JP5907816B2 - High temperature combustion corrosion test equipment - Google Patents

High temperature combustion corrosion test equipment Download PDF

Info

Publication number
JP5907816B2
JP5907816B2 JP2012137076A JP2012137076A JP5907816B2 JP 5907816 B2 JP5907816 B2 JP 5907816B2 JP 2012137076 A JP2012137076 A JP 2012137076A JP 2012137076 A JP2012137076 A JP 2012137076A JP 5907816 B2 JP5907816 B2 JP 5907816B2
Authority
JP
Japan
Prior art keywords
combustion
temperature
test
corrosion test
combustion gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012137076A
Other languages
Japanese (ja)
Other versions
JP2014002020A (en
Inventor
将司 京
将司 京
正治 中森
正治 中森
石橋 修
修 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2012137076A priority Critical patent/JP5907816B2/en
Publication of JP2014002020A publication Critical patent/JP2014002020A/en
Application granted granted Critical
Publication of JP5907816B2 publication Critical patent/JP5907816B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高温燃焼腐食試験装置、特に、石炭を燃焼した際に発生する高温燃焼ガスによるボイラ基材の腐食程度を試験するための高温燃焼腐食試験装置に関する。   The present invention relates to a high-temperature combustion corrosion test apparatus, and more particularly to a high-temperature combustion corrosion test apparatus for testing the degree of corrosion of a boiler base material caused by high-temperature combustion gas generated when coal is burned.

石炭燃焼ボイラは、石炭の燃焼により発生する1000℃前後の高温燃焼ガスと金属伝熱管(以下、伝熱管と称する)の内部を流れる300〜500℃の高圧水蒸気又は高圧水との熱交換を行い、高温高圧の水蒸気を得ることを目的としている。石炭を燃焼させると、通常、10〜30%程度の灰分が発生し、それらが伝熱面に付着して伝熱障害や高温腐食による伝熱面の減肉が発生する。   A coal-fired boiler performs heat exchange between high-temperature combustion gas around 1000 ° C. generated by coal combustion and high-pressure steam or water at 300 to 500 ° C. flowing inside a metal heat transfer tube (hereinafter referred to as heat transfer tube). The purpose is to obtain high-temperature and high-pressure steam. When coal is combusted, ash content of about 10 to 30% is usually generated, which adheres to the heat transfer surface, and heat transfer obstruction or thinning of the heat transfer surface due to high temperature corrosion occurs.

石炭灰の主成分はアルミナ(Al23)やシリカ(SiO2)、鉄酸化物(Fe23)などであるが、灰分中に含まれる硫黄(S)分やナトリウム(Na)、カリウム(K)などがNa3Fe(SO43やK3Fe(SO43などの化学式で代表されるアルカリ・鉄・硫酸塩錯化合物を形成し、以下に示す式(1)のように伝熱管と反応し、反応面に腐食が発生して減肉の原因となっている。なお、式(1)では、伝熱管の金属成分を鉄(Fe)としている。 The main components of coal ash are alumina (Al 2 O 3 ), silica (SiO 2 ), iron oxide (Fe 2 O 3 ), etc., but sulfur (S) and sodium (Na) contained in the ash, Potassium (K) or the like forms an alkali / iron / sulfate complex compound represented by a chemical formula such as Na 3 Fe (SO 4 ) 3 or K 3 Fe (SO 4 ) 3 , and the following formula (1) In this way, it reacts with the heat transfer tube, causing corrosion on the reaction surface and causing a reduction in thickness. In the formula (1), the metal component of the heat transfer tube is iron (Fe).

Na3(orK3)Fe(SO43+6Fe
→(3/2)FeS+(3/2)Fe34+Fe23+Na2(orK2)SO4+(3/2)O2 ……(1)
Na 3 (orK 3 ) Fe (SO 4 ) 3 + 6Fe
→ (3/2) FeS + (3/2) Fe 3 O 4 + Fe 2 O 3 + Na 2 (orK 2 ) SO 4 + (3/2) O 2 (1)

また、石炭に含有される塩素(Cl)分などもNaClとして伝熱管に付着し、高温腐食を加速させることが知られている。石炭灰の伝熱面への付着現象は、衝突付着や凝縮付着に大別される。アルミナやシリカなどの高融点成分は衝突付着である。蒸気圧が高く、ガス成分として存在する割合の大きい硫黄分やナトリウムなどの化合物は、高温燃焼ガスから低温の伝熱面への凝縮付着が主体となる。凝縮した硫黄分やナトリウム、カリウムなどの化合物は以下の表1に示すように融点が低く、その一部は溶融して高融点化合物を固着する“のり”として作用し、灰分の付着を促進する。   Further, it is known that chlorine (Cl) contained in coal adheres to the heat transfer tube as NaCl and accelerates high temperature corrosion. The adhesion phenomenon of coal ash to the heat transfer surface is roughly divided into collision adhesion and condensation adhesion. High melting point components such as alumina and silica are impact adhesion. Compounds such as sulfur and sodium, which have a high vapor pressure and are present as gas components, are mainly condensed and attached from a high-temperature combustion gas to a low-temperature heat transfer surface. Condensed sulfur, sodium and potassium compounds have a low melting point as shown in Table 1 below, and some of them melt and act as "pastes" to fix high melting point compounds, promoting the adhesion of ash. .

Figure 0005907816
Figure 0005907816

以上のように、本発明者らの知見によれば、伝熱面に付着する石炭灰の組成は石炭の炭種は勿論、燃焼ガス流れや燃焼ガスと伝熱面の温度(ガス露出面と外部露出面との温度差)によって決まる。また、伝熱管の高温腐食速度は伝熱管自体の種類と付着する石炭灰の組成、ガス温度、伝熱管の温度によって変化する。   As described above, according to the knowledge of the present inventors, the composition of coal ash adhering to the heat transfer surface is not only the coal type of coal, but also the combustion gas flow and the temperature of the combustion gas and the heat transfer surface (gas exposed surface and It depends on the temperature difference from the externally exposed surface. Moreover, the high temperature corrosion rate of the heat transfer tube varies depending on the type of the heat transfer tube itself, the composition of the coal ash adhering, the gas temperature, and the temperature of the heat transfer tube.

