JP5907257B2 - Method for producing grain-oriented electrical steel sheet - Google Patents

Method for producing grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP5907257B2
JP5907257B2 JP2014516655A JP2014516655A JP5907257B2 JP 5907257 B2 JP5907257 B2 JP 5907257B2 JP 2014516655 A JP2014516655 A JP 2014516655A JP 2014516655 A JP2014516655 A JP 2014516655A JP 5907257 B2 JP5907257 B2 JP 5907257B2
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
electrical steel
tension
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014516655A
Other languages
Japanese (ja)
Other versions
JPWO2013175733A1 (en
Inventor
木島 剛
剛 木島
稔 高島
高島  稔
智幸 大久保
智幸 大久保
龍一 末廣
龍一 末廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014516655A priority Critical patent/JP5907257B2/en
Publication of JPWO2013175733A1 publication Critical patent/JPWO2013175733A1/en
Application granted granted Critical
Publication of JP5907257B2 publication Critical patent/JP5907257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • C23C22/33Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also phosphates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • C21D8/0289Application of a tension-inducing coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、絶縁被膜による鋼板付与張力を向上させて、鉄損を改善できる方向性電磁鋼板の製造方法に関する。   The present invention relates to a method of manufacturing a grain-oriented electrical steel sheet that can improve iron loss by improving the steel sheet tension applied by an insulating coating.

方向性電磁鋼板は、主に変圧器の鉄心素材として用いられ、特に鉄損が低いことが求められる。
この鉄損を低減させる方法の一つとして、二次再結晶後の鋼板に張力を付与する方法が挙げられる。この技術によれば、二次再結晶後の鋼板に対して圧延方向に張力を付与することにより、磁区幅が狭くなり、異常渦電流損が低減する結果、鉄損を低減できる。
The grain-oriented electrical steel sheet is mainly used as a core material of a transformer, and is particularly required to have a low iron loss.
One method for reducing this iron loss is to apply tension to the steel sheet after secondary recrystallization. According to this technique, by applying tension in the rolling direction to the steel sheet after the secondary recrystallization, the magnetic domain width is narrowed and the abnormal eddy current loss is reduced, so that the iron loss can be reduced.

そのため、二次再結晶後の鋼板に、高温で結晶質酸化物(例えばフォルステライト)、非結晶質酸化物、窒化物、及び炭化物を主成分とする、熱膨張率が鋼板よりも小さい材料からなる被膜を形成し、被膜と鋼板の熱膨張率差で鋼板に張力を付与する方法が提案され、すでに工業化されている。上記のような被膜として、例えば、特許文献1では、リン酸塩ガラス膜が用いられ、特許文献2では、炭化チタン膜が用いられている。   Therefore, the steel sheet after the secondary recrystallization is made of a material having a thermal expansion coefficient smaller than that of the steel sheet, which is mainly composed of crystalline oxide (for example, forsterite), amorphous oxide, nitride, and carbide at a high temperature. A method for forming a coating film and applying tension to the steel sheet by the difference in thermal expansion coefficient between the coating film and the steel sheet has been proposed and industrialized. For example, Patent Document 1 uses a phosphate glass film, and Patent Document 2 uses a titanium carbide film as the film as described above.

さらに、特許文献1には、リン酸塩系処理液の塗布後に800〜900℃の平坦化焼鈍を行えば、リン酸塩被膜の焼き付けと平坦化焼鈍を同時に行うことができることが開示されている。   Furthermore, Patent Document 1 discloses that if flattening annealing at 800 to 900 ° C. is performed after application of the phosphate processing solution, baking of the phosphate film and flattening annealing can be performed simultaneously. .

また、方向性電磁鋼板では、仕上焼鈍で形成されたフォルステライト被膜上に、さらにリン酸塩ガラスが施された二重被膜構造を形成することが一般的である。   In the grain-oriented electrical steel sheet, it is common to form a double coating structure in which phosphate glass is further applied on a forsterite coating formed by finish annealing.

しかしながら、近年、低騒音化の要求が高まり、性能が不足する場合があった。すなわち、フォルステライト被膜中やフォルステライト被膜と地鉄の界面に存在するSが鉄損劣化の原因となり、平坦化焼鈍温度を高めるだけでは鉄損改善が不足するという問題が生じていた。   However, in recent years, there has been a demand for low noise and performance may be insufficient. That is, S present in the forsterite coating or at the interface between the forsterite coating and the ground iron causes iron loss deterioration, and there is a problem that iron loss improvement is insufficient only by increasing the flattening annealing temperature.

上記問題に関し、特許文献3には、フォルステライト被膜を含む仕上焼鈍板の板厚平均S濃度を25ppm以下とし、張力付与型絶縁被膜処理液として、金属リン酸塩とシリカを主成分とする水溶液を用い、リン酸とシリカのモル比(P205/SiO2)が0.15〜4.0であり、焼き付け温度:900℃以上 1100℃以下で5秒以上 600秒以下の時間保持することを特徴とする方向性電磁鋼板の製造方法が開示されている。
特許文献3の製造方法では、Sがインヒビターとして製鋼段階で鋼中に添加され、また積極的に添加しなくても不純物として鋼中や、焼鈍分離剤中にある程度存在する。上述したフォルステライト被膜・地鉄界面のSは、このようなSが仕上焼鈍後も残留したものであり、積極的に添加しなくても25ppm超存在し、インヒビターとして用いる場合にはさらに多量に残留することとなる。そして、平坦化焼鈍における温度が高温になると、この界面に存在するSが地鉄中に拡散・固溶し、焼き付け後の冷却時に地鉄中に微細に析出して、鉄損を劣化させるものと考えられるため、特許文献3のように、S量の上限を規制することは一定の効果が見られる。
Regarding the above-mentioned problem, Patent Document 3 discloses an aqueous solution containing metal phosphate and silica as main components as a tension-providing insulating coating treatment liquid with a plate thickness average S concentration of 25 ppm or less as a finish annealing plate containing a forsterite coating. The molar ratio of phosphoric acid to silica (P 2 0 5 / SiO 2 ) is 0.15 to 4.0, and the baking temperature is 900 ° C. or higher and 1100 ° C. or lower and held for 5 to 600 seconds. A method for manufacturing a grain-oriented electrical steel sheet is disclosed.
In the production method of Patent Document 3, S is added as an inhibitor in steel in the steelmaking stage, and even if it is not positively added, it exists as an impurity in steel or in an annealing separator to some extent. The above-mentioned S at the interface between the forsterite film and the iron base remains after the finish annealing, and even if it is not actively added, it exists in excess of 25 ppm. It will remain. And, when the temperature in flattening annealing becomes high, S existing at this interface diffuses and dissolves in the steel, and finely precipitates in the steel at the time of cooling after baking, thereby deteriorating iron loss. Therefore, as in Patent Document 3, regulating the upper limit of the S amount has a certain effect.

特開昭56−52117号公報JP-A-56-52117 特開昭63−54767号公報JP-A-63-54767 特開2008−50676号公報JP 2008-50676 A

しかしながら、平坦化焼鈍温度を高めた場合、上述したフォルステライト被膜・地鉄界面のSによる被膜張力の劣化だけでなく、熱膨張率差に起因してフォルステライト被膜張力が劣化するという問題もあることが明らかとなったが、特許文献3の技術ではその点について考慮がなされていなかった。   However, when the flattening annealing temperature is increased, there is a problem that the forsterite film tension is deteriorated due to the difference in thermal expansion coefficient as well as the above-described deterioration of the film tension due to S at the forsterite film / steel interface. However, the technique of Patent Document 3 did not consider this point.

