JP5921685B2 - 永久磁石埋込型電動機、圧縮機、及び冷凍空調装置 - Google Patents

永久磁石埋込型電動機、圧縮機、及び冷凍空調装置 Download PDF

Info

Publication number
JP5921685B2
JP5921685B2 JP2014522275A JP2014522275A JP5921685B2 JP 5921685 B2 JP5921685 B2 JP 5921685B2 JP 2014522275 A JP2014522275 A JP 2014522275A JP 2014522275 A JP2014522275 A JP 2014522275A JP 5921685 B2 JP5921685 B2 JP 5921685B2
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic resistance
electric motor
embedded
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014522275A
Other languages
English (en)
Other versions
JPWO2014002195A1 (ja
Inventor
昌弘 仁吾
昌弘 仁吾
馬場 和彦
和彦 馬場
和慶 土田
和慶 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP5921685B2 publication Critical patent/JP5921685B2/ja
Publication of JPWO2014002195A1 publication Critical patent/JPWO2014002195A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

この発明は、永久磁石埋込型電動機、圧縮機、及び冷凍空調装置に関するものである。
空気調和機の圧縮機に搭載する電動機は、省エネ・低騒音を求められると共に、150℃程度の高温雰囲気中での使用を保証する必要がある。一般に、Nd-Fe-B系希土類磁石は、残留磁束密度が高く、電動機の小型・高効率化に向いているが、高温になるほど保磁力が低下するため、同一電流で比較した場合、高温雰囲気で使用する電動機ほど減磁し易いという課題がある。そのため、希土類磁石が高温雰囲気中で減磁しないように、例えば、Dy(ディスプロシウム)、Tb(テルビウム)といった重希土類元素を添加することで、保磁力を向上させ、減磁しないように使用している。しかし、近年、重希土類元素は希少価値が高まり、調達性や価格高騰のリスクが大きくなっている。そのような情勢を反映して、高効率で低騒音、且つ、保磁力の低い希土類磁石でも減磁せずに使用可能な、減磁に強い電動機が求められている。
特許文献1では、永久磁石埋設用穴およびそれに埋設される永久磁石の端部に接するように磁束短絡防止用穴をロータコアの外周に近接してロータコアに設けており、上記永久磁石埋設用穴に上記永久磁石を埋設したロータを用いることにより永久磁石端部での磁束の短絡を防止し、永久磁石の端部の磁束もステータに渡り、トルク発生に有効に働くことにより、高効率で、且つ、コギングトルクが低く、振動や騒音の少ない永久磁石電動機を得る技術が開示されている。
特開平11−098731号公報
しかしながら、従来の永久磁石電動機においては、負荷が大きいとき、或いは、過負荷によって動作中にロック状態となったとき、また或いは、起動時等の過渡状態にあるとき、さらには、ステータ巻線が短絡したとき等に大きな電機子反作用が発生し、ロータに逆磁界が加わることがある。特に、集中巻方式の場合には、瞬時的に隣接するティースが異極となってインダクタンスが大きくなり、逆磁界がロータにかかり易くなる。
また、永久磁石をロータ表面に埋め込んだロータ、特に永久磁石の端部のロータ外周側に磁束短絡防止用穴を設けた場合には、ロータ外周の薄肉部に磁束が集中し易い構造となり、ロータ外周部の薄肉部が磁気飽和した状態では、一部の逆磁界は永久磁石を通過し、永久磁石を減磁させてしまうという課題があった。