従来、石炭燃焼ボイラの伝熱面に対する石炭灰付着、堆積とそれに起因する高温腐食現象を再現するため、以下のような手法が採用されている。
(1)実缶へ実際の伝熱面と内部流体温度、メタル温度などを同じ条件としたテスト管を挿入し、一定時間運転し、伝熱管の腐食程度を調査する。
(2)実缶同様の腐食試験用石炭燃焼小型ボイラを建設し、燃焼ガス中に伝熱管を挿入して一定時間運転し、伝熱管の腐食程度を調査する。
(3)電気炉中に実缶より採取した付着灰を塗布又は付着灰中へ埋没させた試験片を設置し、所定温度で一定時間暴露し、試験片の腐食程度を調査する。この金属材料の高温腐食試験方法については、非特許文献1として掲げた日本工業規格JISZ2291に規定されている。
Conventionally, in order to reproduce the coal ash adhesion and deposition on the heat transfer surface of a coal fired boiler and the high temperature corrosion phenomenon resulting therefrom, the following method has been adopted.
(1) Insert a test tube with the same conditions on the actual heat transfer surface, internal fluid temperature, metal temperature, etc. into the actual can, operate for a certain period of time, and investigate the degree of corrosion of the heat transfer tube.
(2) Build a coal-fired small boiler for corrosion test similar to an actual can, insert a heat transfer tube into the combustion gas, operate for a certain period of time, and investigate the degree of corrosion of the heat transfer tube.
(3) Install a test piece in which an attached ash collected from an actual can is applied or buried in the attached ash in an electric furnace, expose it to a predetermined temperature for a certain period of time, and investigate the degree of corrosion of the test piece. The high temperature corrosion test method for this metal material is defined in Japanese Industrial Standard JISZ 2291 listed as Non-Patent Document 1.

ところで、前記(1)の試験方法では、実缶へテスト管を挿入するため、炉壁部への設置工事が必要となり、実缶の定期検査などの停缶を利用した改造工事となる。このため、工事期間やテスト開始時期及びテスト期間を実缶の稼動条件に合わせる必要があり、時期的に大きな制約を受ける。また、テスト管の内部は実缶同様に、高圧の水蒸気(又は水)を流して伝熱管の温度を調整するため、設備費用が多大となる。さらに、試験条件は実缶の運転条件に左右されるため、起動、停止や日常の運転条件の変動などの影響を受け、試験結果の解析が困難であるという問題点がある。   By the way, in the test method of (1), since the test tube is inserted into the actual can, installation work on the furnace wall portion is required, and modification work using a stop such as periodic inspection of the actual can. For this reason, it is necessary to match the construction period, the test start time, and the test period with the operating conditions of the actual can, which is greatly restricted in terms of time. Moreover, since the inside of a test tube flows the high-pressure water vapor | steam (or water) like a real can and adjusts the temperature of a heat exchanger tube, installation cost becomes large. Furthermore, since the test conditions depend on the operating conditions of the actual can, there is a problem that it is difficult to analyze the test results due to the influence of starting and stopping, fluctuations in daily operating conditions, and the like.

前記(2)の試験方法は、試験専用ボイラであるため、各種試験条件の設置が比較的容易であるが、建設に長時間を要し、費用も多大となる。また、ボイラ運転のために専属の有資格者(ボイラ技士など)が必要で、運転(試験)費用も高くなる。   Since the test method (2) is a test-dedicated boiler, it is relatively easy to install various test conditions. However, it takes a long time for construction and the cost is great. In addition, a dedicated qualified person (boiler engineer, etc.) is required for boiler operation, and the operation (test) cost is high.

前記(3)の試験方法は、試験設備は比較的簡便で、試験自体も容易であるが、ガス温度と試験片温度が同じで、腐食性成分のガス相からの凝縮がない反面、塗布又は埋没に使用した灰分から腐食性成分の蒸発を生じるため、灰中の腐食性成分濃度が試験時間とともに減少するという問題点がある。   In the test method (3), the test equipment is relatively simple and the test itself is easy. However, the gas temperature and the test piece temperature are the same and there is no condensation of the corrosive component from the gas phase. Since corrosive components evaporate from the ash used for burial, there is a problem that the concentration of corrosive components in the ash decreases with the test time.

日本工業規格JISZ2291Japanese Industrial Standard JISZ2291

そこで、本発明の目的は、実缶を用いることなく、簡易な設備によって、かつ、実缶とほぼ同じ条件で高温腐食試験を行うことのできる試験装置を提供することにある。   Therefore, an object of the present invention is to provide a test apparatus that can perform a high temperature corrosion test with simple equipment and under substantially the same conditions as without using an actual can.

本発明の一形態である高温燃焼腐食試験装置は、
燃焼室と、
前記燃焼室に連通して燃焼ガスを流通させる燃焼ガス流路と、
前記燃焼ガス流路に露出した試験面と外気に露出した冷却面とを有し、前記燃焼ガス流路に着脱可能に取り付けられている高温腐食試験部材と、
を備え、
前記燃焼ガス流路は交換可能な炉高調整リングを備え、該炉高調整リングを交換することにより、前記燃焼室から前記高温腐食試験部材までの距離を調整すること、
を特徴とする。
A high-temperature combustion corrosion test apparatus according to one aspect of the present invention is
A combustion chamber;
A combustion gas flow path for communicating a combustion gas in communication with the combustion chamber;
A high-temperature corrosion test member having a test surface exposed to the combustion gas passage and a cooling surface exposed to outside air, and detachably attached to the combustion gas passage ;
With
The combustion gas flow path is provided with a replaceable furnace height adjusting ring, and adjusting the distance from the combustion chamber to the high temperature corrosion test member by replacing the furnace height adjusting ring;
It is characterized by.