すなわち、平坦化焼鈍においては、焼鈍時において応力(平坦化応力)を付与することで、コイル状に焼鈍した際に発生する巻きぐせ(コイルセット)を矯正させるため、平坦化焼鈍を高温化すると、付与した応力によって地鉄がクリープ変形して伸長する。一方、フォルステライトはセラミック素材であるため、地鉄に比べてクリープ変形量が著しく小さく、室温まで冷却された時の熱膨張率差が高温化させる前よりも小さくなる結果、フォルステライト被膜張力が低下し、鉄損が劣化すると考えられる。   That is, in flattening annealing, by applying stress (flattening stress) at the time of annealing, in order to correct the winding (coil set) generated when annealing into a coil shape, The base iron creeps and expands due to the applied stress. On the other hand, because forsterite is a ceramic material, the amount of creep deformation is significantly smaller than that of the base metal, and the difference in coefficient of thermal expansion when cooled to room temperature is smaller than before the temperature rises. It is considered that the iron loss deteriorates.

そのため、本発明は上記した従来技術が抱える問題を有利に解決するものであり、平坦化焼鈍の条件について最適化を図ることにより、鋼板表面に形成した被膜の張力を効果的に向上させることができる、鉄損に優れた方向性電磁鋼板の製造方法を提供することを目的とする。   Therefore, the present invention advantageously solves the problems of the prior art described above, and by optimizing the conditions for flattening annealing, it is possible to effectively improve the tension of the coating formed on the steel sheet surface. An object of the present invention is to provide a method for producing a grain-oriented electrical steel sheet excellent in iron loss.

本発明者らは、鋼中へのS拡散やフォルステライト被膜張力の劣化という、鉄損への悪影響を及ぼす要因を同時に招く平坦化焼鈍の高温化という手段をとることなしに、張力付与型絶縁被膜の張力を増加させる方法を探究した。
その結果、平坦化焼鈍後の冷却において800℃から500℃までの平均冷却速度を20℃/s以上と急冷化させることで、張力付与型絶縁被膜の張力が増加することを見出した。また、従来発明ほど高い温度で平坦化焼鈍を行わなくても、十分に張力増加効果が得られることを見いだした。
The inventors have provided tension-insulating insulation without taking measures such as increasing the temperature of flattening annealing, which simultaneously causes factors that adversely affect iron loss, such as S diffusion into steel and deterioration of forsterite film tension. A method for increasing the tension of the coating was explored.
As a result, it was found that the tension of the tension-imparting insulating coating increases by rapidly cooling the average cooling rate from 800 ° C. to 500 ° C. to 20 ° C./s or more in the cooling after the flattening annealing. Further, it has been found that the effect of increasing the tension can be sufficiently obtained without performing planarization annealing at a temperature as high as that of the conventional invention.

ただし、平坦化応力の印加された状態で焼き付け後の冷却速度を大きくすると、フォルステライト被膜張力が劣化することがあった。そこで本発明者らは、その原因について詳細な検討を行い、次のように推定した。平坦化焼鈍中の鋼板のクリープ変形により、フォルステライト被膜は引き伸ばされ、微少なダメージを受けている。この状態で平坦化焼鈍後の冷却速度を大きくすると、鋼とフォルステライトの熱膨張差に起因する熱応力が急激に加わるため、フォルステライト被膜が破壊されてしまう。
そこで、クリープ変形によるフォルステライト被膜のダメージを小さくするために、平坦化応力、すなわち炉内応力を低減させることより、冷却過程でのフォルステライト被膜の破壊を抑制できることを新たに見出したのである。
However, when the cooling rate after baking is increased in a state where a planarizing stress is applied, the forsterite film tension may be deteriorated. Therefore, the present inventors conducted a detailed study on the cause and estimated as follows. Due to the creep deformation of the steel plate during flattening annealing, the forsterite film is stretched and suffers slight damage. If the cooling rate after flattening annealing is increased in this state, thermal stress due to the difference in thermal expansion between steel and forsterite is suddenly applied, so that the forsterite film is destroyed.
In order to reduce the damage of the forsterite film due to creep deformation, it was newly found that the forsterite film can be prevented from being destroyed during the cooling process by reducing the flattening stress, that is, the stress in the furnace.

本発明は、上記の知見に基づき完成されたもので、その要旨構成は次のとおりである。
I.表面にフォルステライト被膜を有する仕上焼鈍後の方向性電磁鋼板に対して、その表面に張力付与型絶縁被膜の処理液を塗布して焼き付けを平坦化と共に行う、平坦化焼鈍を施してなる方向性電磁鋼板の製造方法であって、
(1)上記張力付与型絶縁被膜の処理液として、金属リン酸塩とシリカを含有し、シリカに対するリン酸のモル比(P2O5/SiO2)が0.15〜4.0の範囲である水溶液を用い、
(2)上記平坦化焼鈍後の冷却において800℃から500℃までの平均冷却速度を20℃/s以上とし、
(3)炉内応力を5〜10MPaの範囲とし、
(4)上記フォルステライト被膜を有する方向性電磁鋼板の板厚平均S濃度を25ppm以下とし、
(5)平坦化焼鈍温度を840℃以上900℃未満とする
ことを特徴とする方向性電磁鋼板の製造方法。
The present invention has been completed based on the above findings, and the gist of the present invention is as follows.
I. Directionality formed by applying a flattening annealing to a directional electrical steel sheet having a forsterite film on the surface after finishing annealing by applying a treatment liquid of a tension-imparting type insulating film to the surface and baking it. A method of manufacturing an electrical steel sheet,
(1) An aqueous solution containing a metal phosphate and silica and having a molar ratio of phosphoric acid to silica (P 2 O 5 / SiO 2 ) in the range of 0.15 to 4.0 as a treatment liquid for the tension applying insulating coating. Use
(2) The average cooling rate from 800 ° C. to 500 ° C. in the cooling after the flattening annealing is 20 ° C./s or more,
(3) The stress in the furnace is in the range of 5 to 10 MPa ,
(4) The sheet thickness average S concentration of the grain-oriented electrical steel sheet having the forsterite film is 25 ppm or less,
(5) A method for producing a grain-oriented electrical steel sheet, characterized in that a planarization annealing temperature is set to 840C or higher and lower than 900C.

II.さらに、上記平坦化焼鈍後の冷却において、500℃から300℃までの平均冷却速度を20℃/s以下とすることを特徴とする前記Iに記載の方向性電磁鋼板の製造方法。 II. Furthermore, in the cooling after the flattening annealing, the average cooling rate from 500 ° C. to 300 ° C. is set to 20 ° C./s or less.

III.前記I又はIIに記載の方向性電磁鋼板の製造方法であって、
さらに、Si:2.0〜5.0質量%を含有する鋼スラブを熱間圧延し、熱延板焼鈍を施した後、1回若しくは中間焼鈍を挟んだ2回の冷間圧延を行い、その後、脱炭焼鈍、必要に応じて窒化処理を行い、マグネシアを主体とする焼鈍分離剤を塗布して乾燥させた後に、上記仕上焼鈍及び平坦化焼鈍を行う一連の工程を具え、
最終板厚まで圧延されたストリップを脱炭焼鈍する際、500℃から700℃までの昇温を50〜300℃/secの昇温速度で行うことを特徴とする方向性電磁鋼板の製造方法。
III . A method for producing the grain-oriented electrical steel sheet according to I or II ,
Further, a steel slab containing Si: 2.0 to 5.0% by mass is hot-rolled, subjected to hot-rolled sheet annealing, and then cold-rolled once or twice with intermediate annealing, and then decarburized. Annealing, if necessary, performing a nitriding treatment, and after applying and drying an annealing separator mainly composed of magnesia, comprising a series of steps for performing the above-mentioned finish annealing and flattening annealing,
A method for producing a grain-oriented electrical steel sheet, characterized in that when decarburizing and annealing a strip that has been rolled to a final thickness, a temperature increase from 500 ° C to 700 ° C is performed at a temperature increase rate of 50 to 300 ° C / sec.

本発明によれば、鋼板表面に形成した張力付与型絶縁被膜の張力を向上させて、方向性電磁鋼板の鉄損を改善できる。   ADVANTAGE OF THE INVENTION According to this invention, the tension | tensile_strength type | mold tension coating formed in the steel plate surface can be improved, and the iron loss of a grain-oriented electrical steel sheet can be improved.

