JP5917382B2 - Precision fitting work method by articulated robot and articulated robot hand used in the work method - Google Patents

Precision fitting work method by articulated robot and articulated robot hand used in the work method Download PDF

Info

Publication number
JP5917382B2
JP5917382B2 JP2012269072A JP2012269072A JP5917382B2 JP 5917382 B2 JP5917382 B2 JP 5917382B2 JP 2012269072 A JP2012269072 A JP 2012269072A JP 2012269072 A JP2012269072 A JP 2012269072A JP 5917382 B2 JP5917382 B2 JP 5917382B2
Authority
JP
Japan
Prior art keywords
fitting
articulated robot
hand
work method
precision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012269072A
Other languages
Japanese (ja)
Other versions
JP2014113659A (en
Inventor
忠弘 藤原
忠弘 藤原
柴田 大介
大介 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawada Industries Inc
Original Assignee
Kawada Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawada Industries Inc filed Critical Kawada Industries Inc
Priority to JP2012269072A priority Critical patent/JP5917382B2/en
Publication of JP2014113659A publication Critical patent/JP2014113659A/en
Application granted granted Critical
Publication of JP5917382B2 publication Critical patent/JP5917382B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)

Description

この発明は、多関節型ロボットのハンド(エンドエフェクタ)に保持させた嵌合部品をその多関節型ロボットの作動によって被嵌合部品に精密嵌め合いさせる作業方法およびその作業方法に用いられる多関節型ロボット用ハンドに関するものである。   The present invention relates to a work method for precisely fitting a fitting part held by a hand (end effector) of an articulated robot to a fitted part by operation of the articulated robot, and a multi-joint used in the working method. Type robot hand.

例えば本願出願人が先に特許文献1にて開示した、多関節型ロボットの一種である双腕ロボットによる作業においては、別々のワークをそれぞれの手で把持し、合体させてねじ止め等で締結するという作業がある。また、多関節型ロボットの一種である通常の単腕の産業用ロボットに関しても、その単腕でワークを把持し、台上の他のワークに装着固定するという作業がある。   For example, in the work by the dual-arm robot which is a kind of articulated robot previously disclosed in Patent Document 1 by the applicant of the present application, separate works are held with their hands, combined, and fastened with screws or the like. There is work to do. In addition, an ordinary single-arm industrial robot, which is a kind of articulated robot, also has a work of holding a work with the single arm and mounting and fixing it on another work on the table.

これらの合体あるいは装着作業においては、一方のワークである嵌合部品を、もう一方のワークである被嵌合部品に精密嵌め合いさせる場合があり、その場合に通常の多関節型ロボットの位置決め制御のみで精密嵌め合いを実施させようとしても、ロボットの位置決め精度が精密嵌め合いに必要な精度にはるかに及ばないため、部品同士の噛み込みや衝突を起こし、作業の実現が困難である。   In these merging or mounting operations, there is a case in which a fitting part that is one workpiece is precisely fitted to a fitting part that is the other workpiece, in which case the positioning control of a normal articulated robot is performed. Even if it is attempted to perform the precision fitting only, since the positioning accuracy of the robot does not reach the accuracy required for the precision fitting, the parts are engaged and collided, and it is difficult to realize the operation.

そこで、現状では、精密嵌め合い作業を行うための専用のコンプライアンス機構や、力制御機構をつけたハンドを用いて嵌め合い作業を実現している(例えば特許文献1参照)。   Therefore, at present, the fitting work is realized by using a dedicated compliance mechanism for performing a precision fitting work or a hand provided with a force control mechanism (see, for example, Patent Document 1).

特開2010−058202号公報JP 2010-058202 A

しかし、製品毎に専用のコンプライアンス機構を搭載したハンドを用いる場合には、その製作時間および、コンプライアンス機構等の設計費用が嵩むことになる。また、力制御で嵌め合い作業を行う場合にも、ロボットの制御機構に高価な力検出センサおよび制御アルゴリズムが必要で、高価なシステム構成となってしまう。   However, when a hand equipped with a dedicated compliance mechanism is used for each product, the manufacturing time and the design cost of the compliance mechanism and the like increase. Further, even when the fitting operation is performed by force control, an expensive force detection sensor and control algorithm are required for the robot control mechanism, resulting in an expensive system configuration.

それゆえ本発明は、特別なセンサや機構を使用することなく、通常の多関節型ロボットで、安価に精密嵌め合い作業を実施できるようにすることを目的としている。   Therefore, an object of the present invention is to enable a precision fitting operation to be performed at low cost with a normal articulated robot without using a special sensor or mechanism.