前記高温燃焼腐食試験装置においては、少なくとも燃焼室と燃焼ガス流路とで構成され、実缶を使用することがない。一方、高温腐食試験部材は燃焼ガス流路に露出した試験面と、外気に露出した冷却面とを有しているため、実缶とほぼ同じ条件で高温腐食試験を実施できる。   The high-temperature combustion corrosion test apparatus includes at least a combustion chamber and a combustion gas flow path, and does not use an actual can. On the other hand, since the high temperature corrosion test member has a test surface exposed to the combustion gas flow path and a cooling surface exposed to the outside air, the high temperature corrosion test can be performed under substantially the same conditions as an actual can.

本発明によれば、実缶を用いることなく、簡易な設備によって、かつ、実缶とほぼ同じ条件で高温腐食試験を行うことができる。   According to the present invention, a high-temperature corrosion test can be performed with simple equipment and under substantially the same conditions as an actual can without using an actual can.

第1実施例である高温燃焼腐食試験装置を示す概略構成図である。It is a schematic block diagram which shows the high temperature combustion corrosion test apparatus which is 1st Example. 第2実施例である高温燃焼腐食試験装置を示す概略構成図である。It is a schematic block diagram which shows the high temperature combustion corrosion test apparatus which is 2nd Example. 前記第2実施例である高温燃焼腐食試験装置に使用される試験部材を示し、(A)は平面図、(B)は斜視図、(C)はセグメントの斜視図、(D)はセグメントの側面図である。The test member used for the high-temperature combustion corrosion test apparatus which is the said 2nd Example is shown, (A) is a top view, (B) is a perspective view, (C) is a perspective view of a segment, (D) is a segment. It is a side view.

以下、本発明に係る高温燃焼腐食試験装置の実施例について、添付図面を参照して説明する。なお、各図において同じ部材、部分には共通する符号を付し、重複する説明は省略する。   Embodiments of a high-temperature combustion corrosion test apparatus according to the present invention will be described below with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected to the same member and part in each figure, and the overlapping description is abbreviate | omitted.

(第1実施例の構成と稼働、図1参照)
第1実施例である高温燃焼腐食試験装置1Aは、石炭燃焼時における燃焼ガスの衝突付着の試験を行うためのもので、図1に示すように、石炭を燃焼させる燃焼室10と、燃焼室10に連通して燃焼ガスを流通させる燃焼ガス流路20とで構成され、燃焼ガス流路20には高温腐食試験部材30が配置されている。
(Configuration and operation of the first embodiment, see FIG. 1)
A high-temperature combustion corrosion test apparatus 1A according to the first embodiment is for performing a collision gas adhesion test at the time of coal combustion. As shown in FIG. 1, a combustion chamber 10 for burning coal, and a combustion chamber 10 and a combustion gas passage 20 through which combustion gas is circulated. A high temperature corrosion test member 30 is disposed in the combustion gas passage 20.

詳しくは、燃焼室10は、開閉自在な蓋11を備えた石炭投入口12、可動式火格子13、燃焼灰受け皿14とで構成されており、開度を調整可能な空気孔15a,15b,15cが形成されている。燃焼ガス流路20は、石炭投入口12とは離れた側に設けた垂直流路部21と、水平流路部(以下、煙道26と記す)とを備え、煙道26の先端は上方に屈曲し、排気ファン27が取り付けられている。垂直流路部21には内筒部22と外筒部23を設け、内筒部22上にガス流調整リング24を設け、外筒部23上に炉高調整リング25を設けている。また、煙道26には、煙道ガス温度計測用熱電対40、差圧計41が配置されている。燃焼室10及び燃焼ガス流路20を構成する各部材は周知のガスボイラと同じ素材の金属材にて形成されている。   Specifically, the combustion chamber 10 includes a coal inlet 12 having a lid 11 that can be freely opened and closed, a movable grate 13, and a combustion ash tray 14, and air holes 15a, 15b whose opening degree can be adjusted, 15c is formed. The combustion gas flow path 20 includes a vertical flow path portion 21 provided on the side away from the coal inlet 12 and a horizontal flow path portion (hereinafter referred to as a flue 26), and the tip of the flue 26 is located upward. The exhaust fan 27 is attached. The vertical channel portion 21 is provided with an inner cylindrical portion 22 and an outer cylindrical portion 23, a gas flow adjusting ring 24 is provided on the inner cylindrical portion 22, and a furnace height adjusting ring 25 is provided on the outer cylindrical portion 23. In the flue 26, a flue gas temperature measuring thermocouple 40 and a differential pressure gauge 41 are arranged. Each member which comprises the combustion chamber 10 and the combustion gas flow path 20 is formed with the metal material of the same material as a well-known gas boiler.

さらに、垂直流路部21の天井部には高温腐食試験部材30が設置されている。この試験部材30は、ステンレスなどの金属材からなる板状部材であって、垂直流路部21の天井部に着脱可能(例えば、ボルト締めにて)に取り付けられている。試験部材30は、内面側を燃焼ガス流路20に露出した試験面30aとされ、外面側を外気に露出した冷却面30bとされている。また、試験部材30には、ガス温度計測用熱電対42が外部から流路20に貫通した状態で取り付けられ、さらに、試験部材30自体の温度を計測するための熱電対43が取り付けられている。   Further, a high temperature corrosion test member 30 is installed on the ceiling of the vertical flow path portion 21. The test member 30 is a plate-like member made of a metal material such as stainless steel, and is detachably attached to the ceiling portion of the vertical flow path portion 21 (for example, by bolting). The test member 30 has a test surface 30a whose inner surface is exposed to the combustion gas flow path 20, and a cooling surface 30b whose outer surface is exposed to the outside air. Further, a thermocouple 42 for gas temperature measurement is attached to the test member 30 in a state of penetrating the flow path 20 from the outside, and a thermocouple 43 for measuring the temperature of the test member 30 itself is attached. .

