JP5917735B2 - Biomass power generation system - Google Patents

Biomass power generation system Download PDF

Info

Publication number
JP5917735B2
JP5917735B2 JP2015022250A JP2015022250A JP5917735B2 JP 5917735 B2 JP5917735 B2 JP 5917735B2 JP 2015022250 A JP2015022250 A JP 2015022250A JP 2015022250 A JP2015022250 A JP 2015022250A JP 5917735 B2 JP5917735 B2 JP 5917735B2
Authority
JP
Japan
Prior art keywords
biomass
superheated steam
pyrolysis
carbonization furnace
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015022250A
Other languages
Japanese (ja)
Other versions
JP2015165019A (en
Inventor
光幸 飯嶋
光幸 飯嶋
君典 高橋
君典 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takahashi Seisakusho KK
Original Assignee
Takahashi Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takahashi Seisakusho KK filed Critical Takahashi Seisakusho KK
Priority to JP2015022250A priority Critical patent/JP5917735B2/en
Publication of JP2015165019A publication Critical patent/JP2015165019A/en
Application granted granted Critical
Publication of JP5917735B2 publication Critical patent/JP5917735B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Description

本発明は、バイオマス発電システムに関する。さらに詳細には、バイオマス(廃木材等有機廃棄物)を熱分解・ガス化し、得られた生成ガスを用いてガスエンジン等で効率よく発電するバイオマス発電システムに関する。   The present invention relates to a biomass power generation system. More specifically, the present invention relates to a biomass power generation system that thermally decomposes and gasifies biomass (organic waste such as waste wood) and efficiently generates power with a gas engine or the like using the obtained product gas.

近年、バイオマス特にリグニンを多く含む木質系材料の熱分解ガス化は新規なエネルギー資源の供給源として大きな可能性を有しており有効利用する試みが行われている。木質系材料を熱分解ガス化するには、原料となる木質バイオマスを温度200〜600℃で低酸素状態において、ガス(CO、H、CH、CO、HO)、炭化物、炭化水素に分解し、熱分解生成物を酸素又は空気を制限下供給して燃焼し、次に前記炭化物を高温加熱してガス化して水性ガスを生成する。 In recent years, pyrolysis gasification of woody materials containing a large amount of biomass, particularly lignin, has great potential as a source of new energy resources, and attempts have been made to effectively use it. In order to pyrolyze and convert wood-based materials, the raw material wood biomass is gas (CO, H 2 , CH 4 , CO 2 , H 2 O), carbide, carbonization in a low oxygen state at a temperature of 200 to 600 ° C. It decomposes into hydrogen, the pyrolysis product is supplied with oxygen or air under restriction and burned, and then the carbide is heated to a high temperature and gasified to produce a water gas.

1990年代に入って化石燃料の消費が地球温暖化を引き起こすことが明らかとなったことに加え、2011年3月11日の東日本大震災により化石燃料に代わる代替えエネルギー資源としてバイオマスや廃棄物から熱化学的手法によってエネルギーを回収する方法が注目されボイラー設備を用いたスチームタービン発電の他に生成ガスを燃料ガスとして発電効率の高いガスエンジンで発電し20%を超える発電効率が得られている。また、ガス化で得られる合成ガスはメタノールや合成軽油、混合アルコールといった液体燃料の原料ともなることから石油代替燃化技術の一つとしてガス化技術が注目されている。 In addition to the fact that the consumption of fossil fuels caused global warming in the 1990s, the Great East Japan Earthquake on March 11, 2011, as an alternative energy resource to replace fossil fuels from biomass and waste In addition to steam turbine power generation using a boiler facility, a method of recovering energy by a conventional technique has been attracting attention, and power generation efficiency exceeding 20% is obtained by generating power with a gas engine having high power generation efficiency using generated gas as fuel gas. In addition, since the synthesis gas obtained by gasification also becomes a raw material for liquid fuels such as methanol , synthetic light oil, and mixed alcohols, gasification technology is attracting attention as one of petroleum alternative combustion technologies.

前記の廃木材等バイオマスから炭化物を熱分解して熱分解ガスを発生させる装置としては例えば、特許文献1に記載の外熱式分解ガス化炉がある。特許文献1記載の外熱式分解ガス化炉は水平方向に配置された内筒となるガス化炉本体の外側に水蒸気加熱器の排ガスを通過させる外筒部が覆う二重構造となっており内筒内部に軸方向にスクリューコンベアが設置されている。また、過熱水蒸気を炭化炉に使用する発明として特許文献2に記載のバイオマス系を燃料とする炭の製造装置がある。しかし、特許文献2記載の発明は炭化炉で発生した熱分解ガスを過熱蒸気で無煙無臭処理して排気ガスとして排出するものであり、熱分解ガスの成分比を均一化するという点において本願発明とは技術的思想が全く異なるものである。   An apparatus for pyrolyzing carbide from biomass such as waste wood to generate pyrolysis gas is, for example, an externally heated cracking gasification furnace described in Patent Document 1. The externally heated cracking gasification furnace described in Patent Document 1 has a double structure in which an outer cylinder part that allows the exhaust gas of the steam heater to pass through is disposed outside the gasification furnace main body that is an inner cylinder arranged in the horizontal direction. A screw conveyor is installed in the axial direction inside the inner cylinder. Moreover, there exists a manufacturing apparatus of the charcoal which uses the biomass type | system | group as a fuel of patent document 2 as invention which uses superheated steam for a carbonization furnace. However, the invention described in Patent Document 2 is the present invention in that the pyrolysis gas generated in the carbonization furnace is treated as smokeless and odorless with superheated steam and discharged as exhaust gas, and the component ratio of the pyrolysis gas is made uniform. Is completely different from the technical idea.

特開2004−35837号公報JP 2004-35837 A 特開2008−13736号公報JP 2008-13736 A

従来の固定床炉等では、ガス化炉本体を外側から800℃以上の高温に加熱しても内筒容積が大きなガス化炉では内部に投入された炭化物を均一に且つ速やかに高温に加熱することは困難であり、加熱温度分布にムラが生じる等不安定要素が高く、発生する熱分解ガスの組成比にブレが生じる可能性がある。内筒内部の炭化物を均一に且つ速やかに高温に加熱して組成比が均一な熱分解ガスが得られる熱分解ガス化技術が要望されていた。そこで、本願発明者は熱分解ガス化炉の内筒内部に蓄熱性突起を設けることによって温度分布をより安定化して生成ガスの成分比のブレがない熱分解ガス化装置の発明について特許を取得した(特許第5342664)。   In a conventional fixed bed furnace or the like, even if the gasification furnace main body is heated from the outside to a high temperature of 800 ° C. or higher, the carbide charged in the inside is heated to a high temperature uniformly and quickly in a gasification furnace having a large inner cylinder volume. This is difficult, and unstable elements such as unevenness in the heating temperature distribution are high, and the composition ratio of the generated pyrolysis gas may be blurred. There has been a demand for a pyrolysis gasification technique in which carbide inside the inner cylinder is uniformly and quickly heated to a high temperature to obtain a pyrolysis gas having a uniform composition ratio. Therefore, the inventor of this application obtained a patent for an invention of a pyrolysis gasification apparatus that stabilizes the temperature distribution by providing a heat storage projection inside the inner cylinder of the pyrolysis gasification furnace and does not cause fluctuations in the component ratio of the product gas. (Patent No. 5342664).

一方、バイオマス発電においては、ガスエンジン、ガスタービンエンジン、スチームタービンエンジン等が用いられる。中でもガスエンジンはエンジンの構造がガソリンエンジンと同様であり、他のエンジンに比較してコンパクト(50〜4000kW程度)で発電効率が高くバイオマス発電に適する。しかし、熱分解ガス(水性ガス)はガス中の可燃ガス(CO、H)の含有割合によって発熱量が決まる。即ち、水性ガス中の水素(H)、一酸化炭素(CO)及び二酸化炭素(CO)の組成比にブレがあると発熱量が変化し、発電機を回転するエンジンの回転数に影響するために安定した電力が得られないばかりでなくオーバーヒート等で故障の原因ともなり問題であった。また、前記特許発明に係る熱分解ガス化装置をバイオマス発電システムに適用するに当たって、従来のボイラーで発生した水蒸気を直接熱分解ガス化装置に供給する方式では、熱量過不足によりガス化領域の温度分布にブレが生じ或いはメタンガス等余分なガスが発生する可能性が生じる問題があった。そこで、本願発明者は鋭意研究し、ボイラーで発生した水蒸気に代えて高温の過熱蒸気を熱分解ガス化装置のガス化領域に供給することによってガス化領域の温度を低下させることなく且つ蓄熱性突起の輻射熱との相乗効果によって領域内の温度分布をより安定化させ、水性ガスの組成比を更に均一化すると共に水性ガス成分中のメタンガス等の発生を防止できることを見出し本願発明に到達したものであって、本願発明は前記問題点を解消し安全且つ効率の良いバイオマス発電システムを提供することを目的とする。 On the other hand, in biomass power generation, a gas engine, a gas turbine engine, a steam turbine engine, or the like is used. Among them, the structure of a gas engine is the same as that of a gasoline engine, and it is more compact (about 50 to 4000 kW) than other engines, has high power generation efficiency, and is suitable for biomass power generation. However, the heat generation amount of the pyrolysis gas (water gas) is determined by the content ratio of the combustible gas (CO, H 2 ) in the gas. That is, if the composition ratio of hydrogen (H 2 ), carbon monoxide (CO), and carbon dioxide (CO 2 ) in the water gas varies, the amount of generated heat changes, which affects the number of revolutions of the engine that rotates the generator. As a result, not only stable power is not obtained, but also overheating causes a failure, which is a problem. In addition, when applying the pyrolysis gasifier according to the patent invention to a biomass power generation system, in a system in which water vapor generated in a conventional boiler is directly supplied to the pyrolysis gasifier, the temperature of the gasification region due to excessive or insufficient heat quantity There has been a problem that the distribution may be blurred or extra gas such as methane gas may be generated. Therefore, the inventor of the present application diligently studied and replaced the steam generated in the boiler with high-temperature superheated steam to the gasification region of the pyrolysis gasifier without reducing the temperature of the gasification region and the heat storage property. It has been found that the temperature distribution in the region can be further stabilized by the synergistic effect with the radiant heat of the protrusion, the composition ratio of the water gas can be made more uniform, and the generation of methane gas etc. in the water gas component can be prevented. Therefore, an object of the present invention is to solve the above problems and provide a safe and efficient biomass power generation system.

