JP5911228B2 - NMP purification system in electrode manufacturing process - Google Patents

NMP purification system in electrode manufacturing process Download PDF

Info

Publication number
JP5911228B2
JP5911228B2 JP2011154202A JP2011154202A JP5911228B2 JP 5911228 B2 JP5911228 B2 JP 5911228B2 JP 2011154202 A JP2011154202 A JP 2011154202A JP 2011154202 A JP2011154202 A JP 2011154202A JP 5911228 B2 JP5911228 B2 JP 5911228B2
Authority
JP
Japan
Prior art keywords
nmp
membrane
manufacturing process
purification system
pervaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011154202A
Other languages
Japanese (ja)
Other versions
JP2013018747A (en
Inventor
亮輔 寺師
亮輔 寺師
川田 和彦
和彦 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2011154202A priority Critical patent/JP5911228B2/en
Publication of JP2013018747A publication Critical patent/JP2013018747A/en
Application granted granted Critical
Publication of JP5911228B2 publication Critical patent/JP5911228B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Pyrrole Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン電池などの電極製造工程におけるNMP精製システムに関する。   The present invention relates to an NMP purification system in an electrode manufacturing process such as a lithium ion battery.

リチウムイオン電池における正極や負極の主要な構成材料は、活物質、集電体、バインダーである。バインダーは、ポリフッ化ビニリデン(PVDF)を分散媒であるN−メチル−2−ピロリドン(NMP)に溶解させたものが一般的である。そして、活物質、バインダー混合スラリーを集電体に塗布することで電極が製造される。ここで、NMPはスラリー塗布後の乾燥工程においてガス化するが、環境への影響や費用の問題により大部分を回収している。最近は、回収したNMPを製造工程で再利用するケースが増えている。   The main constituent materials of the positive electrode and the negative electrode in the lithium ion battery are an active material, a current collector, and a binder. The binder is generally obtained by dissolving polyvinylidene fluoride (PVDF) in N-methyl-2-pyrrolidone (NMP) as a dispersion medium. And an electrode is manufactured by apply | coating an active material and a binder mixed slurry to a collector. Here, NMP is gasified in the drying process after slurry application, but most of it is recovered due to environmental impact and cost issues. Recently, there are an increasing number of cases where the recovered NMP is reused in the manufacturing process.

NMPの回収、再利用工程の概略は下記の通りである。
(1)排ガス中のNMPを吸着体または水スクラバーにより回収する。この工程によりNMP7〜9割、水分1〜3割程度の状態にまでNMPが濃縮される。
(2)NMP/水の混合液を蒸留で精製する。この工程でNMPを99%、水分1%以下まで精製する。
The outline of the NMP recovery and reuse process is as follows.
(1) NMP in exhaust gas is recovered by an adsorbent or a water scrubber. By this step, NMP is concentrated to a state of about 70 to 90% of NMP and about 30 to 30% of water.
(2) The NMP / water mixture is purified by distillation. In this step, NMP is purified to 99% and moisture to 1% or less.

これらの工程で精製されたNMPは、再び製造工程にて再利用される。また、蒸留精製はオフサイト、オンサイトのいずれでも行われている。   NMP purified in these steps is reused in the manufacturing process again. Further, distillation purification is performed both off-site and on-site.

また、バインダーとして主に用いられるPVDFは、塩基性物質と共存することで脱フッ素化反応を起こすことが知られている。脱フッ素化反応したバインダー溶液は、反応前から粘性が変化するため、スラリー塗布工程不良の原因となる。このため、NMPについて、塩基性物質、とりわけアミン類を除去することが好ましい。   Moreover, PVDF mainly used as a binder is known to cause a defluorination reaction by coexisting with a basic substance. Since the viscosity of the binder solution that has undergone the defluorination reaction changes before the reaction, it causes a failure in the slurry application process. For this reason, it is preferable to remove basic substances, particularly amines, from NMP.

特開2004−51617号公報JP 2004-51617 A

雑誌「化学装置」 工業調査会発行 2010年4月号The magazine "Chemical Equipment" published by the Industrial Research Council April 2010 issue

上述のように、NMPの回収には、蒸留精製工程が含まれる。この蒸留精製には以下のような欠点がある。
(1)蒸留は非常に多くのエネルギーを消費するため、特に近年環境負荷の低減や省エネ化を求められている。
(2)オフサイト蒸留の場合、吸着体または水スクラバーで回収したNMPを輸送しなければならないが、この場合NMP濃度85%以下という規制がある。このため、多量の水分を蒸留で除く必要があり、より多くのエネルギーが必要とされる。
(3)オンサイト蒸留の場合、NMPの濃縮はオフサイトより大きくできるが、蒸留装置は非常に大型であり、スペース、高さが必要となり設置が難しくなる。
(4)不純物の除去を十分行うことが難しく、再利用した際、製造工程に悪影響が出る可能性がある。特に、塩基類の残留はバインダーの変性を起こし、塗布性が悪くなる。
As described above, NMP recovery includes a distillation purification step. This distillation purification has the following disadvantages.
(1) Since distillation consumes a great deal of energy, particularly in recent years, reduction of environmental load and energy saving have been demanded.
(2) In the case of off-site distillation, NMP collected by an adsorbent or water scrubber must be transported. In this case, there is a regulation that the NMP concentration is 85% or less. For this reason, it is necessary to remove a large amount of water by distillation, and more energy is required.
(3) In the case of on-site distillation, the concentration of NMP can be made larger than that of off-site, but the distillation apparatus is very large, requiring space and height, making installation difficult.
(4) It is difficult to sufficiently remove impurities, and there is a possibility of adversely affecting the manufacturing process when reused. In particular, residual bases cause binder modification, resulting in poor coatability.

本発明は、上記課題の少なくとも1つを解決することを目的とする。   The present invention aims to solve at least one of the above problems.