第1実施例である試験装置1Aにおいて、稼働させるには、まず、内筒部22にガス流調整リング24をセットするとともに、外筒部23に炉高調整リング25をセットし、次いで、試験部材30、熱電対42,43を取り付け、さらに、熱電対40を煙道26の所定位置に取り付ける。次に、可動式火格子13上に紙類や木片などを適宜投入し、かつ、投入口12より石炭を適量投入する。   In order to operate the test apparatus 1A according to the first embodiment, first, the gas flow adjusting ring 24 is set in the inner cylindrical portion 22, and the furnace height adjusting ring 25 is set in the outer cylindrical portion 23, and then the test is performed. The member 30 and the thermocouples 42 and 43 are attached, and the thermocouple 40 is attached at a predetermined position of the flue 26. Next, papers, wood chips and the like are appropriately placed on the movable grate 13 and an appropriate amount of coal is charged from the inlet 12.

その後、空気孔15aを利用して紙類や木片に着火し、石炭の燃焼を開始する。同時に、排気ファン27の運転も開始する。熱電対42,43にて燃焼ガス温度の上昇と試験部材30の温度を確認しながら、煙道26に設置した差圧計41を監視し、所定の燃焼ガス温度になるように、空気孔15a,15b,15cの開度を調整する。   Thereafter, paper and wood chips are ignited using the air holes 15a, and the combustion of coal is started. At the same time, the operation of the exhaust fan 27 is also started. While checking the rise of the combustion gas temperature and the temperature of the test member 30 with the thermocouples 42 and 43, the differential pressure gauge 41 installed in the flue 26 is monitored, and the air holes 15a, 15a, The opening degree of 15b, 15c is adjusted.

燃焼ガス温度が所定温度に到達、安定化した後、試験部材30の温度を熱電対43により測定、記録する。さらに、試験条件の確認項目として、差圧計41による燃焼排ガス量及び熱電対40による煙道ガス温度を確認、記録する。所定量の石炭を所定時間だけ燃焼させた後、試験部材30を取り外し、試験面30aに対する燃焼ガスの衝突付着による高温腐食について評価する。実験条件やその実験結果については後述する。   After the combustion gas temperature reaches a predetermined temperature and stabilizes, the temperature of the test member 30 is measured and recorded by the thermocouple 43. Further, as the confirmation items of the test conditions, the amount of combustion exhaust gas by the differential pressure gauge 41 and the flue gas temperature by the thermocouple 40 are confirmed and recorded. After a predetermined amount of coal is burned for a predetermined time, the test member 30 is removed, and high temperature corrosion due to impact gas adhering to the test surface 30a is evaluated. Experimental conditions and experimental results will be described later.

なお、石炭の燃焼により発生した灰分は可動式火格子13の直下にある燃焼灰受け皿14に落下するが、一部は火格子13上に堆積し、燃焼を阻害するため、適宜火格子13を動かし、灰分を受け皿14に落下させ、石炭の燃焼を促進させる。   In addition, although the ash generated by the combustion of coal falls on the combustion ash receiving tray 14 directly below the movable grate 13, a part of the ash is deposited on the grate 13 and hinders combustion. Move and drop the ash into the receiving tray 14 to promote coal combustion.

また、投入口12への石炭の供給や受け皿14に堆積した燃焼灰の除去は、燃焼ガス温度の動向を監視し、燃焼ガス温度が所定温度域より低下し始めるのを目安としてそれらを確認し、必要に応じて実施する。   In addition, the supply of coal to the inlet 12 and the removal of combustion ash deposited on the receiving tray 14 are monitored by monitoring the trend of the combustion gas temperature and confirming that the combustion gas temperature starts to fall below a predetermined temperature range. Execute as necessary.

前記第1実施例である高温燃焼腐食試験装置1Aにおいては、少なくとも燃焼室10と燃焼ガス流路20とで構成され、実缶を使用することなく、高温腐食試験を実施できる。即ち、実缶を用いることはないので、試験を実缶の稼働条件に合わせる必要はなく、ボイラでもないので専属の有資格者を必要とすることもない。また、高温腐食試験部材30は燃焼ガス流路20に露出した試験面30aと、外気に露出した冷却面30bとを有しているため、試験面30aや冷却面30bの温度を調整しながら、実缶とほぼ同じ条件で高温腐食試験を実施できる。さらに、炉高調整リング25やガス流調整リング24を交換可能としているため、燃焼室10から試験部材30までの距離を調整できる。   The high-temperature combustion corrosion test apparatus 1A according to the first embodiment includes at least the combustion chamber 10 and the combustion gas flow path 20, and can perform a high-temperature corrosion test without using an actual can. That is, since an actual can is not used, it is not necessary to adjust the test to the operating conditions of the actual can, and since it is not a boiler, an exclusive qualified person is not required. Moreover, since the high temperature corrosion test member 30 has the test surface 30a exposed to the combustion gas flow path 20 and the cooling surface 30b exposed to the outside air, while adjusting the temperature of the test surface 30a and the cooling surface 30b, High temperature corrosion test can be performed under almost the same conditions as actual cans. Furthermore, since the furnace height adjusting ring 25 and the gas flow adjusting ring 24 can be exchanged, the distance from the combustion chamber 10 to the test member 30 can be adjusted.