平坦化焼鈍後の冷却速度とリン酸塩ガラス被膜の張力との関係を示したグラフである。It is the graph which showed the relationship between the cooling rate after planarization annealing, and the tension | tensile_strength of a phosphate glass film. 平坦化焼鈍後の冷却速度とフォルステライト被膜の張力との関係を示したグラフである。It is the graph which showed the relationship between the cooling rate after planarization annealing, and the tension | tensile_strength of a forsterite film. 平坦化焼鈍後の冷却速度と合計被膜張力との関係を示したグラフである。It is the graph which showed the relationship between the cooling rate after planarization annealing, and a total film tension. 平坦化焼鈍後の冷却速度と鉄損との関係を示したグラフである。It is the graph which showed the relationship between the cooling rate after planarization annealing, and an iron loss. 平坦化焼鈍温度と鉄損との関係を示したグラフである。It is the graph which showed the relationship between planarization annealing temperature and iron loss.

以下、本発明を具体的に説明する。
本発明は、表面にフォルステライト被膜を有する仕上焼鈍後の方向性電磁鋼板に対して、その表面に張力付与型絶縁被膜の処理液を塗布して焼き付けを平坦化と共に行う、平坦化焼鈍を施してなる方向性電磁鋼板の製造方法である。
Hereinafter, the present invention will be specifically described.
The present invention applies a flattening annealing to a grain-oriented electrical steel sheet having a forsterite film on the surface after finish annealing, applying a treatment liquid of a tension-imparting type insulating film on the surface and performing baking together with the flattening. It is a manufacturing method of the grain-oriented electrical steel sheet.

前記張力付与型絶縁被膜の処理液としては、金属リン酸塩とシリカを含有する水溶液であって、シリカに対するリン酸のモル比(P205/SiO2)は0.15以上4.0以下の範囲に調整する必要がある。
その理由としては、(P205/SiO2)が0.15未満または4.0超の場合には、被膜によって発生する張力が低減し、所望の鉄損を得ることができないからである。
The treatment liquid for the tension-imparting insulating coating is an aqueous solution containing a metal phosphate and silica, and the molar ratio of phosphoric acid to silica (P 2 0 5 / SiO 2 ) is in the range of 0.15 to 4.0. It needs to be adjusted.
The reason is that, when (P 2 0 5 / SiO 2 ) is less than 0.15 or more than 4.0, the tension generated by the coating is reduced, and a desired iron loss cannot be obtained.

次に、上述の張力付与型絶縁被膜処理液を、仕上焼鈍後の方向性電磁鋼板の表面に塗布した後、平坦化焼鈍とともに該被膜処理液の焼き付けを行う。焼き付け温度については、例えば800〜900℃程度の温度範囲で行うことができる。
また、フォルステライト被膜を含む仕上焼鈍板の板厚平均S濃度を25ppm以下とした上で、焼き付け温度を840℃以上とするさらに優れた効果を得ることができるためである。なお、900℃以上の温度で平坦化焼鈍を行うと地鉄のクリープ量の制御が難しくなり、発明の効果が安定して得られにくくなるため、900℃未満の焼き付けとする
Next, after apply | coating the above-mentioned tension | tensile_strength type insulation film processing liquid to the surface of the grain-oriented electrical steel sheet after finish annealing, this film processing liquid is baked with planarization annealing. About baking temperature, it can carry out in the temperature range of about 800-900 degreeC, for example.
Further, the finish annealing plate including the forsterite film has a thickness average S concentration of 25 ppm or less and a baking temperature of 840 ° C. or more . This is because more excellent effects can be obtained. In addition, when flattening annealing is performed at a temperature of 900 ° C. or higher, it becomes difficult to control the creep amount of the base iron, and the effects of the invention are hardly obtained stably .

前記張力付与型絶縁被膜としては、従来公知のものが適用できるが、リン酸アルミニウム、リン酸マグネシウム、リン酸バリウム、リン酸ストロンチウム、リン酸鉄又はリン酸亜鉛等の金属リン酸塩と、シリカとを主体とするガラス質の張力絶縁被膜であることが好ましい。さらに、この張力付与型絶縁被膜には、各種性能を向上させるために、金属リン酸塩やシリカ以外に、クロム酸や無水クロム酸、クロム酸塩、その他添加剤なども添加できる。
また、前記張力付与型絶縁被膜の膜厚は、1〜5μm程度とするのが好適である。
As the tension-imparting insulating coating, conventionally known ones can be applied, but metal phosphates such as aluminum phosphate, magnesium phosphate, barium phosphate, strontium phosphate, iron phosphate or zinc phosphate, and silica A vitreous tension insulating film mainly composed of In addition to the metal phosphate and silica, chromic acid, chromic anhydride, chromate, and other additives can be added to the tension-imparting insulating coating in addition to metal phosphate and silica.
The thickness of the tension-imparting insulating coating is preferably about 1 to 5 μm.

なお、本発明における方向性電磁鋼板について、その成分において特に限定されるものは無く、従来公知のものが全て適合する。   The grain-oriented electrical steel sheet in the present invention is not particularly limited in its components, and all conventionally known ones are suitable.

ここで、本発明による製造方法では、鉄損改善の観点から、方向性電磁鋼板の材料としてSi:2.0〜5.0質量%を含有するスラブを用いることが望ましい。Si:2.0質量%未満だと鉄損改善効果が小さく、Si:5.0質量%を超えると圧延が困難となるおそれがある。インヒビター成分については、特に制限されることはなく、例えばAlN、BN、TiN、MnS、MnSe、Sn、Sb、Bi等の既知のインヒビターを用いることができる。これらは製鋼段階で添加してもよいし、後工程で窒化処理などを行って添加してもよい。
また、本発明では、鋳造して得られたスラブを熱間圧延し、熱延板焼鈍を施した後、1回若しくは中間焼鈍をはさんだ2回の冷間圧延を行い、その後、脱炭焼鈍、必要に応じて窒化処理を行い、マグネシアを主体とする焼鈍分離剤を塗布して乾燥させた後に、上記仕上焼鈍及び平坦化焼鈍を行う一連の工程をさらに具えることができる。いずれも従来公知の条件を用いることができるが、最終板厚まで圧延されたストリップを脱炭焼鈍する際、500℃から700℃までの昇温速度を50〜300℃/secとすることは、鉄損改善の観点から特に有効である。脱炭焼鈍の昇温速度を50〜300℃/secとした場合、一次再結晶集合組織のGoss方位が増加し、二次再結晶後の粒径が小さくなる。二次再結晶粒径を小さくすると粒界の反磁界効果が高まり磁区幅が狭くなるため、コーティング張力を高めた場合に、より優れた鉄損が得られるようになる。50℃/sec未満では効果が小さく、300℃/secを超えるとかえって鉄損が劣化するため、50〜300℃/secが好ましい。
Here, in the manufacturing method by this invention, it is desirable to use the slab containing Si: 2.0-5.0 mass% as a material of a grain-oriented electrical steel sheet from a viewpoint of iron loss improvement. When Si is less than 2.0% by mass, the effect of improving iron loss is small, and when Si exceeds 5.0% by mass, rolling may be difficult. The inhibitor component is not particularly limited, and known inhibitors such as AlN, BN, TiN, MnS, MnSe, Sn, Sb, and Bi can be used. These may be added at the steel making stage, or may be added by performing nitriding treatment or the like in a subsequent process.
Further, in the present invention, the slab obtained by casting is hot-rolled, subjected to hot-rolled sheet annealing, and then cold-rolled twice or once with intermediate annealing, and then decarburized annealing. A series of steps of performing the above-described finish annealing and flattening annealing after performing nitriding treatment as necessary, applying and drying an annealing separator mainly composed of magnesia, can be further provided. Any of the known conditions can be used, but when decarburizing and annealing the strip that has been rolled to the final thickness, the heating rate from 500 ° C to 700 ° C is set to 50 to 300 ° C / sec. This is particularly effective from the viewpoint of iron loss improvement. When the heating rate of decarburization annealing is 50 to 300 ° C./sec, the Goss orientation of the primary recrystallization texture increases and the particle size after secondary recrystallization decreases. When the secondary recrystallized grain size is reduced, the demagnetizing effect at the grain boundaries is increased and the magnetic domain width is narrowed. Therefore, when the coating tension is increased, a more excellent iron loss can be obtained. If it is less than 50 ° C./sec, the effect is small, and if it exceeds 300 ° C./sec, the iron loss is deteriorated. Therefore, 50 to 300 ° C./sec is preferable.

また、焼鈍分離剤としては、マグネシア(MgO)を主体(具体的には、70質量%以上)として、TiO2、MgSO4、SrSO4などを含むものを有利に適合することができる。ただし、さらに優れた効果を得るためには、フォルステライト被膜を含む仕上焼鈍板の板厚平均S濃度を制御することが好ましい。Sはインヒビターとして製鋼段階で鋼中に添加される場合や、焼鈍分離剤に硫化物として添加される場合がある。また積極的に添加しなくても鋼中、マグネシア中に不純物としてある程度存在する。かようなSは仕上焼鈍後にフォルステライト被膜・地鉄界面に濃化し、積極的に添加しなくても25ppm超存在する場合があり、積極的に添加する場合はさらに多量に残留することとなる。そして、平坦化焼鈍における温度が高温になると、この界面に存在するSが地鉄中に拡散・固溶し、焼き付け後の冷却時に地鉄中に微細に析出して、鉄損を劣化させるものと考えられる。As the annealing separator, magnesia (MgO) and principal (specifically, more than 70% by mass) can be as, advantageously adapt those including TiO 2, MgSO 4, SrSO 4 . However, in order to obtain a further excellent effect, it is preferable to control the thickness average S concentration of the finish annealed plate including the forsterite film. S may be added as an inhibitor in steel at the steel making stage, or may be added as a sulfide to the annealing separator. Moreover, even if it does not add actively, it exists to some extent as an impurity in steel and magnesia. Such S concentrates at the forsterite film / steel interface after finish annealing and may exist in excess of 25 ppm even if it is not actively added, and if it is actively added, it will remain in a larger amount. . And, when the temperature in flattening annealing becomes high, S existing at this interface diffuses and dissolves in the steel, and finely precipitates in the steel at the time of cooling after baking, thereby deteriorating iron loss. it is conceivable that.

この鉄損劣化を抑制するためには、フォルステライト被膜を含む仕上焼鈍板の板厚平均S濃度を25ppm以下とするなお、前記板厚平均S濃度とは、板厚の各位置におけるS濃度の平均値のことであり、コーティング塗布前の板を用いるか、もしくは製品板のコーティングを煮沸アルカリ等で除去した板を用いて、湿式分析を実施することで算出できる。また、S濃度を25ppm以下に低減するには、
a)鋼の製鋼段階で十分な脱硫を行う
b)前記焼鈍分離剤に用いるマグネシアの製造プロセスにおいてSの混入を阻止する
c)前記焼鈍分離剤の助剤として用いられる、硫化物の量を低減する
ことなどによって、達成することができる。
上述した特許文献3で提案された技術では、効果を得るために900℃以上の高温焼き付けが必要であったが、本発明では840〜900℃という比較的低温の焼き付け温度でも優れた張力増加効果が得られる。この効果を得るためには、後述するような冷却速度の制御が必要である。
In order to suppress this iron loss deterioration, the plate thickness average S concentration of the finish annealed plate including the forsterite film is set to 25 ppm or less . The plate thickness average S concentration is an average value of S concentration at each position of the plate thickness, and a plate before coating application is used, or a plate obtained by removing the coating of the product plate with boiling alkali or the like. And can be calculated by performing a wet analysis. To reduce the S concentration to 25 ppm or less,
a) Sufficient desulfurization in the steel making stage of steel b) Inhibiting the inclusion of S in the production process of magnesia used in the annealing separator c) Reducing the amount of sulfide used as an auxiliary for the annealing separator This can be achieved by doing so.
In the technique proposed in Patent Document 3 described above, high-temperature baking at 900 ° C. or higher is necessary to obtain the effect, but in the present invention, an excellent tension increasing effect even at a relatively low baking temperature of 840 to 900 ° C. Is obtained. In order to obtain this effect, it is necessary to control the cooling rate as described later.

本発明は、表面にフォルステライト被膜を有する仕上焼鈍後の方向性電磁鋼板に対して、張力付与型絶縁被膜の処理液を塗布して焼き付けを平坦化と共に行い、平坦化焼鈍後の冷却において800℃から500℃までの平均冷却速度を20℃/s以上と大きくすることが重要である。前記冷却における800℃から500℃までの温度は、当該張力付与型絶縁被膜のガラス転移点が存在する温度領域であり、この温度領域を急冷することにより、絶縁被膜の張力が増加するものと推定され、前記冷却において800℃から500℃までの平均冷却速度を20℃/s以上とすることで、平坦化焼鈍の必要以上の高温化を行うことなく、張力付与型被膜の張力を向上することができる。前記冷却において800℃から500℃までの平均冷却速度が20℃/s未満の場合、十分に張力付与型被膜の張力を向上できないため、所望の鉄損を得ることができない。
ただし、前記冷却における800℃から500℃までの平均冷却速度が大きすぎる場合には、冷却歪の影響が支配的となって鉄損が劣化するという不利が生じるおそれがあるため、上限を120℃/s以下とすることが好ましい。より好ましい冷却速度の範囲は40〜120℃/sであり、さらに好ましい範囲は60〜120℃/sである。
The present invention applies a treatment liquid of a tension-imparting type insulating coating to a grain-oriented electrical steel sheet having a forsterite coating on the surface after finish annealing and performs baking together with flattening. It is important to increase the average cooling rate from ℃ to 500 ℃ to 20 ℃ / s or more. The temperature from 800 ° C. to 500 ° C. in the cooling is a temperature region where the glass transition point of the tension-imparting insulating coating exists, and it is estimated that the tension of the insulating coating increases by rapidly cooling this temperature region. In the cooling, the average cooling rate from 800 ° C. to 500 ° C. is set to 20 ° C./s or more, thereby improving the tension of the tension-imparting film without increasing the temperature more than necessary for flattening annealing. Can do. In the cooling, when the average cooling rate from 800 ° C. to 500 ° C. is less than 20 ° C./s, the tension of the tension-imparting film cannot be sufficiently improved, so that a desired iron loss cannot be obtained.
However, if the average cooling rate from 800 ° C. to 500 ° C. in the cooling is too large, the effect of cooling strain is dominant and there is a risk that iron loss will deteriorate, so the upper limit is 120 ° C. / S or less is preferable. A more preferable range of the cooling rate is 40 to 120 ° C./s, and a further preferable range is 60 to 120 ° C./s.

なお、前記冷却の500℃以下での冷却速度は特に限定するものではないが、500℃から300℃までの温度領域は鋼の降伏応力が急激に変化する領域であり、この温度領域を徐冷することにより、冷却ムラに起因する残留歪みが効果的に低減して鉄損の劣化が抑えられると考えられる。このため、500℃から300℃までの温度領域での平均冷却速度は、20℃/s以下とすることが好ましく、10℃/s以下とすることがさらに好ましい。なお、前記冷却速度を0.1℃/s未満とした場合は、冷却に時間がかかりすぎるため製造コストの観点から好ましくない。   The cooling rate at 500 ° C. or less for the cooling is not particularly limited, but the temperature region from 500 ° C. to 300 ° C. is a region where the yield stress of steel changes rapidly, and this temperature region is gradually cooled. By doing so, it is considered that the residual distortion due to the cooling unevenness is effectively reduced and the deterioration of the iron loss can be suppressed. For this reason, the average cooling rate in the temperature range from 500 ° C. to 300 ° C. is preferably 20 ° C./s or less, and more preferably 10 ° C./s or less. When the cooling rate is less than 0.1 ° C./s, it takes too much time for cooling, which is not preferable from the viewpoint of manufacturing cost.

また、本発明は、炉内応力を5〜10MPaの範囲とすることも重要である。
仕上焼鈍後の方向性電磁鋼板の平坦化処理を行いつつ、地鉄のクリープ変形に起因したフォルステライト被膜の劣化を抑制することができるからであり、さらに6〜8MPaの範囲とすることが好ましい。
なお、前記炉内応力が5MPa未満の場合には方向性電磁鋼板の平坦化を十分に行えず、前記炉内応力が10MPaを超えると、応力が大きすぎるためフォルステライトの劣化を招く。
In the present invention, it is also important that the stress in the furnace is in the range of 5 to 10 MPa.
This is because it is possible to suppress the deterioration of the forsterite film due to the creep deformation of the base iron while performing the flattening treatment of the grain-oriented electrical steel sheet after the finish annealing, and it is preferable that the range of 6-8 MPa is further set. .
When the in-furnace stress is less than 5 MPa, the grain-oriented electrical steel sheet cannot be sufficiently flattened, and when the in-furnace stress exceeds 10 MPa, the stress is too large and the forsterite is deteriorated.

以下、平坦化焼鈍条件の影響について、実験結果に基づいて説明する。
Siを3.3%含む、仕上焼鈍済みの二次再結晶完了したフォルステライト被膜を有する、板厚0.23mm厚の方向性電磁鋼板コイルを用いて、平坦化焼鈍の均熱温度、冷却速度と炉内応力を変化させる実験を行った。コーティング薬液については、リン酸マグネシウム水溶液とコロイダルシリカをリン酸とシリカのモル比(P205/SiO2)が0.5となるように調合した。さらに、クロム酸とリン酸のモル比(Cr2O3/P205)が0.3になるように無水クロム酸を添加した。調合後のコーティング薬液をバーコーターで仕上焼鈍板に塗布し、300℃で仮焼き付け処理を行い、その後に平坦化焼鈍を実施した。目付量については、平坦化焼鈍後のコーティング膜厚が2μmになるように調整した。特に記載がない場合の平坦化焼鈍の均熱温度は820℃、均熱時間については、15秒一定とした。
Hereinafter, the influence of the planarization annealing condition will be described based on experimental results.
Using a 0.23mm thick directional electrical steel sheet coil with a final recrystallized forsterite film containing 3.3% Si and finish annealing, soaking temperature, cooling rate and in-furnace Experiments were performed to change the stress. For the coating chemical solution, an aqueous magnesium phosphate solution and colloidal silica were prepared so that the molar ratio of phosphoric acid to silica (P 2 0 5 / SiO 2 ) was 0.5. Further, chromic anhydride was added so that the molar ratio of chromic acid and phosphoric acid (Cr 2 O 3 / P 2 0 5 ) was 0.3. The prepared coating chemical was applied to a finish annealing plate with a bar coater, pre-baked at 300 ° C., and then flattened. About the fabric weight, it adjusted so that the coating film thickness after planarization annealing might be set to 2 micrometers. Unless otherwise specified, the soaking temperature of flattening annealing was 820 ° C., and the soaking time was constant for 15 seconds.

図1は、リン酸塩ガラスコーティング焼き付け後の800℃から500℃までの温度領域の平均冷却速度を変化させた場合の、リン酸塩ガラス被膜の張力について示したグラフである。500℃から300℃までの冷却速度は、20℃/secで一定とした。
図1から、炉内応力に関係なく、冷却速度を急冷化させることでリン酸塩ガラスコーティング被膜の張力を増加することができることがわかる。特に、冷却速度が20℃/s以上で高い被膜張力が得られていることがわかる。
FIG. 1 is a graph showing the tension of a phosphate glass film when the average cooling rate in the temperature range from 800 ° C. to 500 ° C. after baking of the phosphate glass coating is changed. The cooling rate from 500 ° C to 300 ° C was constant at 20 ° C / sec.
It can be seen from FIG. 1 that the tension of the phosphate glass coating film can be increased by quenching the cooling rate regardless of the furnace stress. In particular, it can be seen that a high film tension is obtained at a cooling rate of 20 ° C./s or more.

図2は、リン酸塩ガラスコーティング焼き付け後の800℃から500℃までの温度領域の平均冷却速度を変化させた場合の、フォルステライト被膜の張力について示す。500℃から300℃までの冷却速度は、20℃/secで一定とした。
図2から、冷却速度を急冷化させると共に、炉内応力も高応力化することでフォルステライト被膜の張力が劣化することがわかる。
FIG. 2 shows the forsterite film tension when the average cooling rate in the temperature region from 800 ° C. to 500 ° C. after baking the phosphate glass coating is changed. The cooling rate from 500 ° C to 300 ° C was constant at 20 ° C / sec.
FIG. 2 shows that the forsterite film tension deteriorates by rapidly cooling the cooling rate and increasing the stress in the furnace.

図3は、リン酸塩ガラスコーティング焼き付け後の800℃から500℃までの温度領域の平均冷却速度を変化させた場合の合計被膜張力について示したものである。500から300℃までの冷却速度は、20℃/secで一定とした。なお、合計被膜張力とは、リン酸塩ガラス被膜張力とフォルステライト被膜張力とを合算したものである。
図3から、合計被膜張力は800℃から500℃までの温度領域の平均冷却速度を急冷化させることで、合計被膜張力は増加する傾向が認められる。さらに、炉内応力を低減させることで、より効果的に被膜張力が増加することがわかる。
FIG. 3 shows the total film tension when the average cooling rate in the temperature range from 800 ° C. to 500 ° C. after baking the phosphate glass coating is changed. The cooling rate from 500 to 300 ° C was constant at 20 ° C / sec. The total film tension is the sum of the phosphate glass film tension and the forsterite film tension.
FIG. 3 shows that the total film tension tends to increase by rapidly cooling the average cooling rate in the temperature range from 800 ° C. to 500 ° C. Furthermore, it can be seen that the film tension is more effectively increased by reducing the stress in the furnace.

なお、図1、図2及び図3における被膜張力とは、被膜の片面を完全に除去した際の鋼板の反り量から計算した値である。   In addition, the film | membrane tension | tensile_strength in FIG.1, FIG.2 and FIG.3 is the value calculated from the curvature amount of the steel plate at the time of removing the single side | surface of a film completely.

図4は、リン酸塩ガラスコーティング焼き付け後の800℃から500℃までの冷却速度を10℃/sec 、80℃/secの2水準とし、500℃から300℃までの冷却速度を変化させた試験片の鉄損(W17/50)を測定した結果について示したものである。炉内応力は6MPaとした。
図4から、800℃から500℃までの温度領域を急冷することにより鉄損が改善した。かつ、800℃から500℃までが急冷の条件で500℃から300℃までの冷却速度は低下させることにより、鉄損がさらに改善した。なお、500℃から300℃までの冷却速度は被膜張力にはほとんど影響を与えなかった。800℃から500℃までの温度範囲を急冷することにより、被膜張力が向上し、さらに500℃から300℃までの温度範囲を徐冷することにより、鋼中の残留歪みが低減し、優れた鉄損が得られたものと考えられる。
Figure 4 shows a test in which the cooling rate from 800 ° C to 500 ° C after baking the phosphate glass coating was set to two levels of 10 ° C / sec and 80 ° C / sec, and the cooling rate from 500 ° C to 300 ° C was changed. It shows about the result of measuring the iron loss (W 17/50 ) of a piece. The stress in the furnace was 6 MPa.
From FIG. 4, the iron loss was improved by rapidly cooling the temperature range from 800 ° C. to 500 ° C. In addition, the iron loss was further improved by reducing the cooling rate from 500 ° C to 300 ° C under conditions of rapid cooling from 800 ° C to 500 ° C. The cooling rate from 500 ° C. to 300 ° C. had little effect on the film tension. By rapidly cooling the temperature range from 800 ℃ to 500 ℃, the film tension is improved, and by gradually cooling the temperature range from 500 ℃ to 300 ℃, the residual strain in the steel is reduced and excellent iron It is thought that the loss was obtained.

図5は、種々の板厚平均S濃度の試験片での平坦化焼鈍温度と鉄損(W17/50)との関係を示したものである。なお、板厚平均のS濃度が異なる水準の試験片については、Siを3.3%含む、仕上焼鈍済みの二次再結晶完了したフォルステライト被膜を有する、板厚0.23mm厚の方向性電磁鋼板コイルを製造するにあたり、焼鈍分離剤に添加する硫酸マグネシウムの量を調整し、フォルステライト被膜を有する方向性電磁鋼板の板厚平均S濃度を調整することによって製造した。ここで、800℃から500℃までの冷却速度は80℃/secとし、500℃から300℃までの冷却速度は20℃/secとし、炉内応力は6MPaとした。
図5から、平坦化焼鈍温度が840℃以上の場合の鉄損向上代は、S濃度が低い程大きい結果が得られ、特に、S濃度25ppm以下の場合に鉄損向上代は大きい結果が得られた。すなわち、板厚平均S濃度25ppm以下とし、平坦化焼鈍温度を840℃以上とすることにより、特に優れた鉄損が得られることがわかる。すなわち、本発明では900℃以上の高温焼鈍を行わなくても、鉄損改善効果を得ることができる。S濃度が高い場合、平坦化焼鈍温度を高温化すると地鉄-フォルステライト界面に濃化した硫化物が分解し、地鉄中に拡散して冷却中に微細分散して鉄損を劣化させるため、発明の効果を低下させるものと考えられる。
FIG. 5 shows the relationship between the flattening annealing temperature and the iron loss (W 17/50 ) in test pieces having various sheet thickness average S concentrations. In addition, for specimens with different levels of average S concentration in the sheet thickness, 0.23 mm thick directional electrical steel sheet coils with a forsterite coating that has been subjected to finish re-annealing and secondary recrystallization containing 3.3% Si Was manufactured by adjusting the amount of magnesium sulfate added to the annealing separator and adjusting the sheet thickness average S concentration of the grain-oriented electrical steel sheet having a forsterite coating. Here, the cooling rate from 800 ° C. to 500 ° C. was 80 ° C./sec, the cooling rate from 500 ° C. to 300 ° C. was 20 ° C./sec, and the stress in the furnace was 6 MPa.
From FIG. 5, the iron loss improvement allowance when the flattening annealing temperature is 840 ° C. or higher is larger as the S concentration is lower. In particular, the iron loss improvement allowance is greater when the S concentration is 25 ppm or less. It was. That is, it is understood that particularly excellent iron loss can be obtained by setting the plate thickness average S concentration to 25 ppm or less and the planarization annealing temperature to 840 ° C. or more. That is, in the present invention, the iron loss improvement effect can be obtained without performing high-temperature annealing at 900 ° C. or higher. When the S concentration is high, increasing the flattening annealing temperature causes the sulfides concentrated at the iron-forsterite interface to decompose, diffuses into the iron, and finely disperses during cooling, deteriorating iron loss. The effect of the invention is considered to be reduced.

C:0.07質量%、Si:3.3質量%、Mn:0.07質量%、sol.Al:0.03質量%、N:0.008質量%、Se:0.01質量%及びS:20質量ppmを含有し、残部はFe及び不可避的不純物の組成になる鋼スラブを、熱間圧延し、ついで熱延板焼鈍後、中間焼鈍を挟む2回の冷間圧延により、0.30mmの最終板厚に仕上げた。
ついで、850℃、1分間の脱炭焼鈍後、鋼板表面にマグネシアを主成分とする焼鈍分離剤を塗布した後、1200℃、5時間の仕上焼鈍を施して、フォルステライト被膜付きの方向性電磁鋼板を作製した。ここで、得られた仕上焼鈍板のフォルステライト被膜を含む仕上焼鈍板の板厚平均S濃度は全て25ppm以下であった。
得られたフォルステライト被膜付き仕上焼鈍板の表面に、金属リン酸塩とコロイダルシリカを含有する張力付与型絶縁被膜処理液を塗布し、840℃で焼き付けて、張力付与型絶縁被膜を形成すると共に、平坦化焼鈍を実施した。上記処理液中におけるリン酸とシリカのモル比(P205/SiO2)及び平坦化焼鈍時の炉内応力を表1に示す。
前記平坦化焼鈍処理後、800℃から500℃までの冷却速度を表1に示す冷却速度で冷却を行うことで、各サンプルの方向性電磁鋼板を得た。なお、500℃から300℃までの冷却速度は、20℃/secで一定とした。
C: 0.07% by mass, Si: 3.3% by mass, Mn: 0.07% by mass, sol.Al: 0.03% by mass, N: 0.008% by mass, Se: 0.01% by mass and S: 20% by mass, the balance being Fe The steel slab having the composition of unavoidable impurities was hot-rolled, then annealed by hot rolling, and then finished to a final thickness of 0.30 mm by cold rolling twice with intermediate annealing.
Next, after decarburization annealing at 850 ° C. for 1 minute, after applying an annealing separator mainly composed of magnesia to the steel plate surface, finish annealing at 1200 ° C. for 5 hours to produce a directional electromagnetic with forsterite coating A steel plate was produced. Here, the plate thickness average S concentration of the finish annealed plate including the forsterite film of the finish annealed plate was 25 ppm or less.
On the surface of the finished annealed plate with forsterite coating, apply a tension-providing insulating coating treatment solution containing metal phosphate and colloidal silica, and bake at 840 ° C to form a tension-providing insulating coating. Then, planarization annealing was performed. Table 1 shows the molar ratio of phosphoric acid and silica (P 2 0 5 / SiO 2 ) in the treatment liquid and the stress in the furnace during flattening annealing.
After the flattening annealing treatment, cooling was performed at a cooling rate from 800 ° C. to 500 ° C. at the cooling rate shown in Table 1 to obtain grain-oriented electrical steel sheets for each sample. The cooling rate from 500 ° C. to 300 ° C. was constant at 20 ° C./sec.

(評価)
上述のようにして得られた各サンプルの方向性電磁鋼板について、鉄損(W17/50)の測定を行った。測定結果を表1に示す。

Figure 0005907257
(Evaluation)
The iron loss (W 17/50 ) of each grain oriented electrical steel sheet obtained as described above was measured. The measurement results are shown in Table 1.
Figure 0005907257

表1に示したとおり、発明例に係る各サンプルについては、比較例に係るサンプルに比べて鉄損が低く、良好な結果を示すことがわかる。これは、冷却速度及び炉内張力の適正化によって、フォルステライト被膜及び張力付与型絶縁被膜の張力が向上したためである。   As shown in Table 1, it can be seen that each sample according to the invention example has a lower iron loss than the sample according to the comparative example and shows a good result. This is because the tension of the forsterite coating and the tension-imparting insulating coating is improved by optimizing the cooling rate and the furnace tension.

C:0.06質量%、Si:3.4質量%、Mn:0.08質量%、sol.Al:0.02質量%、N:0.007質量%、Se:0.02質量%、Sb:0.05質量%、及びS:15質量ppmを含有し、残部はFe及び不可避的不純物の組成になる鋼スラブを、熱間圧延し、ついで1000℃、1分間の熱延板焼鈍後、1050℃、1分間の中間焼鈍を挟む2回の冷間圧延により、0.23mmの最終板厚に仕上げた。
ついで、830℃、1分間の脱炭焼鈍後、鋼板表面に、主成分としてマグネシア、助剤としてチタニアと硫酸マグネシウムを添加した焼鈍分離剤を塗布した後、1200℃、3時間の仕上焼鈍を施して、フォルステライト被膜付きの方向性電磁鋼板を作製した。フォルステライト被膜を含む仕上焼鈍板の板厚平均S濃度を表2に示す。なお、この板厚平均S濃度は、焼鈍分離剤に添加する硫酸マグネシウムの量を調整しS濃度を変更することにより、変化させたものである。ここで、脱炭焼鈍の昇温過程における500℃から700℃までの昇温速度は100℃/secとした。
得られたフォルステライト被膜付き仕上焼鈍板の表面に、リン酸マグネシウム水溶液とコロイダルシリカを、リン酸とシリカのモル比(P205/SiO2)で0.5、さらに、クロム酸とリン酸のモル比(Cr2O3/P205)が0.3になるように無水クロム酸を調合した薬液を塗布し、表2に示す均熱温度と冷却速度で平坦化焼鈍を実施した。ここで、平坦化焼鈍の炉内応力は8MPaとした。
C: 0.06 mass%, Si: 3.4 mass%, Mn: 0.08 mass%, sol.Al: 0.02 mass%, N: 0.007 mass%, Se: 0.02 mass%, Sb: 0.05 mass%, and S: 15 massppm Steel slab containing Fe and unavoidable impurities in the balance, hot rolled, then annealed at 1000 ° C for 1 minute, followed by intermediate annealing at 1050 ° C for 1 minute. A final thickness of 0.23 mm was obtained by cold rolling.
Next, after decarburization annealing at 830 ° C for 1 minute, the steel sheet surface was coated with magnesia as the main component and titania and magnesium sulfate as auxiliary agents, and then annealed at 1200 ° C for 3 hours. Thus, a grain-oriented electrical steel sheet with a forsterite film was produced. Table 2 shows the thickness average S concentration of the finish annealed plate including the forsterite coating. The plate thickness average S concentration is changed by adjusting the amount of magnesium sulfate added to the annealing separator and changing the S concentration. Here, the temperature increase rate from 500 ° C. to 700 ° C. in the temperature increase process of decarburization annealing was set to 100 ° C./sec.
On the surface of the finished annealed plate with forsterite coating, a magnesium phosphate aqueous solution and colloidal silica were mixed at a molar ratio of phosphoric acid to silica (P 2 0 5 / SiO 2 ) of 0.5, and chromic acid and phosphoric acid. A chemical solution prepared by adding chromic anhydride so that the molar ratio (Cr 2 O 3 / P 2 0 5 ) was 0.3 was applied, and flattening annealing was performed at a soaking temperature and a cooling rate shown in Table 2. Here, the in-furnace stress of the flattening annealing was 8 MPa.

(評価)
上述のようにして得られた各サンプルの方向性電磁鋼板について、鉄損(W17/50)の測定を行った。測定結果を表2に示す。

Figure 0005907257
(Evaluation)
The iron loss (W 17/50 ) of each grain oriented electrical steel sheet obtained as described above was measured. The measurement results are shown in Table 2.
Figure 0005907257

表2に示したとおり、発明例に係る各サンプルについては、比較例に係るサンプルに比べて鉄損が低い。特に、板厚平均S濃度が低く、平坦化焼鈍温度が高い条件では、さらに良好な結果を示すことがわかる。   As shown in Table 2, each sample according to the inventive example has a lower iron loss than the sample according to the comparative example. In particular, it can be seen that even better results are obtained under conditions where the plate thickness average S concentration is low and the flattening annealing temperature is high.

C:0.05質量%、Si:3.2質量%、Mn:0.06質量%、sol.Al:0.02質量%、Sn:0.06質量%及びS:15質量ppmを含有し、残部はFe及び不可避的不純物の組成になる鋼スラブを、熱間圧延し、ついで1050℃、1分間の熱延板焼鈍後、1回の冷間圧延により、0.22mmの最終板厚に仕上げた。
ついで、820℃、1分間の脱炭焼鈍後、700℃で窒化処理を行い、鋼中窒素量を0.015質量%にしたのち、鋼板表面にマグネシアとチタニアを主成分とする焼鈍分離剤を塗布し、1200℃、5時間の仕上焼鈍を施して、フォルステライト被膜付きの方向性電磁鋼板を作製した。ここで、得られた仕上焼鈍板のフォルステライト被膜を含む仕上焼鈍板の板厚平均S濃度は全て25ppm以下であった。また、脱炭焼鈍の昇温過程における500℃から700℃までの昇温速度は表3に示す値とした。
得られたフォルステライト被膜付き仕上焼鈍板の表面に、リン酸マグネシウム水溶液とコロイダルシリカを、リン酸とシリカのモル比(P205/SiO2)で0.45、さらに、クロム酸とリン酸のモル比(Cr2O3/P205)が0.4になるように無水クロム酸を調合した薬液を塗布し、860℃で平坦化焼鈍を行い、800℃から500℃までの冷却速度を表3に示す値として冷却を行った。ここで、平坦化焼鈍の炉内応力は7MPa、500℃から300℃までの冷却速度は20℃/sとした。
C: 0.05% by mass, Si: 3.2% by mass, Mn: 0.06% by mass, sol.Al: 0.02% by mass, Sn: 0.06% by mass and S: 15% by mass, the balance being Fe and inevitable impurities The resulting steel slab was hot rolled, then annealed at 1050 ° C. for 1 minute, and then finished by a single cold rolling to a final thickness of 0.22 mm.
Next, after decarburization annealing at 820 ° C for 1 minute, nitriding treatment is performed at 700 ° C to make the amount of nitrogen in the steel 0.015 mass%, and then an annealing separator mainly composed of magnesia and titania is applied to the steel plate surface. A directional electrical steel sheet with a forsterite film was prepared by subjecting to finish annealing at 1200 ° C. for 5 hours. Here, the plate thickness average S concentration of the finish annealed plate including the forsterite film of the finish annealed plate was 25 ppm or less. Further, the rate of temperature increase from 500 ° C. to 700 ° C. in the temperature increase process of decarburization annealing was set to the values shown in Table 3.
On the surface of the finished annealed plate with forsterite coating, a magnesium phosphate aqueous solution and colloidal silica were added in a molar ratio of phosphoric acid to silica (P 2 0 5 / SiO 2 ) of 0.45, and chromic acid and phosphoric acid. Apply a chemical solution prepared with chromic anhydride so that the molar ratio (Cr 2 O 3 / P 2 0 5 ) is 0.4, perform flattening annealing at 860 ° C, and display the cooling rate from 800 ° C to 500 ° C. Cooling was performed as the value shown in 3. Here, the stress in the furnace for flattening annealing was 7 MPa, and the cooling rate from 500 ° C. to 300 ° C. was 20 ° C./s.

(評価)
上述のようにして得られた各サンプルの方向性電磁鋼板について、鉄損(W17/50)の測定を行った。測定結果を表3に示す。

Figure 0005907257
(Evaluation)
The iron loss (W 17/50 ) of each grain oriented electrical steel sheet obtained as described above was measured. Table 3 shows the measurement results.
Figure 0005907257

表3に示したとおり、発明例に係る各サンプルについては、比較例に係るサンプルに比べて鉄損が低く、良好な結果を示すことがわかる。   As shown in Table 3, it can be seen that each sample according to the invention example has a lower iron loss than the sample according to the comparative example and shows a good result.

本発明によれば、張力付与型絶縁被膜の張力を向上させて、鉄損を改善できる方向性電磁鋼板の製造方法を提供することが可能となり、産業上格段の効果を奏する。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the manufacturing method of the grain-oriented electrical steel sheet which can improve the iron loss by improving the tension | tensile_strength of a tension | tensile_strength-type insulation film, and there exists a remarkable industrial effect.