この発明は、上記課題を有利に解決するものであり、この発明の多関節型ロボットによる精密嵌め合い作業方法は、多関節型ロボットのハンドに保持させた嵌合部品をその多関節型ロボットの作動によって被嵌合部品に精密嵌め合いさせるに際し、
前記ハンドに保持させた嵌合部品を、前記ハンドで嵌合方向に附勢しつつその嵌合方向に対し垂直な面内で8の字状の軌跡に沿って移動させて被嵌合部品に嵌合させることを特徴とするものである。
The present invention advantageously solves the above-described problems, and the precision fitting work method using an articulated robot according to the present invention provides a fitting part held by a hand of an articulated robot. When precisely fitting to the mating parts by operation,
The fitting component held by the hand is urged in the fitting direction by the hand and moved along a figure-eight locus in a plane perpendicular to the fitting direction to be a fitting component. It is made to fit.

また、前記多関節型ロボットによる精密嵌め合い作業方法に用いられる多関節型ロボット用ハンドは、
前記嵌合部品を前記嵌合方向へ移動可能に保持する嵌合部品保持手段と、
前記嵌合部品を前記嵌合方向へ向けて附勢する嵌合部品附勢手段と、
前記嵌合部品の前記被嵌合部品への嵌合の成否を検出する嵌合成否検出手段と、
を具えることを特徴とするものである。
The articulated robot hand used in the precision fitting work method by the articulated robot is as follows.
A fitting component holding means for holding the fitting component so as to be movable in the fitting direction;
Fitting component urging means for urging the fitting component toward the fitting direction;
A fitting composition rejection detecting means for detecting success or failure of fitting of the fitting component to the mated component;
It is characterized by comprising.

この発明の多関節型ロボットによる精密嵌め合い作業方法によれば、多関節型ロボットのハンドに保持させた嵌合部品をその多関節型ロボットの作動によって被嵌合部品に精密嵌め合いさせるに際し、前記ハンドに保持させた嵌合部品を、前記ハンドで嵌合方向に附勢しつつその嵌合方向に対し垂直な面内で、所定のアプローチ位置である8の字の交点から始めて8の字状の軌跡に沿って移動させて、その移動中、被嵌合部品に対する嵌合位置に来たときに上記附勢力により被嵌合部品に嵌合させることから、被嵌合部品に対し嵌合部品を厳密に位置決めしなくても、特別なセンサや機構を使用することなく、通常の多関節型ロボットで、安価に精密嵌め合い作業を実施することができる。   According to the precision fitting work method by the articulated robot of the present invention, when the fitting part held in the hand of the articulated robot is precisely fitted to the fitted part by the operation of the articulated robot, The fitting part held by the hand is urged in the fitting direction by the hand, and the figure 8 starts from the intersection of the figure 8 at a predetermined approach position in a plane perpendicular to the fitting direction. It is moved along the path of the shape, and during the movement, when it comes to the fitting position with respect to the mating part, it is fitted to the mating part by the above urging force. Even if the parts are not positioned precisely, a precision fitting operation can be performed at low cost with a normal articulated robot without using special sensors or mechanisms.

なお、この発明の多関節型ロボットによる精密嵌め合い作業方法においては、前記嵌合部品を、前記8の字状の軌跡に沿って移動させる際に、前記嵌合部品の先端部がその8の字状の軌跡の内方へ向くように傾動させても良く、このようにすれば、8の字状の軌跡に沿った移動中に嵌合部品の先端部の向きが逐次変化するので、被嵌合部品の嵌合部の向きが本来の向きと多少異なっていても、嵌合部品の先端部を被嵌合部品の嵌合部に嵌合させることができる。   In the precision fitting work method using the articulated robot according to the present invention, when the fitting part is moved along the 8-shaped locus, the tip of the fitting part is The tip of the fitting part may be sequentially changed during the movement along the 8-shaped trajectory. Even if the direction of the fitting part of the fitting part is slightly different from the original direction, the tip part of the fitting part can be fitted to the fitting part of the part to be fitted.

また、この発明の多関節型ロボットによる精密嵌め合い作業方法においては、前記ハンドを移動させる前記多関節型ロボットは、前記被嵌合部品への前記嵌合部品の嵌合後の腕部の作動を、その腕部の弾性変形で吸収することとしてもよく、このようにすれば、複雑なコンプライアンス制御や力制御を行わなくても、嵌合後のハンドの移動し過ぎによる嵌合部品や被嵌合部品等の破損を防止することができる。   Further, in the precision fitting work method using the articulated robot according to the present invention, the articulated robot that moves the hand operates the arm after the fitting part is fitted to the fitted part. This can be absorbed by the elastic deformation of the arm, and in this way, the fitting parts and the covering caused by excessive movement of the hand after fitting can be performed without complicated compliance control and force control. Breakage of fitting parts and the like can be prevented.

