JP5901495B2 - 分散型電源装置の出力安定化制御装置 - Google Patents

分散型電源装置の出力安定化制御装置 Download PDF

Info

Publication number
JP5901495B2
JP5901495B2 JP2012236870A JP2012236870A JP5901495B2 JP 5901495 B2 JP5901495 B2 JP 5901495B2 JP 2012236870 A JP2012236870 A JP 2012236870A JP 2012236870 A JP2012236870 A JP 2012236870A JP 5901495 B2 JP5901495 B2 JP 5901495B2
Authority
JP
Japan
Prior art keywords
power
output
power generation
interconnection
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012236870A
Other languages
English (en)
Other versions
JP2014087239A (ja
Inventor
博樹 佐藤
博樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Furukawa Engineering and Construction Co Ltd
Original Assignee
Fuji Furukawa Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Furukawa Engineering and Construction Co Ltd filed Critical Fuji Furukawa Engineering and Construction Co Ltd
Priority to JP2012236870A priority Critical patent/JP5901495B2/ja
Publication of JP2014087239A publication Critical patent/JP2014087239A/ja
Application granted granted Critical
Publication of JP5901495B2 publication Critical patent/JP5901495B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

この発明は、風力や太陽光等の再生可能な自然エネルギーを利用して発電する再生可能エネルギー発電装置と、この発電装置の出力変動を抑えるための充放電が可能な蓄電池やキャパシタ等で構成された電力貯蔵装置とを備えた分散型電源装置の出力安定化制御装置に関する。
風力や太陽光等の再生可能な自然エネルギーを利用して発電する再生可能エネルギー発電装置を備えた分散型電源装置の利用が増えているが、風力や太陽光等の再生可能な自然エネルギーを利用した発電は、自然条件により出力が大きく変動するため、特に、連系する電力系統が僻地や離島などに設置された限定された小容量の商用電力系統である場合には、電力系統への影響が大きく、電力系統に周波数変動や電圧変動を発生させる問題がある。
そこで、このような再生可能エネルギー発電装置を備えた分散型電源装置に、フライホイールや蓄電池およびキャパシタ等で構成された電力貯蔵装置を組み合わせることにより、再生可能エネルギー発電装置の出力変動を電力貯蔵装置によって補償し、平滑化することが試みられている。
しかしながら、これまでの再生可能エネルギー発電装置と電力貯蔵装置とを組み合わせた分散型電源装置は、電力貯蔵装置が大きな容量を必要とするため、設備費用が高くなるとともに、設置スペースが大きくなる問題を有する。
電力貯蔵装置の設備容量を抑えるために、再生可能エネルギー発電装置の発電出力の変化を単位時間当たりの出力変動幅で決定される一定の傾きに制限する変化率リミッタを設け、この変化率リミッタを通した出力を、再生可能エネルギー発電装置の発電出力と電力貯蔵装置の出力との合成出力の目標値として分散型電源装置を制御することにより分散型電源装置の出力を安定化する方式が特許文献1で提案されている。
さらに、再生可能エネルギー発電装置と電力貯蔵装置とを組み合わせた分散型電源装置においては、電力貯蔵装置の電力貯蔵量が少なければ必要な放電量を確保できず、また電力貯蔵量が多過ぎれば必要な充電量を確保できない状態が発生することがあるので、この特許文献1ではこのような状態の発生を抑制するために、電力貯蔵装置の充電状態を一定値に制御する充電率(SOC)制御手段を設け、このSOC制御手段の出力により再生可能エネルギー発電装置の発電出力を補正制御することも提案されている。
また、特許文献2には、再生可能エネルギーを利用した分散型電源装置の電力貯蔵装置の電力貯蔵量が下限値或いは上限値に近づいた場合に補正信号を生成し、電力貯蔵量の補正を行うことが提案されている。その方法は、電力貯蔵量、および分散型電源装置の出力の有効電力の最大値と最小値の各々に対するしきい値を設け、電力貯蔵量、および分散型電源装置の出力の有効電力の現在値との比較を行い、その結果の組み合わせによって補正量、および補正する極性を決定することにより電力貯蔵装置の電力貯蔵量が上、下限値に張り付くことを防止するようにするものである。
特開2010−22122号公報 特開2007−318883号公報
しかしながら、特許文献1に示す方法では、電力貯蔵装置の設備容量を下げることはできるもの、電力貯蔵装置の充電(電力貯蔵)率(SOC)を一定に維持するためにSOC目標値とSOC検出値の比較を行い変化率リミッタの入力を補正する手段を設けているにもかかわらず、再生可能エネルギー発電装置の発電出力の平滑化が優先されており、補正信号が必ずしもSOCを一定に維持するために有効に動作しない場合がある。また、再生可能エネルギー発電装置の出力変化は予想できないため、このような場合を考慮して、電力貯蔵装置の設備容量にある程度の余裕を持たせざるを得なかった。
また、特許文献2に示す方法でも、風力等の再生可能エネルギーは、出力変動量、変動時間が予測できないため、例えば、強風時におけるカットアウト(出力遮断)などにより急激に最大出力から最小出力に大きく変動する場合等において、確実に電力貯蔵装置に必要な放電電力量を確保できているかどうかを判定することができないため、出力の安定化は改善されるものの、電力貯蔵装置の貯蔵電力量の上、下限値への張り付きを確実に防止することができるものではなかった。