Claims (3)

表面にフォルステライト被膜を有する仕上焼鈍後の方向性電磁鋼板に対して、その表面に張力付与型絶縁被膜の処理液を塗布して焼き付けを平坦化と共に行う、平坦化焼鈍を施してなる方向性電磁鋼板の製造方法であって、
(1)上記張力付与型絶縁被膜の処理液として、金属リン酸塩とシリカを含有し、シリカに対するリン酸のモル比(P2O5/SiO2)が0.15〜4.0の範囲である水溶液を用い、
(2)上記平坦化焼鈍後の冷却において800℃から500℃までの平均冷却速度を20℃/s以上とし、
(3)炉内応力を5〜10MPaの範囲とし、
(4)上記フォルステライト被膜を有する方向性電磁鋼板の板厚平均S濃度を25ppm以下とし、
(5)平坦化焼鈍温度を840℃以上900℃未満とする
ことを特徴とする方向性電磁鋼板の製造方法。
Directionality formed by applying a flattening annealing to a directional electrical steel sheet having a forsterite film on the surface after finishing annealing by applying a treatment liquid of a tension-imparting type insulating film to the surface and baking it. A method of manufacturing an electrical steel sheet,
(1) An aqueous solution containing a metal phosphate and silica and having a molar ratio of phosphoric acid to silica (P 2 O 5 / SiO 2 ) in the range of 0.15 to 4.0 as a treatment liquid for the tension applying insulating coating. Use
(2) The average cooling rate from 800 ° C. to 500 ° C. in the cooling after the flattening annealing is 20 ° C./s or more,
(3) The stress in the furnace is in the range of 5 to 10 MPa ,
(4) The sheet thickness average S concentration of the grain-oriented electrical steel sheet having the forsterite film is 25 ppm or less,
(5) A method for producing a grain-oriented electrical steel sheet, characterized in that a planarization annealing temperature is set to 840C or higher and lower than 900C.
さらに、上記平坦化焼鈍後の冷却において、500℃から300℃までの平均冷却速度を20℃/s以下とすることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。   Furthermore, in the cooling after the said planarization annealing, the average cooling rate from 500 degreeC to 300 degreeC shall be 20 degrees C / s or less, The manufacturing method of the grain-oriented electrical steel sheet of Claim 1 characterized by the above-mentioned. 請求項1又は2に記載の方向性電磁鋼板の製造方法であって、
さらに、Si:2.0〜5.0質量%を含有する鋼スラブを熱間圧延し、熱延板焼鈍を施した後、1回若しくは中間焼鈍を挟んだ2回の冷間圧延を行い、その後、脱炭焼鈍、必要に応じて窒化処理を行い、マグネシアを主体とする焼鈍分離剤を塗布して乾燥させた後に、上記仕上焼鈍及び平坦化焼鈍を行う一連の工程を具え、
最終板厚まで圧延されたストリップを脱炭焼鈍する際、500℃から700℃までの昇温を50〜300℃/secの昇温速度で行うことを特徴とする方向性電磁鋼板の製造方法。
A method for producing a grain-oriented electrical steel sheet according to claim 1 or 2 ,
Further, a steel slab containing Si: 2.0 to 5.0% by mass is hot-rolled, subjected to hot-rolled sheet annealing, and then cold-rolled once or twice with intermediate annealing, and then decarburized. Annealing, if necessary, performing a nitriding treatment, and after applying and drying an annealing separator mainly composed of magnesia, comprising a series of steps for performing the above-mentioned finish annealing and flattening annealing,
A method for producing a grain-oriented electrical steel sheet, characterized in that when decarburizing and annealing a strip that has been rolled to a final thickness, a temperature increase from 500 ° C to 700 ° C is performed at a temperature increase rate of 50 to 300 ° C / sec.
JP2014516655A 2012-05-24 2013-05-15 Method for producing grain-oriented electrical steel sheet Active JP5907257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014516655A JP5907257B2 (en) 2012-05-24 2013-05-15 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012118705 2012-05-24
JP2012118710 2012-05-24
JP2012118710 2012-05-24
JP2012118705 2012-05-24
JP2014516655A JP5907257B2 (en) 2012-05-24 2013-05-15 Method for producing grain-oriented electrical steel sheet
PCT/JP2013/003091 WO2013175733A1 (en) 2012-05-24 2013-05-15 Method for manufacturing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JPWO2013175733A1 JPWO2013175733A1 (en) 2016-01-12
JP5907257B2 true JP5907257B2 (en) 2016-04-26

Family

ID=49623446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014516655A Active JP5907257B2 (en) 2012-05-24 2013-05-15 Method for producing grain-oriented electrical steel sheet

Country Status (2)

Country Link
JP (1) JP5907257B2 (en)
WO (1) WO2013175733A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6836318B2 (en) * 2015-11-25 2021-02-24 日本製鉄株式会社 Directional electromagnetic steel sheet and its manufacturing method and heat-rolled sheet for grain-oriented electrical steel sheet and its manufacturing method
CN109563627B (en) * 2016-08-30 2021-01-22 杰富意钢铁株式会社 Coated metal, treatment liquid for forming coating, and method for producing coated metal
JP6911596B2 (en) * 2017-07-13 2021-07-28 日本製鉄株式会社 Unidirectional electromagnetic steel sheet with excellent film adhesion and its manufacturing method
JP6915689B2 (en) * 2017-07-13 2021-08-04 日本製鉄株式会社 Directional electrical steel sheet and its manufacturing method
PL3770282T3 (en) 2018-03-20 2023-11-06 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
BR112021010673A2 (en) * 2018-12-28 2021-08-24 Nippon Steel Corporation Grain-oriented electrical steel sheet and manufacturing method
CN113302337B (en) * 2019-01-16 2023-06-16 日本制铁株式会社 Grain-oriented electrical steel sheet and method for producing same
JP7356017B2 (en) * 2019-11-12 2023-10-04 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
CN113073177B (en) * 2021-03-17 2022-08-09 武汉钢铁有限公司 Control method for improving components of oxidation layer of oriented steel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917521B2 (en) * 1975-08-22 1984-04-21 川崎製鉄株式会社 Method for forming a heat-resistant top insulating film on grain-oriented silicon steel sheets
ZA765233B (en) * 1975-09-11 1977-08-31 J Rogers Steel metal web handling method apparatus and coil construct
JPS5830936B2 (en) * 1979-12-05 1983-07-02 川崎製鉄株式会社 Method for manufacturing grain-oriented silicon steel sheet with excellent repeated bending properties
JP2001262233A (en) * 2000-03-17 2001-09-26 Kawasaki Steel Corp Method for producing high magnetic flux density grain oriented silicon steel sheet small in defect in shape
JP2004332071A (en) * 2003-05-09 2004-11-25 Jfe Steel Kk Method for producing high magnetic flux density grain-oriented magnetic steel sheet
JP4835326B2 (en) * 2006-08-28 2011-12-14 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP5031934B2 (en) * 2010-03-17 2012-09-26 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPWO2013175733A1 (en) 2016-01-12
WO2013175733A1 (en) 2013-11-28

Similar Documents

Publication Publication Date Title
JP5907257B2 (en) Method for producing grain-oriented electrical steel sheet
US10395807B2 (en) Grain-oriented electrical steel sheet having excellent magnetic characteristics and coating adhesion
KR101963990B1 (en) Grain-oriented electrical steel sheet and method of manufacturing same
KR101498404B1 (en) Method for manufacturing grain oriented electrical steel sheet
EP2876173B1 (en) Manufacturing method of electrical steel sheet grain-oriented
US20220267871A1 (en) Method of producing hot-rolled steel sheet for grain-oriented electrical steel sheet and method of producing grain-oriented electrical steel sheet
KR101389248B1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
US9175362B2 (en) Method of manufacturing grain-oriented electrical steel sheet
JP5757693B2 (en) Low iron loss unidirectional electrical steel sheet manufacturing method
US20230243010A1 (en) Production method for grain-oriented electrical steel sheet
WO2016159349A1 (en) Manufacturing method for unidirectional electromagnetic steel sheet
JP4608562B2 (en) Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
JP2019099839A (en) Manufacturing method of oriented electromagnetic steel sheet
KR101633629B1 (en) Oriented electrical steel sheet and method for manufacturing the same
KR20210110865A (en) Method for manufacturing grain-oriented electrical steel sheet
KR101568835B1 (en) Oriented electrical steel sheet and method for manufacturing the same
JP7214974B2 (en) Manufacturing method of grain-oriented electrical steel sheet
KR20030052139A (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing
KR20240098255A (en) Method for manufaturing grain oriented electrical steel sheet
JP2012149292A (en) Method for manufacturing oriented electromagnetic steel plate
JP2000045024A (en) Manufacture of grain-oriented silicon steel sheet
KR20030052207A (en) Manufacturing Method for Non-Oriented Electrical Steel Sheet having Superior Punchability and Low Core Loss after Stress Relief Annealing

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R150 Certificate of patent or registration of utility model

Ref document number: 5907257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250