本発明は、電極製造工程から排出されるNMP(N−メチル−2−ピロリドン)を含むNMP水溶液を脱水精製するNMP精製システムであって、前記NMP水溶液を、水分を選択的に透過させる浸透気化膜を備えた浸透気化装置で脱水することによって、NMPを精製するとともに、前記NMP水溶液の水分は、5%以上28.3%以下であり、前記浸透気化膜は、A型ゼオライト膜である。 The present invention relates to an NMP purification system for dehydrating and purifying an NMP aqueous solution containing NMP (N-methyl-2-pyrrolidone) discharged from an electrode manufacturing process, wherein the NMP aqueous solution selectively permeates moisture. by dehydrated by pervaporation apparatus having a membrane, as well as purification of NMP, water of the NMP solution is no more than 28.3% more than 5%, the pervaporation membrane, Ru a type zeolite membrane der .

そして、本発明は、前記NMP水溶液の水分は、11.4%〜28.3%であることを特徴とする The present invention, moisture of the NMP solution is characterized by a 11.4% ~28.3%.

また、本発明は、前記NMP水溶液の水分は、15%〜28.3%であることを特徴とする
Further, the present invention is characterized in that the water content of the NMP aqueous solution is 15% to 28.3%.

また、前記浸透気化装置の前段または後段または両方に脱塩装置を設けることが好適である。 Moreover, it is preferable to provide a desalting apparatus in the front | former stage, the back | latter stage, or both of the said pervaporation apparatus .

また、前記脱塩装置は混床イオン交換樹脂であることが好適である。 In addition, the desalting apparatus is preferably a mixed bed ion exchange resin .

また、前記脱塩装置はイオン交換樹脂またはイオン交換フィルターであることが好適である。   The desalting apparatus is preferably an ion exchange resin or an ion exchange filter.

また、浸透気化装置の前段または後段または両方にろ過装置を設けることが好適である。   Further, it is preferable to provide a filtration device in the front stage, the rear stage or both of the pervaporation apparatus.

また、前記ろ過装置は、MF膜またはUF膜であることが好適である。   The filtration device is preferably an MF membrane or a UF membrane.

本発明によれば、浸透気化が採用されているので、エネルギー効率が高く、放熱ロスが少ないシステムを得ることができる。   According to the present invention, since pervaporation is adopted, a system with high energy efficiency and low heat dissipation loss can be obtained.

NMP精製システムの全体概略構成を示す図である。It is a figure which shows the whole schematic structure of an NMP refinement | purification system. 浸透気化についての構成を示す図である。It is a figure which shows the structure about pervaporation. 実験装置の構成を示す図である。It is a figure which shows the structure of an experimental apparatus. 浸透気化膜の分離係数を示すグラフである。It is a graph which shows the separation factor of a pervaporation membrane.

以下、本発明の実施形態について、図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1には、実施形態に係る電極製造工程におけるNMP精製システムの全体概略構成を示す。   In FIG. 1, the whole schematic structure of the NMP refinement | purification system in the electrode manufacturing process which concerns on embodiment is shown.

電極製造設備10においては、NMPを用いてリチウムイオン電池の電極製造工程が実施される。この電極製造の際に、活物質、バインダー混合スラリーを集電体に塗布することで電極が製造される。ここで、バインダーには、PVDFをNMPに溶解させたものが用いられ、スラリー塗布後の乾燥工程においてNMPがガス化し、排気される。   In the electrode manufacturing facility 10, an electrode manufacturing process of a lithium ion battery is performed using NMP. At the time of this electrode manufacture, an electrode is manufactured by apply | coating an active material and a binder mixed slurry to a collector. Here, a binder in which PVDF is dissolved in NMP is used as the binder, and NMP is gasified and exhausted in a drying step after slurry application.

電極製造設備10からの排気は、回収装置12に導入され、ここにおいてNMPが回収される。この回収装置12は、排気中のNMPを回収するもので、各種の方式を利用することができる。   Exhaust gas from the electrode manufacturing facility 10 is introduced into a recovery device 12, where NMP is recovered. The recovery device 12 recovers NMP in the exhaust, and various methods can be used.

まず、水を噴霧し、排気と接触させて、NMPを水に溶解させて回収するスクラバーを用いる方式がある。この方式であると、比較的水分の高いNMPの水溶液が得られる。一方、設備自体は、比較的単純であり、運転も容易であり、低温での処理が可能であってNMPの劣化を抑制できる。   First, there is a system that uses a scrubber that sprays water, contacts with exhaust, and dissolves and recovers NMP in water. With this method, an aqueous solution of NMP having a relatively high water content can be obtained. On the other hand, the equipment itself is relatively simple, can be operated easily, can be processed at a low temperature, and can suppress the deterioration of NMP.

また、活性炭や、ゼオライトなどの吸着剤にNMPを吸着させて、その後脱着することでNMPを分離濃縮する吸着方式がある。この方式では、吸着剤から脱着して得られたNMPの水溶液は、比較的水分が少ない。しかし、脱着の際に比較的高温にするので、NMPが劣化しやすいという問題がある。   In addition, there is an adsorption method in which NMP is adsorbed on an adsorbent such as activated carbon or zeolite, and then desorbed to separate and concentrate NMP. In this method, the NMP aqueous solution obtained by desorption from the adsorbent has relatively little water. However, since the temperature is relatively high at the time of desorption, there is a problem that NMP tends to deteriorate.

