面(導体面)からトロイダルコイルの平均高さまでの距離hを変えながらコアロス測定装置100でコアロスを順次測定していった。
Hereinafter, the third experiment will be described with reference to FIGS. 6 and 7.
FIG. 6 is an external perspective view of the sample stage 10A of the core loss measuring apparatus used in the third experiment.
The applicant conducted a third experiment using a sample table 10A for the third experiment in which the sample table 12 of the sample table 10P of the prior art was replaced with a sample table 12A for the third experiment made of nonmagnetic metal (FIG. 6). As the sample, the above-described experimental toroidal coils TA, TB, and TC were used. Specifically, a toroidal coil is placed on the sample table 12A, and a top surface of the sample table 12A is passed with a sine wave excitation current 0.5A having a frequency of 100 KHz flowing from the signal generator 20 to the primary winding 52. The core loss was sequentially measured by the core loss measuring device 100 while changing the distance h from the (conductor surface) to the average height of the toroidal coil.

図7は、第3実験の測定結果のグラフであり、縦軸が相対コアロス、横軸が距離hである。ここで相対コアロスは、上記の距離hが最も短いときのコアロスを1として相対換算したものであり、以下、同様とする。
第3実験の測定結果のグラフからは、トロイダルコイルTA、TB、TC、いずれにおいても距離hが15mm以上で相対コアロスPcが0.1以下になることを容易に読み取ることできる。そして第3実験における距離hは、本発明に係る試料台10における筐体11の凹部17の深さHに相当する。よって第3実験の測定結果からは、本発明に係る試料台10において筐体11の凹部17の深さHを15mm以上に設定することによって、非磁性金属の筐体11で発生する寄生渦電流損を効果的に低減できることが理解できる。
FIG. 7 is a graph of measurement results of the third experiment, in which the vertical axis represents relative core loss and the horizontal axis represents distance h. Here, the relative core loss is a relative conversion assuming that the core loss when the distance h is the shortest is 1, and the same applies hereinafter.
From the graph of the measurement results of the third experiment, it can be easily read that the distance h is 15 mm or more and the relative core loss Pc is 0.1 or less in any of the toroidal coils TA, TB, and TC. The distance h in the third experiment corresponds to the depth H of the concave portion 17 of the housing 11 in the sample stage 10 according to the present invention. Therefore, from the measurement result of the third experiment, the parasitic eddy current generated in the nonmagnetic metal casing 11 is set by setting the depth H of the concave portion 17 of the casing 11 to 15 mm or more in the sample stage 10 according to the present invention. It can be understood that the loss can be effectively reduced.

以下、第4実験について図8及び図9を参照しながら説明する。
図8は、第4実験に用いたコアロス測定装置の試料台10Bの外観斜視図である。
さらに出願人は、上記の第3実験用の試料テーブル12A(非磁性金属)の中央にさらに円形開口部18を形成した第4実験用の試料テーブル12Bを作製した。また従来技術の試料台10Pの筐体11の上面には、充分な大きさで深さが約40mmの凹部を形成した(図示省略)。そして上記の実験用の三種類のトロイダルコイルTA、TB、TCを用いて、上記の筐体11と試料テーブル12Bで第4実験用の試料台10Bを構成して第4実験を行った(図8)。具体的には、第4実験用の試料テーブル12Bの上に、図示の如くトロイダルコイルの中心に円形開口部18が位置するようにトロイダルコイルを載置する。そして信号発生器20から一次巻線52に周波数100KHzの正弦波の励磁電流0.5Aを流した状態で、第4実験用の試料テーブル12Bの円形開口部18の直径を変更しながらコアロス測定装置100でコアロスを順次測定していった。
Hereinafter, the fourth experiment will be described with reference to FIGS.
FIG. 8 is an external perspective view of the sample stage 10B of the core loss measuring apparatus used in the fourth experiment.
Further, the applicant produced a sample table 12B for the fourth experiment in which a circular opening 18 was further formed in the center of the sample table 12A (nonmagnetic metal) for the third experiment. Further, a recess having a sufficient size and a depth of about 40 mm was formed on the upper surface of the casing 11 of the sample stage 10P of the prior art (not shown). Then, using the three types of toroidal coils TA, TB, and TC for the experiment described above, the fourth experiment was performed by configuring the sample stage 10B for the fourth experiment with the casing 11 and the sample table 12B (see FIG. 8). Specifically, the toroidal coil is placed on the sample table 12B for the fourth experiment so that the circular opening 18 is positioned at the center of the toroidal coil as shown in the figure. Then, the core loss measuring device is changed while changing the diameter of the circular opening 18 of the sample table 12B for the fourth experiment in a state where the excitation current 0.5A of a sine wave having a frequency of 100 KHz is supplied from the signal generator 20 to the primary winding 52. At 100, the core loss was measured sequentially.