前記の課題を解決するために、本発明は、バイオマスを破砕する原料破砕機と、破砕したバイオマスを乾燥する乾燥機と、乾燥した前記バイオマスを加熱して炭化する炭化炉と、水蒸気を熱して過熱蒸気を発生する過熱蒸気発生装置と、前記過熱蒸気発生装置より供給される過熱蒸気と前記炭化炉で炭化して得られた炭化物とを前記炭化炉で発生した燃焼排ガスによって加熱して熱分解ガスを発生させる熱分解ガス化装置と、前記熱分解ガスを熱交換し精製した水性ガスを用いて発電して電力を得る発電装置とを備え、
前記乾燥機は、原料のバイオマスを前記炭化炉ないし熱分解ガス化装置から供給される燃焼排ガスによって乾燥し該乾燥したバイオマスを炭化炉に供給する、
前記過熱蒸気発生装置は、水源ボイラーから供給される水蒸気を前記炭化炉ないし熱分解ガス化装置から供給される燃焼排ガスによって熱して発生する過熱蒸気を熱分解ガス化装置に供給する、
前記熱分解熱分解ガス化装置は、筒状の外筒と、外筒内部に設けられる内筒と、内筒の下方に回転自在に配置されるターンテーブルと、ターンテーブルの回転中心部に内筒の周壁と空隙をおいて配設される蓄熱性突起とを備え、
前記内筒と蓄熱性突起との空隙を炭化物のガス化領域として構成し、前記外筒と内筒の空隙には炭化炉で発生した燃焼排ガスが導入され、該燃焼排ガスによって内筒内部並びに前記蓄熱性突起が加熱されると共にその輻射熱と過熱蒸気とによってガス化領域の炭化物が均一に加熱されて得られる組成比が均一な水性ガスによって常時一定の熱量で発電装置を作動し、もって安全で且つ効率よく電力を供給するように構成されることを特徴とするバイオマス発電システムとする。
In order to solve the above problems, the present invention includes a raw material crusher that crushes biomass, a dryer that dries the crushed biomass, a carbonization furnace that heats and carbonizes the dried biomass, and heats steam. A superheated steam generator for generating superheated steam, a superheated steam supplied from the superheated steam generator and a carbide obtained by carbonizing in the carbonization furnace is heated and decomposed by combustion exhaust gas generated in the carbonization furnace. A pyrolysis gasifier that generates gas; and a power generator that generates power by using the water gas purified by heat exchange of the pyrolysis gas,
The dryer dries the raw material biomass with the combustion exhaust gas supplied from the carbonization furnace or pyrolysis gasifier, and supplies the dried biomass to the carbonization furnace.
The superheated steam generator supplies superheated steam generated by heating steam supplied from a water source boiler with combustion exhaust gas supplied from the carbonization furnace or pyrolysis gasifier to the pyrolysis gasifier,
The pyrolysis / pyrolysis gasifier includes a cylindrical outer cylinder, an inner cylinder provided inside the outer cylinder, a turntable rotatably disposed below the inner cylinder, and an inner center of the turntable. A heat storage protrusion disposed with a peripheral wall of the cylinder and a gap,
A gap between the inner cylinder and the heat storage protrusion is configured as a gasification region of carbide. Combustion exhaust gas generated in a carbonization furnace is introduced into the gap between the outer cylinder and the inner cylinder. The heat storage projections are heated and the radiant heat and superheated steam uniformly heat the carbides in the gasification region. And it is set as the biomass power generation system characterized by being comprised so that electric power may be supplied efficiently.

前記の課題を解決するために、本発明は、バイオマスを破砕する原料破砕機と、破砕したバイオマスを乾燥する乾燥機と、乾燥した前記バイオマスを加熱して炭化する炭化炉と、水蒸気を熱して過熱蒸気を発生する過熱蒸気発生装置と、前記過熱蒸気発生装置より供給される過熱蒸気と前記炭化炉で炭化して得られた炭化物とを炭化炉で発生した燃焼排ガスによって加熱して熱分解ガスを発生させる熱分解ガス化装置と、前記熱分解ガスを熱交換し精製した水性ガスを用いて発電して電力を得る第1発電装置と、前記熱分解ガス化装置より燃焼排ガスを過熱蒸気発生装置へ供給し熱源に使用し、過熱蒸気発生装置の燃焼排ガスをボイラーへ供給して飽和蒸気を回収しこの回収された飽和蒸気を用いて発電して電力を得る第2発電装置とを備え、
前記熱分解ガス化装置は、筒状の外筒と、外筒内部に設けられる内筒と、内筒の下方に回転自在に配置されるターンテーブルと、ターンテーブルの回転中心部に内筒の周壁と空隙をおいて配設される蓄熱性突起とを備え、
前記内筒と蓄熱性突起との空隙を炭化物のガス化領域として構成し、前記外筒と内筒の空隙には炭化炉で発生した燃焼排ガスが導入され、該燃焼排ガスによって内筒内部並びに前記蓄熱性突起が加熱されると共にその輻射熱と過熱蒸気とによってガス化領域の炭化物が均一に加熱されて得られる組成比が均一な水性ガスによって常時一定の熱量で発電装置を作動し、もって安全で且つ効率よく電力を供給するように構成されることを特徴とするバイオマス発電システムとする。
In order to solve the above problems, the present invention includes a raw material crusher that crushes biomass, a dryer that dries the crushed biomass, a carbonization furnace that heats and carbonizes the dried biomass, and heats steam. A superheated steam generator for generating superheated steam, a superheated steam supplied from the superheated steam generator and a carbide obtained by carbonizing in the carbonization furnace is heated by a combustion exhaust gas generated in the carbonization furnace to generate pyrolysis gas A pyrolysis gasifier that generates heat, a first power generator that generates power using water gas purified by heat exchange of the pyrolysis gas, and generates superheated steam from the pyrolysis gasifier supplied to the device using a heat source, the combustion exhaust gas of the superheated steam generator and a second power generator to obtain electric power by the generator with saturated steam is supplied to the boiler to recover saturated steam is thus recovered
The pyrolysis gasification device includes a cylindrical outer cylinder, an inner cylinder provided inside the outer cylinder, a turntable rotatably disposed below the inner cylinder, and an inner cylinder at a rotation center portion of the turntable. A thermal storage protrusion disposed with a peripheral wall and a gap,
A gap between the inner cylinder and the heat storage protrusion is configured as a gasification region of carbide. Combustion exhaust gas generated in a carbonization furnace is introduced into the gap between the outer cylinder and the inner cylinder. The heat storage projections are heated and the radiant heat and superheated steam uniformly heat the carbides in the gasification region. And it is set as the biomass power generation system characterized by being comprised so that electric power may be supplied efficiently.

また、前記の課題を解決するために、本発明は、前記乾燥機は、原料のバイオマスを前記炭化炉ないし熱分解ガス化装置から供給される燃焼排ガスによって乾燥し該乾燥したバイオマスを炭化炉に供給することを特徴とする前記のバイオマス発電システムとすることが好ましい。   In order to solve the above-described problems, the present invention provides the dryer, wherein the raw material biomass is dried by the combustion exhaust gas supplied from the carbonization furnace or the pyrolysis gasifier, and the dried biomass is supplied to the carbonization furnace. The biomass power generation system is preferably supplied.

また、前記の課題を解決するために、本発明は、前記過熱蒸気発生装置は、水源ボイラーから供給される水蒸気を前記炭化炉ないし熱分解ガス化装置から供給される燃焼排ガスによって熱して発生する過熱蒸気を熱分解ガス化装置に供給することを特徴とする前記のバイオマス発電システムとすることが好ましい。 Further, in order to solve the above problems, the present invention, the superheated steam generator is generated by heating the combustion exhaust gas supplied to the steam supplied from the water source boilers from the carbonization furnace through pyrolysis gasifier It is preferable that the biomass power generation system is characterized in that superheated steam is supplied to the pyrolysis gasifier .

また、前記の課題を解決するために、本発明は、前記蓄熱性突起は鋳物、その他の金属またはセラミックスの中の何れか一種からなることを特徴とする前記のバイオマス発電システムとすることが好ましい。   In order to solve the above-mentioned problem, the present invention is preferably the biomass power generation system, wherein the heat storage protrusion is made of any one of castings, other metals, or ceramics. .