そして、この発明の多関節型ロボットによる精密嵌め合い作業方法に用いられる多関節型ロボット用ハンドによれば、嵌合部品保持手段が、嵌合部品を嵌合方向へ移動可能に保持し、嵌合部品附勢手段が、嵌合部品を嵌合方向へ向けて附勢し、嵌合成否検出手段が、被嵌合部品への嵌合部品の嵌合の成否を検出するので、複雑なコンプライアンス制御や力制御を行わなくても、多関節型ロボットによる精密嵌め合い作業を行うことができる。   According to the articulated robot hand used in the precision fitting work method by the articulated robot of the present invention, the fitting component holding means holds the fitting component so as to be movable in the fitting direction, The composite component urging means urges the mating parts toward the mating direction, and the mating composition detection means detects whether or not the mating parts are mated with the mating parts. Precise fitting work by an articulated robot can be performed without performing control or force control.

(a),(b)および(c)は、この発明の多関節型ロボットによる精密嵌め合い作業方法の一実施例に用いられる多関節型ロボット用ハンドの一例を示す平面図、正面図および側面図である。(A), (b), and (c) are a plan view, a front view, and a side view showing an example of an articulated robot hand used in an embodiment of the precision fitting work method by the articulated robot of the present invention. FIG. (a)および(b)は、上記例の多関節型ロボット用ハンドを用いた上記実施例の精密嵌め合い作業方法におけるハンドの動作を示す正面図および斜視図である。(A) and (b) are a front view and a perspective view showing the operation of the hand in the above embodiment precise fitting work method using the multi-joint robot hand in the above example. 上記例の多関節型ロボット用ハンドを用いた上記実施例の精密嵌め合い作業方法におけるハンドの首振り動作を示す説明図である。It is an explanatory view showing the hand swinging operation in Precision mating work method of the above embodiment using the articulated robot hand in the above example. (a)および(b)は、上記例の多関節型ロボット用ハンドを用いた上記実施例の精密嵌め合い作業方法における嵌合成功状態を示す正面図および斜視図である。(A) and (b) are a front view and a perspective view showing a mating success status in Precision mating work method of the above embodiment using the articulated robot hand in the above example. (a)および(b)は、上記例の多関節型ロボット用ハンドを用いた上記実施例の精密嵌め合い作業方法における嵌合失敗状態を示す正面図および斜視図である。(A) and (b) are a front view and a perspective view showing a fitting failure condition in Precision mating work method of the above embodiment using the hand for the articulated robot of the embodiment.

以下、この発明の実施の形態を図面に基づく実施例によって詳細に説明する。ここに、図1(a),(b)および(c)は、この発明の多関節型ロボットによる精密嵌め合い作業方法の一実施例に用いられる多関節型ロボット用ハンドの一例を示す平面図、正面図および側面図である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Here, FIGS. 1A, 1B and 1C are plan views showing an example of an articulated robot hand used in one embodiment of the precision fitting work method by the articulated robot of the present invention. They are a front view and a side view.

この実施例の多関節型ロボットによる精密嵌め合い作業方法では、例えば本願出願人が先に特開2010−064198号公報(特許文献1)にて開示した如き多関節型双腕ロボットを用いることとし、図中符号1は、その多関節型双腕ロボットの一方の腕部、2はその腕部1の先端部に設けられたハンドをそれぞれ示す。   In the precision fitting work method using the multi-joint robot of this embodiment, for example, the multi-joint double-arm robot as disclosed in Japanese Patent Laid-Open No. 2010-064198 (Patent Document 1) by the applicant of the present application is used. In the figure, reference numeral 1 denotes one arm portion of the multi-joint type double-arm robot, and 2 denotes a hand provided at the distal end portion of the arm portion 1.