この発明は、上記に鑑みてなされたものであって、ロータの磁気特性を損なわず、且つ、減磁特性に優れた永久磁石埋込型電動機、圧縮機、及び冷凍空調装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る永久磁石埋込型電動機は、内周側に開口する複数のスロット部及び隣り合うスロット部間にティース部が設けられたステータコアの前記ティース部に巻線が巻回されてなるステータと、このステータの内側に回転自在に配置され、ロータコアの外周部に周方向に沿って設けられた複数の磁石挿入孔にそれぞれ永久磁石が埋設され各永久磁石が当該ロータコアの内部に埋め込まれたロータと、を備え、前記各ティース部は、径方向に延伸する径方向延伸部とこの径方向延伸部の内径側に接続され周方向に延伸する周方向延伸部とからなる基部と、前記周方向延伸部の周方向の少なくとも一方の端部に設けられ前記基部よりも磁気抵抗の大きい磁気抵抗増大部とを有し、隣接する前記基部間の周方向の最小間隔をLa、隣接する前記ティース部間の最小隙間の間隔をLb、前記ロータコアと前記ステータコアとの間の隙間の間隔をLgとした場合に、La>2Lg>Lbの関係が成立するように構成される。
本発明によれば、ロータの磁気特性を損なわず、且つ、減磁特性に優れた永久磁石埋込型電動機を提供することができる、という効果を奏する。
図1は、実施の形態1に係る永久磁石埋込型電動機の構成を示す横断面図である。 図2は、図1の部分拡大断面図である。 図3は、従来の電動機の構成を示す部分拡大断面図である。 図4は、従来の永久磁石埋込型電動機において逆磁界(減磁界)が発生した様子を示した図である。 図5は、図1の構成において、逆磁界が発生した様子を示した図である。 図6は、実施の形態1に係る電動機と従来の電動機とに対し、逆磁界をロータに印加した際の同一保磁力の永久磁石における減磁率の比較結果を示した図である。 図7は、分割コアの連結体を示した図である。 図8は、実施の形態2に係る永久磁石埋込型電動機の構成を示す部分拡大断面図である。 図9は、実施の形態3に係る永久磁石埋込型電動機の構成を示す部分拡大断面図である。 図10は、実施の形態4に係る永久磁石埋込型電動機の構成を示す部分拡大断面図である。 図11は、基部と磁気抵抗増大部の磁気抵抗の比に対する誘起電圧と減磁耐力の関係を示した図である。
以下に、本発明に係る永久磁石埋込型電動機、圧縮機、及び冷凍空調装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、本実施の形態に係る永久磁石埋込型電動機の構成を示す横断面図、図2は、図1の部分拡大断面図である。以下、図1及び図2を参照して、本実施の形態に係る永久磁石埋込型電動機の構成について説明する。
本実施の形態に係る電動機1は、環状のステータ2と、ステータ2の内側にエアギャップ11を介して回転自在に配置されたロータ6とを備えている。
ステータ2は、環状のステータコア3と、ステータコア3に巻装されたステータ巻線(図示せず)とを備えている。ステータコア3は、外周側のバックヨーク部4aと、バックヨーク部4aから径方向の内側に突出し周方向に略等間隔で複数個設けられたティース部4bとを備えている。これらのティース部4bにはステータ巻線が例えば集中巻方式で巻回されている。隣接ティース部4b間には空隙であるスロット部5が設けられている。換言すれば、内周側に開口する隣接スロット部5間にティース部4bが設けられている。なお、図示例では、ティース部4bの個数は例えば9個である。ステータコア3は、所定の形状に形成された厚さが例えば0.35mm程度の薄い電磁鋼板を所定の枚数積層することで構成される。ステータコア3の所定の部位には、電磁鋼板をかしめた箇所であるかしめ部20が形成されている。
ロータ6は、永久磁石埋込型であり、ロータコア7と、ロータコア7の外周部に設けられた磁石挿入孔8に埋設された永久磁石9とを備えている。磁石挿入孔8は、周方向に略等間隔で複数個形成されている。図示例では、磁石挿入孔8の個数は例えば6個である。磁石挿入孔8は、それぞれ外周部に沿って配置され、その断面形状は例えば周方向に長寸の略矩形である。
磁石挿入孔8は、永久磁石9と略同一の断面形状であり、磁石挿入孔8には、例えば厚さ2mm程度の平板状の永久磁石9が挿入される。永久磁石9は、例えばNd−Fe−B(ネオジム−鉄−ボロン)系の希土類磁石とすることができる。磁石挿入孔8には1極あたり1個の永久磁石9が挿入され、永久磁石9は厚さ方向に平行に磁化されている。これらの複数個の永久磁石9は、周方向に極性が交互となるように配置される。なお、ロータの磁極数は、2極以上であればいくつでもよいが、ここでは、ロータの磁極数が6極の場合を例示している。また、ここでは、永久磁石9として例えばNd−Fe−B(ネオジム−鉄−ボロン)系の希土類磁石を用いているが、永久磁石9の種類はこれに限るものではない。