本願発明に係るバイオマス発電システムは、前記のように熱分解ガス化炉の内筒内部に蓄熱性突起を設けた熱分解ガス化装置において過熱蒸気発生装置で発生する過熱蒸気を用いることの相乗効果によって領域内の温度分布をより安定化させ、熱分解ガス化効率を高め、発生する水性ガスの組成比を一定に保つことにより且つ窒素、硫黄及びタールなどの不純物は炭化炉と熱分解ガス化装置で除去されるので高い発電効率が得られ、もって安全で効率の良い電力を供給できる。また、従来の熱分解ガス化装置においては、領域内の温度分布が安定化せずに変動することから、熱電対などの温度検出手段を用いて炉内の温度を検出しこれをコンピューターを用いてフィードバックして温度制御していた。本願発明ではこのような煩雑な温度制御手段を用いることなく温度分布を安定化させることが可能となった。   The biomass power generation system according to the present invention is a synergistic effect of using the superheated steam generated in the superheated steam generator in the pyrolysis gasifier having the thermal storage projections provided in the inner cylinder of the pyrolysis gasification furnace as described above. By stabilizing the temperature distribution in the region, increasing the efficiency of pyrolysis gasification, keeping the composition ratio of the generated water gas constant, and impurities such as nitrogen, sulfur and tar are pyrolyzed and gasified with the carbonization furnace Since it is removed by the apparatus, high power generation efficiency can be obtained, and safe and efficient power can be supplied. Also, in the conventional pyrolysis gasifier, the temperature distribution in the region fluctuates without stabilization, so the temperature inside the furnace is detected using temperature detection means such as a thermocouple, and this is detected using a computer. Feedback and temperature control. In the present invention, it is possible to stabilize the temperature distribution without using such a complicated temperature control means.

通常の飽和水蒸気は容易に凝縮し易く、潜熱(蒸発のエンタルピー)を放出するが、過熱蒸気は飽和水蒸気と異なり、そのエンタルピーの一部が減少するだけで飽和温度に低下するまでは全く凝縮することはない。従って、前記熱分解ガス化装置のガス化領域においては蓄熱性突起の輻射熱を受けて過熱蒸気は飽和温度に低下することなく凝縮せず過熱蒸気の温度を維持することとなり領域内の温度分布をより安定化させると考えられる。   Normal saturated water vapor is easy to condense and releases latent heat (evaporation enthalpy), but superheated steam is different from saturated water vapor, and only a part of the enthalpy is reduced and it is completely condensed until it is reduced to the saturation temperature. There is nothing. Therefore, in the gasification region of the pyrolysis gasifier, the superheated steam is not condensed to the saturation temperature due to the radiant heat of the heat storage projections, and the temperature of the superheated steam is maintained without condensing and the temperature distribution in the region is changed. It is thought to stabilize more.

第1実施の形態に係るバイオマス発電システムのブロック図である。It is a block diagram of a biomass power generation system concerning a 1st embodiment. 第1実施の形態に係るバイオマス発電システムの概略図である。It is a schematic diagram of a biomass power generation system concerning a 1st embodiment. 第2実施の形態に係るバイオマス発電システムのブロック図である。It is a block diagram of the biomass power generation system which concerns on 2nd Embodiment. (a)は熱分解ガス化炉の内外筒部を示す部分断面平面図であり、(b)は(a)のA−A線部分断面側面図を含む熱分解ガス化装置を示す構成図である。(A) is a fragmentary sectional top view which shows the inner and outer cylinder part of a pyrolysis gasification furnace, (b) is a block diagram which shows the pyrolysis gasification apparatus containing the AA partial fragmentary sectional side view of (a). is there.

本発明を実施するための形態(以下「実施の形態」と称する)について、以下に図面を参照しつつ詳細に説明する。しかし、本発明は、かかる実施の形態に限定されるものではない。図1及び図2には、第1実施の形態に係るバイオマス発電システムが示されており、図3には、第2実施の形態に係るバイオマス発電システムが示されており、図4には本実施の形態に用いられる熱分解ガス化装置が示されている。   DESCRIPTION OF EMBODIMENTS Embodiments for carrying out the present invention (hereinafter referred to as “embodiments”) will be described in detail below with reference to the drawings. However, the present invention is not limited to such an embodiment. 1 and 2 show a biomass power generation system according to the first embodiment, FIG. 3 shows a biomass power generation system according to the second embodiment, and FIG. A pyrolysis gasifier used in the embodiment is shown.

図1及び図2に示すように、本発明の第1実施の形態に係るバイオマス発電システム5は、原料であるバイオマス(廃木材等有機廃棄物)をチップ状に破砕する原料破砕機30と、破砕したバイオマスを乾燥する乾燥機31と、乾燥した前記バイオマスを熱して炭化する炭化炉3と、水源48より炭化炉を介して供給される蒸気を炭化炉の燃焼排ガスによって加熱してより高温の過熱蒸気を発生する過熱蒸気発生装置4と、前記炭化炉3より磁選機41及びクリンカーネット42によって異物を除去し供給される炭化物と前記過熱蒸気とを炭化炉で発生した燃焼排ガスによって加熱して熱分解ガスを発生させる熱分解ガス化装置1と、前記熱分解ガスを熱交換し洗浄するガス冷却洗浄塔32と、前記熱交換洗浄された水性ガス中のミストを分離精製するミスト分離器33と、前記ミストを活性炭に吸着させる活性炭吸着器34と、前記精製した水性ガスを火種からの逆火を回避する目的で貯蔵タンクに繋がる配管に気液分離機能を有する水封ドラムを装備した逆火防止機43を介して改質ガスレシーバ35と連結し更にガスエンジンやガスタービンエンジン等に供給作動させて電力を得る発電装置36と、発電装置で消費されない余剰ガスを無害化するため焼却するフレアアタック44と、回収した水性ガスを蓄える補助燃料タンク40と、前記熱分解ガス化装置1からの排ガスを前記乾燥機31に供給する排ガス供給ラインL1と、前記乾燥機31からの排ガスと前記熱分解ガス化装置1からの排ガスの一部を熱交換機37とバグ集塵機38を介して排気塔39から大気へ排出する排ガス排出ラインL2とを備えている。   As shown in FIG.1 and FIG.2, the biomass power generation system 5 which concerns on 1st Embodiment of this invention is the raw material crusher 30 which crushes biomass (organic wastes, such as waste wood) which is a raw material, in chip shape, The dryer 31 that dries the crushed biomass, the carbonization furnace 3 that heats and carbonizes the dried biomass, and the steam supplied from the water source 48 through the carbonization furnace is heated by the combustion exhaust gas of the carbonization furnace to obtain a higher temperature. The superheated steam generator 4 that generates superheated steam, the carbides removed from the carbonization furnace 3 by the magnetic separator 41 and the clinker net 42, and the supplied carbide and the superheated steam are heated by the combustion exhaust gas generated in the carbonization furnace. The pyrolysis gasifier 1 that generates pyrolysis gas, the gas cooling and cleaning tower 32 that exchanges and cleans the pyrolysis gas, and the mist in the water gas that has been subjected to the heat exchange cleaning are separated. A mist separator 33 for purification, an activated carbon adsorber 34 for adsorbing the mist on activated carbon, and water having a gas-liquid separation function in a pipe connected to a storage tank for the purpose of avoiding backfire of the purified water gas from a fire type. A power generator 36 that is connected to the reformed gas receiver 35 through a backfire prevention device 43 equipped with a sealing drum and further supplies and operates to a gas engine, a gas turbine engine, etc., and surplus gas that is not consumed by the power generator Flare attack 44 to be incinerated for detoxification, auxiliary fuel tank 40 for storing recovered water gas, exhaust gas supply line L1 for supplying exhaust gas from the pyrolysis gasifier 1 to the dryer 31, and the dryer The exhaust gas from the exhaust gas 31 and a part of the exhaust gas from the pyrolysis gasifier 1 are discharged from the exhaust tower 39 to the atmosphere via the heat exchanger 37 and the bag dust collector 38. And a exhaust gas discharge line L2.

特許文献1又は2記載の方式においては、本発明の実施の形態に係るバイオマス発電システムにおける、炭化炉3で発生した燃焼排ガスを熱分解ガス化装置1での炭化物と過熱蒸気との熱分解反応を促進するための熱源として熱分解ガス化装置1に供給するものではない。それゆえ、従来、炭化炉3で発生した燃焼排ガスを熱源とするバイオマス発電システム全体の熱効率は必ずしも充分に高いものとは言えなかった。   In the method described in Patent Document 1 or 2, in the biomass power generation system according to the embodiment of the present invention, the combustion exhaust gas generated in the carbonization furnace 3 is subjected to a pyrolysis reaction between carbide and superheated steam in the pyrolysis gasifier 1. It is not supplied to the pyrolysis gasifier 1 as a heat source for promoting the heat. Therefore, conventionally, the thermal efficiency of the entire biomass power generation system using the combustion exhaust gas generated in the carbonization furnace 3 as a heat source has not necessarily been sufficiently high.