この発明の課題は、上記のような再生可能エネルギー発電装置と電力貯蔵装置とを組み合わせた分散型電源装置において、電力貯蔵装置の設備容量を抑え、かつ電力貯蔵装置の充電(電力貯蔵)状態(SOC)を最適に制御し電力貯蔵装置の電力貯蔵量を充放電のいずれの方向にも確保することで、確実に出力変動を抑制することのできる分散型電源装置の出力安定化制御装置を提供することである。
前記の課題を解決するために、この発明の分散型電源装置の出力安定化制御装置は、風力や太陽光などの再生可能な自然エネルギーを利用して発電する再生可能エネルギー発電装置と、この再生可能エネルギー発電装置の発電出力を電力系統へ連系供給するための系統連系用電力変換装置と、前記再生可能エネルギー発電装置から出力される発電出力または前記系統連系用電力変換装置から電力系統へ出力される連系出力の一部の電力を貯蔵し、また、貯蔵した電力を前記電力系統へ供給することが可能な電力貯蔵装置とを備えた分散型電源装置において
前記電力貯蔵装置の現在の電力貯蔵量と最大電力貯蔵量との比率で示される電力貯蔵率Cr(%)、および前記再生可能エネルギー発電装置の現在の発電出力電力と定格の最大出力電力との比率で示される再生可能エネルギー発電装置の発電出力率Wpr(%)を検出し、前記電力貯蔵装置の電力貯蔵率Cr(%)と前記再生可能エネルギー発電装置の出力率Wpr(%)とが等しくなるように前記系統連系用電力変換装置を制御して前記分散型電源装置の系統出力を制御する連系出力制御手段とを設けたことを特徴とするものである。
この発明においては、前記再生可能エネルギー発電装置の発電出力の変化速度を検出し、この検出した変化速度が予め設定した設定値を超えた際に、前電力系統の系統電源装置の追従可能な変化速度よりも小さな増減量となる連系出力目標値の補正値を求め、この補正値により前記連系出力を補正する手段を備えるのがよい。
そして、前記の補正値は、予め定めた一定値、または、前記検出した前記再生可能エネルギー発電装置の出力電力の変動量に所定のゲインを乗算した値とすることができる。
さらに、この発明においては、前記再生可能エネルギー発電装置の出力を直流に変換して前記系統連系用電力変換装置および電力貯蔵装置に直流ラインを介して接続することもできる。
また、この発明においては、前記再生可能エネルギー発電装置の発電出力、最大発電出力、この発電出力の最大変動率および前記分散型電源装置の前記電力系統への連系出力、この連系出力の最大変動率から前記再生可能エネルギー発電装置の発電出力が変化したときに前記分散型電源装置が前記電力貯蔵装置へ充放電することの必要な充放電電力量を求める必要充放電電力量演算手段と、前記電力貯蔵装置の現在の電力貯蔵率から最大の充放電可能な電力量を求める可能充放電電力量演算手段と、前記必要充放電電力量演算手段で求められた必要充放電電力量が前記可能充放電電力量演算手段で求められた前記電力貯蔵装置の最大可能充放電電力量より小さくなるように前記連系出力を補正する手段とを設けることができる。
この発明は、再生可能エネルギー発電装置と電力貯蔵装置を備え、電力系統に連系された分散型電源において、電力貯蔵装置の現在の電力貯蔵量と最大電力貯蔵量との比率で示される電力貯蔵装置の電力貯蔵率(SOC)Cr(%)と、再生可能エネルギー発電装置の現在の出力電力と定格の最大出力電力との比率で示される再生可能エネルギー発電装置の出力率Wpr(%)とが等しくなるように分散型電源の連系用電力変換装置の出力を制御するようにしているので、電力貯蔵装置の電力貯蔵率(SOC)Cr(%)を、より再生可能エネルギー発電装置の出力率Wpr(%)に合致させることが可能となり、電力貯蔵手段の電力貯蔵量が上限値となりそれ以上充電できない状態や、下限値となりそれ以上放電できない状態になることがないようにすることができるため、電力貯蔵装置の容量を低減することができる。よって、再生可能エネルギー発電装置と電力貯蔵装置とを備え分散型電源装置の設備費および設置スペースを低減することができる。
この発明の分散型電源装置の出力安定化制御装置の第1の実施例の構成を示すブロック構成図。 図1における連系出力目標演算部25の第1の構成例を示すブロック構成図。 図1における連系出力目標演算部25の第2の構成例を示すブロック構成図。 この発明の分散型電源装置の出力安定化制御装置の第2の実施例の構成を示すブロック構成図。 図4における連系出力目標演算部25および必要充放電容量演算部26の構成例を示すブロック構成図。 図5における必要充放電容量演算手段の演算方法を説明するために用いる、発電装置の発電出力Wpの最大変化および連系用電力変換装置の連系出力Opの最大変化を示す線図。 図5における必要充放電容量演算手段の演算方法の説明用線図であり、(a)は、発電出力Wpが増大する状態を示す線図、(b)発電出力Wpが減少する状態を示す線図。 この発明の第2の実施例の装置の出力変動をシミュレーションした結果を示す線図。 この発明の分散型電源装置の出力安定化制御装置の第3の実施例の構成を示すブロック構成図。
この発明の実施の形態を図に示す実施例について説明する。
図1は、この発明のよる分散型電源装置の出力安定化制御装置の第1の実施例の構成を示すものである。
図1において、1は分散型電源装置、2はこの分散型電源装置1の出力を安定化するための出力安定化制御装置、3は、分散型電源装置11の連系接続される、例えば商用の交流の電力系統のような既設の電力系統である。
分散型電源装置1は、風力や太陽光等の再生可能な自然エネルギーにより発電する再生可能エネルギー発電装置(以下においては、単に発電装置と呼ぶ)11、発電装置11を直流ライン19に接続するための交流電力を直流電力変換する発電電力変換装置12、直流ライン19から供給される直流電力を交流電力に変換して電力系統3へ連系出力する連系用電力変換装置13、および直流ライン19から一部の電力を吸収(充電)し、吸収(充電)した電力を直流ライン19へ給電(放電)することのできる蓄電池やキャパシタ等で構成された電力貯蔵装置14を備える。
電力系統3は、系統電源31と、これに接続された系統ライン32と、このライン32に接続された負荷33とを備える。分散型電源装置1は、この電力系統3の電圧と合わせるために連系用変圧器15を介して系統ライン32に連系接続される。
このように電力系統3に連系接続された分散型電源装置1においては、風力等の再生可能エネルギーにより発電装置11で発電された電力の殆どが、指令にしたがって連系用電力変換装置13を介して電力系統3に出力され、余剰の電力があれば電力貯蔵装置14に充電貯蔵にされ、発電装置11の発電出力が不足する場合は、電力貯蔵装置14から貯蔵電力を供給してこの不足分を補うようにしている。
電力系統3が、僻地や離島等に設置された電力系統である場合は、系統電源31が内燃機関発電装置のような比較的小容量の発電装置で構成されるため、電力容量の小さい弱い電力系統となる。このような電力容量が小さくて弱い電力系統3に、出力変動の大きい再生可能エネルギー発電装置を含む分散型電源装置1を連系接続した場合、分散型電源装置1の出力変動により電力系統3の周波数や電圧に変動が生じ、系統の運用に問題が生じる。このような問題を解消するために分散型電源装置1の系統への出力を極力安定化することが必要となる。