(第2実施例の構成と稼働、図2及び図3参照)
第2実施例である高温燃焼腐食試験装置1Bは、石炭燃焼時における燃焼ガスの凝縮付着の試験を行うためのもので、図2に示すように、石炭を燃焼させる燃焼室10と、燃焼室10に連通して燃焼ガスを流通させる燃焼ガス流路20とで構成され、燃焼ガス流路20には高温腐食試験部材35が配置されている。
(Configuration and operation of the second embodiment, see FIGS. 2 and 3)
The high-temperature combustion corrosion test apparatus 1B according to the second embodiment is for testing the condensation and adhesion of combustion gas during coal combustion. As shown in FIG. 2, a combustion chamber 10 for burning coal, and a combustion chamber 10 and a combustion gas passage 20 through which combustion gas flows, and a high temperature corrosion test member 35 is disposed in the combustion gas passage 20.

燃焼室10は、前記第1実施例と同様の構成を備えている。燃焼ガス流路20は、石炭投入口12とは離れた側に設けた垂直流路部21と、水平流路部(煙道26)とを備えている。煙道26は垂直流路部21の先端部から水平方向に延在している。垂直流路部21には内筒部22と外筒部23が設けられ、外筒部23上に円錐形状をなす炉高調整リング50を設けている。炉高調整リング50にはガス温度計測用熱電対44が設置されている。外筒部23と炉高調整リング50との間には金網51が設置されており、該金網51の中央部には保炎板52が載置される。また、煙道26には、煙道ガス温度計測用熱電対40、差圧計41及び排気ファン27が配置されていることは前記第1実施例と同様である。   The combustion chamber 10 has the same configuration as that of the first embodiment. The combustion gas flow path 20 includes a vertical flow path portion 21 provided on the side away from the coal inlet 12 and a horizontal flow path portion (flue 26). The flue 26 extends in the horizontal direction from the tip of the vertical flow path portion 21. The vertical channel portion 21 is provided with an inner cylindrical portion 22 and an outer cylindrical portion 23, and a furnace height adjusting ring 50 having a conical shape is provided on the outer cylindrical portion 23. The furnace height adjustment ring 50 is provided with a thermocouple 44 for gas temperature measurement. A wire mesh 51 is installed between the outer cylinder portion 23 and the furnace height adjusting ring 50, and a flame holding plate 52 is placed at the center of the wire mesh 51. Further, the flue 26 is provided with a flue gas temperature measuring thermocouple 40, a differential pressure gauge 41, and an exhaust fan 27 as in the first embodiment.

さらに、炉高調整リング50の上端部には高温腐食試験部材35が設置されている。この試験部材35は、ステンレスなどの金属材からなる筒状部材であって、炉高調整リング50の上端部に着脱可能(例えば、リングとの嵌合にて)に取り付けられている。試験部材35は、図3に示すように、互いに嵌合可能なように3等分されたセグメント36にて構成され、内面側を燃焼ガス流路20に露出した試験面35aとされ、外面側を外気に露出した冷却面35bとされている。また、試験部材35には、ガス温度計測用熱電対42が上方から流路に貫通した状態で配置され、さらに、試験部材35自体の温度を計測するための熱電対43が取り付けられている。前記保炎板52は、試験部材35が燃焼室10からの炎に直接晒されることを防止するために、炎を遮るものである。   Further, a high temperature corrosion test member 35 is installed at the upper end of the furnace height adjusting ring 50. The test member 35 is a cylindrical member made of a metal material such as stainless steel, and is detachably attached to the upper end portion of the furnace height adjusting ring 50 (for example, by fitting with the ring). As shown in FIG. 3, the test member 35 is composed of segments 36 that are divided into three equal parts so that they can be fitted to each other. The test member 35 has a test surface 35a with the inner surface exposed to the combustion gas flow path 20, and the outer surface side. The cooling surface 35b is exposed to the outside air. In addition, a gas temperature measuring thermocouple 42 is disposed in the test member 35 in a state of penetrating the flow path from above, and a thermocouple 43 for measuring the temperature of the test member 35 itself is attached. The flame holding plate 52 blocks the flame in order to prevent the test member 35 from being directly exposed to the flame from the combustion chamber 10.

第2実施例である試験装置1Bにおいて、稼働させるには、まず、金網51に保炎板52をセットするとともに、外筒部23に炉高調整リング50をセットし、次いで、試験部材35、熱電対42,43を取り付け、さらに、熱電対40を煙道26の所定位置に取り付ける。次に、可動式火格子13上に紙類や木片などを適宜投入し、かつ、投入口12より石炭を適量投入し、着火、石炭の燃焼を開始し、排気ファン27の運転を開始することは前記第1実施例と同様である。そして、熱電対42,43,44にて燃焼ガス温度の上昇と試験部材35の温度を確認しながら、煙道26に設置した差圧計41を監視し、所定の燃焼ガス温度になるように、空気孔15a,15b,15cの開度を調整する。   In order to operate the test apparatus 1B according to the second embodiment, first, the flame holding plate 52 is set on the wire mesh 51, the furnace height adjusting ring 50 is set on the outer cylinder portion 23, and then the test member 35, The thermocouples 42 and 43 are attached, and the thermocouple 40 is attached to a predetermined position of the flue 26. Next, paper or wood chips are appropriately placed on the movable grate 13, and an appropriate amount of coal is introduced from the insertion port 12, ignition and coal combustion are started, and the operation of the exhaust fan 27 is started. Is the same as in the first embodiment. And while checking the rise of the combustion gas temperature and the temperature of the test member 35 with the thermocouples 42, 43, 44, the differential pressure gauge 41 installed in the flue 26 is monitored so that the predetermined combustion gas temperature is reached. The opening degree of the air holes 15a, 15b, 15c is adjusted.