また、NMPの輸送には、NMP濃度85%以下(水分15%以上)という規制がある。従って、オフサイトでNMPの精製を行うためには、吸着方式を利用しても、回収した水溶液のNMP濃度を85%以下(水分15%以上)としなければならない。また、この規制は、NMPの安全性を考慮して規定されたものであり、これ以上のNMP濃度の溶液を扱う場面をなるべく少なくしたいという要求がある。このため、回収装置12において回収するNMPの水溶液の水分を15%以上にしておくことも好適である。必要であれば、水を補充することも好適である。   In addition, NMP transport is regulated to have an NMP concentration of 85% or less (water content of 15% or more). Therefore, in order to purify NMP off-site, the NMP concentration of the recovered aqueous solution must be 85% or less (water content 15% or more) even if an adsorption method is used. In addition, this regulation is defined in consideration of the safety of NMP, and there is a demand for reducing the number of scenes in which a solution having an NMP concentration higher than this is handled. For this reason, it is also preferable that the water content of the NMP aqueous solution recovered by the recovery device 12 is 15% or more. It is also suitable to replenish water if necessary.

回収装置12において回収したNMP水溶液(回収液)は、ろ過装置14に供給され不純物が除去される。ろ過装置14は、UF(限外ろ過)膜や、MF(精密ろ過)膜を用いた膜ろ過装置であり、回収液中に含まれる固形物を除去する。   The NMP aqueous solution (recovered liquid) recovered in the recovery device 12 is supplied to the filtration device 14 to remove impurities. The filtration device 14 is a membrane filtration device using a UF (ultrafiltration) membrane or an MF (microfiltration) membrane, and removes solid matter contained in the recovered liquid.

ろ過装置14で得られたろ過液は、イオン交換装置16に供給され、ここで余分なイオンが除去される。特に、アミン類およびアミン類などから生成される硝酸などの酸が除去される。   The filtrate obtained by the filtration device 14 is supplied to the ion exchange device 16 where excess ions are removed. In particular, acids such as nitric acid produced from amines and amines are removed.

イオン交換装置16による脱塩が終了した処理液は、浸透気化(PV)装置18に加温して供給され、ここで脱水し、濃縮したNMPを得る。ここで、この浸透気化装置18は、親水性の浸透気化膜を用いて供給液側に供給される回収液(NMP水溶液)から、透過側に水を気化させて除去する。   The treatment liquid which has been desalted by the ion exchange device 16 is heated and supplied to the pervaporation (PV) device 18, where it is dehydrated to obtain concentrated NMP. Here, the pervaporation apparatus 18 uses a hydrophilic pervaporation membrane to vaporize and remove water from the recovered liquid (NMP aqueous solution) supplied to the supply liquid side to the permeate side.

浸透気化装置18の濃縮液側に脱水濃縮されたNMPが得られ、この回収NMPの水分は1%以下である。そして、回収NMPは、イオン交換装置20において、もう一度アミン類などのイオンを除去した後、ろ過装置22において、浮遊固形物を除去して、電極製造設備10において回収利用される。   NMP dehydrated and concentrated is obtained on the concentrated liquid side of the pervaporation device 18, and the water content of the recovered NMP is 1% or less. The recovered NMP is once recovered in the electrode manufacturing facility 10 after removing ions such as amines once again in the ion exchange device 20 and then removing suspended solids in the filtering device 22.

図2には、浸透気化装置18の構成が示されている。浸透気化は、処理対象成分と親和性のある分離膜(浸透気化膜)を用い、膜の供給側に混合物を流し、その透過側を減圧もしくは不活性ガスを流すことで、各成分の透過速度差により分離する。   FIG. 2 shows the configuration of the pervaporation device 18. Permeation vaporization uses a separation membrane (permeation vaporization membrane) that has an affinity for the component to be treated, flows the mixture to the membrane supply side, and reduces the permeation rate of each component by flowing reduced pressure or inert gas on the permeation side. Separate by difference.

本実施形態の場合、ゼオライト膜を用い、ゼオライトの親水性の高さにより、水とNMPを分離する。また、その際に、透過物である水は液体から気体(水蒸気)へ相変化する。   In the case of this embodiment, a zeolite membrane is used, and water and NMP are separated according to the hydrophilicity of the zeolite. At that time, the permeate water changes from a liquid to a gas (water vapor).

すなわち、NMP水溶液は、熱交換器によるスチームとの熱交換により120℃程度まで加熱され、浸透気化膜180に供給される。この浸透気化膜180は、例えば円筒型の膜モジュールであって、NaA型のゼオライト膜を用いたものが利用され、原液室(供給液側)にNMP水溶液を供給する。透過室(透過側)には、真空ポンプ182が接続されており、内部が減圧されている。そこで、NMP水溶液中の水が浸透気化膜180内を浸透しながら気化し、透過室(透過側)に水蒸気となって得られ、真空ポンプ182によって排出される。また、蒸気は、冷水が供給される熱交換器において冷却され、透過水として排出される。   That is, the NMP aqueous solution is heated to about 120 ° C. by heat exchange with steam by a heat exchanger and supplied to the pervaporation membrane 180. The pervaporation membrane 180 is, for example, a cylindrical membrane module using a NaA-type zeolite membrane, and supplies an NMP aqueous solution to the stock solution chamber (supply solution side). A vacuum pump 182 is connected to the permeation chamber (permeation side), and the inside is depressurized. Therefore, water in the NMP aqueous solution is vaporized while penetrating the pervaporation membrane 180, is obtained as water vapor in the permeation chamber (permeation side), and is discharged by the vacuum pump 182. Further, the steam is cooled in a heat exchanger to which cold water is supplied, and is discharged as permeated water.

一方、原液室の濃縮液側には水が除去されたNMPが得られ、これが、冷水が供給される熱交換器により冷却される。   On the other hand, NMP from which water has been removed is obtained on the concentrate side of the stock solution chamber, and this is cooled by a heat exchanger to which cold water is supplied.