この例の多関節型ロボット用ハンド2は、腕部1の軸線と一致するロール軸線周り並びにそのロール軸線に対し直交するとともに互いに直交するピッチ軸線およびヨー軸線周りに回動する3自由度を持つ手首部2aと、その手首部2aと図示しない通常のツールチェンジャとを介して腕部1の先端部に交換可能に装着されたブラケット2bと、L字状の一対のフィンガ2cを図示しないエアシリンダにより互いに接近および離間移動させる嵌合部品保持手段としてのフィンガ駆動部2dと、ブラケット2bにフィンガ駆動部2dを図1(b),(c)では上下方向へ移動自在に支持するこれも嵌合部品保持手段としてのリニアガイド2eと、そのブラケット2bとフィンガ駆動部2dとの間に介挿されてブラケット2bに対しフィンガ駆動部2dを図1(b),(c)では下方へ常時附勢する嵌合部品附勢手段としてのスプリング2fと、フィンガ駆動部2dの図1(b),(c)では上端部に突設された互いに長さの異なる二本の突起2g,2hをそれぞれ検出する嵌合成否検出手段としての二つの光センサ2i,2jとを具えている。 The articulated robot hand 2 of this example has three degrees of freedom around the roll axis that coincides with the axis of the arm 1 and about the pitch axis and the yaw axis that are orthogonal to the roll axis and orthogonal to each other. An air cylinder (not shown) including a wrist 2a, a bracket 2b exchangeably attached to the tip of the arm 1 via the wrist 2a and a normal tool changer (not shown), and a pair of L-shaped fingers 2c The finger drive unit 2d as a fitting component holding means that moves closer to and away from each other by means of the above, and the bracket 2b also supports the finger drive unit 2d so as to be movable in the vertical direction in FIGS. 1B and 1C. A linear guide 2e serving as a component holding means, and a finger driving portion interposed between the bracket 2b and the finger driving portion 2d so as to be connected to the bracket 2b. 1 (b) and 1 (c), a spring 2f as a fitting component urging means that constantly urges downward in FIG. 1 (b), and FIG. And two optical sensors 2i and 2j as fitting / combination detection means for detecting the two protrusions 2g and 2h having different lengths.

ここで、二つの光センサ2i,2jは各々、互いに対向する発光部と受光部とを有し、光センサ2iは、短い方の突起2gがその発光部と受光部との間に入り込んで受光部が発光部からの光を突起2gで遮られると検出信号を出力し、同様に光センサ2jは、長い方の突起2hがその発光部と受光部との間に入り込んで受光部が発光部からの光を突起2hで遮られると検出信号を出力する。そしてこれらの検出信号は、上記多関節型双腕ロボットの通常の制御装置に入力される。   Here, each of the two optical sensors 2i and 2j has a light emitting portion and a light receiving portion that face each other, and in the optical sensor 2i, the shorter projection 2g enters between the light emitting portion and the light receiving portion and receives light. When the light from the light emitting part is blocked by the protrusion 2g, a detection signal is output. Similarly, in the optical sensor 2j, the longer protrusion 2h enters between the light emitting part and the light receiving part, and the light receiving part becomes the light emitting part. When the light from the light is blocked by the protrusion 2h, a detection signal is output. These detection signals are input to a normal control device of the articulated double-arm robot.

この実施例の精密嵌め合い作業方法では、先ず、上記多関節型双腕ロボットの一方の腕部1の先端部に装着したハンド1のフィンガ駆動部2dを駆動して一対のフィンガ2cを互いに接近移動させ、図2に示すように、それらのフィンガ2cで嵌合部材3の頭部を挟持して、嵌合部材3の先端部3aをそれらのフィンガ2c間から図1(b),(c)では下方へ突出させる。なお、この先端部3aの先端面と外周面との間の角部には、図示しないが糸面取りが施されている。   In the precision fitting work method of this embodiment, first, the pair of fingers 2c are brought closer to each other by driving the finger driving portion 2d of the hand 1 attached to the tip of one arm portion 1 of the articulated double arm robot. As shown in FIG. 2, the head of the fitting member 3 is sandwiched between the fingers 2c, and the tip 3a of the fitting member 3 is moved between the fingers 2c as shown in FIGS. ) Project downward. In addition, although not shown in figure, the thread | corner chamfering is given to the corner | angular part between the front end surface and outer peripheral surface of this front-end | tip part 3a.

そしてこの嵌合部材3の先端部3aを、図2中に矢印で示すように、図示しない作業テーブル上の概略所定位置に置かれた板状の被嵌合部材4の貫通孔である嵌合部4a内に精密嵌め合いさせる。この嵌合部4aの内周面と被嵌合部材4の表面との間の角部にも、図示しないが糸面取りが施されている。この精密嵌め合い作業を行う際、被嵌合部材4の嵌合部4aの中心位置と、所定の嵌合作業開始位置(アプローチ位置)での嵌合部材3の先端部3aの中心位置とが、図中寸法dで示すように多少程度ずれている場合がある。   And the front-end | tip part 3a of this fitting member 3 is a fitting which is a through-hole of the plate-shaped to-be-fitted member 4 placed in the rough predetermined position on the work table which is not shown in figure as shown by the arrow in FIG. A precise fit is made in the part 4a. The corner between the inner peripheral surface of the fitting portion 4a and the surface of the fitted member 4 is also chamfered although not shown. When this precision fitting operation is performed, the center position of the fitting portion 4a of the member to be fitted 4 and the center position of the distal end portion 3a of the fitting member 3 at a predetermined fitting operation start position (approach position) are determined. As shown by the dimension d in the figure, there may be a slight deviation.