燃焼ガス温度が所定温度に到達、安定化した後、試験部材35の温度を熱電対43により測定、記録する。さらに、試験条件の確認項目として、差圧計41による燃焼排ガス量及び熱電対40による煙道ガス温度を確認、記録する。所定量の石炭を所定時間だけ燃焼させた後、試験部材35を取り外し、試験面35aに対する燃焼ガスの凝固付着による高温腐食について評価する。実験条件やその実験結果については後述する。   After the combustion gas temperature reaches a predetermined temperature and stabilizes, the temperature of the test member 35 is measured and recorded by the thermocouple 43. Further, as the confirmation items of the test conditions, the amount of combustion exhaust gas by the differential pressure gauge 41 and the flue gas temperature by the thermocouple 40 are confirmed and recorded. After burning a predetermined amount of coal for a predetermined time, the test member 35 is removed, and high temperature corrosion due to solidification adhesion of combustion gas to the test surface 35a is evaluated. Experimental conditions and experimental results will be described later.

前記第2実施例である高温燃焼腐食試験装置1Bにおける作用効果は、基本的に前記第1実施例と同様である。   The operational effects of the high temperature combustion corrosion test apparatus 1B according to the second embodiment are basically the same as those of the first embodiment.

(実験例)
以下に、第1実施例である試験装置1Aを使用した実験例1,2,3及び第2実施例である試験装置1Bを使用した実験例4と、それらの実験結果について説明する。以下の実験例1〜4では、国内で比較的入手が容易な太平洋の海底炭(精選新特中塊炭:太平洋石炭販売輸送株式会社)を使用した。
(Experimental example)
Hereinafter, experimental examples 1, 2, and 3 using the test apparatus 1A according to the first embodiment, experimental example 4 using the test apparatus 1B according to the second embodiment, and the experimental results thereof will be described. In the following Experimental Examples 1 to 4, Pacific submarine coal (refined new special lump coal: Pacific Coal Sales and Transportation Co., Ltd.), which is relatively easily available in Japan, was used.

実験例1での装置と試験条件
燃焼室:直径150mm
炉高調整リング:外径285mm、内径279mm、高さ50mm
内筒:外径190mm、内径184mm、高さ80mm
試験部材:SS400鋼、直径300mm、厚さ10mm
石炭燃焼量:約20kg/h(定常燃焼時)
試験時間:連続10時間
Apparatus and test conditions in Experimental Example 1 Combustion chamber: diameter 150 mm
Furnace height adjustment ring: 285mm outer diameter, 279mm inner diameter, 50mm height
Inner cylinder: Outer diameter 190mm, Inner diameter 184mm, Height 80mm
Test member: SS400 steel, diameter 300mm, thickness 10mm
Coal combustion amount: Approximately 20kg / h (at the time of steady combustion)
Test time: 10 consecutive hours

実験例2での装置と試験条件
燃焼室:直径150mm
炉高調整リング:外径285mm、内径279mm、高さ100mm
内筒:外径190mm、内径184mm、高さ135mm
試験部材:SS400鋼、直径300mm、厚さ10mm
石炭燃焼量:約20kg/h(定常燃焼時)
試験時間:連続10時間
Apparatus and test conditions in Experimental Example 2 Combustion chamber: diameter 150 mm
Furnace height adjustment ring: outer diameter 285mm, inner diameter 279mm, height 100mm
Inner cylinder: Outer diameter 190mm, Inner diameter 184mm, Height 135mm
Test member: SS400 steel, diameter 300mm, thickness 10mm
Coal combustion amount: Approximately 20kg / h (at the time of steady combustion)
Test time: 10 consecutive hours

実験例3での装置と試験条件
燃焼室:直径150mm
炉高調整リング:外径285mm、内径279mm、高さ150mm
内筒:外径190mm、内径184mm、高さ185mm
試験部材:SS400鋼、直径300mm、厚さ10mm
石炭燃焼量:約20kg/h(定常燃焼時)
試験時間:連続10時間
Apparatus and test conditions in Experimental Example 3 Combustion chamber: diameter 150 mm
Furnace height adjustment ring: outer diameter 285mm, inner diameter 279mm, height 150mm
Inner cylinder: Outer diameter 190mm, Inner diameter 184mm, Height 185mm
Test member: SS400 steel, diameter 300mm, thickness 10mm
Coal combustion amount: Approximately 20kg / h (at the time of steady combustion)
Test time: 10 consecutive hours

実験例4での装置と試験条件
燃焼室:直径150mm
炉高調整リング:上面外径105.5mm、底面外径280mm、厚さ3.2mm、高さ257mm
内筒:外径190mm、内径184mm、高さ185mm
試験部材:SS400鋼、外形105.5mm、厚さ4mm、高さ77mmの円筒管を図3に示すように3分割したもの。
石炭燃焼量:約20kg/h(定常燃焼時)
試験時間:連続24時間
Apparatus and test conditions in Experimental Example 4 Combustion chamber: diameter 150 mm
Furnace height adjustment ring: 105.5mm outer diameter on the top, 280mm outer diameter on the bottom, 3.2mm thickness, 257mm
Inner cylinder: Outer diameter 190mm, Inner diameter 184mm, Height 185mm
Test member: SS400 steel, cylindrical tube of outer shape 105.5 mm, thickness 4 mm, height 77 mm divided into three as shown in FIG.
Coal combustion amount: Approximately 20kg / h (at the time of steady combustion)
Test time: 24 hours in a row

次に、各実験例1〜4における実験結果について記載する。   Next, experimental results in Experimental Examples 1 to 4 will be described.