<実施例1>
図2に示すシステムにおいて、NMP水溶液の脱水実験を行い、供給液、濃縮液の水分含有量を測定した。なお、浸透気化装置18における分離膜(浸透気化膜)には、三井造船(株)製のNaA型ゼオライト膜を採用した。
(1)NMP(純度>99.5%)に対し、超純水(18.2MΩ・cm)を添加し、表1のような組成にそれぞれ調整した。これらを処理対象の供給液(NMP水溶液)とした。
(2)NMP水溶液を120℃に加熱し、ゼオライト膜を利用した浸透気化膜180の原液室(供給液側)に供給する。
(3)浸透気化膜180の透過室(透過側)より真空ポンプ182により真空引き、原液を10kg/hで通液した。
(4)経時的に供給液、濃縮液をサンプリングし、サンプリング液のNMP量、水分量を計測した。なお、水分量はカールフィッシャー水分計にて測定、NMPはGC(ガスクロマトグラフィー)にて分析した。
<Example 1>
In the system shown in FIG. 2, the dehydration experiment of the NMP aqueous solution was performed, and the water content of the supply liquid and the concentrated liquid was measured. Note that a NaA-type zeolite membrane manufactured by Mitsui Engineering & Shipbuilding Co., Ltd. was adopted as the separation membrane (permeation vaporization membrane) in the pervaporation device 18.
(1) Ultrapure water (18.2 MΩ · cm) was added to NMP (purity> 99.5%) to adjust the composition as shown in Table 1. These were made into the supply liquid (NMP aqueous solution) of a process target.
(2) The NMP aqueous solution is heated to 120 ° C. and supplied to the stock solution chamber (supply liquid side) of the pervaporation membrane 180 using a zeolite membrane.
(3) The vacuum pump 182 evacuated from the permeation chamber (permeation side) of the pervaporation membrane 180, and the stock solution was passed at 10 kg / h.
(4) The supply solution and the concentrated solution were sampled over time, and the amount of NMP and the amount of water in the sampling solution were measured. The moisture content was measured with a Karl Fischer moisture meter, and NMP was analyzed with GC (gas chromatography).

表1に示すように、供給液の水分濃度が、1〜30%に変化しても、水分量0.1%以下まで濃縮可能であった。   As shown in Table 1, even when the water concentration of the feed liquid changed from 1 to 30%, the water content could be concentrated to 0.1% or less.

<実施例2>
図3に示す装置で、バッチ的にNMP水溶液の脱水実験を行い、供給液、濃縮液、透過液の水分含有量を測定した。
<Example 2>
With the apparatus shown in FIG. 3, a dehydration experiment of the NMP aqueous solution was performed in batches, and the water contents of the feed solution, the concentrated solution, and the permeate were measured.

なお、実施例1のNMP水溶液の脱水実験は、浸透気化膜モジュールを用いた連続脱水実験であるのに対して、本実験はバッチ式の脱水実験となるため、濃縮液を連続的に得ることはできない。そこで、本実験においては、供給液を所定時間脱水濃縮した後の溶液を、濃縮液として評価を行った。   Note that the dehydration experiment of the NMP aqueous solution of Example 1 is a continuous dehydration experiment using an osmosis vapor membrane module, whereas this experiment is a batch-type dehydration experiment, so that a concentrated solution can be obtained continuously. I can't. Therefore, in this experiment, the solution after dehydrating and concentrating the supply liquid for a predetermined time was evaluated as a concentrated liquid.

ここで、本実験は、NMP水溶液中の水分が、浸透気化膜の劣化および分離性能の低下に及ぼす影響を定量的に評価したものである。   Here, this experiment quantitatively evaluates the influence of the water in the NMP aqueous solution on the deterioration of the pervaporation membrane and the separation performance.

すなわち、実施例1は膜モジュールを用いた実験であり、膜面積に対するモジュール内部の供給液量を大きくすることは出来ない。このとき膜面一次側の供給液側(入口)と濃縮液側(出口)とで水分濃度が大きく異なり、水分濃度の広範な分布ができる。そのため、膜の劣化および分離性能の低下に及ぼす水分濃度の影響が、評価しにくい(すなわち、膜に接する水分濃度の幅が広いため、水分濃度の限界点がみえづらい)。   That is, Example 1 is an experiment using a membrane module, and the amount of liquid supplied inside the module with respect to the membrane area cannot be increased. At this time, the water concentration differs greatly between the supply liquid side (inlet) and the concentrated liquid side (outlet) on the primary side of the membrane surface, and a wide distribution of the water concentration can be made. Therefore, it is difficult to evaluate the influence of the moisture concentration on the deterioration of the membrane and the decrease in the separation performance (that is, it is difficult to see the limit point of the moisture concentration because the width of the moisture concentration in contact with the membrane is wide).

それに対して、本実験のようなバッチ式の脱水実験では、膜面積に対する供給液量をモジュールよりも大きく出来るため、膜面一次側の水分濃度の分布を狭く区切って評価できる(例えば表2)。そのため、膜の劣化および分離性能の低下に及ぼす水分濃度の影響が、評価しやすい(すなわち、膜に接する水分濃度の幅が狭いため、水分濃度の限界点を評価しやすい)。   On the other hand, in a batch-type dehydration experiment such as this experiment, the amount of supplied liquid relative to the membrane area can be made larger than the module, so that the distribution of moisture concentration on the primary side of the membrane surface can be narrowly divided and evaluated (for example, Table 2). . Therefore, it is easy to evaluate the influence of the moisture concentration on the deterioration of the membrane and the separation performance (that is, it is easy to evaluate the limit point of the moisture concentration because the width of the moisture concentration in contact with the membrane is narrow).

よって、本実験のようなバッチ式の脱水試験にて、NMP水溶液中の水分が、浸透気化膜の劣化および分離性能の低下に及ぼす影響を定量的に評価した。   Therefore, in a batch-type dehydration test such as this experiment, the influence of the water in the NMP aqueous solution on the deterioration of the pervaporation membrane and the separation performance was quantitatively evaluated.