分散型電源装置1の電力系統3への連系出力を安定にするために、この発明においては出力安定化制御装置2を設けている。
この出力安定化制御装置2は、発電装置11の発電電力(発電出力ともいう)の有効電力Wpを検出する発電出力検出部21、電力貯蔵装置14の実際の電力貯蔵量Ccと定格の最大電力貯蔵量Cxとの比率で示される電力貯蔵率(充電率(SOC)ともいう)Cr(=Cc/Cx(%))を検出する電力貯蔵率検出部22、系統連系用の電力変換装置13の電力系統3への連系出力(有効電力)Opを検出する連系出力検出部23、および系統連系用電力変換装置13の連系出力Opを制御する連系電力変換制御部24を備える。
連系電力変換制御部24は、連系出力検出部23から与えられる連系出力Opが連系出力目標演算部25から与えられる連系出力目標値Op*と等しくなるような制御指令Psを発生し、連系用電力変換装置13へ与える。
連系出力目標値Op*は、発電出力検出部21で検出された発電装置11の発電出力Wpと、電力貯蔵率検出部22で検出された電力貯蔵装置14の電力貯蔵率Crとに基づいて連系出力目標演算部25で求められる。
連系出力目標演算部25の具体的な構成を図2に示す。
この連系出力目標演算部25における発電出力変化検出部25aは、発電出力検出部21で検出された発電装置11の発電出力Wpの変動量を微分することにより発電装置11の発電出力Wpの単位時間あたりの変動量、すなわち発電出力の変化速度ΔWpv(=ΔWp/Δt)を求めるものである。
また、発電出力率検出部25bは、発電出力検出部21で検出された発電装置11の発電出力Wpの発電装置11の定格の最大出力Pxに対する比率で示される発電出力率Wpr(=Wp/Px(%))を演算により求めるものである。
第1の加算部25dで、電力貯蔵率Crを図示する極性で加算し、両者の偏差(Cr−Wpr)を求める。そして、演算部25eは、加算部25dで求められた偏差(Cr−Wpr)を所定のゲインGで増幅して、この偏差(Cr−Wpr)が0となる、すなわち、電力貯蔵率Crと発電出力率Wprとが等しくなるようにするための、連系電力変換装置13の連系出力の目標値Op*を求める。
さらに、判定選択部25fは、発電出力変化検出部25aで検出された発電装置11の出力変化速度ΔWpvの絶対値|ΔWpv|と、予め変化速度設定器25gに設定された変化速度設定値Kとを比較して大小関係を判定する。そして、判定選択部25fは、|ΔWpv|≦Kである場合は、何も選択出力を発生せず、|ΔWpv|>Kである場合は、ΔWpvが正のときは、選択回路25kの選択接点aをオンにする選択出力を発生し、出力変化速度ΔWpvが負のときは、選択回路25kの選択接点bをオンする選択出力を発生するように動作する。
これにより、|ΔWpv|>KでΔWpvが正のとき、すなわち発電出力が増加方向へ変化しているときは、補正値設定器25hが選択され、補正値−Uが加算部25mに加えられ、連系出力目標値Op*の補正が行われる。そして、|ΔWpv|>KでΔWpvが負のとき、すなわち発電出力が減少方向へ変化しているときは、補正値設定器25jが選択され、補正値Uが加算部25mに加えられ、連系出力目標値Op*の補正が行われる。
なお、変化速度設定器25gに設定される変化速度設定値Kは、電力系統3の系統発電装置31が充分追従可能な制御速度より小さい適宜の値に設定されている。
次に、このように構成された出力安定化制御装置2の動作を説明する。
連系出力目標演算部25においては、その都度、第1の加算部25dで、発電出力率検出部25bで検出された発電装置11の発電出力率Wprと電力貯蔵率検出部2で検出された電力貯蔵装置14の電力貯蔵率Crとを加算してその偏差(Cr−Wpr)が求められる。所定のゲインGを有する増幅部25eは、この偏差(Cr−Wpr)にゲインGを乗じて、この偏差を0にする連系出力目標値Op*を求め、第2の加算部25mへ出力する。
発電装置11の発電出力変化速度ΔWpvが変化速度設定値Kより小さい場合は、判定選択部25fからは選択出力が発生されず、選択回路25kの選択接点a、bはともにオフとなっているので、演算部25eからの連系出力目標値Op*は第2の加算部25mで補正されることなく、そのまま、リミッタ25nを介して、連系電力変換制御部24に出力される。
連系電力変換制御部24は、連系出力目標演算部25から連系出力目標値Op*が与えられることにより、連系出力検出部23で検出された連系用電力変換装置13の電力系統3への連系出力Opがこの連系出力目標値Op*となるように連系用電力変換装置13を制御する。このため、分散電源装置1から電力系統3へ出力される連系出力Opは、指令された連系出力目標値Op*と等しくなる。
分散型電源装置1においては、発電装置11の発電出力Wpから連系出力Op(=Op*)を差し引いた残りの電力Cpが、電力貯蔵装置14へ充放電されることになる。
したがって、電力貯蔵装置14への充放電電力Cpは、(1)式のような関係となる。
Cp=Wp−Op* (1)
このように電力貯蔵装置14への充放電電力Cpは、発電出力Wpと連係出力目標値Op*との差に依存し、連系出力目標値Op*は電力貯蔵率Crと発電出力率Wprとの差に依存しているため、発電装置11の発電出力Wpが増大し、発電出力率Wprが電力貯蔵装置14の現在の電力貯蔵率Crより大きくなると、連系用電力変換装置13から電力系統3へ出力される連系出力Opを低減して、発電装置11から電力貯蔵装置14へ供給され充電電力Cpが増大されるようになり、電力貯蔵率Crを発電出力率Wprに等しくなるまで増大させる。そして、発電装置11の発電出力Wpが低減し、発電出力率Wprが電力貯蔵率Crより小さくなると、連系用電力変換装置13から電力系統3へ出力される連系出力Opが増大され、電力貯蔵装置14へ供給される充電電力Cpが低減されることにより電力貯蔵率Crが発電出力率Wprと等しくなるように調整される。この結果、電力貯蔵装置14は、その電力貯蔵率Crが発電装置11の発電出力率Wprと一致するように制御されるので、電力貯蔵装置14の電力貯蔵量Crは上限値または下限値に張り付くことなくほぼ最適に維持されるようになる。
また、発電装置11の発電出力変化速度ΔWpvが変化速度設定値Kより小さい状態において、分散型電源装置1から電力系統3へ出力される連系出力Opが変動しても、電力系統3の系統電源31は自身の制御手段によりこの変動に追随して応答することができるので、電力系統3の系統ライン32の電力の周波数や電圧は変動せず、安定に維持される。
例えば、風力の急激な変動により、発電装置11の発電出力Wpの変化速度ΔWp/Δtが設定値Kを超えると、判定選択部25fがこれを検知する。そして、そのときの極性が正(発電出力Wpが増大する方向へ変化する場合)のときは、判定選択部25fから選択接点aをオンにする選択出力が発生されるので、補正値設定器25hに設定された補正値−Uが第2の加算部25mで、演算部25eから出力された連系出力目標値Op*に加算、この場合は減算されるため、連系出力目標値Op*が低減方向に補正される。
また、発電出力Wpの変化速度ΔWp/Δtの極性が負(発電出力Wpが減少する方向に変化する場合)のときは、判定選択部25fから選択接点bをオンにする選択出力が発生されので、補正値設定器25jに設定された補正値Uが第2の加算部25mで、演算部25eから出力された連系出力目標値Op*に加算されるため、連系出力目標値Op*が増大方向に補正される。
発電出力Wpの変化速度ΔWp/Δtが変化速度設定値Kを超える速度で増大した場合は、そのときの連系出力目標値Op*から所定の単位補正値U分だけ減じる補正が行われることにより、連系出力目標演算部25から連系電力変換制御部24に与えられる連系出力目標値Op*が小さくなるので、これに基づく連系用電力変換装置13の連系出力Opの変化速度を電力系統3の系統電源31の制御応答速度より小さくなるように抑えることができる。
また、発電出力Wpの変化速度ΔWp/Δtが変化速度設定値Kを超える速度で減少した場合は、そのときの連系出力目標値Op*に所定の単位補正値U分だけ加算される補正が行われることにより、連系出力目標演算部25が連系電力変換制御部24に与えられる連系出力目標値Op*が増大されるので、この場合も、これに基づく連系用電力変換装置13の連系出力Opの変化速度を電力系統3の系統電源31の制御応答速度より小さくなるように抑えることができる。
リミッタ25nは、前記のように、発電出力Wpの変化速度ΔWp/Δtが変化速度設定値Kを超える速度で変動した際に、そのときの連系出力目標値Op*に所定の単位補正値U分だけ加減算する補正を行っても、完全に補正することができず、補正された連系出力目標値Op*が電力系統3の最大の制御応答速度より大きな速度の変化となった場合に、これを、連系出力目標値Op*が電力系統3の最大の制御応答速度に以下に制限して、電力系統の周波数または電圧の変動を抑えて、安定にするものである。
したがって、この発明によれば、発電出力Wpの変化速度ΔWp/Δtが変化速度設定値Kを超える速度で増減しても、連系用電力変換装置13から電力系統3への連系出力Opの変動速度を電力系統の応答可能な変動速度に以下に保つことができるので、電力系統3は、分散型電源装置1の連系出力Opの変動をすべて吸収し、電圧や周波数を安定に保つことができる。
前記のこの発明の第1の実施例における連系出力目標演算部25は、図3に示すよう変形することができる。
この変形した連系出力目標演算部25Aでは、発電出力変化検出部25aで検出された発電出力変化速度ΔWpvを、所定ゲインG1を有する増幅部25rで増幅することにより連系出力目標値Op*に加える補正値Usを求めている点が図2の連系出力目標演算部25とは異なる。
判定選択部25fは、発電出力変換検出部25aから出力される発電出力変化速度ΔWpvと設定器25eに設定された変化速度設定値Kと比較して、ΔWpv>Kとなったとき、これを検知して、選択部25kの選択接点aをオンにする選択出力を発生する。したがって、発電出力変化速度ΔWpvが変化速度設定値Kを越えたとき、増幅部25rで求められる補正値Usを負極性で加算部25mに加え、増幅部25jで求められて連系出力目標値Op*から減算することにより、連系出力目標値Op*の補正が行われる。
この図3の連系出力目標演算部25Aによれば、発電出力変化速度ΔWpvが変化速度設定値Kを越えたときに、発電出力変換検出部25aから出力される発電出力変化速度ΔWpvに応じて連系出力目標値Op*を補正することができる。すなわち、発電出力変化速度ΔWpvが大きい場合には、補正量が大きく、発電出力変化速度ΔWpvが小さい場合には、補正量が小さくなる。このため、連系用電力変換装置13から電力系統へ出力される連系出力Opの変化速度を、電力系統3が充分応答が可能な変化速度より小さいほぼ一定の変化速度に抑えることができる。
図4に、この発明の分散型電源遇装置の出力安定化制御装置の第2の実施例のブロック構成図を示す。
この図4に示す第2の実施例は、電力貯蔵装置14の電力貯蔵量が上限値および下限値に張り付く状態とならないように電力貯蔵装置14の電力貯蔵量(充放電量)制御をより最適に行うために図1に示す第1の実施例に、必要充放電容量演算部26を付加したものであり、これを付加した以外の構成は、第1の実施例の構成と同じである。
必要充放電容量演算部26は、発電装置11の発電出力が変化したときに、分散型電源装置1が電力貯蔵装置14へ充放電することの必要な充放電容量を演算し予測するものである。
必要充放電容量演算部26は、図5に示すように、分散型電源装置1の必要とする電力貯蔵装置14への充放電容量を予測演算する必要充放電容量演算手段26aと電力貯蔵装置14のその都度の実際に許容される充放電容量を演算する許容充放電容量演算手段26b、および両手段で求められた必要充放電容量と許容充放電容量とを比較して、常に、許容充放電容量が必要充放電容量より大きくなるようにする補正量Ocを演算する比較補正演算手段26cとを備える。
この補正量Ocを、連系出力目標演算部25の第2の加算部25mで連系出力目標値Op*に加えて、連系出力目標値Op*の補正を行う。
必要充放電容量演算手段26aは、発電出力検出部21で検出された発電装置11の発電出力Wp、連系出力検出部23で検出された連系用電力変換装置13から電力系統3へ出力される連系出力Op、予め諸元等から求められた発電装置11の定格の最大出力Wpxおよび最大出力変化率Wrx、ならびに同様に予めその諸元等から求められた連系用電力変換装置13の連系出力Opの最大変化率Orxに基づいて次のようにして、発電出力Wpが増大している状態での必要充放電容量Cqiと、発電出力Wpが減少している状態での必要充放電容量Cqdとに分けて求める。
ある時点での必要充放電容量は、風力等の自然エネルギーを利用した分散型電源装置では、ある時間経過後の発電出力は、予想がつかないため、基本的には、発電出力Wpおよび連系出力Opが最大の変化率で変化すると仮定して予測する必要がある。これにしたがって必要充放電容量Cdi、Cqdを予測する場合は、次の(2および(3))式で求めることができる。
(a)発電出力Wpが増大している場合
必要充放電容量Cqi=[(Px−Op)2/(2・Orx)]
−[(Px−Wp)2/(2・Wrx)]・・・・・・(2)(b)発電出力Wpが減少している場合
必要充放電容量Cqd=[Op2/(2・Orx)]−{Wp2/2・Wrx}・・(3)
このような必要充放電容量の求め方について図6およ図7を参照して説明する。図6は縦軸は出力P(%)をとり、横軸に時間tをとって、発電出力Wpおよび連系出力Opの変化を示すものである。
ここでは、発電装置11の発電出力Wpの最大変化率Wrxおよび連系用電力変換装置13の連系出力Opの最大変化率Orxは、図6にそれぞれWrxおよびOrxで示される。すなわち、発電出力Wpの最大変化率Wrxは、発電出力Wpが時間t0−t10の間に0から最大(100%)出力のPxまで変化する傾斜を示し、また、連系出力Opの最大変化率Orxは、連系出力Opが時間t0−t20の間に0から最大(100%)出力のPxまで変化する傾斜を示すものである。
図7(a)、(b)は、発電出力Wpが出力50(%)の点から、そして連系出力Opが出力35(%)の点から、増減する状態を示したものである。
図7(a)は、発電出力Wpおよび連系出力Opが、ここから、それぞれ図6に示す最大変化率Wrxおよび最大変化率Orxで最大出力Px(100%)まで増大した状態を示している。
発電出力Wpが増大している状態で、連系出力Opが現在の目標値Op*に維持されているとしたときの電力貯蔵装置14が必要とする充放電容量、すなわち分散型電源装置1から電力貯蔵装置へ供給可能な充放電容量、これをここでは必要充放電容量Cqiと称する。この必要充放電容量Cqiは、図7(a)でいえば、実線で示す発電出力Wpをt0からt13まで時間積分した発電出力電力量から、同様に点線で示す連系出力Opをt0からt13まで時間積分した連系出力電力量を差し引いた電力量となるが、これは、図7(a)にハッチングして示す部分Cの面積で示される電力量となる。
図7(a)において、ハッチングして示す部分Cの面積は、点線で示す連系出力Opを示す線Oと、原点を通る縦軸線および最大出力点Px(100%)を通る横軸線とで囲われた三角形Aの面積から、実線で示す発電出力Wpを示す線Wと、原点を通る縦軸線および最大出力点Pxを通る横軸線とで囲われた三角形Bの面積を差し引いた面積にほかならない。
発電出力Wpの増大している状態での必要充放電容量Cqiを求める(2)式の第1項は、図7(a)における三角形Aの面積を求める式であり、第2項は、三角形Bの面積を求める式である。したがって、(1)式によって、図7(a)にハッチングで示す部分Cの面積が求められ、発電出力Wpの増加する状態での必要充放電容量Cqiを求めることができる。この(1)式で求めたCdiが正である場合は充電電力量を示し、負である場合は放電電力量を示す。
また発電出力Wpと連系出力Opが、それぞれWp=50%およびOp=35%から最大変化率WrxおよびOrxで出力0まで減少している状態を図7(b)に示す。
この図7(b)から必要充放電容量Cqdを求める場合は、原点を通る縦軸線および横軸線と、点線線で示す連系出力Opを示す線Oとで囲われた三角形Dの面積と、同様に、原点を通る縦軸線および横軸線と、実線で示す発電出力Wpを示す線Wとで囲われた三角形Eの面積を求め、三角形Dの面積から三角形Eの面積を差し引くことにより求めることができる。三角形Eの面積と三角形Dの面積との差の部分は、図7(b)にハッチング部分FおよびGとなるが、Wp>Opとなるハッチング部分Fは充電電力量を示し、Wp<Opとなるハッチング部分Gは放電電力量を示しているので、両者の差が必要充放電容量Cqdとなる。
必要充放電容量Cqdを求める前記(3)式の第1項が、三角形Dの面積の面積を求める項であり、第2項が三角形Eの面積を求める項であるから、この(3)式によって、発電出力Wpの減少している状態での必要充放電容量Cqdを求めることができる。
また、必要充放電容量演算部26の許容充放電容量演算手段26bは、電力貯蔵装置14の現時点で許容される充放電容量を演算するものであり、次の(4)および(5)式により、許容充電容量Ccxおよび許容放電容量Cdxを求める。なお、ここでは、電力貯蔵装置14の充電時の効率と、放電時の効率が等しいものとしている。
(c)許容充電容量Ccx=Cx・(100−Cr) ・・・・・・・(4)(d)許容放電容量Cdx=Cx・Cr ・・・・・・・(5)
さらに、必要充放電量演算部26の比較補正演算部26cは、必要充放電容量演算手段26aで求めた必要充放電容量CqiまたはCqdと、許容充電容量演算手段26bで求めた許容充放電容量CcxまたはCdxとを比較して、系統出力目標値演算部25に与える目標補正量Ocを求める。
目標補正量Ocは、比較補正演算部26cにおいて次の手順で求められる。
(1)必要充放電容量演算手段26aで求めた必要充放電容量CqiおよびCqdと、許容充放電容量演算手段26bで求めた許容充電容量Ccxおよび許容放電容量Cdxとの比較処理を行う。
この比較処理は、必要充放電容量CqiおよびCqdが正のときは、充電状態であるので、許容充電容量Ccxと必要充放電容量Cqiとの偏差ΔCc(=Ccx−Cqi)、または必要充放電容量Cqiの微分値(変化量)ΔCqi/Δtを求めることにより実行される。そして必要充電容量CqiおよびCqdが負のときは、放電状態であるので、許容放電容量Cdxと必要充放電容量Cqdとの偏差ΔCd(=Cdx−Cqd)、または必要放電容量Cqdの微分値(変化量)ΔCqd/Δtを求めることにより実行される。
(2)比較処理の結果、CcxとCqiとの偏差ΔCcが予め設定した設定値Kfより小さい(ΔCc<Kf)場合は、既定の補正量−U4を形成して保存する。さらに、ΔCqi/Δtが予め設定した設定値Kgより大きい(ΔCqi/Δt>Kg)場合は既定の補正量−U5を形成して保存する。
このとき、設定値KfおよびKgをそれぞれ2段階の設定値Kf1、Kf2およびKg1,Kg2に設定し、偏差ΔCcまたはその微分値ΔCqi/Δtを各設定値と比較して、それぞれ異なる補正量−U6、−U7、−U8、−U9を形成するようにすることができる。
(3)また、比較処理の結果、CdxとCqdとの偏差ΔCdまたはその微分値が予め設定した設定値Kfより小さい(ΔCd<Kf)場合は、既定の補正量U4を形成して保存する。さらに、ΔCqd/Δtが予め設定した設定値Kgより大きい(ΔCqd/Δt>Kg)場合は、既定の補正量U5を形成して保存する。
このとき、設定値KfおよびKgをそれぞれ2段階の設定値Kf1、Kf2およびKg1,Kg2に設定し、偏差ΔCdおよび微分値ΔCqd/Δtを各設定値と比較して、それぞれ異なる補正量U6、U7、U8、U9を形成するようにすることができる。
(4)前記のようにして求められた補正量U4,−U4、U5、−U5、またはU6、−U6、U7、−U7、U8、−U8、U9、−U9から、連系出力補正量Ocを求め、これを連系出力目標演算部25に出力する。
図4に示す、第2の実施例の出力安定化制御装置2において、必要充放電容量演算部26で求めた充放電補正量Ocを、連系出力目標演算部25における第2の加算部25mで、この連系出力目標演算部25で形成された連系出力目標値Op*に加算して(図5参照)、この目標値Op*を補正することにより電力貯蔵装置14の貯蔵電力容量が、その上限値または下限値に張り付くことなく充放電容量を適正に制御することができる。
すなわち、必要充放電容量演算手段26aで求めた必要充放電容量CqiおよびCqdが正で、充電状態にあるときは、連系出力目標演算部25における加算部25mに加えられる連系出力補正量OcがU4となるため、連系出力目標演算部25からは、Op*+U4に補正された、連系出力目標値が連系電力変換制御部24に与えられることになる。これによって、連系電力変換制御部24からU4だけ連系出力Opを増加させる制御指令Psを連系用電力変換装置13に与えるので、連系用電力変換装置13の電力系統3への連系出力Opが増大され、電力貯蔵装置14への充電電力がその分減じられることになる。
この結果、発電装置11の発電出力Wpが増加しても、電力貯蔵装置14の充電残量が大きく、許容充電容量Ccxが少ない場合は、電力系統への連系出力Opを増大することにより電力貯蔵装置14の充電電力を抑えるので、電力貯蔵装置14が許容充電容量Ccxを超えて過充電されることが防止される。すなわち、電力貯蔵装置14の充電容量が、上限値に張り付くことを抑制することができる。
発電装置11の発電出力Wpが減少方向へ変化し、必要充放電容量演算手段26aで求めた必要充放電容量CqiおよびCqdが負で、放電状態にあるときは、連系出力目標演算部25における加算部25mに加えられる連系出力補正量Ocが‐U4となるため、連系出力目標演算部25からは、Op*−U4に補正された、連系出力目標値が連系電力変換制御部24に与えられることになる。これによって、連系電力変換制御部24から‐U4だけ連系出力Opを低減する制御指令Psを連系用電力変換装置13に与えるので、連系用電力変換装置13の電力系統3への連系出力Opが低減され、電力貯蔵装置14からの放電電力がその分減じられることになる。
この結果、発電装置11の発電出力Wpが減少しても、電力貯蔵装置14の貯蔵電力量の残量が小さく、許容放電容量Cdxが少ない場合は、電力系統への連系出力Opを減少することにより電力貯蔵装置14からの放電電力を抑え、電力貯蔵装置14が許容放電容量Cdxを超えて過放電されることが防止される。すなわち、電力貯蔵装置14の充電容量が、下限値に張り付くことを抑制することができる。
なお、CcxとCqiとの偏差ΔCcおよびCdxとCqdとの偏差ΔCdが設定値Kfより大きい場合は、電力貯蔵装置14の許容充放電容量が充分な容量あるため、連系出力補正量Ocは発生されないので、連系出力安定化制御装置2においては、連系出力目標値Op*の補正が行われることなく安定に制御が行われる。
この第2の実施例による出力安定化制御装置を備えた分散型電源装置1の連系シミュレーショを行った結果を図8に示す。このシミュレーションを実施した分散型電源装置は、発電装置11が300kWの風力発電装置で構成され、電力貯蔵装置14が、電力貯蔵容量1kWhの電力貯蔵装置で構成されている。
図8の(a)は、横軸に時間(秒)を取り、縦軸に出力(kW)および充電率(%)を取って、発電装置11の発電出力Wp(kW),連系用電力変換装置13の電力系統3への連系出力Op(kW)および電力貯蔵装置14の充電率Cr(%)の時間的な変化を示すものである。
(b)は、横軸を(a)と同じ時間軸として、縦軸に充放電容量(kWs)をとって、前記した必要充電容量Cqi(kWs)および必要放電容量Cqd(kWs)と、電力貯蔵装置14の許容充電容量Ccx(kWs)および許容放電容量Cdx(kWs)の時間的変化を示すものである。
(c)は、発電出力Wpと連系出力Opとの変化を比較しやすくするため、(a)の一部を時間を拡大して示すもものである。
図8(a)および(c)に示す通り、この発明によれば、電力貯蔵装置14の電力貯蔵率Crは、風力発電装置の発電出力Wpの変化とほぼ相似的に変化させることができる。
また、発電出力Wpの変化が急峻であっても、連系用電力変換装置13の連系出力Opは、電力系統が充分に追随できる遅い速度の変化に抑えることができる。
そして、図8(b)に示すように、この発明によれば、必要充電容量Cqi(kWh)および必要放電容量Cqd(kWh)を常に電力貯蔵装置14の許容する充電容量Ccx(kWh)および放電容量Cdx(kWh)の以内に保ち、かつ、発電出力Wpが、100%出から0%まで、および0%から100%まで一気に変化するような急減な変化する状態であっても、電力貯蔵装置の充放電電力に過不足が生じることがなく、出力変動の比較的小さい範囲において、十分に余裕を持った状態におくことができる。
この発明の第3の実施例を図9に示す。
この第3の実施例は、電力貯蔵装置14が、電力貯蔵用電力変換装置16および連系用変圧器17を介して連系用電力変換装置13の出力、すなわち電力系統の系統ライン32に接続され、分散型電源装置1の主回路の構成が前記の第1および第2の実施例と相違する。
また、連系出力目標値演算回路25は、発電出力検出部21で検出された発電装置11の発電電力Wpから発電出力率Wpr(=Wp/Px)を求め、この発電出力率Wprと電力貯蔵量検出部22で検出された電力貯蔵率Crとから、両者の偏差が0となるような分散型電源装置1の電力系統3への連系出力目標値Op*を求める構成は第1および第2の実施例と同じであるが、電力貯蔵用電力変換装置16を制御する電力貯蔵用電力変換装置制御部27には、Cp*=Wp−Op*を求め、これを充放電目標値Cp*として出力する点が相違する。
電力貯蔵電力変換制御部27は、貯蔵電力検出部26で検出された電力貯蔵装置14に供給される充放電電力Cpが連系出力目標演算部25から与えられる充放電目標値Cp*に一致するような制御指令Pcを求めて、これを電力貯蔵用電力変換装置16に与える。
したがって、この第3の実施例においては、分散型電源装置1の連系出力Opから、取り込まれる電力貯蔵装置14への充放電電力Cpが出力目標演算部25から与えられる充放電目標値Cp*=Wp−Op*となるように電力貯蔵用電力変換装置16で制御されるので、連系用電力変換装置13から電力系統3へ出力される連系出力Opは、WpからCp*を差し引いたOp*となるから、第1および第2の実施例の装置と同様の制御を行うことができる。
1:分散型電源装置
11:再生可能エネルギー発電装置
12:発電出力電力変換装置
13:系統連系用電力変換装置
14:電力貯蔵装置
15:系統連系用変圧器
19:直流ライン
2:連系出力安定化制御装置
21:発電電力検出部
22:電力貯蔵状態検出部
33:連系出力検出部
24:連系電力変換制御部
25:連系出力目標演算部
3:電力系統
31:系統電源装置
32:系統ライン
33:負荷

Claims (5)

  1. 風力や太陽光などの再生可能な自然エネルギーを利用して発電する再生可能エネルギー発電装置と、この再生可能エネルギー発電装置の発電出力を電力系統へ連系供給するための系統連系用電力変換装置と、前記再生可能エネルギー発電装置から出力される発電出力または前記系統連系用電力変換装置から出力される連系出力の一部の電力を貯蔵し、また、貯蔵した電力を前記電力系統へ供給することが可能な電力貯蔵装置とを備えた分散型電源装置において、
    前記電力貯蔵装置の現在の電力貯蔵量と最大電力貯蔵量との比率で示される電力貯蔵率Cr(%)、および前記再生可能エネルギー発電装置の現在の発電出力電力と定格の最大出力電力との比率で示される再生可能エネルギー発電装置の発電出力率Wpr(%)を検出し、前記電力貯蔵装置の電力貯蔵率Cr(%)と前記再生可能エネルギー発電装置の出力率Wpr(%)とが等しくなるように前記系統連系用電力変換装置を制御して前記分散型電源装置の系統出力を制御する連系出力制御手段とを設けたことを特徴とする分散型電源装置の出力安定化制御装置。
  2. 請求項1に記載の装置において、前記再生可能エネルギー発電装置の発電出力の変化速度を検出し、この検出した変化速度が予め設定した設定値を超えた際に、前記電力系統の系統電源装置の追従可能な変化速度よりも小さな増減量となる連系出力目標値の補正値を求め、この補正値により前記連系出力を補正する手段を備えたことを特徴とする分散型電源装置の出力安定化制御装置。
  3. 請求項2に記載の装置において、前記補正値は、予め定めた一定値、または前記検出した前記再生可能エネルギー発電装置の出力電力の変化速度に所定のゲインを乗算した値とすることを特徴とする分散型電源装置の出力安定化制御装置。
  4. 請求項1ないし3の何れか1項に記載の装置において、前記再生可能エネルギー発電装置の発電出力、最大発電出力、この発電出力の最大変動率および前記分散型電源装置の前記電力系統への連系出力、この連系出力の最大変動率から、前記再生可能エネルギー発電装置の発電出力が変化したときに前記分散型電源装置が前記電力貯蔵装置へ充放電することの必要な充放電容量を求める必要充放電容量演算手段と、前記電力貯蔵装置の現在の電力貯蔵率から許容される最大の充放電容量を求める許容充放電容量演算手段と、前記必要充放電容量演算手段で求められた必要充放電容量が前記許容充放電容量演算手段で求められた前記電力貯蔵装置の許容充放電容量より小さくなるように前記連系出力を補正する手段とを設けたことを特徴とする分散型電源装置の出力安定化制御装置。
  5. 請求項1ないし4の何れか1項に記載の装置において、前記再生可能エネルギー発電装置の発電出力を直流電力に変換し、直流ラインを介して前記系統連系用電力変換装置および前記電力貯蔵装置に接続することを特徴とする分散型電源装置の出力安定化制御装置。
JP2012236870A 2012-10-26 2012-10-26 分散型電源装置の出力安定化制御装置 Active JP5901495B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012236870A JP5901495B2 (ja) 2012-10-26 2012-10-26 分散型電源装置の出力安定化制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012236870A JP5901495B2 (ja) 2012-10-26 2012-10-26 分散型電源装置の出力安定化制御装置

Publications (2)

Publication Number Publication Date
JP2014087239A JP2014087239A (ja) 2014-05-12
JP5901495B2 true JP5901495B2 (ja) 2016-04-13

Family

ID=50789816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012236870A Active JP5901495B2 (ja) 2012-10-26 2012-10-26 分散型電源装置の出力安定化制御装置

Country Status (1)

Country Link
JP (1) JP5901495B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6383301B2 (ja) 2015-02-10 2018-08-29 株式会社東芝 電力貯蔵装置の制御装置、風力発電システムおよび電力貯蔵装置の制御方法
JP5979404B1 (ja) * 2016-04-06 2016-08-24 富士電機株式会社 分散型電源の制御方法及び制御装置
CN115001113B (zh) * 2022-07-19 2023-04-21 航霈科技(深圳)有限公司 一种供电控制方法、装置及供电设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60256824A (ja) * 1984-06-01 1985-12-18 Shikoku Electric Power Co Inc 太陽光発電システムの制御装置
JP4170565B2 (ja) * 2000-06-30 2008-10-22 株式会社ダイヘン 電力変動平滑化装置及びそれを備えた分散電源システムの制御方法
JP4256833B2 (ja) * 2004-11-10 2009-04-22 三菱重工業株式会社 電力貯蔵装置及びハイブリッド型分散電源システム
JP5354840B2 (ja) * 2006-02-24 2013-11-27 沖縄電力株式会社 新エネルギー発電システム出力変動緩和装置
JP5125274B2 (ja) * 2007-07-18 2013-01-23 株式会社明電舎 新エネルギー発電システム出力変動緩和装置
WO2011122672A1 (ja) * 2010-03-30 2011-10-06 三洋電機株式会社 電力供給システム、電力供給方法および電力供給システムの制御プログラム

Also Published As

Publication number Publication date
JP2014087239A (ja) 2014-05-12

Similar Documents

Publication Publication Date Title
JP4969229B2 (ja) 電力貯蔵装置及びハイブリッド型分散電源システム
JP5613447B2 (ja) 蓄電池制御システム及び蓄電池制御方法
JP6510741B1 (ja) 系統システム、制御装置及び系統システムの制御方法
JP2008178215A (ja) 周波数調整システムおよび周波数調整方法
JP5113789B2 (ja) 充放電制御装置および充放電制御方法
JP2008154334A (ja) パワーコンディショナ
JP2008131736A (ja) 分散型電源システムと昇降圧チョッパ装置
WO2011122672A1 (ja) 電力供給システム、電力供給方法および電力供給システムの制御プログラム
JP6116971B2 (ja) 制御装置及び方法並びにプログラム、それを備えたマイクログリッド
JP2009027797A (ja) 新エネルギー発電システム出力変動緩和装置
JP2016039685A (ja) 制御装置、それを備えた蓄電システム、及びその制御方法並びに制御プログラム
JP5901495B2 (ja) 分散型電源装置の出力安定化制御装置
JP2012100487A (ja) 電力系統安定化装置
JP4048475B2 (ja) 自然エネルギ発電システムの運用方法及びそれを用いた自然エネルギ発電システム
JP5721498B2 (ja) デマンドコントロール装置
JP6604275B2 (ja) 電力制御システム
JP6707309B2 (ja) 電力供給システム
JP2011217563A (ja) 電力安定化システム
JP2016152718A (ja) 充放電制御装置、移動体及び電力分担量決定方法
JP7286382B2 (ja) 電力管理装置及び電力管理方法
JP5833082B2 (ja) 制御装置、制御方法、電力調整システム
JP2006067672A (ja) 電源装置
JP2006067673A (ja) 電源装置
JP2021069192A (ja) パワーコンディショナ
WO2013099957A1 (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160308

R150 Certificate of patent or registration of utility model

Ref document number: 5901495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250