磁石挿入孔8は、周方向の両端部に磁束短絡防止用孔13を備えており、磁石挿入孔8に永久磁石9が挿入された状態で磁束短絡防止用孔13が永久磁石9の周方向の両端部に設けられた空隙となる。すなわち、磁石挿入孔8は、永久磁石9が挿入される本体部分とこれに連結する1対の磁束短絡防止用孔13とからなる。磁束短絡防止用孔13を設けることで、隣接磁石間で磁束が短絡せず、磁路が狭くなるように設計されている。ロータコア7の外周面と磁束短絡防止用孔13との間の部分である極間薄肉部の幅は、ここでは例えば電磁鋼板と同等程度の厚さ0.35mmとしている。このようなロータ構成をとる理由は、永久磁石9の端部での磁束の短絡を防止し、永久磁石9の端部の磁束をステータ2に渡り易くし、発生トルクを大きくするためである。
ロータコア7の中央部には回転エネルギーを伝達するシャフト(図示せず)が挿入されるシャフト孔10が形成されている。シャフト(図示せず)は、シャフト孔10に焼嵌、圧入等されてロータ6に連結される。更に、ロータコア7には、磁石挿入孔8よりも内径側の軸方向に、冷媒流路となる複数の風穴12が設けられている。ロータコア7は、所定の形状に形成された厚さが例えば0.35mm程度の薄い電磁鋼板を所定の枚数積層することで構成される。
次に、ステータ2の詳細について説明する。ステータ2は、それぞれバックヨーク部4aとバックヨーク部4aから突出したティース部4bとからなるT字型の磁性片部である分割コア15aを複数個環状に連結して構成される。すなわち、複数の分割コア15aがバックヨーク部4aに形成される連結部15bを介して折り曲げ可能に連結され、連結部15bを適宜折り曲げることにより、環状のステータ構造が形成されている(例えば、特許第3828015号公報参考)。
図7は、分割コア15aの連結体を示した図である。図7に示すように、ステータ2は、連結部15bで互いに直列に連結された複数個の分割コア15aのティース部4bに絶縁材17を介して巻線16を巻回した後、連結された分割コア15aを環状にすることで構成される。このような構成にすることにより、一般的な一体コアのステータ(巻線を隣接するティース部間(スロットオープニング)から挿入)と比較して、隣接するティース部4b先端間の隙間を狭く構成することが可能となる。
図2に示すように、ティース部4bは、基部18と、基部18先端に延出した磁気抵抗増大部19a,19bにより構成される。ここで、基部18とは従来のステータのティース部を意味し、一般的に、隣接する基部18間の隙間は、磁気特性に優れる最適な幅があり、広すぎるとマグネットの磁束を拾える範囲が狭まり、狭すぎると磁束が隣り合うティース部先端間で短絡してしまう。また、コギングトルクや鉄損との関係性から適正幅が選択される場合もある。本実施の形態では、ステータ2に鎖交するマグネット磁束量が多く、コギングトルクが小さくなるように隣接する基部18間の隙間を調整してある。
基部18は、径方向に延伸する径方向延伸部18aと、これの内径側に接続されてロータ6の外周面に沿う周方向延伸部18bとからなる。磁気抵抗増大部19aは、周方向延伸部18bの周方向の一方の端部に設けられ、磁気抵抗増大部19bは、周方向延伸部18bの周方向の他方の端部に設けられる。磁気抵抗増大部19a,19bの磁気抵抗は、基部18の磁気抵抗よりも大きい。なお、図3は、従来の永久磁石埋込型電動機の構成を示す部分拡大断面図である。図3に示すように、従来の電動機100では、基部18には磁気抵抗増大部が設けられていない。なお、図3では、図2と同一の構成要素には同一の符号を付している。
更に、本実施の形態の構成を具体的に説明すると、複数の電磁鋼鈑を積層して構成されるステータコア3において、基部18を、通常の電磁鋼板板厚で構成し、基部18先端に延出した磁気抵抗増大部19a,19bを、基部18先端に延出する部位にエッチング処理を施し、基部18よりも板厚を薄くすることで構成する。ここでは、例えば、基部18の板厚を0.35mmとし、磁気抵抗増大部19a,19bの板厚を0.15mmとしている。
更に、本実施の形態では、隣接する基部18間の周方向の最小間隔をLa、磁気抵抗増大部19a,19bも含めた隣接ティース部4b間の最小隙間の間隔をLb、エアギャップ隙間の間隔(エアギャップ11の幅)をLgとしたときに、La>2Lg>Lbの関係が成立するように構成している。ここでは、例えば、La=2.5mm,Lg=0,7mm,Lb=0.3mmとしている。
ステータ2は、ステータコア3のスロット部5に絶縁材17(図7)を介して巻線16(図7)が巻装されて構成され、ステータ2に指令回転数に同期した周波数の電流を通電することにより、回転磁界を発生させることができる。
本実施の形態の電動機1は、駆動回路のインバータによるPWM制御により可変速駆動を行うことにより、要求の製品負荷条件に合わせた高効率な運転を可能とする。電動機1は、例えば、空気調和機の圧縮機に搭載され、100℃以上の高温雰囲気中での使用を保証する。