容器100には、NMP水溶液(供給液)が貯められる。容器100内には、ヒータ102が設けられており、これによって運転時の供給液の温度は、120°Cに保持された。容器100内の供給液容量は、600mlである。実験に供したNMP水溶液(供給液)の水分濃度は、3.9〜37.0%であった。容器100内には、スターラー104が設けられ、容器100内の供給液を撹拌した。   The container 100 stores an NMP aqueous solution (supply liquid). A heater 102 is provided in the container 100, whereby the temperature of the supply liquid during operation is maintained at 120 ° C. The capacity of the supply liquid in the container 100 is 600 ml. The water concentration of the NMP aqueous solution (feed solution) subjected to the experiment was 3.9 to 37.0%. A stirrer 104 was provided in the container 100 to stir the supply liquid in the container 100.

供給液内に分離膜(浸透気化膜)112が配置され、その透過側である内部空間は、供給液から分離膜112で分離されている。分離膜112の透過側は、密閉容器114に接続され、この密閉容器114内が真空ポンプ116によって真空引きされている。   A separation membrane (pervaporation membrane) 112 is disposed in the supply liquid, and the internal space on the permeate side is separated from the supply liquid by the separation membrane 112. The permeation side of the separation membrane 112 is connected to a sealed container 114, and the inside of the sealed container 114 is evacuated by a vacuum pump 116.

従って、分離膜112の透過側が減圧状態となり、ここにおいて透過水が蒸発され密閉容器側に吸引される。蒸気は、密閉容器114内で冷却されて、透過液となって溜まる。   Therefore, the permeation side of the separation membrane 112 is in a reduced pressure state, where permeate is evaporated and sucked to the closed container side. The vapor is cooled in the sealed container 114 and accumulated as a permeate.

このような装置で、下記のような手順で、NMPの脱水実験を行った。
(1)供給液600mlを容器100に入れる。
(2)スターラー104により攪拌するとともに、ヒータ102で供給液を加熱し、また、分離膜112の透過側より真空引きを開始する。
(3)容器100内の供給液を脱水濃縮する。供給液、濃縮液(脱水濃縮後の供給液)および透過液のサンプリングを実施し、水分量を確認する。水分量はカールフィッシャー水分計にて測定した。
With such an apparatus, an NMP dehydration experiment was performed in the following procedure.
(1) Put 600 ml of the supply liquid into the container 100.
(2) While stirring by the stirrer 104, the supply liquid is heated by the heater 102, and evacuation is started from the permeate side of the separation membrane 112.
(3) The supply liquid in the container 100 is dehydrated and concentrated. Sampling of the supply liquid, the concentrated liquid (the supplied liquid after dehydration and concentration), and the permeated liquid, and confirming the water content. The moisture content was measured with a Karl Fischer moisture meter.

ここで、供給液、濃縮液(脱水濃縮後の供給液)、透過液のサンプリングは、所定時間毎に行った。そして、その所定時間内における供給液の水分濃度と、濃縮液(脱水濃縮後の供給液)の水分濃度の平均濃度(膜面一次側の平均水分濃度)と、透過液の水分濃度(膜面二次側の水分濃度)を求め、分離係数βを求めた。   Here, sampling of the supply liquid, the concentrated liquid (the supplied liquid after dehydration and concentration), and the permeated liquid was performed every predetermined time. Then, the water concentration of the supply liquid within the predetermined time, the average concentration of the water concentration of the concentrate (supply liquid after dehydration and concentration) (average water concentration on the primary side of the membrane surface), and the water concentration of the permeate (membrane surface) The water concentration on the secondary side) was determined, and the separation factor β was determined.

ここで、分離係数βは、膜の分離性能の指標であり、A,Bの2成分系での透過目的成分がAの場合、供給側及び透過側のそれぞれの重量分率をXA、XB、及びYA、YBとすると、分離係数:(YA/YB)/(XA/XB)で表される。ここでは、膜面一次側(供給および濃縮側)の平均水分濃度と、二次側(透過側)の水分濃度を値として採用し、分離係数βと表記している。なお、透過側NMP量は、共雑物の影響で直接分析できない。よって水分以外の透過物はNMPとして濃度算出している。   Here, the separation factor β is an index of the separation performance of the membrane, and when the permeation target component in the two-component system of A and B is A, the weight fractions on the supply side and the permeation side are represented by XA, XB, And YA and YB, the separation factor is represented by (YA / YB) / (XA / XB). Here, the average moisture concentration on the membrane surface primary side (supply and concentration side) and the moisture concentration on the secondary side (permeation side) are adopted as values, and are expressed as a separation factor β. Note that the amount of NMP on the permeate side cannot be directly analyzed due to the influence of contaminants. Therefore, the concentration of permeate other than moisture is calculated as NMP.

結果を表2及び図4のグラフに示す。   The results are shown in Table 2 and the graph of FIG.

ここで、表2及び図4のグラフにおいて、供給液の水分濃度が10%から30%になるにつれて分離係数βが低下する傾向にあるように見えるのは、透過液の水分濃度の分析を99.9%以上の精度でできないことが影響しており、分離性能が低下したわけではない。すなわち、これよりも下の桁(小数点第2位以下)の水分含有量を定量するのは、分析装置の性能上不可能であったため、その結果、みかけ上、分離係数βが低下したようにみえるだけである。もし、定量ができれば、透過液のNMP濃度が0.0X%となり、分離係数の数値が上がると考えられる。例えば、表2における一次側平均水分濃度が27.0%、透過側水分濃度99.9%では、
β=(99.9/0.1)/(27.0/73.0)=2701と、みかけ上、分離係数が低くなるが、仮に、透過液水分濃度を99.95%と定量できた場合、
β=(99.95/0.05)/(27.0/73.0)=5405となり、分離係数が高くなる。
Here, in the graphs of Table 2 and FIG. 4, it seems that the separation factor β tends to decrease as the water concentration of the supply liquid becomes 10% to 30%. This is because it cannot be performed with an accuracy of 9% or more, and the separation performance is not lowered. That is, it is impossible to quantify the moisture content in the lower digits (below the second decimal place) due to the performance of the analyzer. As a result, it seems that the separation factor β apparently decreases. I can only see it. If quantification is possible, the NMP concentration of the permeate will be 0.0X% and the value of the separation factor will increase. For example, when the primary side average moisture concentration in Table 2 is 27.0% and the permeation side moisture concentration is 99.9%,
β = (99.9 / 0.1) / (27.0 / 73.0) = 2701, and apparently the separation factor was low, but the permeate water concentration could be quantified as 99.95%. If
β = (99.95 / 0.05) / (27.0 / 73.0) = 5405, and the separation factor increases.