そこで、この実施例の精密嵌め合い作業方法では、上記多関節型双腕ロボットの制御装置が、あらかじめ与えたプログラムに基づきその多関節型双腕ロボットを作動させることで、ハンド2のフィンガ2c間に保持させた嵌合部品3を、ハンド2のリニアガイド2eによる案内下でスプリング2fにより、図1(b),(c)では下方の嵌合方向へ常時附勢しつつ、腕部1の作動によりハンド2をこの場合の嵌合方向である下方へ移動させて、その嵌合部品3の先端部3aを被嵌合部材4の表面に当接させた後、図5に示すように、二つの光センサ2i,2jが二本の突起2g,2hをそれぞれ検出するまで、スプリング2fを引っ張り変形させながらハンド2をさらに下降移動させる。なお、図5では、被嵌合部材4の嵌合部4aとして、貫通孔に代えてU字状切り欠きを例示している。   Therefore, in the precision fitting work method of this embodiment, the controller for the multi-joint double-arm robot operates the multi-joint double-arm robot based on a program given in advance, so that the fingers 2c of the hand 2 are connected. The fitting part 3 held by the arm 2 is always urged in the downward fitting direction in FIGS. 1B and 1C by the spring 2f under the guidance of the linear guide 2e of the hand 2, while As shown in FIG. 5, after moving the hand 2 downward in the fitting direction in this case and bringing the tip 3a of the fitting component 3 into contact with the surface of the member 4 to be fitted, The hand 2 is further moved downward while the spring 2f is pulled and deformed until the two optical sensors 2i and 2j detect the two protrusions 2g and 2h, respectively. In addition, in FIG. 5, it replaces with a through-hole as the fitting part 4a of the to-be-fitted member 4, and has illustrated the U-shaped notch.

次いで、この嵌合部品3の先端部3aと被嵌合部材4の表面との当接状態で、腕部1の作動によりハンド2を、図2(b)にS字状の矢印で示すように水平移動させて、嵌合部品3を、図3に示すように、嵌合方向と直交する面である水平面内で、所定のアプローチ位置である8の字の交点から始めて、8の字状の軌跡WPに沿って移動させる。   Next, the hand 2 is indicated by an S-shaped arrow in FIG. 2 (b) by the operation of the arm portion 1 in a contact state between the front end portion 3a of the fitting component 3 and the surface of the member 4 to be fitted. As shown in FIG. 3, the fitting component 3 is moved horizontally to the horizontal plane which is a plane orthogonal to the fitting direction, starting from the intersection of the figure 8 at the predetermined approach position. Is moved along the locus WP.

さらに、この実施例ではその8の字状の軌跡WPに沿った嵌合部品3の水平移動の間に、手首部2aも併せて作動させることにより、嵌合部品3を、その先端部3aが8の字状の軌跡WPの内方へ向くように傾動させて、嵌合部品3の姿勢を変化させ、その先端部3aの向きを逐次変化させる。   Further, in this embodiment, during the horizontal movement of the fitting part 3 along the 8-shaped locus WP, the wrist part 2a is also operated, so that the fitting part 3 is moved to the tip part 3a. It is tilted so as to be directed inward of the 8-shaped locus WP, the posture of the fitting part 3 is changed, and the direction of the tip 3a is sequentially changed.

これにより嵌合部品3は、その8の字状の軌跡WPに沿った水平移動中、被嵌合部品4の嵌合部4aに対する嵌合位置に来たときにスプリング2fの弾性反発力により被嵌合部品4の嵌合部4aに先端部3aを挿入して精密嵌め合いさせる。このとき図4に示すように、被嵌合部品4の嵌合部4aに嵌合部品3の先端部3aが入り込むと、嵌合部品3ひいてはフィンガ駆動部2dがブラケット2bに対して先端部3aの嵌合長さ分下降して、短い方の突起2gが光センサ2iの発光部と受光部との間から抜け出すことから、光センサ2iの検出信号がなくなり、その一方で、長い方の突起2hは光センサ2jの発光部と受光部との間に未だ入り込んでいるので、光センサ2jは検出信号を出力し続ける。従って、光センサ2iの検出信号がなくなる一方、光センサ2jが検出信号を出力し続けている場合には、嵌合部品3の先端部3aが被嵌合部品4の嵌合部4aに入り込んでいる蓋然性が高いので、上記多関節型双腕ロボットの制御装置は嵌合成功と判断する。   As a result, the fitting part 3 is covered by the elastic repulsive force of the spring 2f when the fitting part 3 comes to the fitting position with respect to the fitting part 4a of the fitting part 4 during horizontal movement along the 8-shaped locus WP. The distal end portion 3a is inserted into the fitting portion 4a of the fitting component 4 so as to be precisely fitted. At this time, as shown in FIG. 4, when the distal end portion 3a of the fitting component 3 enters the fitting portion 4a of the fitted component 4, the distal end portion 3a of the fitting component 3 and consequently the finger driving portion 2d with respect to the bracket 2b. And the shorter projection 2g comes out from between the light emitting portion and the light receiving portion of the optical sensor 2i, so that the detection signal of the optical sensor 2i disappears, while the longer projection Since 2h still enters between the light emitting portion and the light receiving portion of the optical sensor 2j, the optical sensor 2j continues to output the detection signal. Therefore, when the detection signal of the optical sensor 2i disappears, while the optical sensor 2j continues to output the detection signal, the tip 3a of the fitting part 3 enters the fitting part 4a of the fitting part 4. Therefore, the controller for the articulated double-arm robot determines that the fitting has been successful.