次に、本実施の形態の作用について説明する。一般に、永久磁石埋込型電動機においては、負荷が大きいとき、或いは、過負荷によって動作中にロック状態となったとき、また或いは、起動時等の過渡状態にあるとき、さらには、ステータ巻線が短絡したとき等に大きな電機子反作用が発生し、ロータに逆磁界が加わることがある。特に、集中巻方式の場合には、隣接するティースが異極となってインダクタンスが大きくなり、逆磁界がロータにかかり易くなる。逆磁界とは、ステータに通電することで発生するロータの磁極の向きとは相反する極の磁界を意味している。
このような逆磁界は、磁気抵抗が大きいところを避けて、できるだけ磁気抵抗が小さいところを流れようとする性質がある。特に、通常のステータのティース先端部の隙間(図3の隙間Laに相当)が、エアギャップ隙間Lgに対し、La>2Lgの関係にある場合、ティース先端部の隙間の磁気抵抗がエアギャップの磁気抵抗よりも大きくなるため、図4に示すように、ティース部4bから発生した逆磁界25は隣接ティース部間よりも磁気抵抗の小さいティース部4b→ロータ6→ティース部4bの経路を通過しようとする。なお、図4は、従来の永久磁石埋込型電動機において逆磁界(減磁界)25が発生した様子を示した図であり、磁気抵抗増大部19a,19bが設けられていない点を除けば図1と同じであり、図1と同一の構成要素には同一の符号を付している。
ところが、永久磁石をロータ表面に埋め込んだロータ、特に永久磁石の端部のロータ外周側に磁束短絡防止用孔を設けた場合には、ロータ外周の薄肉部に磁束が集中し易い構造となっている。つまり、一般的な電動機の磁気特性を改善するためには、永久磁石をできるだけロータ表面に配置し、永久磁石の端部に磁束短絡防止用孔を設けることが好ましいが、過負荷等でロータに逆磁界が印加される場合には、ロータ外周部の薄肉部が磁気飽和し、一部の逆磁界は永久磁石を通過し、減磁を引き起こしてしまう。特に、減磁し易い部位は、磁束短絡防止用孔の下の永久磁石の端部である。
永久磁石は、逆磁界がある閾値の大きさまでは元の磁気特性を保持するが、閾値を超えると残留磁束密度が低下し、元の磁気特性には戻らない不可逆減磁となる。不可逆減磁が起きると、永久磁石の残留磁束密度が低下し、トルクを発生させるための電流が増加し、電動機の効率を悪化させるだけでなく、電動機の制御性が悪化し、信頼性の低下をもたらす。
上記のように、本実施の形態では、ステータ2のティース部4bを、基部18と、基部18先端に延出した磁気抵抗の大きい部位(磁気抵抗増大部19a,19b)により構成し、且つ、La>2Lg>Lbの関係を満たすように構成することで、通常の運転時にはLaが支配的な磁気特性に優れた電動機を実現しつつ、大電流が流れてロータ6が磁気飽和した場合には、逆磁界が、ロータ6を介して隣接するティース部4b間を渡るよりも、隣接する磁気抵抗増大部間19a,19bを通過した方が磁気抵抗が小さい状態が生じるようにし、図5に示すように、逆磁界(減磁界)24がLbを短絡し、永久磁石9の減磁を抑制することが可能となる。なお、図5は、図1の構成において、逆磁界(減磁界)24が発生した様子を示した図である。
図6は、本実施の形態に係る電動機1と従来の電動機100とに対し、逆磁界をロータ6に印加した際の同一保磁力の永久磁石9における減磁率の比較結果を示した図である。図6では、横軸は通電電流を表し、縦軸は減磁率を表す。ここで、減磁率は、起磁力を印加する前後のロータ6から発生する磁束量の変化を表している。一般に、電動機が減磁すると、電動機を搭載する圧縮機、及び、圧縮機を搭載する冷凍空調機の性能が変動し、また、電動機に発生する電圧が変化するため、電動機の制御性が悪化する。製品の信頼性を満足するためにも、減磁率は3%程度の低下に抑止する必要がある。図6に示すように、本実施の形態に係る電動機1は、従来の電動機に比べ、3%減磁する起磁力が約30%高く、従来品と同じ電流範囲で使用する場合には、より保磁力の低い磁石を使用することが可能となる。すなわち、本実施の形態によれば、保磁力を向上させるためのレアアース添加量を削減することができ、低コストな電動機1を構成することができる。
図11は、基部18と磁気抵抗増大部19a,19bの磁気抵抗の比に対する誘起電圧と減磁耐力の関係を示した図である。すなわち、横軸は(磁気抵抗増大部19a,19bの磁気抵抗)/(基部18の磁気抵抗)を表し、縦軸は従来の電動機を基準とした場合の無負荷誘起電圧と減磁耐力を表している。磁気抵抗の比が大きいほど、磁気抵抗増大部19a,19bは空隙に近く、従来の電動機に近いことを意味し、磁気抵抗の比が1になると、磁気抵抗増大部19a,19bは基部18と同じ磁気抵抗であり、単純にティース歯先が延長された場合と同じ状態にあることを意味する。誘起電圧はロータ6を回転させた際にステータ巻線に誘起される電圧であり、値が大きいほど磁石磁束が多く鎖交し、マグネットトルクに優れた電動機となる。誘起電圧は、従来の電動機の構成のもとで最適となるように基部18を設計しているため、基部18先端に延出した磁気抵抗増大部19a,19bを設けることにより、ティース部4b先端間での磁束の短絡が生じ、低下してしまうが、磁気抵抗の比を大きくすれば低下を緩和できる。減磁耐力に関しては、磁気抵抗の比を小さくすればするほど、減磁界を短絡させ易くなるので改善効果は大きくなる。図11からわかるように、誘起電圧の低下量に対し、減磁耐力の改善効果は大きいため、誘起電圧低下分のデメリットを減磁耐力改善で補うことができる。例えば、減磁耐力が向上した分、保磁力の小さい、少ない重希土類元素含有量の永久磁石9を使用可能となり、重希土類元素含有量を低減したことで、永久磁石9の残留磁束密度が向上するため、上記の誘起電圧の低下を補うことができる。また、図11より、誘起電圧の低下が小さく、減磁耐力向上の効果が大きい領域は、磁気抵抗の比が2〜3倍の範囲であることがわかる。
本実施の形態によれば、ティース部4bを、基部18と、基部18先端に延出した磁気抵抗の大きい部位である磁気抵抗増大部19a,19bにより構成しているので、ステータ2は、良好な磁気特性を構成するための隣接する基部18間の最小間隔Laと、減磁特性を改善するための磁気抵抗増大部19a,19bによる隣接ティース部4b間の最小隙間の間隔Lbを併せ持つこととなり、磁気特性が良好で減磁特性に優れたものとなる。これに対し、従来の電動機では、ティース部の隣接する基部間の隙間には適正な幅があり、この幅が広すぎるとマグネットの磁束を拾える範囲が狭まり、狭すぎると隣接するティース部先端間で磁束が短絡してしまうという問題があった。
本実施の形態では、ティース部4bを、隣接する基部18間の最小間隔をLa、隣接ティース部4b間の最小隙間の間隔をLb、エアギャップ隙間をLgとしたときに、La>2Lg>Lbの関係が成立するように構成している。これにより、通常の運転時にはLaが支配的な磁気特性に優れた電動機1でありつつも、大電流が流されてロータ6が磁気飽和した場合には、逆磁界がLbを短絡するようにして、永久磁石9の減磁を抑制することが可能となる。
このように、本実施の形態では、通常の磁気特性が良好となるようLaの間隔を調整しているため、マグネット磁束のステータ鎖交量を大きく、コギングトルクの小さく設計でき、且つ、逆磁界が発生した際の減磁耐力を向上させることができる。特に、磁束短絡防止用孔13によりステータ2への鎖交磁束量を増加させたロータ形状において減磁し易い課題点を解決することができ、高効率な電動機1を構成することが可能となる。
また、本実施の形態によれば、高効率でコギングトルクの小さい電動機1を構成すると共に、永久磁石9が減磁しにくい信頼性の高い電動機1が得られる。また、減磁に強い電動機1となるため、従来と同じ減磁耐力であれば、低保磁力な永久磁石9を使用することが可能となり、重希土類元素の添加量の少ない、安価な希土類磁石を使用することが可能となる。更に、重希土類元素の添加量を減らすと、永久磁石9の残留磁束密度が向上するため、マグネットトルクが向上し、同一トルクを発生させるための電流を小さくすることができ、銅損、及び、インバータの通電損失を低減することが可能となる。
また、本実施の形態によれば、減磁に強い電動機1となるため、従来と同じ減磁耐力であれば、磁石厚さを薄くすることが可能であり、高価な希土類磁石の使用量を抑制し、安価な電動機1を構成することが可能となる。
一般に、一体コアでは隣接するティース部先端間の隙間は、巻線を巻く都合上、一定の隙間以上に縮めることはできないが、分割コアの場合は、巻線後にステータを環状に形成するため、ティース部先端間の隙間をより狭く設計することが可能である。本実施の形態では、分割コア15aの特性を活かして減磁に強いステータ構造を実現している。
なお、隣接する磁束短絡防止用孔13の周方向の幅Lc(隣接する磁束短絡防止用孔13において互いに対向する側と反対側の両端の周方向における間隔)が、隣接する基部18間の最小間隔Laよりも広く(Lc>La)構成している場合には(図2参照)、磁束短絡防止用孔13下の永久磁石9の端部が減磁しやすい構成であるため、本実施の形態の効果が大きくなる。
また、本実施の形態は、巻線方式、スロット数、極数によらずに同様の効果を奏することができる。なお、集中巻方式の場合には、瞬時的に隣接するティース部4bが異極となってインダクタンスが大きくなり、逆磁界がロータ6にかかり易くなるので、本実施の形態を好適に適用することができる。また、本実施の形態は、永久磁石9をロータコア7の表面に配置したロータ6についても適用することができ、同様の効果を奏する。
また、本実施の形態では、磁気抵抗増大部19a,19bを、電磁鋼板における当該磁気抵抗増大部19a,19bに相当する部位にエッチング処理を施すことにより当該部位の板厚を基部18の板厚よりも薄くすることで構成する例について説明したが、これ以外の方法で構成してもよい。例えば、複数の電磁鋼鈑を積層して構成されるステータコア3において、基部18先端に延出した部位にプレス加工等を施し、応力により透磁率を低下させることで磁気抵抗増大部19a,19bを構成してもよい。
また、本実施の形態の電動機1を圧縮機及び冷凍空調装置にそれぞれ搭載することにより、高効率・低騒音で、減磁しにくい信頼性の高い圧縮機及び冷凍空調装置を得ることができる。
実施の形態2.
図8は、本実施の形態に係る永久磁石埋込型電動機の構成を示す部分拡大断面図であり、実施の形態1の図2に対応する図である。実施の形態1では、基部18に対して左右対称に磁気抵抗増大部19a,19bを設ける構成としたが、本実施の形態の電動機1aでは、図8に示すように、磁気抵抗増大部19cの形状は、ティース部4bの中心に対し、左右非対称としている。すなわち、基部18は、径方向に延伸する径方向延伸部18aと、これの内径側に接続されてロータ6の外周面に沿う周方向延伸部18bとからなり、周方向延伸部18bの周方向の一方の端部にのみ磁気抵抗増大部19cが設けられている。なお、図8では、図2と同一の構成要素には同一の符号を付している。本実施の形態のその他の構成、作用、効果は実施の形態1と同様である。
実施の形態3.
図9は、本実施の形態に係る永久磁石埋込型電動機の構成を示す部分拡大断面図であり、実施の形態1の図2に対応する図である。本実施の形態の電動機1bでは、図9に示すように、複数の電磁鋼鈑を積層して構成されるステータコア3において、基部18に対し、基部18先端に延出した磁気抵抗増大部19d,19eを、基部18先端に延出する微小幅突起部として構成する。すなわち、基部18は、径方向に延伸する径方向延伸部18aと、これの内径側に接続されてロータ6の外周面に沿う周方向延伸部18bとからなるが、周方向延伸部18bの一方の端部には当該端部の径方向の幅よりも小さい径方向の幅で段差をつけて設けられた突起状の磁気抵抗増大部19dが設けられ、周方向延伸部18bの他方の端部には当該端部の径方向の幅よりも小さい径方向の幅で段差をつけて設けられた突起状の磁気抵抗増大部19eが設けられている。なお、図示例では、磁気抵抗増大部19d,19eは、いずれも基部18から内径側で突出しているが(すなわち、段差が外径側に設けられる)、外径側で突出していてもよいし、段差が内径側及び外径側の双方に設けられるように突出していてもよい。また、磁気抵抗増大部19d,19eの一方のみを設け、左右非対称に構成してもよい。なお、図9では、図2と同一の構成要素には同一の符号を付している。本実施の形態のその他の構成、作用、効果は実施の形態1と同様である。
実施の形態4.
図10は、本実施の形態に係る永久磁石埋込型電動機の構成を示す部分拡大断面図であり、実施の形態1の図2に対応する図である。本実施の形態の電動機1cでは、図10に示すように、複数の電磁鋼鈑を積層して構成されるステータコア3において、基部18に対し、基部18先端に延出した磁気抵抗増大部19f,19gを、基部18先端に延出した部位にスリット(空隙)を設けることで構成する。すなわち、基部18は、径方向に延伸する径方向延伸部18aと、これの内径側に接続されてロータ6の外周面に沿う周方向延伸部18bとからなるが、周方向延伸部18bの一方の端部にはスリット(空隙)である磁気抵抗増大部19fが設けられ、周方向延伸部18bの他方の端部にはスリット(空隙)である磁気抵抗増大部19gが設けられている。なお、磁気抵抗増大部19f,19gの一方のみを設け、左右非対称に構成してもよい。なお、図10では、図2と同一の構成要素には同一の符号を付している。本実施の形態のその他の構成、作用、効果は実施の形態1と同様である。
以上のように、本発明は、永久磁石埋込型電動機、圧縮機、及び冷凍空調装置として有用である。
1,1a〜1c,100 電動機
2 ステータ
3 ステータコア
4a バックヨーク部
4b ティース部
5 スロット部
6 ロータ
7 ロータコア
8 磁石挿入孔
9 永久磁石
10 シャフト孔
11 エアギャップ
12 風穴
13 磁束短絡防止用孔
15a 分割コア
15b 連結部
16 巻線
17 絶縁材
18 基部
18a 径方向延伸部
18b 周方向延伸部
19a〜19g 磁気抵抗増大部
20 かしめ部
24,25 逆磁界