供給液の水分濃度が35%を超えると、透過液の水分濃度の低下が確認され、分離係数βも低下した。表2において、供給液の水分濃度が32.2%の場合、透過液の水分濃度は99.9%、分離係数2234.0であるが、供給液の水分濃度が35.2%の場合、透過液の水分濃度は99.5%、分離係数397.7となり、供給液の水分濃度が35%を超えると、膜の分離性能が大きく劣化することがわかる。   When the water concentration of the feed liquid exceeded 35%, a decrease in the water concentration of the permeate was confirmed, and the separation factor β also decreased. In Table 2, when the water concentration of the feed liquid is 32.2%, the water concentration of the permeate is 99.9% and the separation factor is 2234.0, but when the water concentration of the feed liquid is 35.2%, The water concentration of the permeate is 99.5% and the separation factor is 397.7. It can be seen that when the water concentration of the supply liquid exceeds 35%, the separation performance of the membrane is greatly deteriorated.

また、供給液の水分濃度が8%を下回ると、透過液の水分濃度の低下が確認され、分離係数βも低下した。表2において、供給液の水分濃度が8.5%の場合、透過液の水分濃度は99.3%、分離係数2695.3であるが、供給液の水分濃度が7.4%の場合、透過液の水分濃度は97.89%、分離係数1093.5となり、供給液の水分濃度が8%を下回ると、膜の分離性能が大きく劣化することがわかる。   Further, when the water concentration of the supply liquid was less than 8%, a decrease in the water concentration of the permeate was confirmed, and the separation factor β was also decreased. In Table 2, when the water concentration of the supply liquid is 8.5%, the water concentration of the permeate is 99.3% and the separation factor is 2695.3, but when the water concentration of the supply liquid is 7.4%, The water concentration of the permeate is 97.89% and the separation factor is 1093.5. It can be seen that when the water concentration of the feed liquid is less than 8%, the separation performance of the membrane is greatly deteriorated.

さらに、供給液の水分濃度が5%未満でも透過液の水分濃度の低下が確認され、分離係数βも低下した。表2において、供給液の水分濃度が6.3%の場合、透過液の水分濃度は97.64%、分離係数1142.4であるが、供給液の水分濃度が3.9%の場合、透過液の水分濃度は93.55%、分離係数646.3となり、供給液の水分濃度が5%を下回ると、膜の分離性能が大きく劣化することがわかる。すなわち、供給液の水分濃度3.9%、膜面一次側平均水分濃度2.2%では、供給液の水分濃度10%以上と比較して分離係数が1/10以下となり、透過液の水分濃度は99.9%から93.55%まで低下した。   Furthermore, even when the water concentration of the feed liquid was less than 5%, a decrease in the water concentration of the permeate was confirmed, and the separation factor β also decreased. In Table 2, when the water concentration of the feed liquid is 6.3%, the water concentration of the permeate is 97.64% and the separation factor is 1142.4, but when the water concentration of the feed liquid is 3.9%, The water concentration of the permeate is 93.55% and the separation factor is 646.3. It can be seen that when the water concentration of the supply liquid is less than 5%, the separation performance of the membrane is greatly deteriorated. That is, when the water concentration of the supply liquid is 3.9% and the membrane surface primary side average water concentration is 2.2%, the separation factor is 1/10 or less compared to the water concentration of the supply liquid of 10% or more, and the water content of the permeated liquid The concentration dropped from 99.9% to 93.55%.

これらより、次のことが確認された。
(i)供給液の水分1〜30%の各条件で水分量0.1%以下まで濃縮可能であった(実施例1)。
(ii)供給液の水分濃度が35%を超えると膜の劣化が確認され、分離性能が低下した(実施例2)。
(iii)供給液の水分濃度が8%未満では膜の分離性能が低下した(実施例2)。
(iv)供給液の水分濃度が5%未満では膜の分離性能が低下した(実施例2)。
From these, the following was confirmed.
(I) It was possible to concentrate to a water content of 0.1% or less under each condition of 1-30% of water in the feed liquid (Example 1).
(Ii) When the water concentration of the feed liquid exceeded 35%, the deterioration of the membrane was confirmed, and the separation performance was lowered (Example 2).
(Iii) When the water concentration of the supply liquid was less than 8%, the separation performance of the membrane was lowered (Example 2).
(Iv) When the water concentration of the feed liquid was less than 5%, the separation performance of the membrane was deteriorated (Example 2).

<実施例3>
次に、アミン類を含んだNMP液をイオン交換樹脂で処理し、処理液からアミンなどが除去されることの確認を行った。
<Example 3>
Next, the NMP solution containing amines was treated with an ion exchange resin, and it was confirmed that amines and the like were removed from the treatment solution.

モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、をNMP中にそれぞれ50ppm溶解させた。   Monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, and triethylamine were each dissolved in NMP at 50 ppm.

そして、次のような条件で処理実験を行った。
NMP液量:3[L]
使用樹脂 :ESP−2(ダウケミカル社製)
樹脂量 :100[mL]
SV :5 [/h]
Then, a treatment experiment was performed under the following conditions.
NMP volume: 3 [L]
Resin used: ESP-2 (Dow Chemical Co.)
Resin amount: 100 [mL]
SV: 5 [/ h]

また、分析手法には、キャピラリー電気泳動を用い、緩衝液にはイミダゾールを利用した。   In addition, capillary electrophoresis was used as an analysis method, and imidazole was used as a buffer solution.