図9は、第4実験の測定結果のグラフであり、縦軸が相対コアロス、横軸が直径差ΔDである。ここで直径差ΔDは、円形開口部18の直径からトロイダルコイルの平均直径を減算した値であり、以下、同様とする。
第4実験の測定結果のグラフからは、トロイダルコイルTA、TB、TC、いずれにおいても直径差ΔD20mm以上で相対コアロスPcが0.1以下になることを容易に読み取ることできる。そして第4実験における直径差ΔDは、本発明に係る試料台10(図1)における筐体11の凹部17の直径Dとトロイダルコイル50の平均直径との差に相当する。よって第4実験の測定結果からは、本発明に係る試料台10において筐体11の凹部17をトロイダルコイル50の平均直径より20mm以上長い直径の円を包含する大きさとすることによって、非磁性金属の筐体11で発生する寄生渦電流損を効果的に低減できることが理解できる。
FIG. 9 is a graph of the measurement results of the fourth experiment, where the vertical axis represents the relative core loss and the horizontal axis represents the diameter difference ΔD. Here, the diameter difference ΔD is a value obtained by subtracting the average diameter of the toroidal coil from the diameter of the circular opening 18, and the same applies hereinafter.
From the graph of the measurement results of the fourth experiment, it can be easily read that the relative core loss Pc is 0.1 or less with a diameter difference ΔD of 20 mm or more in any of the toroidal coils TA, TB, and TC. The diameter difference ΔD in the fourth experiment corresponds to the difference between the diameter D of the concave portion 17 of the housing 11 and the average diameter of the toroidal coil 50 in the sample stage 10 (FIG. 1) according to the present invention. Therefore, from the measurement result of the fourth experiment, in the sample stage 10 according to the present invention, the concave portion 17 of the housing 11 has a size including a circle having a diameter 20 mm or more longer than the average diameter of the toroidal coil 50, so that the nonmagnetic metal It can be understood that the parasitic eddy current loss generated in the casing 11 can be effectively reduced.

<他の実施例、変形例>
本発明は、上記説明した実施例に特に限定されるものではなく、特許請求の範囲に記載された発明の範囲内で種々の変形が可能であること言うまでもない。
<Other embodiments and modifications>
The present invention is not particularly limited to the embodiments described above, and it goes without saying that various modifications are possible within the scope of the invention described in the claims.

図10は、本発明に係るコアロス測定装置の試料台10の変形例を図示した外観斜視図である。
この変形例の試料台10は、凹部17が略矩形の開口形状を有している以外は、前述した実施例(図1)と同じ構成である。すなわち本発明に係る試料台10の凹部17は、特に前述した実施のように円形の開口形状を有するものに限定されないのであり、どのような形状であってもよい。
FIG. 10 is an external perspective view illustrating a modified example of the sample stage 10 of the core loss measuring apparatus according to the present invention.
The sample stage 10 of this modification has the same configuration as that of the above-described embodiment (FIG. 1) except that the concave portion 17 has a substantially rectangular opening shape. That is, the concave portion 17 of the sample stage 10 according to the present invention is not particularly limited to one having a circular opening shape as described above, and may have any shape.

また本発明に係る試料台10は、コアロスの測定において寄生渦電流損を無視できる程に低減できればよいので、例えば筐体11を非磁性金属ではなく樹脂等の絶縁性を有する材料で形成することによっても目的を達成することができる。この場合は、筐体11の上面に凹部17を設けなくてよい。   Further, the sample stage 10 according to the present invention only needs to be able to reduce the parasitic eddy current loss so that it can be ignored in the measurement of the core loss. For example, the housing 11 is formed of an insulating material such as a resin instead of a nonmagnetic metal. The purpose can also be achieved. In this case, the concave portion 17 may not be provided on the upper surface of the housing 11.

10 試料台
11 筐体
12 試料テーブル
13〜16 端子
17 凹部
20 信号発生器
30 第1電圧測定回路
31 シャント抵抗
40 第2電圧測定回路
50 トロイダルコイル
100 コアロス測定装置
DESCRIPTION OF SYMBOLS 10 Sample stand 11 Case 12 Sample table 13-16 Terminal 17 Recess 20 Signal generator 30 1st voltage measurement circuit 31 Shunt resistance 40 2nd voltage measurement circuit 50 Toroidal coil 100 Core loss measurement apparatus

Claims (3)

非磁性金属で形成された筐体と、
絶縁性を有する材料で形成され、前記筐体の上面に配置される試料テーブルと、を備え、
前記筐体の上面には、前記試料テーブル上に試料が配置される領域に対応する部分に凹部が形成され
前記筐体の凹部は、試料となるトロイダルコイルの直径より20mm以上長い直径の円を包含する大きさで、かつ前記試料テーブルの上面から前記凹部の底面までの長さが15mm以上となる深さで形成されている、ことを特徴とするコアロス測定装置の試料台。
A housing made of non-magnetic metal;
A sample table formed of an insulating material and disposed on the upper surface of the housing,
On the upper surface of the housing, a recess is formed in a portion corresponding to a region where the sample is arranged on the sample table ,
The recess of the housing has a size including a circle having a diameter 20 mm or more longer than the diameter of the toroidal coil as a sample, and a depth from the top surface of the sample table to the bottom surface of the recess is 15 mm or more. A sample stage of a core loss measuring device, characterized in that it is formed by:
請求項1に記載のコアロス測定装置の試料台において、前記筐体に設けられた四つの端子をさらに備える、ことを特徴とするコアロス測定装置の試料台。 The sample table of the core loss measuring apparatus according to claim 1 , further comprising four terminals provided on the casing. 請求項1又は2に記載のコアロス測定装置の試料台と、
試料となるトロイダルコイルの一次巻線にシャント抵抗を介して正弦波の励磁電流を流す信号発生器と、
前記シャント抵抗の両端の電位差を測定する第1電圧測定回路と、
試料となるトロイダルコイルの二次巻線に生ずる誘起電圧を測定する第2電圧測定回路と、を備えるコアロス測定装置。
A sample stage of the core loss measuring device according to claim 1 or 2 ,
A signal generator for supplying a sinusoidal excitation current to the primary winding of the toroidal coil as a sample via a shunt resistor;
A first voltage measuring circuit for measuring a potential difference between both ends of the shunt resistor;
A core loss measuring device comprising: a second voltage measuring circuit that measures an induced voltage generated in a secondary winding of a toroidal coil that is a sample.
JP2011243554A 2011-11-07 2011-11-07 Sample table for core loss measuring device, core loss measuring device Active JP5930455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011243554A JP5930455B2 (en) 2011-11-07 2011-11-07 Sample table for core loss measuring device, core loss measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011243554A JP5930455B2 (en) 2011-11-07 2011-11-07 Sample table for core loss measuring device, core loss measuring device

Publications (2)

Publication Number Publication Date
JP2013100995A JP2013100995A (en) 2013-05-23
JP5930455B2 true JP5930455B2 (en) 2016-06-08

Family

ID=48621752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011243554A Active JP5930455B2 (en) 2011-11-07 2011-11-07 Sample table for core loss measuring device, core loss measuring device

Country Status (1)

Country Link
JP (1) JP5930455B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120547A (en) * 2017-12-28 2019-07-22 岩崎通信機株式会社 Iron loss measurement method, test fixture of impedance analyzer, and sample stand of iron loss measurement device
CN114325126B (en) * 2022-03-04 2022-05-17 浙江富特科技股份有限公司 Method and system for measuring winding loss of inductor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372570U (en) * 1986-10-29 1988-05-14
JPH0275983A (en) * 1988-09-12 1990-03-15 Tokin Corp Method for measuring temperature characteristics of iron loss of magnetic substance
JP4237045B2 (en) * 2003-12-24 2009-03-11 旭化成株式会社 Magnetic measuring device

Also Published As

Publication number Publication date
JP2013100995A (en) 2013-05-23

Similar Documents

Publication Publication Date Title
JP5948958B2 (en) Current detector
JP2957206B2 (en) Current sensor
JPH07110343A (en) Direct current sensor
CN108039267B (en) Current transformer
JP6123275B2 (en) Current detector
JP2016181620A (en) Magnetic core for current transformer, current transformer and watthour meter
JP2018066651A (en) Magnetic sensor inductance element and current sensor having the same
JP2009204342A (en) Eddy current type sample measurement method and eddy current sensor
JP6272500B2 (en) Improved magnetic core configuration for magnetic flowmeters
JP5930455B2 (en) Sample table for core loss measuring device, core loss measuring device
TWI383570B (en) Current transformer and electric energy meter
US20050007095A1 (en) Open-loop electric current sensor and a power supply circuit provided with such sensors
JP2012233718A (en) Current detection device
Zámborszky et al. Electrical and calorimetric power loss measurements of practically ideal soft magnetic cores
JP5516079B2 (en) Current detector
JP2002202328A (en) Magnetic field type current sensor
JP2017130613A (en) Coil device
CN102156268A (en) Device for measuring rotating magnetization characteristic of magnetic material
KR101696606B1 (en) Coiled jig for measuring leakage inductance of single coil component and method of measuring leakage inductance for the component
US8610311B1 (en) Passive power generation system
KR100966450B1 (en) Non-contact type current measuring apparatus
KR100724101B1 (en) AC current sensor using air core
JP2007142065A (en) Zero-phase current transformer
JP5490448B2 (en) Magnetic sensor and current measuring device
CN213069016U (en) Annular coil structure for magnetic core parameter measurement

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20140717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160422

R150 Certificate of patent or registration of utility model

Ref document number: 5930455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250