この嵌合成功により、上記多関節型双腕ロボットの制御装置はハンド移動命令を解除するが、モータ等の作動慣性等により腕部1は、嵌合部品3と被嵌合部品4との嵌合後も作動してハンド2をさらに移動させようとする。これに対しこの実施例の精密嵌め合い作業方法では、上記多関節型双腕ロボットは人との共存・協調作業を安全に行うために通常の工業用ロボットよりも低剛性に構成されているので、図4に示すように、被嵌合部品4への嵌合部品3の嵌合後の腕部1の作動を、その腕部1の弾性変形(撓み)で吸収する。   As a result of this successful fitting, the control device for the multi-joint type double-arm robot cancels the hand movement command, but the arm 1 is fitted between the fitting part 3 and the part to be fitted 4 due to the operating inertia of the motor or the like. Even after the operation, it tries to move the hand 2 further. On the other hand, in the precision fitting work method of this embodiment, the articulated double-arm robot is configured to have a lower rigidity than a normal industrial robot in order to perform coexistence and cooperation with humans safely. As shown in FIG. 4, the operation of the arm part 1 after the fitting part 3 is fitted to the fitting part 4 is absorbed by elastic deformation (bending) of the arm part 1.

この一方、上記嵌合部品3の、8の字状の軌跡WPに沿った水平移動が終了して当初の位置に戻っても、二つの光センサ2i,2jが何れも検出信号を出力し続けている場合には、図5に示すように、嵌合部品3の先端部3aが被嵌合部品4の嵌合部4aに入り込まず被嵌合部品4の表面に当接したままになっている蓋然性が高いので、上記多関節型双腕ロボットの制御装置は嵌合失敗と判断し、この場合には上記プログラムに基づき、例えば再度上記作動を繰返すか、信号灯やアラーム等で嵌合失敗を作業者に知らせる。   On the other hand, even if the horizontal movement of the fitting part 3 along the 8-shaped locus WP ends and returns to the initial position, the two optical sensors 2i and 2j continue to output detection signals. 5, the tip 3a of the fitting part 3 does not enter the fitting part 4a of the fitting part 4 and remains in contact with the surface of the fitting part 4 as shown in FIG. Therefore, the controller for the multi-joint type double-arm robot determines that the fitting has failed, and in this case, based on the program, for example, the above operation is repeated again or the fitting failure is detected by a signal light or an alarm. Inform the worker.

従って、この実施例の精密嵌め合い作業方法によれば、被嵌合部品4に対し嵌合部品3を当初に厳密に位置決めしなくても、特別なセンサや機構を使用することなく、通常の多関節型ロボットで、簡易に構成された安価なハンド2を用いて精密嵌め合い作業を実施することができる。   Therefore, according to the precision fitting work method of this embodiment, even if the fitting part 3 is not strictly positioned initially with respect to the fitting part 4, a normal sensor or mechanism can be used without using a special sensor or mechanism. With an articulated robot, a precision fitting operation can be performed using an inexpensive hand 2 that is simply configured.

しかも、この実施例の精密嵌め合い作業方法によれば、嵌合部品3を、8の字状の軌跡WPに沿って移動させる際に、嵌合部品3の先端部3aがその8の字状の軌跡WPの内方へ向くように傾動させることから、8の字状の軌跡WPに沿った移動中に嵌合部品3の先端部3aの向きが逐次変化するので、被嵌合部品4の嵌合部4aの向きが本来の向きと多少異なっていても、嵌合部品3の先端部3aを被嵌合部品4の嵌合部4aに嵌合させることができる。   In addition, according to the precision fitting work method of this embodiment, when the fitting part 3 is moved along the 8-shaped locus WP, the tip 3a of the fitting part 3 has its 8-shaped shape. Since the direction of the front end portion 3a of the fitting part 3 is sequentially changed during the movement along the figure-like path WP, the inclination of the part 4 to be fitted is changed. Even if the direction of the fitting part 4a is slightly different from the original direction, the tip part 3a of the fitting part 3 can be fitted to the fitting part 4a of the part 4 to be fitted.

さらに、この実施例の精密嵌め合い作業方法によれば、ハンド2を移動させる多関節型ロボットは、被嵌合部品4への嵌合部品3の嵌合後の腕部1の作動を、その腕部1の弾性変形で吸収することから、複雑なコンプライアンス制御や力制御を行わなくても、嵌合後のハンド2の移動し過ぎによる嵌合部品や被嵌合部品等の破損を防止することができる。   Furthermore, according to the precision fitting work method of this embodiment, the articulated robot that moves the hand 2 operates the arm 1 after the fitting part 3 is fitted to the part 4 to be fitted. Absorbing by elastic deformation of the arm portion 1 prevents the fitting part and the fitting part from being damaged due to excessive movement of the hand 2 after fitting without performing complicated compliance control or force control. be able to.

そして、この例の多関節型ロボット用のハンド2によれば、リニアガイド2eで案内されるフィンガ駆動部2dにより駆動される一対のフィンガ2cが、嵌合部品3を嵌合方向へ移動可能に保持し、スプリング2fが、嵌合部品3を嵌合方向へ向けて常時附勢し、二つの光センサ2i,2jが、被嵌合部品4への嵌合部品3の嵌合の成否を検出するので、複雑なコンプライアンス制御や力制御を行わなくても、多関節型ロボットによる精密嵌め合い作業を行うことができる。 Then, according to the hand 2 for the articulated robot of this example, the pair of fingers 2c driven by the finger drive unit 2d guided by the linear guide 2e can move the fitting part 3 in the fitting direction. The spring 2f always urges the fitting part 3 in the fitting direction, and the two optical sensors 2i and 2j detect the success or failure of fitting the fitting part 3 to the fitting part 4. Therefore, it is possible to perform precision fitting work by an articulated robot without performing complicated compliance control and force control.

以上、図示例に基づき説明したが、この発明は上述の例に限定されるものでなく、特許請求の範囲の記載範囲内で適宜変更し得るものであり、例えば、嵌合部品附勢手段はエアシリンダとしても良く、また、嵌合部材3は、水平面内で移動させる代わりに、嵌合方向に対し垂直に交差する球面等の曲面に沿って8の字状に移動させても良い。   As mentioned above, although demonstrated based on the example of illustration, this invention is not limited to the above-mentioned example, It can change suitably within the description range of a claim, For example, a fitting component biasing means is An air cylinder may be used, and the fitting member 3 may be moved in the shape of figure 8 along a curved surface such as a spherical surface that intersects perpendicularly with the fitting direction instead of being moved in a horizontal plane.

かくしてこの発明の多関節型ロボットによる精密嵌め合い作業方法によれば、被嵌合部品に対し嵌合部品を厳密に位置決めしなくても、特別なセンサや機構を使用することなく、通常の多関節型ロボットで、安価に精密嵌め合い作業を実施することができる。   Thus, according to the precision fitting work method using the multi-joint type robot of the present invention, even if the fitting part is not strictly positioned with respect to the fitting part, a normal multi-joint robot can be used without using a special sensor or mechanism. Precise fitting work can be performed at low cost with an articulated robot.

そしてこの発明の多関節型ロボットによる多関節型ロボットによる精密嵌め合い作業方法に用いられる多関節型ロボット用ハンドによれば、複雑なコンプライアンス制御や力制御を行わなくても、多関節型ロボットによる精密嵌め合い作業を行うことができる。   According to the articulated robot hand used in the precision fitting work method by the articulated robot of the present invention, the articulated robot can be used without complicated compliance control and force control. Precise fitting work can be performed.

1 腕部
2 ハンド
2a 手首部
2b ブラケット
2c フィンガ
2d フィンガ駆動部
2e リニアガイド
2f スプリング
2g,2h 突起
2i,2j 光センサ
3 嵌合部品
3a 先端部
4 被嵌合部品
4a 嵌合部
WP 軌跡
DESCRIPTION OF SYMBOLS 1 Arm part 2 Hand 2a Wrist part 2b Bracket 2c Finger 2d Finger drive part 2e Linear guide 2f Spring 2g, 2h Protrusion 2i, 2j Optical sensor 3 Fitting part 3a Tip part 4 Part to be fitted 4a Fitting part WP locus

Claims (3)

多関節型ロボットのハンドに保持させた嵌合部品をその多関節型ロボットの作動によって被嵌合部品に精密嵌め合いさせるに際し、
前記ハンドに保持させた嵌合部品を、前記ハンドで嵌合方向に附勢しつつその嵌合方向に対し垂直な面内で8の字状の軌跡に沿って移動させて被嵌合部品に嵌合させることを特徴とする多関節型ロボットによる精密嵌め合い作業方法。
When the fitting part held in the hand of the articulated robot is precisely fitted to the part to be fitted by the operation of the articulated robot,
The fitting component held by the hand is urged in the fitting direction by the hand and moved along a figure-eight locus in a plane perpendicular to the fitting direction to be a fitting component. A precision fitting work method by an articulated robot characterized by being fitted.
前記嵌合部品を、前記8の字状の軌跡に沿って移動させる際に、前記嵌合部品の先端部がその8の字状の軌跡の内方へ向くように傾動させることを特徴とする、請求項1記載の多関節型ロボットによる精密嵌め合い作業方法。   When the fitting component is moved along the 8-shaped trajectory, the tip of the fitting component is tilted so as to face inward of the 8-shaped trajectory. A precision fitting work method using the articulated robot according to claim 1. 前記ハンドを移動させる前記多関節型ロボットは、前記被嵌合部品への前記嵌合部品の嵌合後の腕部の作動を、その腕部の弾性変形で吸収することを特徴とする、請求項1または2記載の多関節型ロボットによる精密嵌め合い作業方法。   The articulated robot that moves the hand absorbs the operation of the arm part after fitting the fitting part to the fitting part by elastic deformation of the arm part. Item 3. A precision fitting work method using the articulated robot according to item 1 or 2.
JP2012269072A 2012-12-10 2012-12-10 Precision fitting work method by articulated robot and articulated robot hand used in the work method Active JP5917382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012269072A JP5917382B2 (en) 2012-12-10 2012-12-10 Precision fitting work method by articulated robot and articulated robot hand used in the work method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012269072A JP5917382B2 (en) 2012-12-10 2012-12-10 Precision fitting work method by articulated robot and articulated robot hand used in the work method

Publications (2)

Publication Number Publication Date
JP2014113659A JP2014113659A (en) 2014-06-26
JP5917382B2 true JP5917382B2 (en) 2016-05-11

Family

ID=51170227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012269072A Active JP5917382B2 (en) 2012-12-10 2012-12-10 Precision fitting work method by articulated robot and articulated robot hand used in the work method

Country Status (1)

Country Link
JP (1) JP5917382B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5931167B1 (en) * 2014-12-11 2016-06-08 ファナック株式会社 Human cooperative robot system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107404A (en) * 1984-10-31 1986-05-26 Mitsubishi Electric Corp Teaching method of industrial robot
JP3288518B2 (en) * 1994-03-04 2002-06-04 三菱電機株式会社 Automatic parts assembly method and automatic parts assembly device
JPH10244367A (en) * 1997-03-03 1998-09-14 Fanuc Ltd Welding robot system

Also Published As

Publication number Publication date
JP2014113659A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
US10076841B2 (en) Method and device for controlling a manipulator
EP2474394B1 (en) Robot hand
JP2015085458A (en) Robot control device, robot system and robot
US9757863B2 (en) Robot apparatus, exchanger apparatus and robot system
EP3238883B1 (en) Robot
WO2017046975A1 (en) Attachment device, attachment method, and hand mechanism
JP2014176940A (en) Robot system, method for controlling robot and method for manufacturing workpiece
US11833687B2 (en) Robot apparatus, control method for the robot apparatus, assembly method using the robot apparatus, and recording medium
JP2009050921A (en) Handling device
US10618173B2 (en) Processing system and method for controlling processing machine
KR20200051593A (en) Manufacturing method of robot hand, robot device and electronic device
JP2018202588A (en) Control device, robot, and robot system
JP5917382B2 (en) Precision fitting work method by articulated robot and articulated robot hand used in the work method
JP2009000799A (en) Work management system
US20220234197A1 (en) Cable terminal end detection method and hand
JP2017007010A (en) Robot, control device, and robot system
CN212421307U (en) Industrial robot capable of improving safety control performance
CN114761186B (en) Robot system and method for operating same
JP2019096822A (en) Gripping device and mounting device
JP7259487B2 (en) Control method and robot system
CN113771026A (en) Industrial robot capable of improving safety control performance and control method thereof
KR102368325B1 (en) Laser condensing head unit and laser processing machine having the same
JP3929758B2 (en) Sensor support device for cutting machine and cutting machine
US12030147B2 (en) Robot machining system
JP2011143484A (en) Position detection sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160406

R150 Certificate of patent or registration of utility model

Ref document number: 5917382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250