供給液をテフロン(登録商標)製タンクに充填し、ここに窒素ガス(元圧:0.2MPa)で圧送して、ダウケミカル社製混床イオン交換樹脂ESP−2へ通液した。供給液は、1L以上ブローした後、サンプリングを行い、液中のアミン濃度を測定した。   The supplied liquid was filled in a tank made of Teflon (registered trademark), and was fed by nitrogen gas (original pressure: 0.2 MPa) and passed through mixed bed ion exchange resin ESP-2 manufactured by Dow Chemical Company. The supply liquid was sampled after blowing 1 L or more, and the amine concentration in the liquid was measured.

処理結果を表3に示す。   Table 3 shows the processing results.

このように、対象としたアミン類、すべてについてイオン交換によって、十分な除去が行えることが確認された。   Thus, it was confirmed that sufficient removal can be performed by ion exchange for all of the targeted amines.

上述のように、アミン類は電極製造工程において、弊害が大きいため、図1に示す2つの位置のいずれかにイオン交換樹脂による処理工程を配置することによって、アミン類を除去して、好適なNMPの再利用が可能となることがわかる。   As described above, amines have a great adverse effect in the electrode manufacturing process. Therefore, by placing a treatment process using an ion exchange resin at one of the two positions shown in FIG. It can be seen that NMP can be reused.

<実施形態の効果>
以上のように、本実施形態によれば、蒸発工程に代えて、浸透気化工程が採用されている。これによって、エネルギー効率が高く、放熱ロスが少ない水処理システムを得ることができる。また、供給液の水分濃度を5〜35%とすることによって、好適なNMPの脱水が行え、特に15〜30%とすることによって、処理途中でのNMP水溶液の取り扱いが容易になる。さらに、イオン交換手段(樹脂など)を用いてアミン類を除去することで、電極製造工程におけるバインダースラリーの変性を防ぐことができる。
<Effect of embodiment>
As described above, according to the present embodiment, the pervaporation process is employed instead of the evaporation process. As a result, a water treatment system with high energy efficiency and low heat dissipation loss can be obtained. Further, when the water concentration of the supply liquid is 5 to 35%, suitable dehydration of NMP can be performed, and particularly 15 to 30% makes it easy to handle the NMP aqueous solution during the treatment. Furthermore, by removing amines using ion exchange means (resin or the like), denaturation of the binder slurry in the electrode manufacturing process can be prevented.

10 電極製造設備、12 回収装置、14,22 ろ過装置、16,20 イオン交換装置、18 浸透気化装置、100 容器、102 ヒータ、104 スターラー、112 分離膜、114 密閉容器、116,182 真空ポンプ、180 浸透気化部。   DESCRIPTION OF SYMBOLS 10 Electrode manufacturing equipment, 12 Collection | recovery apparatus, 14,22 Filtration apparatus, 16,20 Ion exchange apparatus, 18 Osmosis vaporization apparatus, 100 container, 102 heater, 104 Stirrer, 112 Separation membrane, 114 Sealed container, 116,182 Vacuum pump, 180 Pervaporation section.

Claims (7)

電極製造工程から排出されるNMP(N−メチル−2−ピロリドン)を含むNMP水溶液を脱水精製するNMP精製システムであって、
前記NMP水溶液を、水分を選択的に透過させる浸透気化膜を備えた浸透気化装置で脱水することによって、NMPを精製するとともに、
前記浸透気化膜は、A型ゼオライト膜であ
前記NMP水溶液の水分は、11.4%〜28.3%である、
ことを特徴とする電極製造工程におけるNMP精製システム。
An NMP purification system for dehydrating and purifying an NMP aqueous solution containing NMP (N-methyl-2-pyrrolidone) discharged from an electrode manufacturing process,
While purifying NMP by dehydrating the NMP aqueous solution with a pervaporation apparatus equipped with a pervaporation membrane that selectively permeates moisture,
The pervaporation membrane is Ri A type zeolite membrane der,
The water content of the NMP aqueous solution is 11.4% to 28.3%.
An NMP purification system in an electrode manufacturing process.
電極製造工程から排出されるNMP(N−メチル−2−ピロリドン)を含むNMP水溶液を脱水精製するNMP精製システムであって、
前記NMP水溶液を、水分を選択的に透過させる浸透気化膜を備えた浸透気化装置で脱水することによって、NMPを精製するとともに、
前記浸透気化膜は、A型ゼオライト膜であり、
前記NMP水溶液の水分は、15%〜28.3%である、
ことを特徴とする電極製造工程におけるNMP精製システム。
An NMP purification system for dehydrating and purifying an NMP aqueous solution containing NMP (N-methyl-2-pyrrolidone) discharged from an electrode manufacturing process,
While purifying NMP by dehydrating the NMP aqueous solution with a pervaporation apparatus equipped with a pervaporation membrane that selectively permeates moisture,
The pervaporation membrane is an A-type zeolite membrane,
The water content of the NMP aqueous solution is 15% to 28.3%.
NMP purification system in to that electrodes manufacturing process, wherein a.
前記浸透気化装置の前段または後段または両方に脱塩装置を設けることを特徴とする請求項1または2に記載の電極製造工程におけるNMP精製システム。 NMP purification system in the electrode manufacturing process according to claim 1 or 2, characterized by providing a desalter before or after or both of the pervaporation apparatus. 前記脱塩装置は混床イオン交換樹脂であることを特徴とする請求項に記載の電極製造工程におけるNMP精製システム。 The NMP purification system in an electrode manufacturing process according to claim 3 , wherein the desalting apparatus is a mixed bed ion exchange resin. 前記脱塩装置はイオン交換樹脂またはイオン交換フィルターであることを特徴とする請求項に記載の電極製造工程におけるNMP精製システム。 The NMP purification system in the electrode manufacturing process according to claim 3 , wherein the desalting apparatus is an ion exchange resin or an ion exchange filter. 浸透気化装置の前段または後段または両方にろ過装置を設けることを特徴とする請求項1〜のいずれか1つに記載の電極製造工程におけるNMP精製システム。 The NMP purification system in the electrode manufacturing process according to any one of claims 1 to 5 , wherein a filtration device is provided in the front stage, the rear stage, or both of the pervaporation apparatus. 前記ろ過装置は、MF膜またはUF膜であることを特徴とする請求項に記載の電極製造工程におけるNMP精製システム。 The NMP purification system in the electrode manufacturing process according to claim 6 , wherein the filtration device is an MF membrane or a UF membrane.
JP2011154202A 2011-07-12 2011-07-12 NMP purification system in electrode manufacturing process Active JP5911228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011154202A JP5911228B2 (en) 2011-07-12 2011-07-12 NMP purification system in electrode manufacturing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011154202A JP5911228B2 (en) 2011-07-12 2011-07-12 NMP purification system in electrode manufacturing process

Publications (2)

Publication Number Publication Date
JP2013018747A JP2013018747A (en) 2013-01-31
JP5911228B2 true JP5911228B2 (en) 2016-04-27

Family

ID=47690553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011154202A Active JP5911228B2 (en) 2011-07-12 2011-07-12 NMP purification system in electrode manufacturing process

Country Status (1)

Country Link
JP (1) JP5911228B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111170919A (en) * 2019-12-26 2020-05-19 重庆市中润化学有限公司 NMP waste liquid recovery process

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6088267B2 (en) * 2013-01-30 2017-03-01 オルガノ株式会社 NMP purification system
JP6088268B2 (en) * 2013-01-30 2017-03-01 オルガノ株式会社 NMP purification system
JP6088265B2 (en) * 2013-01-30 2017-03-01 オルガノ株式会社 NMP purification system and NMP purification method
JP6088266B2 (en) * 2013-01-30 2017-03-01 オルガノ株式会社 NMP purification system
JP6289852B2 (en) * 2013-10-03 2018-03-07 オルガノ株式会社 Liquid organic matter and water separation system and separation method
JP6440156B2 (en) 2014-07-29 2018-12-19 オルガノ株式会社 Organic solvent purification system and method
JP6415159B2 (en) * 2014-07-29 2018-10-31 オルガノ株式会社 Organic solvent purification system and method
CN108863887A (en) * 2017-05-10 2018-11-23 奥加诺株式会社 The purification system and purification process of NMP aqueous solution
JPWO2019102871A1 (en) * 2017-11-21 2020-11-19 光治郎 大川 Solvent dehydration system and solvent dehydration method
CN111971255B (en) * 2018-04-04 2022-07-08 奥加诺株式会社 Organic solvent refining system and method
CN109232352B (en) * 2018-09-19 2024-03-19 江阴市大洋固废处置利用有限公司 N-methyl pyrrolidone decompression purification system and purification method
CN109336803B (en) * 2018-11-01 2021-10-08 南京佳华工程技术有限公司 Method and system for recovering production solvent from NMP waste liquid
JP2020193177A (en) * 2019-05-30 2020-12-03 オルガノ株式会社 N-methyl-2-pyrolidone purification method and purification system
JP7328859B2 (en) 2019-09-30 2023-08-17 オルガノ株式会社 Organic solvent purification method and purification system
CN114907248A (en) * 2022-06-02 2022-08-16 北京化工大学 Method for recovering N-methyl pyrrolidone in lithium battery anode waste liquid

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3431973B2 (en) * 1993-12-27 2003-07-28 三井造船株式会社 Method for producing liquid mixture separation membrane
US5777131A (en) * 1995-11-21 1998-07-07 Basf Corporation Post manufacture process for improving the properties of lactones and substituted lactams
JPH1171346A (en) * 1997-08-29 1999-03-16 Tonen Corp Purification of n-methyl-2-pyrolidone
DE19910504A1 (en) * 1999-03-10 2000-09-14 Basf Ag Process for the purification of N-substituted lactams
US7153978B2 (en) * 2004-03-03 2006-12-26 Lyondell Chemical Technology, L.P. Method for purifying N-methyl-2-pyrrolidone
CN105413483B (en) * 2009-02-27 2018-05-22 三菱化学株式会社 Inorganic porous support-zeolite membrane complex, its manufacturing method and use its separation method
JP5593964B2 (en) * 2009-11-11 2014-09-24 三菱化学株式会社 Method for producing porous support-zeolite membrane composite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111170919A (en) * 2019-12-26 2020-05-19 重庆市中润化学有限公司 NMP waste liquid recovery process
CN111170919B (en) * 2019-12-26 2021-04-09 重庆市中润化学有限公司 NMP waste liquid recovery process

Also Published As

Publication number Publication date
JP2013018747A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
JP5911228B2 (en) NMP purification system in electrode manufacturing process
CN112933987B (en) Organic solvent purification system and method
US9339766B2 (en) Method and apparatus for purifying alcohol
JP6088265B2 (en) NMP purification system and NMP purification method
JP6088268B2 (en) NMP purification system
JP6636111B2 (en) Organic solvent purification system and method
JP2013018748A (en) Nmp purification system in electrode production process
JP6088267B2 (en) NMP purification system
JP6415159B2 (en) Organic solvent purification system and method
JP6088266B2 (en) NMP purification system
CN111573950B (en) Recovery treatment method of organic solvent-containing wastewater
JP7106474B2 (en) N-methyl-2-pyrrolidone purification method, purification device, recovery purification method, and recovery purification system
CN211660014U (en) Refining device and recovery refining system
WO2021065483A1 (en) Organic solvent purification method and purification system
WO2019193951A1 (en) Organic solvent purification system and method
JP2014144939A (en) NMP purification system
US20230364560A1 (en) Lithium recovery using aqueous sources

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160329

R150 Certificate of patent or registration of utility model

Ref document number: 5911228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250