本発明の実施の形態における熱分解ガス化装置1での炭化物と過熱蒸気との熱分解反応は、後述するとおり吸熱反応であり、収率良く熱分解ガスを得るためには、熱分解ガス化装置1内の熱分解反応の場を高い温度に過熱保持する必要がある。さらに、熱分解ガス化装置1内で熱分解反応(吸熱反応)により過熱蒸気の温度が低下して水蒸気が凝縮することがないように炭化炉3から供給された蒸気を過熱蒸気発生装置4で適切な温度まで上昇させた過熱蒸気を熱分解ガス化装置1に供給する必要がある。また、原料破砕機30で破砕されたバイオマスに含まれる水分が高いままであれば、炭化炉3での炭化の効率が低下してしまうため、乾燥機31で、当該バイオマスに含まれる水分を蒸発し乾燥させる必要がある。   The pyrolysis reaction of carbide and superheated steam in the pyrolysis gasifier 1 in the embodiment of the present invention is an endothermic reaction as described later, and in order to obtain a pyrolysis gas with high yield, pyrolysis gasification It is necessary to keep the thermal decomposition reaction field in the apparatus 1 at a high temperature. Furthermore, the superheated steam generator 4 converts the steam supplied from the carbonization furnace 3 so that the temperature of the superheated steam is not lowered due to the pyrolysis reaction (endothermic reaction) in the pyrolysis gasifier 1 so that the steam is not condensed. It is necessary to supply superheated steam raised to an appropriate temperature to the pyrolysis gasifier 1. Moreover, if the moisture contained in the biomass crushed by the raw material crusher 30 remains high, the efficiency of carbonization in the carbonization furnace 3 is reduced, and thus the moisture contained in the biomass is evaporated by the dryer 31. Need to be dried.

また、乾燥機31で当該バイオマスを乾燥させるのに必要な温度ないし熱エネルギーよりも、熱分解ガス化装置1内の熱分解反応の場の過熱に必要な温度ないし熱エネルギーの方が高いことから、本発明の実施の形態に係るバイオマス発電システム5全体の熱効率を向上させるために、炭化炉3で発生した燃焼排ガスを、過熱蒸気発生装置4を介して、炭化物と過熱蒸気との熱分解反応による熱分解ガスの発生を促進するための熱源として、熱分解ガス化装置1に供給する。そして、熱分解ガス化装置1で熱分解ガスの発生を促進させるための熱源として用いられた燃焼排ガスを、その後、原料破砕機30で破砕されたバイオマスを乾燥させる熱源として乾燥機31に供給する。乾燥機31に供給される燃焼排ガスは、バイオマスを乾燥させるのに十分な温度となり、バイオマス発電システム5全体の熱効率を向上させることとなる。   In addition, the temperature or thermal energy required for overheating of the pyrolysis reaction field in the pyrolysis gasifier 1 is higher than the temperature or thermal energy necessary for drying the biomass by the dryer 31. In order to improve the thermal efficiency of the biomass power generation system 5 as a whole according to the embodiment of the present invention, the combustion exhaust gas generated in the carbonization furnace 3 is subjected to a thermal decomposition reaction between carbide and superheated steam via the superheated steam generator 4. Is supplied to the pyrolysis gasifier 1 as a heat source for accelerating the generation of pyrolysis gas. And the combustion exhaust gas used as a heat source for promoting generation | occurrence | production of pyrolysis gas in the pyrolysis gasification apparatus 1 is supplied to the dryer 31 as a heat source which dries the biomass crushed by the raw material crusher 30 after that. . The combustion exhaust gas supplied to the dryer 31 has a temperature sufficient to dry the biomass, and improves the thermal efficiency of the biomass power generation system 5 as a whole.

また、図3に示すように、本発明の第2実施の形態に係るバイオマス発電システム6においては、原料バイオマスの破砕機30、乾燥機31、炭化炉3、熱分解ガス化装置1、
熱交換機38、洗浄塔32、ガスホルダー35、ガスエンジン発電機36aへ水性ガスを供給して発電する電力供給Aに至る系列は前記第1実施の形態のバイオマス発電システム5とほぼ同様である。前記第2実施の形態が前記第1実施の形態と異なるのは、炭化炉3で発生した燃焼排ガスが熱分解ガス化装置1、過熱蒸気発生装置4、ボイラー7の順に供給されて各装置の熱源となり、ボイラー7にて飽和蒸気を回収しスチームタービン発電機36bへ供給して発電し電力供給Bへ送電するとともにボイラー7にて回収した蒸気の一部が過熱蒸気発生装置4へ供給されて過熱蒸気を発生し熱分解ガス化装置1へ供給される点にある。このように本来の熱分解ガスによるガスエンジン発電機36aへ供給して発電する電力供給Aと前記ボイラー7から回収した飽和蒸気によるスチームタービン発電機36bへ供給して発電する電力供給Bとの複合サイクル発電、所謂ハイブリッド発電とする点において熱効率に優れている。また、前記電力供給B系列のプロセスボイラー7で発生した飽和蒸気がスチームタービン発電機36bへ供給され、スチームタービン発電機36bで使用した蒸気は復水器45にて軟水タンク46に戻りポンプ47によってプロセスボイラー7へ供給する循環ラインL3を形成することにより外部へ排出する排水をなるべく少なくして水の使用効率を高める点において優れている。
Moreover, as shown in FIG. 3, in the biomass power generation system 6 which concerns on 2nd Embodiment of this invention, the raw material biomass crusher 30, the dryer 31, the carbonization furnace 3, the pyrolysis gasifier 1,
The series leading to the power supply A for supplying water gas to the heat exchanger 38, the cleaning tower 32, the gas holder 35, and the gas engine generator 36a to generate electric power is substantially the same as the biomass power generation system 5 of the first embodiment. The second embodiment is different from the first embodiment in that the combustion exhaust gas generated in the carbonization furnace 3 is supplied in the order of the pyrolysis gasifier 1, the superheated steam generator 4, and the boiler 7. Saturated steam is recovered by the boiler 7 as a heat source, supplied to the steam turbine generator 36b, generated and transmitted to the power supply B, and part of the steam recovered by the boiler 7 is supplied to the superheated steam generator 4. The superheated steam is generated and supplied to the pyrolysis gasifier 1. Thus, a combination of the power supply A for generating power by supplying to the gas engine generator 36a by the original pyrolysis gas and the power supply B for generating power by supplying to the steam turbine generator 36b by the saturated steam recovered from the boiler 7 is generated. It is excellent in thermal efficiency in terms of cycle power generation, so-called hybrid power generation. Further, the saturated steam generated in the process boiler 7 of the power supply B series is supplied to the steam turbine generator 36 b, and the steam used in the steam turbine generator 36 b is returned to the soft water tank 46 by the condenser 45 and then pumped by the pump 47. By forming the circulation line L3 to be supplied to the process boiler 7, the drainage discharged to the outside is reduced as much as possible, and the use efficiency of water is improved.

本発明の実施の形態に係るバイオマス発電システム6は、炭化炉3で発生した燃焼排ガスを熱分解ガス化装置1に供給して、該熱分解ガス化装置1で炭化物と過熱蒸気との熱分解反応を促進するための熱源として利用することにより、バイオマス発電システム6全体の熱効率を向上させる点において特徴を有する。ボイラー7で水蒸気を生成するのに必要な温度ないし熱エネルギーよりも、ボイラー7で生成された水蒸気を過熱蒸気発生装置4で過熱するのに必要な温度ないし熱エネルギーの方が高いことから、本発明の実施の形態では、バイオマス発電システム6全体の熱効率を向上させるために、炭化炉3で発生した燃焼排ガスを熱分解ガス化装置1、過熱蒸気発生装置4、ボイラー7の順に供給し各装置の熱源となるため、バイオマス発電システム6全体の熱効率を向上させることができる。 The biomass power generation system 6 according to the embodiment of the present invention supplies combustion exhaust gas generated in the carbonization furnace 3 to the pyrolysis gasifier 1, and the pyrolysis gasifier 1 performs pyrolysis of carbide and superheated steam. By using it as a heat source for promoting the reaction, it has a feature in improving the thermal efficiency of the biomass power generation system 6 as a whole. Since the temperature or thermal energy required for superheating the steam generated by the boiler 7 with the superheated steam generator 4 is higher than the temperature or thermal energy required for generating the steam with the boiler 7. In the embodiment of the invention, in order to improve the thermal efficiency of the biomass power generation system 6 as a whole, the combustion exhaust gas generated in the carbonization furnace 3 is supplied in the order of the pyrolysis gasifier 1, the superheated steam generator 4, and the boiler 7. Therefore, the thermal efficiency of the biomass power generation system 6 as a whole can be improved.

図4には、本実施の形態に用いられる熱分解ガス化装置1が示されている。図4に示すように、本発明の実施の形態において、2は熱分解ガス化炉であり、外筒11及び内筒12の何れも円筒形であり、互いに同心状に外筒11と内筒12を空隙23をあけて立設し、外筒11の上下端部は内筒12と密着させ、下方の開口部である燃焼ガス導入口15から空隙23に炭化炉で発生した燃焼排ガスを導入し上方の開口部である燃焼ガス排出口16から排出されるように構成される。内筒の上端部は熱分解ガス排出路17に連結され、内筒の下端部は開口されておりターンテーブル13が内筒の下端部と間隙を保持して配設されている。ターンテーブルは円錐形をなし、その頂上部に円柱形の蓄熱性突起14が立設されており、蓄熱性突起が内筒周壁と略等間隔に空隙があくように内筒内部に配設されている。前記ターンテーブルは、中央部から下方に伸びる回転軸に支持されており連結されるモーターMによって所定の速度で回転するように構成される。 FIG. 4 shows a pyrolysis gasifier 1 used in the present embodiment. As shown in FIG. 4, in the embodiment of the present invention, reference numeral 2 denotes a pyrolysis gasification furnace. Both the outer cylinder 11 and the inner cylinder 12 are cylindrical, and the outer cylinder 11 and the inner cylinder are concentric with each other. 12 is erected with a gap 23, the upper and lower ends of the outer cylinder 11 are in close contact with the inner cylinder 12, and the combustion exhaust gas generated in the carbonization furnace is introduced into the gap 23 from the combustion gas inlet 15 which is a lower opening. And it is comprised so that it may discharge | emit from the combustion gas discharge port 16 which is an upper opening part. The upper end portion of the inner cylinder is connected to the pyrolysis gas discharge passage 17, the lower end portion of the inner cylinder is opened, and the turntable 13 is disposed with a gap from the lower end portion of the inner cylinder. The turntable has a conical shape, and a columnar heat storage protrusion 14 is erected on the top of the turntable, and the heat storage protrusion is disposed inside the inner cylinder so that there are gaps at substantially equal intervals from the inner cylinder peripheral wall. ing. The turntable is configured to rotate at a predetermined speed by a motor M supported by a rotating shaft extending downward from a central portion.

内筒12の中間部乃至下端寄りには炭化物を供給する炭化物供給手段18が外筒を貫通して内筒の開口部19に連結されている。炭化物供給手段18としては特に限定するものではないが例えばスクリューコンベア等が好ましい。前記蓄熱性突起14が設けられている内筒周壁にはガス化剤である過熱蒸気を噴出する開口部21が穿設されていて、ガス化剤供給手段20によって過熱蒸気を噴出するように構成される。   Carbide supplying means 18 for supplying carbide is connected to an opening 19 of the inner cylinder through the outer cylinder near the middle part to the lower end of the inner cylinder 12. Although it does not specifically limit as the carbide | carbonized_material supply means 18, For example, a screw conveyor etc. are preferable. An opening 21 for ejecting superheated steam, which is a gasifying agent, is formed in the inner peripheral wall of the heat accumulating protrusion 14 so that the superheated steam is ejected by the gasifying agent supply means 20. Is done.

前記蓄熱性突起14の材料は、蓄熱性を有しガス化温度に耐えられる耐熱性を有する限りにおいて特に限定されるものではないが、鋳物、その他の金属またはセラミックが好ましく、中でも鋳物が特に好ましい。内筒と外筒の空隙部を通過する燃焼排ガスの温度(900〜1000℃)によって内筒内部温度が800〜900℃、好ましくは750〜800℃前後になるように予め調整しておく。蓄熱性突起の材料は少なくとも1000℃以上の耐熱性を有することが好ましい。鋳物は炭素の含有率が2%以上の鋳鉄からなり砂型や金型に溶けた鋳鉄を流し込んで成型するもので、鋳鉄としては、硬いねずみ鋳鉄と呼ばれる片状黒鉛鋳鉄(FC)、引張強度の大きい球状黒鉛鋳鉄(FCD)、片状黒鉛鋳鉄と球状黒鉛鋳鉄の中間のCV鋳鉄等の何れでもよいが比較的比熱が大きく融点が高いねずみ鋳鉄が好ましい。 The material of the heat storage protrusion 14 is not particularly limited as long as it has heat storage properties and heat resistance capable of withstanding the gasification temperature, but is preferably a casting, other metal or ceramic, and particularly preferably a casting. . The inner cylinder internal temperature is adjusted in advance to be 800 to 900 ° C., preferably around 750 to 800 ° C., depending on the temperature of combustion exhaust gas (900 to 1000 ° C.) passing through the gap between the inner cylinder and the outer cylinder. It is preferable that the material of the heat storage protrusion has a heat resistance of at least 1000 ° C. or more. Casting is made of cast iron with a carbon content of 2% or more and cast by casting cast iron melted into a sand mold or mold. As cast iron, flake graphite cast iron (FC) called hard gray cast iron, tensile strength Any of large spheroidal graphite cast iron (FCD), CV cast iron in the middle of flake graphite cast iron and spheroidal graphite cast iron may be used, but gray cast iron having a relatively high specific heat and a high melting point is preferable.

Figure 0005917735
Figure 0005917735

表1にねずみ鋳鉄やその他の金属及びセラミックスの熱的性質を示す。鋳物以外に表1に示す耐熱性を有する金属及びセラミックス等も使用可能である。アルミニウムは比熱が大きくも融点が低いので単独使用は困難であるが合金として用いてもよい。前記内筒12と蓄熱性突起14との空隙22を炭化物のガス化領域として構成し、前記外筒と内筒の空隙23には炭化炉で発生した燃焼排ガスが導入され、該燃焼排ガスによって内筒内部並びに前記蓄熱性突起が加熱されると共にその輻射熱によってガス化領域にある炭化物が加熱されることよって温度分布がより安定化するように構成される。また、ターンテーブルの中心部に予め軸を設けてこの軸に大きさや材質の異なる蓄熱性突起を交換可能に装着できるように構成することが好ましい。蓄熱性突起の形状は特に限定するものではないが、例えば頭部を封じた円筒状又は円柱状が好ましい。 Table 1 shows the thermal properties of gray cast iron and other metals and ceramics. In addition to castings, metals and ceramics having heat resistance shown in Table 1 can be used. Aluminum has a large specific heat but a low melting point, so it is difficult to use alone, but it may be used as an alloy. The gap 22 between the inner tube 12 and the heat storage protrusions 14 configured as a gas region of the carbide, the combustion exhaust gas generated in the carbonization furnace is introduced into the gap 23 of the outer cylinder and the inner cylinder, the inner by the combustion exhaust gas The inside of the cylinder and the heat storage projection are heated, and the carbide in the gasification region is heated by the radiant heat, whereby the temperature distribution is further stabilized. Further, it is preferable that a shaft is provided in the center of the turntable in advance so that heat storage protrusions of different sizes and materials can be exchangeably mounted on the shaft. Although the shape of the heat storage protrusion is not particularly limited, for example, a cylindrical shape or a columnar shape with a sealed head is preferable.

前述したとおり、前記内筒12と蓄熱性突起14との空隙22を炭化物のガス化領域として、このガス化領域にある炭化物にガス化剤である過熱蒸気を吹きかけると共に内筒12と蓄熱性突起14から発する輻射熱によって熱してガス化する。その際、炭化物を速やかに熱するにはガス化領域はなるべく狭くした方が好ましい。しかし、狭すぎると生産効率が低下することから、特に限定するものではないが内筒周壁と蓄熱性突起までの距離は20〜100mm、蓄熱性突起の高さは200〜1000mmの範囲で炭化物が加熱される時間とガス化領域を通過する速度つまりターンテーブル13と内筒の間隙部及び炭化物の大きさ等を勘案して適宜調整することが好ましい。   As described above, the gap 22 between the inner cylinder 12 and the heat storage protrusion 14 is used as a carbide gasification region, and superheated steam as a gasifying agent is sprayed on the carbide in the gasification region and the inner tube 12 and the heat storage protrusion 14 is heated and gasified by the radiant heat emitted from 14. At that time, it is preferable to narrow the gasification region as much as possible in order to quickly heat the carbide. However, since production efficiency is reduced if it is too narrow, the distance between the inner cylinder peripheral wall and the heat storage protrusion is 20 to 100 mm, and the height of the heat storage protrusion is 200 to 1000 mm. It is preferable to adjust appropriately considering the heating time and the speed of passing through the gasification region, that is, the gap between the turntable 13 and the inner cylinder, the size of carbides, and the like.

本実施の形態に用いられる炭化炉3は、特に限定されるものではないが、例えば、特許第4226066号に記載される自己燃焼式炭化炉を用いてもよい。前記炭化炉は略円筒形の本体と本体に収納された円筒体により構成され、円筒体は内壁と外壁の二重構造からなり、その間に形成された予備加熱室により効率よく空気を加熱できる為に雰囲気温度を低下させることなく効率よく炭化が行える。   The carbonization furnace 3 used in the present embodiment is not particularly limited. For example, a self-burning type carbonization furnace described in Japanese Patent No. 4222666 may be used. The carbonization furnace is constituted by a substantially cylindrical main body and a cylindrical body housed in the main body, and the cylindrical body has a double structure of an inner wall and an outer wall, and air can be efficiently heated by a preheating chamber formed therebetween. In addition, carbonization can be performed efficiently without lowering the ambient temperature.

炭化炉3は、バイオマスの有機廃棄物を温度200〜600℃で低酸素状態において、ガス(CO、H、CH、CO、HO)、炭化物、炭化水素に分解し、炭化物と炭化水素ガスとに分離し、炭化水素ガスは燃焼室で二次燃焼して900〜1000℃の燃焼排ガスを生成し、熱分解ガス化炉2の下端部の燃焼ガス導入口15を経て燃焼ガス領域に供給される。 The carbonization furnace 3 decomposes biomass organic waste into gas (CO, H 2 , CH 4 , CO 2 , H 2 O), carbide, and hydrocarbon in a low oxygen state at a temperature of 200 to 600 ° C. Separated into hydrocarbon gas, the hydrocarbon gas is secondarily burned in the combustion chamber to generate combustion exhaust gas at 900 to 1000 ° C., and the combustion gas passes through the combustion gas inlet 15 at the lower end of the pyrolysis gasifier 2. Supplied to the area.

炭化物供給手段18は、炭化炉3から供給された炭化物を熱分解ガス化炉2の内筒12内部に供給する。内筒12内部に供給された炭化物は落下してガス化領域22に達すると内筒周面に設けられた複数のガス化剤供給口21から噴出した過熱蒸気と接触混合される。図示しないガス化剤供給手段によって過熱蒸気の噴射量が調整可能であり反応を制御して熱分解ガスの成分組成比を調整可能である。このガス化領域22において過熱蒸気と接触混合された炭化物は内筒壁と蓄熱性突起の両面から輻射熱を受け、蓄熱性突起14がターンテーブル13の回転(例えば5〜10rpm)に伴って回転しつつ徐々に下方に移動する。ガス化された炭化物の残渣はターンテーブル13と内筒の間隙部24を通過して排出口25から外部に排出される。   The carbide supply means 18 supplies the carbide supplied from the carbonization furnace 3 into the inner cylinder 12 of the pyrolysis gasification furnace 2. When the carbide supplied into the inner cylinder 12 falls and reaches the gasification region 22, it is mixed with superheated steam ejected from a plurality of gasifying agent supply ports 21 provided on the inner cylinder peripheral surface. The injection amount of superheated steam can be adjusted by a gasifying agent supply means (not shown), and the component composition ratio of the pyrolysis gas can be adjusted by controlling the reaction. The carbide mixed in contact with superheated steam in the gasification region 22 receives radiant heat from both the inner cylindrical wall and the heat storage protrusion, and the heat storage protrusion 14 rotates as the turntable 13 rotates (for example, 5 to 10 rpm). While moving gradually downward. The residue of the gasified carbide passes through the turntable 13 and the gap 24 between the inner cylinders and is discharged to the outside from the discharge port 25.

前記ガス化領域22では吸熱反応である水性ガス化反応(C+HO→CO+H−28.36kcal/mol)及び発熱反応である水性ガスシフト反応(CO+HO→CO+H+9.85kcal/mol)が連続して進行する。その結果、水素(H)、一酸化炭素(CO)及び二酸化炭素(CO)の成分からなる熱分解ガスが発生する。一般的に、低温(750〜800℃)では発熱反応である水性ガスシフト反応が促進され、高カロリーの一酸化炭素が消費されて低カロリーの水素が生成されるので単位体積当たりの発熱量が小さい水素リッチな熱分解ガスが生成し高温(900〜950℃)では一酸化炭素リッチな熱分解ガスが生成する。また、ガス化剤の過熱蒸気の供給量が多いほど熱分解ガス中のH/CO比が高くなる。 In the gasification region 22, a water gasification reaction (C + H 2 O → CO + H 2 −28.36 kcal / mol) which is an endothermic reaction and a water gas shift reaction (CO + H 2 O → CO 2 + H 2 +9.85 kcal / mol) which is an exothermic reaction. ) Proceeds continuously. As a result, a pyrolysis gas composed of hydrogen (H 2 ), carbon monoxide (CO), and carbon dioxide (CO 2 ) components is generated. In general, the water gas shift reaction, which is an exothermic reaction, is promoted at low temperatures (750 to 800 ° C.), and high calorie carbon monoxide is consumed and low calorie hydrogen is generated, so the calorific value per unit volume is small. A hydrogen-rich pyrolysis gas is produced, and a carbon monoxide-rich pyrolysis gas is produced at a high temperature (900 to 950 ° C.). Further, as the amount of superheated steam supplied from the gasifying agent increases, the H 2 / CO ratio in the pyrolysis gas increases.

次に、熱分解ガス化装置1に過熱蒸気を供給する過熱蒸気発生装置4について説明する。本実施の形態に用いる過熱蒸気発生装置4は特に限定されるものではないが、加熱器管と呼ばれる長い管と管寄せからなり、内側にボイラー等により発生する乾き飽和蒸気が流れ外側から燃焼排ガスでさらに熱して、飽和蒸気の圧力に相当するより高い温度の過熱蒸気を発生させる構成からなっている。 Next, the superheated steam generator 4 that supplies superheated steam to the pyrolysis gasifier 1 will be described. Although the superheated steam generator 4 used for this Embodiment is not specifically limited, It consists of a long pipe and a header called a heater pipe | tube, and the dry saturated steam generated by a boiler etc. flows inside, and combustion exhaust gas from the outside And further heated to generate a superheated steam having a higher temperature corresponding to the pressure of the saturated steam.

実施例について説明する。前記第1実施の形態に係るバイオマス発電システム5のパイロットプラントを作成した。熱分解ガス化装置1の外筒は、外形がφ460mm、高さ1380mm、肉厚が50mmの耐火材で形成し、内筒は、外形がφ150mm、厚み8mmの耐熱性ニッケルクロム鋼板で形成した。更に、蓄熱性突起は、外形がφ84mmで、高さが230mmの鋳物で形成し、蓄熱性突起から内筒までの空隙であるガス化領域の幅は片側で25mmに調整した。炭化炉は前記自己燃焼式炭化炉を用いた。原料の炭化物はガス化領域の幅25mmを通過するサイズの塊状炭を用いた。   Examples will be described. A pilot plant of the biomass power generation system 5 according to the first embodiment was created. The outer cylinder of the pyrolysis gasifier 1 was formed of a refractory material having an outer diameter of φ460 mm, a height of 1380 mm, and a wall thickness of 50 mm, and the inner cylinder was formed of a heat-resistant nickel chromium steel plate having an outer diameter of φ150 mm and a thickness of 8 mm. Furthermore, the heat storage protrusion was formed of a casting having an outer diameter of φ84 mm and a height of 230 mm, and the width of the gasification region, which is a gap from the heat storage protrusion to the inner cylinder, was adjusted to 25 mm on one side. The self-combustion type carbonization furnace was used as the carbonization furnace. As the raw material carbide, bulk coal having a size passing through a width of 25 mm in the gasification region was used.

前記のバイオマス発電システムパイロットプラントにおいて、木質チップの有機廃棄物を前記自己燃焼式炭化炉を用いて炭化し、前記の過熱蒸気発生装置4からの過熱蒸気(温度約約800℃)を熱分解ガス化炉に供給し、ガス化領域の温度が750〜800℃になるように調整して、継続運転した結果、得られたガス化成分の組成比は、水素(H)が60%、一酸化炭素(CO)が20%及び二酸化炭素(CO)が20%であり、この成分比のブレが全く見られないことが確認された。また、このパイロットプラントの発電量は、時間当たり1,000kg(含水量15%の木質チップ)の原料で500kwh〜1,000kwhを発電することが確認された。 In the biomass power generation system pilot plant, the organic waste of wood chips is carbonized using the self-combustion type carbonization furnace, and the superheated steam (temperature of about 800 ° C.) from the superheated steam generator 4 is pyrolyzed gas. As a result of supplying the gasification furnace and adjusting the temperature of the gasification region to 750 to 800 ° C. and continuing the operation, the composition ratio of the obtained gasification component is 60% for hydrogen (H 2 ), Carbon oxide (CO) was 20% and carbon dioxide (CO 2 ) was 20%, and it was confirmed that no blurring of this component ratio was observed. In addition, it was confirmed that the power generation amount of this pilot plant generated 500 kwh to 1,000 kwh with a raw material of 1,000 kg per hour (wood chip with a water content of 15%).

次に、前記第2実施の形態に係るバイオマス発電システム6について、具体的に説明する。二軸破砕機30にて平均5mm(角)×25mm(長)に破砕したバイオマス原料を炭化炉3へ供給し原料(木屑等)の15wt%を炭化物として回収する。一方、タール分を含む不完全燃焼ガスは燃焼排ガスとして約1,070℃にて熱分解ガス化装置1へ供給される。回収された炭化物は空気を除去後熱分解ガス化装置1へ供給され、同時に供給される約800℃の過熱蒸気とともに前記燃焼排ガスを熱源とする蓄熱性突起の輻射熱によって加熱されて水性ガス反応を起こす。発生した水性ガスは熱交換器38にて約800℃から250℃に冷却され水性ガスと残渣に分離され洗浄塔32を経て残渣は系外へ処分される。空気が系内にリークしない構造になっており、熱分解ガス化装置の反応率は供給炭化物に対して約60%である。水性ガスは洗浄塔32で処理後ルーツブロワーにてガスホルダー35へ供給されホールドしながら発電機36aにて発電し電力供給Aへ送電する。発電機へ供給される水性ガスの組成比は、水素(H)が60%、一酸化炭素(CO)が20%及び二酸化炭素(CO)が20%であり、この成分比のブレが全く見られないことは前記第1実施の形態と同様である。 Next, the biomass power generation system 6 according to the second embodiment will be specifically described. Biomass raw material crushed to an average of 5 mm (square) x 25 mm (long) by the biaxial crusher 30 is supplied to the carbonization furnace 3, and 15 wt% of the raw material (wood chips, etc.) is recovered as carbide. On the other hand, the incomplete combustion gas containing the tar content is supplied to the pyrolysis gasifier 1 at about 1,070 ° C. as combustion exhaust gas. The recovered carbide is supplied to the pyrolysis gasifier 1 after removing air, and is heated by the radiant heat of the regenerative projections using the combustion exhaust gas as a heat source together with the superheated steam of about 800 ° C., which causes the water gas reaction. Wake up. The generated water gas is cooled to about 800 ° C. to 250 ° C. in the heat exchanger 38, separated into water gas and residue, and the residue is disposed outside the system through the washing tower 32. The structure prevents air from leaking into the system, and the reaction rate of the pyrolysis gasifier is about 60% with respect to the supplied carbide. The water gas is supplied to the gas holder 35 by the roots blower after being processed by the cleaning tower 32, and is generated by the generator 36a while being held and transmitted to the power supply A. The composition ratio of the water gas supplied to the generator is 60% for hydrogen (H 2 ), 20% for carbon monoxide (CO), and 20% for carbon dioxide (CO 2 ). It is the same as in the first embodiment that it is not seen at all.

炭化炉3の燃焼排ガス(約1,070℃)は熱分解ガス化装置1に供給し、熱分解ガス化装置1の燃焼排ガス(約951℃)は過熱蒸気発生装置4に供給し熱源として使用し、過熱蒸気発生装置4の燃焼排ガス(約896℃)はプロセスボイラー7に供給して0.8MPaGの飽和蒸気を回収し、スチームタービン発電機36bへ供給して発電する。プロセスボイラー7で回収した蒸気の一部は過熱蒸気発生装置4にへ供給され、熱回収された燃焼排ガス(約250℃)は排ガス処理設備(アルカリ洗浄塔等)にて無害化して大気に放出する。マスバランスは木屑の場合、3Ton/h処理で電力の回収は電力供給Aが約840kwh、電力供給Bが約160kwh、合計約1,000kwhである。   The combustion exhaust gas (about 1,070 ° C.) of the carbonization furnace 3 is supplied to the pyrolysis gasifier 1, and the combustion exhaust gas (about 951 ° C.) of the pyrolysis gasifier 1 is supplied to the superheated steam generator 4 and used as a heat source. The combustion exhaust gas (about 896 ° C.) of the superheated steam generator 4 is supplied to the process boiler 7 to collect 0.8 MPaG of saturated steam, and is supplied to the steam turbine generator 36b for power generation. Part of the steam recovered by the process boiler 7 is supplied to the superheated steam generator 4, and the combustion exhaust gas (approximately 250 ° C) recovered by heat is rendered harmless by an exhaust gas treatment facility (such as an alkali cleaning tower) and released to the atmosphere. To do. When the wood balance is wood waste, the power recovery in the 3 Ton / h process is about 840 kwh for the power supply A and about 160 kwh for the power supply B, for a total of about 1,000 kwh.

本発明に係るバイオマス発電システムは、熱分解ガス化効率を高め、発生する水性ガスの組成比を一定に保つことにより且つ窒素、硫黄及びタールなどの不純物は炭化炉と熱分解ガス化装置で除去されるので高い発電効率が得られ、もって安全で効率の良い電力を供給できる。間伐材などの有効利用により省エネルギーと自然環境保護及び経済的に極めて有用である。   The biomass power generation system according to the present invention increases the pyrolysis gasification efficiency, keeps the composition ratio of the generated water gas constant, and removes impurities such as nitrogen, sulfur and tar with a carbonization furnace and a pyrolysis gasifier. Therefore, high power generation efficiency is obtained, and safe and efficient power can be supplied. Effective use of thinned wood is extremely useful for energy saving, natural environment protection and economics.

1 熱分解ガス化装置
2 熱分解ガス化炉
3 炭化炉
4 過熱蒸気発生装置
5 第1実施の形態に係るバイオマス発電システム
6 第2実施の形態に係るバイオマス発電システム
7 ボイラー又はプロセスボイラー
11 外筒
12 内筒
13 ターンテーブル
14 蓄熱性突起
15 燃焼ガス導入口
16 燃焼ガス排出口
17 熱分解ガス排出路
18 炭化物供給手段
19 炭化物供給口
20 ガス化剤供給路
21 ガス化剤供給口
22 内筒と蓄熱性突起との空隙(ガス化領域)
23 外筒と内筒の空隙(燃焼ガス領域)
24 間隙部
25 排出口
30 原材料破砕機又は二軸破砕機
31 乾燥機
32 ガス冷却洗浄塔又は洗浄塔
33 ミスト分離器
34 活性炭吸着器
35 改質ガスレシーバ又はガスホルダー
36 発電装置
36a ガスエンジン発電機
36b スチームタービン発電機
37 熱交換機
38 バグ集塵機又は排ガス設備
39 排気塔
40 補助燃料タンク
41 磁選機
42 クリンカーネット
43 逆火防止機
44 フレアアタック
45 復水器
46 軟水タンク
47 ポンプ
48 水源又は軟水
L1 排ガス供給ライン
L2 排ガス排出ライン
L3 循環ライン
M モーター
DESCRIPTION OF SYMBOLS 1 Pyrolysis gasifier 2 Pyrolysis gasifier 3 Carbonization furnace 4 Superheated steam generator 5 Biomass power generation system according to the first embodiment 6 Biomass power generation system according to the second embodiment 7 Boiler or process boiler 11 Outer cylinder DESCRIPTION OF SYMBOLS 12 Inner cylinder 13 Turntable 14 Thermal storage protrusion 15 Combustion gas introduction port 16 Combustion gas discharge port 17 Pyrolysis gas discharge path 18 Carbide supply means 19 Carbide supply port 20 Gasification agent supply path 21 Gasification agent supply port 22 Inner cylinder and Air gap with heat storage protrusion (gasification region)
23 Gap between outer cylinder and inner cylinder (combustion gas region)
24 Gap 25 Discharge port 30 Raw material crusher or biaxial crusher 31 Dryer 32 Gas cooled washing tower or washing tower 33 Mist separator 34 Activated carbon adsorber 35 Reformed gas receiver or gas holder 36 Power generation device 36a Gas engine generator 36b Steam turbine generator 37 Heat exchanger 38 Bag dust collector or exhaust gas equipment 39 Exhaust tower 40 Auxiliary fuel tank 41 Magnetic separator 42 Clinker net 43 Backfire prevention device 44 Flare attack 45 Condenser 46 Soft water tank 47 Pump 48 Water source or soft water L1 exhaust gas Supply line L2 Exhaust gas discharge line L3 Circulation line M Motor

Claims (5)

バイオマスを破砕する原料破砕機と、破砕したバイオマスを乾燥する乾燥機と、乾燥した前記バイオマスを加熱して炭化する炭化炉と、水蒸気を熱して過熱蒸気を発生する過熱蒸気発生装置と、前記過熱蒸気発生装置より供給される過熱蒸気と前記炭化炉で炭化して得られた炭化物とを前記炭化炉で発生した燃焼排ガスによって加熱して熱分解ガスを発生させる熱分解ガス化装置と、前記熱分解ガスを熱交換し精製した水性ガスを用いて発電して電力を得る発電装置とを備え、
前記乾燥機は、原料のバイオマスを前記炭化炉ないし熱分解ガス化装置から供給される燃焼排ガスによって乾燥し該乾燥したバイオマスを炭化炉に供給する、
前記過熱蒸気発生装置は、水源ボイラーから供給される水蒸気を前記炭化炉ないし熱分解ガス化装置から供給される燃焼排ガスによって熱して発生する過熱蒸気を熱分解ガス化装置に供給する、
前記熱分解熱分解ガス化装置は、筒状の外筒と、外筒内部に設けられる内筒と、内筒の下方に回転自在に配置されるターンテーブルと、ターンテーブルの回転中心部に内筒の周壁と空隙をおいて配設される蓄熱性突起とを備え、
前記内筒と蓄熱性突起との空隙を炭化物のガス化領域として構成し、前記外筒と内筒の空隙には炭化炉で発生した燃焼排ガスが導入され、該燃焼排ガスによって内筒内部並びに前記蓄熱性突起が加熱されると共にその輻射熱と過熱蒸気とによってガス化領域の炭化物が均一に加熱されて得られる組成比が均一な水性ガスによって常時一定の熱量で発電装置を作動し、もって安全で且つ効率よく電力を供給するように構成されることを特徴とするバイオマス発電システム。
A raw material crusher for crushing biomass, a dryer for drying the crushed biomass, a carbonization furnace for heating and carbonizing the dried biomass, a superheated steam generator for heating steam to generate superheated steam, and the superheat A pyrolysis gasifier that generates pyrolysis gas by heating superheated steam supplied from a steam generator and carbide obtained by carbonization in the carbonization furnace with combustion exhaust gas generated in the carbonization furnace, and the heat A power generation device that obtains electric power by generating power using water gas purified by exchanging heat of the cracked gas,
The dryer dries the raw material biomass with the combustion exhaust gas supplied from the carbonization furnace or pyrolysis gasifier, and supplies the dried biomass to the carbonization furnace.
The superheated steam generator supplies superheated steam generated by heating steam supplied from a water source boiler with combustion exhaust gas supplied from the carbonization furnace or pyrolysis gasifier to the pyrolysis gasifier,
The pyrolysis / pyrolysis gasifier includes a cylindrical outer cylinder, an inner cylinder provided inside the outer cylinder, a turntable rotatably disposed below the inner cylinder, and an inner center of the turntable. A heat storage protrusion disposed with a peripheral wall of the cylinder and a gap,
A gap between the inner cylinder and the heat storage protrusion is configured as a gasification region of carbide. Combustion exhaust gas generated in a carbonization furnace is introduced into the gap between the outer cylinder and the inner cylinder. The heat storage projections are heated and the radiant heat and superheated steam uniformly heat the carbides in the gasification region. A biomass power generation system configured to efficiently supply power.
バイオマスを破砕する原料破砕機と、破砕したバイオマスを乾燥する乾燥機と、乾燥した前記バイオマスを加熱して炭化する炭化炉と、水蒸気を熱して過熱蒸気を発生する過熱蒸気発生装置と、前記過熱蒸気発生装置より供給される過熱蒸気と前記炭化炉で炭化して得られた炭化物とを炭化炉で発生した燃焼排ガスによって加熱して熱分解ガスを発生させる熱分解ガス化装置と、前記熱分解ガスを熱交換し精製した水性ガスを用いて発電して電力を得る第1発電装置と、前記熱分解ガス化装置より燃焼排ガスを過熱蒸気発生装置へ供給し熱源に使用し、過熱蒸気発生装置の燃焼排ガスをボイラーへ供給して飽和蒸気を回収しこの回収された飽和蒸気を用いて発電して電力を得る第2発電装置とを備え、
前記熱分解ガス化装置は、筒状の外筒と、外筒内部に設けられる内筒と、内筒の下方に回転自在に配置されるターンテーブルと、ターンテーブルの回転中心部に内筒の周壁と空隙をおいて配設される蓄熱性突起とを備え、
前記内筒と蓄熱性突起との空隙を炭化物のガス化領域として構成し、前記外筒と内筒の空隙には炭化炉で発生した燃焼排ガスが導入され、該燃焼排ガスによって内筒内部並びに前記蓄熱性突起が加熱されると共にその輻射熱と過熱蒸気とによってガス化領域の炭化物が均一に加熱されて得られる組成比が均一な水性ガスによって常時一定の熱量で発電装置を作動し、もって安全で且つ効率よく電力を供給するように構成されることを特徴とするバイオマス発電システム。
A raw material crusher for crushing biomass, a dryer for drying the crushed biomass, a carbonization furnace for heating and carbonizing the dried biomass, a superheated steam generator for heating steam to generate superheated steam, and the superheat A pyrolysis gasifier for generating pyrolysis gas by heating superheated steam supplied from a steam generator and carbide obtained by carbonization in the carbonization furnace with combustion exhaust gas generated in the carbonization furnace, and the pyrolysis gas using a first and a power generator to obtain electric power by electric power using a water gas purified by the heat exchange, the supply of combustion gas from the pyrolysis gasifier into superheated steam generator heat source, superheated steam generator A second power generation device that supplies the combustion exhaust gas from the boiler to a boiler, collects saturated steam, generates power using the collected saturated steam, and obtains electric power;
The pyrolysis gasification device includes a cylindrical outer cylinder, an inner cylinder provided inside the outer cylinder, a turntable rotatably disposed below the inner cylinder, and an inner cylinder at a rotation center portion of the turntable. A thermal storage protrusion disposed with a peripheral wall and a gap,
A gap between the inner cylinder and the heat storage protrusion is configured as a gasification region of carbide. Combustion exhaust gas generated in a carbonization furnace is introduced into the gap between the outer cylinder and the inner cylinder. The heat storage projections are heated and the radiant heat and superheated steam uniformly heat the carbides in the gasification region. A biomass power generation system configured to efficiently supply power.
前記乾燥機は、原料のバイオマスを前記炭化炉ないし熱分解ガス化装置から供給される燃焼排ガスによって乾燥し該乾燥したバイオマスを炭化炉に供給することを特徴とする請求項2記載のバイオマス発電システム。 3. The biomass power generation system according to claim 2 , wherein the dryer dries raw material biomass with combustion exhaust gas supplied from the carbonization furnace or pyrolysis gasifier and supplies the dried biomass to the carbonization furnace. . 前記過熱蒸気発生装置は、水源ボイラーから供給される水蒸気を前記炭化炉ないし熱分解ガス化装置から供給される燃焼排ガスによって熱して発生する過熱蒸気を熱分解ガス化装置に供給することを特徴とする請求項2記載のバイオマス発電システム。 The superheated steam generator supplies superheated steam generated by heating steam supplied from a water source boiler with combustion exhaust gas supplied from the carbonization furnace or pyrolysis gasifier to the pyrolysis gasifier. The biomass power generation system according to claim 2 . 前記蓄熱性突起は鋳物、その他の金属またはセラミックスの中の何れか一種からなることを特徴とする請求項2記載のバイオマス発電システム。 3. The biomass power generation system according to claim 2, wherein the heat storage protrusion is made of any one of castings, other metals, and ceramics.
JP2015022250A 2014-02-10 2015-02-06 Biomass power generation system Active JP5917735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015022250A JP5917735B2 (en) 2014-02-10 2015-02-06 Biomass power generation system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014023566 2014-02-10
JP2014023566 2014-02-10
JP2015022250A JP5917735B2 (en) 2014-02-10 2015-02-06 Biomass power generation system

Publications (2)

Publication Number Publication Date
JP2015165019A JP2015165019A (en) 2015-09-17
JP5917735B2 true JP5917735B2 (en) 2016-05-18

Family

ID=54187613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015022250A Active JP5917735B2 (en) 2014-02-10 2015-02-06 Biomass power generation system

Country Status (1)

Country Link
JP (1) JP5917735B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101696297B1 (en) 2016-09-08 2017-01-13 지이큐솔루션 주식회사 Combined Heat and Power System for Energy-saving type
KR102651638B1 (en) 2021-11-30 2024-03-29 한국에너지기술연구원 Bio-char production apparatus by using agricultural by-products for carbon storage

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3239274B1 (en) 2014-12-24 2020-06-24 Takahashi Seisakusho Inc. Water gas generation system and method for supplying combustion gas to said system
CN105441134A (en) * 2015-12-28 2016-03-30 安徽虹源生物质有限公司 System and method of biomass pyrolysis gas combustion-supporting direct-combustion boiler process
JP6170579B1 (en) * 2016-01-29 2017-07-26 株式会社高橋製作所 Biomass power generation system and pyrolysis furnace return system
JP6642924B2 (en) * 2016-01-29 2020-02-12 株式会社高橋製作所 Hydrogen station system
JP6886242B2 (en) * 2016-01-29 2021-06-16 株式会社高橋製作所 Hydrogen supply system
WO2017138157A1 (en) * 2016-02-12 2017-08-17 テスナエナジー株式会社 Reformer furnace and gasification system using same
JP6006467B1 (en) * 2016-02-12 2016-10-12 テスナエナジー株式会社 Reforming furnace and gasification system using the same
CN106825000A (en) * 2017-02-24 2017-06-13 中山市恒辉自动化科技有限公司 A kind of organic waste harmlessness disposing and clean energy resource utilize system
JP6679818B2 (en) * 2017-03-07 2020-04-15 株式会社実践環境研究所 Pyrolysis system
JP7088734B2 (en) * 2018-05-10 2022-06-21 エネサイクル株式会社 Reformer
JP6970312B1 (en) * 2020-07-03 2021-11-24 エネサイクル株式会社 Gasification system and reformer
JP7341385B2 (en) 2021-12-24 2023-09-11 新和環境株式会社 Biomass water gasification system
JP7341386B2 (en) 2021-12-24 2023-09-11 新和環境株式会社 How to rebuild a biomass processing system
CN114525196A (en) * 2022-03-21 2022-05-24 国能生物发电集团有限公司 Constant-temperature methane tank high-temperature steam heat pump heating system utilizing waste heat of biomass boiler

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140805A (en) * 1986-12-04 1988-06-13 Mitsui Eng & Shipbuild Co Ltd Gasification apparatus for biomass fuel gasification compound power generation
JP2004035837A (en) * 2002-07-05 2004-02-05 Mitsubishi Heavy Ind Ltd Thermal cracking gasification apparatus and the system
JP5342664B2 (en) * 2012-03-08 2013-11-13 光幸 飯嶋 Pyrolysis gasifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101696297B1 (en) 2016-09-08 2017-01-13 지이큐솔루션 주식회사 Combined Heat and Power System for Energy-saving type
KR102651638B1 (en) 2021-11-30 2024-03-29 한국에너지기술연구원 Bio-char production apparatus by using agricultural by-products for carbon storage

Also Published As

Publication number Publication date
JP2015165019A (en) 2015-09-17

Similar Documents

Publication Publication Date Title
JP5917735B2 (en) Biomass power generation system
JP5606624B2 (en) Low temperature biomass pyrolysis and high temperature biomass gasification method and apparatus
JP6824745B2 (en) Carbonization furnace and pyrolysis furnace, as well as water gas generation system, hydrogen gas generation system, and power generation system
JP5627777B2 (en) Method and apparatus for indirect gasification of biomass using water vapor
JP5342664B2 (en) Pyrolysis gasifier
JP2008260832A (en) Method for waste regeneration treatment and system for waste regeneration treatment
JP2013538248A (en) Biomass pyrolysis gasification method and apparatus via two interconnected furnaces
JP4502331B2 (en) Method and system for cogeneration with a carbonization furnace
JP5857340B2 (en) Combined system using coal for char / raw gas production and power generation
JP2008201964A (en) Process and system for producing solid fuel
JP5729997B2 (en) Wood tar manufacturing apparatus and method
JP6251892B2 (en) Combustion system
RU2668447C1 (en) Method of gasification of solid fuel and device for its implementation
JP2015007522A (en) Combustion system
US20110041404A1 (en) Plasma-based apparatus for gasifying bio-waste into synthetic gas
JP2005146185A (en) Equipment for utilizing plant-derived biomass resources
JP6170579B1 (en) Biomass power generation system and pyrolysis furnace return system
JP6006467B1 (en) Reforming furnace and gasification system using the same
Arjharn et al. Evaluation of electricity production from different biomass feedstocks using a pilot-scale downdraft gasifier
JP2006335937A (en) Heating apparatus for organic compound
JP2009240888A (en) System for gasifying waste
JP4089079B2 (en) Waste treatment method and waste treatment system
JP2004168836A (en) Method for treatment of waste wood
JP6590359B1 (en) Hydrogen production method using biomass as raw material
JP7291677B2 (en) Water gas generation system, biomass power generation system and biomass hydrogen supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151209

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20151209

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160406

R150 Certificate of patent or registration of utility model

Ref document number: 5917735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250