Claims (8)

  1. 内周側に開口する複数のスロット部及び隣り合うスロット部間にティース部が設けられたステータコアの前記ティース部に巻線が巻回されてなるステータと、
    このステータの内側に回転自在に配置され、ロータコアの外周部に周方向に沿って設けられた複数の磁石挿入孔にそれぞれ永久磁石が埋設され各永久磁石が当該ロータコアの内部に埋め込まれたロータと、
    を備え、
    前記各ティース部は、径方向に延伸する径方向延伸部とこの径方向延伸部の内径側に接続され周方向に延伸する周方向延伸部とからなる基部と、前記周方向延伸部の周方向の少なくとも一方の端部に設けられ前記基部よりも磁気抵抗の大きい磁気抵抗増大部とを有し、
    隣接する前記基部間の周方向の最小間隔をLa、隣接する前記ティース部間の最小隙間の間隔をLb、前記ロータコアと前記ステータコアとの間の隙間の間隔をLgとした場合に、La>2Lg>Lbの関係が成立するように構成された永久磁石埋込型電動機。
  2. 前記ステータコアは複数枚の電磁鋼板を積層して構成され、
    前記磁気抵抗増大部の板厚、前記基部の板厚よりも薄請求項に記載の永久磁石埋込型電動機。
  3. 前記ステータコアは複数枚の電磁鋼板を積層して構成され、
    前記磁気抵抗増大部は、前記周方向延伸部の周方向の少なくとも一方の端部に設けられ当該一端部の径方向の幅よりも小さい径方向の幅で段差をつけて設けられた突起部として構成されている請求項に記載の永久磁石埋込型電動機。
  4. 前記ステータコアは複数枚の電磁鋼板を積層して構成され、
    前記磁気抵抗増大部は、前記周方向延伸部の周方向の少なくとも一方の端部に設けられたスリットとして構成されている請求項に記載の永久磁石埋込型電動機。
  5. 前記磁気抵抗増大部の磁気抵抗は、前記基部の磁気抵抗の2から3倍である請求項に記載の永久磁石埋込型電動機。
  6. 前記各磁石挿入孔の周方向の両端部にはそれぞれ磁束短絡防止用孔が設けられ、隣接する前記磁束短絡防止用孔同士の互いに対向する側と反対側の両端の周方向における間隔Lcが、隣接する前記ティース部間の最小隙間の間隔Lbよりも大きい請求項に記載の永久磁石埋込型電動機。
  7. 請求項に記載の永久磁石埋込型電動機を搭載した圧縮機。
  8. 請求項に記載の圧縮機を搭載した冷凍空調装置。
JP2014522275A 2012-06-26 2012-06-26 永久磁石埋込型電動機、圧縮機、及び冷凍空調装置 Active JP5921685B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/066290 WO2014002195A1 (ja) 2012-06-26 2012-06-26 永久磁石埋込型電動機、圧縮機、及び冷凍空調装置

Publications (2)

Publication Number Publication Date
JP5921685B2 true JP5921685B2 (ja) 2016-05-24
JPWO2014002195A1 JPWO2014002195A1 (ja) 2016-05-26

Family

ID=49782427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014522275A Active JP5921685B2 (ja) 2012-06-26 2012-06-26 永久磁石埋込型電動機、圧縮機、及び冷凍空調装置

Country Status (5)

Country Link
US (1) US20150139830A1 (ja)
EP (1) EP2866336B1 (ja)
JP (1) JP5921685B2 (ja)
CN (2) CN104380584B (ja)
WO (1) WO2014002195A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016144252A (ja) * 2015-01-30 2016-08-08 三菱重工プラスチックテクノロジー株式会社 ステータおよびモータ
JP6537623B2 (ja) * 2015-11-04 2019-07-03 三菱電機株式会社 ステータ、電動機、圧縮機、及び冷凍空調装置
US10897168B2 (en) * 2016-01-27 2021-01-19 Mitsubishi Electric Corporation Magnetizing method, rotor, motor, and scroll compressor
US9985483B2 (en) * 2016-05-24 2018-05-29 Abb Schweiz Ag Electro-dynamic machine, system and method
JP6832767B2 (ja) * 2017-03-28 2021-02-24 本田技研工業株式会社 電動機用ヨーク、およびその製造方法
JP6616362B2 (ja) * 2017-09-04 2019-12-04 シナノケンシ株式会社 ブラシレスモータ及び固定子の巻線方法
EP3700061B1 (en) * 2017-10-19 2023-10-04 Mitsubishi Electric Corporation Motor, fan, electric vacuum cleaner, and hand drying device
WO2019167152A1 (ja) * 2018-02-28 2019-09-06 三菱電機株式会社 モータ、電動送風機、電気掃除機および手乾燥装置
JP7262926B2 (ja) 2018-03-16 2023-04-24 株式会社日立製作所 ラジアルギャップ型回転電機
CN111555480B (zh) * 2020-05-26 2021-04-30 安徽美芝精密制造有限公司 电机、压缩机和制冷设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1123319A (en) * 1909-12-29 1915-01-05 Westinghouse Electric & Mfg Co Dynamo-electric machine.
DE69735741T2 (de) * 1996-02-23 2006-09-14 Matsushita Electric Industrial Co., Ltd., Kadoma Motor
JPH1198731A (ja) 1997-07-22 1999-04-09 Matsushita Electric Ind Co Ltd 永久磁石を埋設したロータを用いたモータ
EP1624553B1 (en) * 1997-09-08 2012-02-08 Panasonic Corporation Permanent magnet synchronous motor
JP3076006B2 (ja) * 1997-09-08 2000-08-14 松下電器産業株式会社 永久磁石同期電動機
IT1320322B1 (it) * 2000-04-28 2003-11-26 Filippis Pietro De Motore brushless a magneti permanenti.
JP4606640B2 (ja) * 2001-05-08 2011-01-05 三菱電機株式会社 回転電機
JP3795781B2 (ja) * 2001-09-05 2006-07-12 アスモ株式会社 コアシート、コアシートの製造方法及びステータ並びに電動機
JP3828015B2 (ja) 2002-01-08 2006-09-27 三菱電機株式会社 永久磁石形モータ及び永久磁石形モータの製造方法及び圧縮機及び冷凍サイクル装置
JP3903956B2 (ja) * 2003-05-23 2007-04-11 日産自動車株式会社 複軸多層モータ
EP1487089A3 (en) * 2003-06-13 2005-04-27 Matsushita Electronics Corporation Permanent magnet motor
JP5084770B2 (ja) * 2009-03-13 2012-11-28 三菱電機株式会社 電動機及び圧縮機及び空気調和機
US8258669B2 (en) * 2009-05-21 2012-09-04 Honda Motor Co., Ltd. Motor with stator configuration for increased coil length and coil space factors

Also Published As

Publication number Publication date
WO2014002195A1 (ja) 2014-01-03
EP2866336A4 (en) 2016-06-01
CN104380584B (zh) 2018-02-27
EP2866336B1 (en) 2018-09-05
US20150139830A1 (en) 2015-05-21
CN203368276U (zh) 2013-12-25
CN104380584A (zh) 2015-02-25
JPWO2014002195A1 (ja) 2016-05-26
EP2866336A1 (en) 2015-04-29

Similar Documents

Publication Publication Date Title
JP5921685B2 (ja) 永久磁石埋込型電動機、圧縮機、及び冷凍空調装置
JP5931213B2 (ja) 永久磁石埋込型電動機及びそれを備えた冷凍空調装置
JP5933743B2 (ja) 永久磁石埋込型電動機、圧縮機、および冷凍空調装置
JP5889340B2 (ja) 永久磁石埋込型電動機の回転子、及びこの回転子を備えた電動機、及びこの電動機を備えた圧縮機、及びこの圧縮機を備えた空気調和機
KR101566047B1 (ko) 자속 집중형 영구자석 전동기
JPWO2006092924A1 (ja) 磁性体、回転子、電動機、圧縮機、送風機、空気調和機及び車載用空気調和機
WO2019215865A1 (ja) ロータ、電動機、圧縮機および空気調和装置
JP5084899B2 (ja) 永久磁石型電動機
JP6081315B2 (ja) 永久磁石型電動機、これを用いた圧縮機、及び冷凍サイクル装置
JP2015171272A (ja) 永久磁石埋込型電動機およびこれを用いた密閉型電動圧縮機
JP2003274591A (ja) 集中巻式dcモータ及びそれを搭載したコンプレッサ
JP4848670B2 (ja) 回転子、電動機、圧縮機、送風機、及び空気調和機
JP6442054B2 (ja) ロータ、永久磁石埋込型電動機、圧縮機及び空気調和機
JP7401381B2 (ja) 永久磁石電動機
JP7401380B2 (ja) 永久磁石電動機
KR20200143729A (ko) 회전자, 모터와 압축기
JP2021164325A (ja) 永久磁石電動機
JP2021164324A (ja) 永久磁石電動機
JP2018201287A (ja) 電動機

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160412

R150 Certificate of patent or registration of utility model

Ref document number: 5921685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250