実験例1での結果
燃焼ガス温度:950〜1150℃
試験部材温度:550〜650℃
試験面(内側面)に灰白色の石炭灰が付着していた。石炭灰の分析結果は表2に示す。また、試験面には燃焼ガス衝突部を中心に100μm程度の凹凸が発生していた。
燃焼廃ガス温度:800〜950℃
Results in Experimental Example 1 Combustion gas temperature: 950 to 1150 ° C.
Test member temperature: 550-650 ° C
Gray-white coal ash adhered to the test surface (inner surface). The analysis results of coal ash are shown in Table 2. Further, the test surface had irregularities of about 100 μm centered on the combustion gas collision part.
Combustion waste gas temperature: 800-950 ° C

実験例2での結果
燃焼ガス温度:900〜1100℃
試験部材温度:500〜550℃
試験面(内側面)に灰白色の石炭灰が付着していた。石炭灰の分析結果は表2に示す。また、試験面には燃焼ガス衝突部を中心に50〜60μm程度の凹凸が発生していた。
燃焼廃ガス温度:800〜900℃
Results in Experimental Example 2 Combustion gas temperature: 900-1100 ° C.
Test member temperature: 500-550 ° C
Gray-white coal ash adhered to the test surface (inner surface). The analysis results of coal ash are shown in Table 2. Further, unevenness of about 50 to 60 μm was generated on the test surface centering on the combustion gas collision portion.
Combustion waste gas temperature: 800-900 ° C

実験例3での結果
燃焼ガス温度:850〜1000℃
試験部材温度:400〜450℃
試験面(内側面)に灰白色の石炭灰が付着していた。石炭灰の分析結果は表2に示す。また、試験面には燃焼ガス衝突部を中心に20〜30μm程度の凹凸が発生していた。
燃焼廃ガス温度:800〜900℃
Results in Experimental Example 3 Combustion gas temperature: 850 to 1000 ° C.
Test member temperature: 400-450 ° C
Gray-white coal ash adhered to the test surface (inner surface). The analysis results of coal ash are shown in Table 2. Further, unevenness of about 20 to 30 μm was generated on the test surface centering on the combustion gas collision portion.
Combustion waste gas temperature: 800-900 ° C

実験例4での結果
燃焼ガス温度:850〜1000℃
試験部材温度:400〜450℃
試験面(内側面)に灰白色若しくは灰黒色の石炭灰が付着していた。また、試験面には酸化腐食による5μm程度の凹凸が発生していた。
燃焼廃ガス温度:800〜900℃
Results in Experimental Example 4 Combustion gas temperature: 850 to 1000 ° C.
Test member temperature: 400-450 ° C
Gray-white or gray-black coal ash adhered to the test surface (inner surface). Further, unevenness of about 5 μm was generated on the test surface due to oxidative corrosion.
Combustion waste gas temperature: 800-900 ° C

Figure 0005907816
Figure 0005907816

(他の実施例)
なお、本発明に係る高温燃焼腐食試験装置は前記実施例に限定するものではなく、その要旨の範囲内で種々に変更することができる。
(Other examples)
The high-temperature combustion corrosion test apparatus according to the present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the gist thereof.

特に、試験装置全体の構成や大きさ、その細部の構成は任意であり、試験部材を着脱可能に取り付ける構成なども任意である。また、本発明は、石炭を燃焼したガスの腐食試験に限ることなく、他の燃料を燃焼したガスの腐食試験に適用することも可能である。そして、試験方法や試験条件はそれぞれ例示した前記のもの以外に種々の方法、条件を採用可能であることは勿論である。狭い意味での「腐食」という文言にこだわることなく、例えば、試験面に灰付着成分の抑制のための添加剤を設け、該添加剤の性能試験なども行うことができる。   In particular, the configuration and size of the entire test apparatus and the configuration of the details thereof are arbitrary, and the configuration in which the test member is detachably attached is also arbitrary. Further, the present invention is not limited to the corrosion test of the gas burned with coal, but can be applied to the corrosion test of the gas burned with another fuel. Of course, various test methods and conditions other than those exemplified above can be used. Without sticking to the wording “corrosion” in a narrow sense, for example, an additive for suppressing ash adhesion components can be provided on the test surface, and a performance test of the additive can be performed.

以上のように、本発明は、高温燃焼腐食試験装置に有用であり、特に、実缶を用いることなく、簡易な設備によって、かつ、実缶とほぼ同じ条件で高温腐食試験を行うことができる点で優れている。   As described above, the present invention is useful for a high-temperature combustion corrosion test apparatus, and in particular, a high-temperature corrosion test can be performed with simple equipment and almost the same conditions as an actual can without using an actual can. Excellent in terms.

1A,1B…高温燃焼腐食試験装置
10…燃焼室
20…燃焼ガス流路
25,50…炉高調整リング
30,35…高温腐食試験部材
30a,35a…試験面
30b,35b…冷却面
52…保炎板
DESCRIPTION OF SYMBOLS 1A, 1B ... High temperature combustion corrosion test apparatus 10 ... Combustion chamber 20 ... Combustion gas flow path 25, 50 ... Furnace height adjustment ring 30, 35 ... High temperature corrosion test member 30a, 35a ... Test surface 30b, 35b ... Cooling surface 52 ... Maintenance Flame plate

Claims (5)

燃焼室と、
前記燃焼室に連通して燃焼ガスを流通させる燃焼ガス流路と、
前記燃焼ガス流路に露出した試験面と外気に露出した冷却面とを有し、前記燃焼ガス流路に着脱可能に取り付けられている高温腐食試験部材と、
を備え、
前記燃焼ガス流路は交換可能な炉高調整リングを備え、該炉高調整リングを交換することにより、前記燃焼室から前記高温腐食試験部材までの距離を調整すること、
を特徴とする高温燃焼腐食試験装置。
A combustion chamber;
A combustion gas flow path for communicating a combustion gas in communication with the combustion chamber;
A high-temperature corrosion test member having a test surface exposed to the combustion gas passage and a cooling surface exposed to outside air, and detachably attached to the combustion gas passage ;
With
The combustion gas flow path is provided with a replaceable furnace height adjusting ring, and adjusting the distance from the combustion chamber to the high temperature corrosion test member by replacing the furnace height adjusting ring;
High temperature combustion corrosion test equipment characterized by.
前記高温腐食試験部材は、金属材からなる板状部材であり、前記燃焼ガス流路の一部を構成するように配置されていること、を特徴とする請求項1に記載の高温燃焼腐食試験装置。 2. The high-temperature combustion corrosion test according to claim 1, wherein the high-temperature corrosion test member is a plate-like member made of a metal material, and is disposed so as to constitute a part of the combustion gas flow path. apparatus. 前記高温腐食試験部材は、金属材からなる筒状部材であり、前記燃焼ガス流路の一部を構成するように配置されていること、を特徴とする請求項1に記載の高温燃焼腐食試験装置。   2. The high-temperature combustion corrosion test according to claim 1, wherein the high-temperature corrosion test member is a cylindrical member made of a metal material and is arranged so as to constitute a part of the combustion gas flow path. apparatus. 前記燃焼ガス流路には、前記高温腐食試験部材の前記燃焼ガスの流通方向上流側で前記燃焼ガスの炎を遮る保炎板が配置されていること、を特徴とする請求項3に記載の高温燃焼腐食試験装置。 Wherein the combustion gas flow passage, according to claim 3, characterized in that, the flame holding plate in the flow direction upstream side of the combustion gas in the hot corrosion test member blocks the flame of the combustion gas is disposed High temperature combustion corrosion test equipment. 燃焼材として石炭を用いること、を特徴とする請求項1ないし請求項4のいずれかに記載の高温燃焼腐食試験装置。 The high-temperature combustion corrosion test apparatus according to any one of claims 1 to 4 , wherein coal is used as a combustion material.
JP2012137076A 2012-06-18 2012-06-18 High temperature combustion corrosion test equipment Expired - Fee Related JP5907816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012137076A JP5907816B2 (en) 2012-06-18 2012-06-18 High temperature combustion corrosion test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012137076A JP5907816B2 (en) 2012-06-18 2012-06-18 High temperature combustion corrosion test equipment

Publications (2)

Publication Number Publication Date
JP2014002020A JP2014002020A (en) 2014-01-09
JP5907816B2 true JP5907816B2 (en) 2016-04-26

Family

ID=50035330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012137076A Expired - Fee Related JP5907816B2 (en) 2012-06-18 2012-06-18 High temperature combustion corrosion test equipment

Country Status (1)

Country Link
JP (1) JP5907816B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105043967B (en) * 2015-08-31 2018-01-16 西安热工研究院有限公司 Flue gas-coal ash collaboration corrosion testing apparatus
CN105699281B (en) * 2016-04-07 2018-06-29 洛阳理工学院 Burning crude oil boiler Supercritical materials high temperature corrosion experimental rig and method
CN111007099A (en) * 2019-12-02 2020-04-14 陕西煤业化工新型能源有限公司神木分公司 Test method for determining spontaneous combustion accumulation thickness of pulverized coal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL71167A0 (en) * 1983-03-10 1984-06-29 Fuel Tech Inc Catalyst system for delivering catalytic material to a selected portion of a combustion chamber
JPS6391433A (en) * 1986-10-03 1988-04-22 Babcock Hitachi Kk Ignition device for pulverized coal and carrier air mixture
JP3485908B2 (en) * 2001-06-28 2004-01-13 川崎重工業株式会社 Corrosion monitoring sensor and method and apparatus for estimating corrosion rate using the sensor

Also Published As

Publication number Publication date
JP2014002020A (en) 2014-01-09

Similar Documents

Publication Publication Date Title
Wang et al. Understanding ash deposition for Zhundong coal combustion in 330 MW utility boiler: Focusing on surface temperature effects
JP5907816B2 (en) High temperature combustion corrosion test equipment
TW202020424A (en) Method and apparatus for predicting adhesion of coal ash of coal-fired boiler, method and apparatus for preventing adhesion of coal ash of coal-fired boiler and method and apparatus for operating coal-fired boiler
Feshchenko et al. Thermal analysis of coal ash
US11504738B2 (en) Coating and method for forming the same
JP2012058182A (en) Wear amount management method for fire-resistant material layer
CN206001919U (en) Ultra-low NOx emission environmental protection and energy saving tubular heater
RU104179U1 (en) DEVICE FOR DISPOSAL OF HEAT OF WASTE CONVERTER GAS WITH CONTINUOUS STEAM PRODUCTION
CN204328984U (en) The hybrid radiant boiler of a kind of revolution shape
CN101915420B (en) Low-NOx solid and liquid deslagging dual-swirl coal-dust combustion device
CN102798130B (en) A kind of system alleviating Boiler Convection Heating Surface slagging scorification
JP6982391B2 (en) How to form a film
CN201772450U (en) Low-NOx solid-liquid deslagging double-whirl pulverized coal combustion device
JP6856116B2 (en) Corrosion evaluation method and probe for metallic materials
Moloko et al. Investigation of the mechanism for fireside corrosion in coal-fired boilers in South Africa
CN206692679U (en) A kind of blast furnace gas dehydration device
CN108826308A (en) A kind of exhaust processor
CN204328986U (en) A kind of U-shaped hybrid radiant boiler
CN208809747U (en) A kind of exhaust processor
CN202415495U (en) Water cooling protection structure for high-pressure perforated area of gasification or combustion furnace
JP2019052818A (en) Combustion ash bridge property evaluation device and combustion ash bridge property evaluation method
Laycock et al. Formation of Deposits From Heavy Fuel Oil Ash in an Accelerated Deposition Facility at Temperatures Up to 1206° C
JP2009204224A (en) Ash adhesion preventing method for boiler facility juxtaposed to furnace, and boiler facility juxtaposed to furnace
JP2006300601A (en) Working temperature estimation method of steel materials, and maintenance procedure of elevated temperature equipment
Krueger Operation experience and future perspectives with degradation at high steam parameters in WTE-plants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160322

R150 Certificate of patent or registration of utility model

Ref document number: 5907816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees