JP5898569B2 - Radiant air conditioner - Google Patents

Radiant air conditioner Download PDF

Info

Publication number
JP5898569B2
JP5898569B2 JP2012117647A JP2012117647A JP5898569B2 JP 5898569 B2 JP5898569 B2 JP 5898569B2 JP 2012117647 A JP2012117647 A JP 2012117647A JP 2012117647 A JP2012117647 A JP 2012117647A JP 5898569 B2 JP5898569 B2 JP 5898569B2
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
air conditioner
temperature detector
refrigerant pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012117647A
Other languages
Japanese (ja)
Other versions
JP2013245832A (en
Inventor
達 永田
達 永田
竜司 池辺
竜司 池辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Inaba Denki Sangyo Co Ltd
Original Assignee
Sharp Corp
Inaba Denki Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp, Inaba Denki Sangyo Co Ltd filed Critical Sharp Corp
Priority to JP2012117647A priority Critical patent/JP5898569B2/en
Publication of JP2013245832A publication Critical patent/JP2013245832A/en
Application granted granted Critical
Publication of JP5898569B2 publication Critical patent/JP5898569B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は輻射式空気調和機に関する。   The present invention relates to a radiation type air conditioner.

家屋用のヒートポンプ式空気調和機で、室外機と室内機に分かれたいわゆるセパレート型の空気調和機では、室外機に熱交換器とファンが設けられるとともに、室内機にも熱交換器とファンが設けられるのが通常の構造である。これに対し、同じセパレート型の空気調和機であっても、室内機の熱交換器を輻射パネルとして構成し、ファンを用いることなく、熱の輻射により室内の冷房または暖房を行うタイプのものも存在する。その例を特許文献1、2に見ることができる。   In a so-called separate type air conditioner, which is a heat pump type air conditioner for a house and divided into an outdoor unit and an indoor unit, the outdoor unit is provided with a heat exchanger and a fan, and the indoor unit also has a heat exchanger and a fan. It is a normal structure that is provided. On the other hand, even in the same separate type air conditioner, there is a type in which the indoor unit heat exchanger is configured as a radiant panel and the room is cooled or heated by heat radiation without using a fan. Exists. Examples thereof can be seen in Patent Documents 1 and 2.

特許文献1に記載された空気調和機は建屋の天井に配設される輻射パネルを備える。輻射パネルの内部には冷媒配管が蛇行状に配置されている。冷房運転時には輻射パネルで吸熱がなされて輻射式冷房が行われる。暖房運転時には輻射パネルで放熱がなされて輻射式暖房が行われる。輻射式冷暖房は室内ファンによる空気の攪拌や騒音と無縁であり、静粛で快適な冷暖房を行うことができる。   The air conditioner described in Patent Document 1 includes a radiation panel disposed on the ceiling of a building. Inside the radiation panel, refrigerant piping is arranged in a meandering manner. At the time of cooling operation, heat is absorbed by the radiant panel and radiant cooling is performed. During heating operation, heat is radiated from the radiant panel and radiant heating is performed. Radiant air conditioning is free from air agitation and noise from indoor fans, and can perform quiet and comfortable air conditioning.

特許文献2には、室内の複数面に輻射パネルを配置したり、一面でも複数枚の輻射パネルを設置したりするなど、複数枚の輻射パネルを用いて冷暖房を行う空気調和装置が記載されている。この空気調和装置では各輻射パネルの表面に表面温検出器が取り付けられ、各輻射パネルの負荷に応じて各輻射パネルへの熱媒体の流量が制御される。   Patent Document 2 describes an air conditioner that performs cooling and heating using a plurality of radiation panels, such as arranging a radiation panel on a plurality of surfaces in a room, or installing a plurality of radiation panels even on one surface. Yes. In this air conditioner, a surface temperature detector is attached to the surface of each radiation panel, and the flow rate of the heat medium to each radiation panel is controlled according to the load of each radiation panel.

特開平10−205802号公報Japanese Patent Laid-Open No. 10-205802 特開平4−320752号公報JP-A-4-320752

輻射式空気調和機を制御する上で重要なのが輻射パネルの表面温度を正確に測定することである。本発明は、同じ温度検出器で冷房運転と暖房運転の両方をカバーできるようにすることを目的とする。また、結露水による温度検出器の誤検出を防ぐことを目的とする。   In controlling the radiant air conditioner, it is important to accurately measure the surface temperature of the radiant panel. An object of this invention is to enable it to cover both the cooling operation and the heating operation with the same temperature detector. Moreover, it aims at preventing the misdetection of the temperature detector by condensed water.

本発明に係る輻射式空気調和機は、室内に配置される輻射パネルと、室外側熱交換器と、前記輻射パネル及び前記室外側熱交換器に冷媒配管を通じて冷媒を循環させる圧縮機とを備え、前記輻射パネルは筐体内に放熱部を配置したものであり、前記放熱部に接続される前記冷媒配管の前記筐体内部分に当該冷媒配管の温度を検出する温度検出器が取り付けられ、当該空気調和機の制御部は前記温度検出器からの出力信号を参照して制御を行うことを特徴としている。   A radiant air conditioner according to the present invention includes a radiant panel disposed indoors, an outdoor heat exchanger, and a compressor that circulates refrigerant through refrigerant piping through the radiant panel and the outdoor heat exchanger. The radiation panel has a heat dissipating part disposed in a housing, and a temperature detector for detecting the temperature of the refrigerant pipe is attached to an inner part of the refrigerant pipe connected to the heat dissipating part, and the air The controller of the harmony machine is characterized by performing control with reference to an output signal from the temperature detector.

上記構成の輻射式空気調和機において、前記温度検出器が取り付けられる前記冷媒配管は液体冷媒用の冷媒配管であることが好ましい。   In the radiant air conditioner having the above configuration, the refrigerant pipe to which the temperature detector is attached is preferably a refrigerant pipe for liquid refrigerant.

上記構成の輻射式空気調和機において、前記冷媒配管の前記筐体内部分で、比較的上位にある部分に前記温度検出器が取り付けられることが好ましい。   In the radiant air conditioner having the above-described configuration, it is preferable that the temperature detector is attached to a relatively upper portion in the casing portion of the refrigerant pipe.

上記構成の輻射式空気調和機において、前記温度検出器が取り付けられる前記冷媒配管は液体冷媒用の冷媒配管であるとともに、前記制御部は、冷房運転時は前記温度検出器が検出した温度を前記輻射パネルの表面温度として参照し、暖房運転時は前記温度検出器が検出した温度に補正温度を加えた温度を前記輻射パネルの表面温度として参照することが好ましい。   In the radiant air conditioner configured as described above, the refrigerant pipe to which the temperature detector is attached is a refrigerant pipe for liquid refrigerant, and the control unit detects the temperature detected by the temperature detector during cooling operation. It is preferable to refer to the surface temperature of the radiation panel, and to refer to the temperature obtained by adding the correction temperature to the temperature detected by the temperature detector during the heating operation as the surface temperature of the radiation panel.

本発明によると、輻射パネルの冷媒経路が冷房運転時の冷媒経路であるか暖房運転時の冷媒経路であるかに関係なく、同じ位置で輻射パネルの表面温度を検出できるので、冷房運転時と暖房運転時とで制御の仕様を変える必要がない。また、温度検出器が輻射パネルの表面にではなく冷媒配管に取り付けられるから、結露水が温度検出器を濡らす危険が少なく、温度検出器が誤検出する可能性を低くできる。   According to the present invention, the surface temperature of the radiation panel can be detected at the same position regardless of whether the refrigerant path of the radiant panel is the refrigerant path during the cooling operation or the refrigerant path during the heating operation. There is no need to change the control specifications for heating operation. Further, since the temperature detector is attached not to the surface of the radiant panel but to the refrigerant pipe, there is little risk that the condensed water will wet the temperature detector, and the possibility that the temperature detector erroneously detects can be reduced.

本発明に係る輻射式空気調和機の概略構成図で、冷房運転時の状態を示すものである。It is a schematic block diagram of the radiation type air conditioner which concerns on this invention, and shows the state at the time of air_conditionaing | cooling operation. 本発明に係る輻射式空気調和機の概略構成図で、暖房運転時の状態を示すものである。It is a schematic block diagram of the radiation type air conditioner which concerns on this invention, and shows the state at the time of heating operation. 輻射パネルの第1実施形態を示す概略構成図である。It is a schematic block diagram which shows 1st Embodiment of a radiation panel. 輻射パネルの第2実施形態を示す概略構成図である。It is a schematic block diagram which shows 2nd Embodiment of a radiation panel. 輻射パネルの第3実施形態を示す概略構成図である。It is a schematic block diagram which shows 3rd Embodiment of a radiation panel. 放熱部の第1実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of a thermal radiation part. 放熱部の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of a thermal radiation part. 輻射式空気調和機の制御ブロック図である。It is a control block diagram of a radiation type air conditioner. 輻射式空気調和機の動作を示すフローチャートである。It is a flowchart which shows operation | movement of a radiation type air conditioner. 圧縮機回転数と補正温度の関係を示す表である。It is a table | surface which shows the relationship between compressor rotation speed and correction | amendment temperature. 圧縮機回転数と補正温度の関係を示すグラフである。It is a graph which shows the relationship between compressor rotation speed and correction | amendment temperature.

図1に基づき輻射式空気調和機1の概略構成を説明する。輻射式空気調和機は室外機10と輻射パネル30により構成される。輻射パネル30は室内に配置されるものであり、通常のセパレート型空気調和機の室内機に相当する。   A schematic configuration of the radiant air conditioner 1 will be described with reference to FIG. The radiant air conditioner includes an outdoor unit 10 and a radiant panel 30. The radiation panel 30 is disposed indoors and corresponds to an indoor unit of a normal separate type air conditioner.

室外機10は、板金製部品と合成樹脂製部品により構成される筐体11の内部に、圧縮機12、四方弁13、室外側熱交換器14、膨張弁15、室外側送風機16などを収納している。   The outdoor unit 10 houses a compressor 12, a four-way valve 13, an outdoor heat exchanger 14, an expansion valve 15, an outdoor blower 16, and the like in a housing 11 composed of sheet metal parts and synthetic resin parts. doing.

室外機10は2本の冷媒配管17、18で輻射パネル30に接続される。冷媒配管17は液体の冷媒を流すことを目的としており、冷媒配管18に比較して細い管が用いられている。そのため冷媒配管17は「液管」「細管」などと称されることがある。冷媒配管18は気体の冷媒を流すことを目的としており、冷媒配管17に比較して太い管が用いられている。そのため冷媒配管18は「ガス管」「太管」などと称されることがある。冷媒には例えばHFC系のR410aやR32等が用いられる。   The outdoor unit 10 is connected to the radiation panel 30 through two refrigerant pipes 17 and 18. The refrigerant pipe 17 is intended to flow a liquid refrigerant, and a pipe that is thinner than the refrigerant pipe 18 is used. Therefore, the refrigerant pipe 17 may be referred to as “liquid pipe”, “narrow pipe”, or the like. The refrigerant pipe 18 is intended to flow a gaseous refrigerant, and is thicker than the refrigerant pipe 17. Therefore, the refrigerant pipe 18 may be referred to as “gas pipe”, “thick pipe”, or the like. For example, HFC R410a or R32 is used as the refrigerant.

室外機10の内部の冷媒配管で、冷媒配管17に接続される冷媒配管には二方弁19が設けられ、冷媒配管18に接続される冷媒配管には三方弁20が設けられる。二方弁19と三方弁20は、室外機10から冷媒配管17、18が取り外されるときに閉じられ、室外機10から外部に冷媒が漏れることを防ぐ。室外機10から、あるいは輻射パネル30を含めた冷凍サイクル全体から、冷媒を放出する必要があるときは、三方弁20を通じて放出が行われる。   In the refrigerant pipe inside the outdoor unit 10, a two-way valve 19 is provided in the refrigerant pipe connected to the refrigerant pipe 17, and a three-way valve 20 is provided in the refrigerant pipe connected to the refrigerant pipe 18. The two-way valve 19 and the three-way valve 20 are closed when the refrigerant pipes 17 and 18 are removed from the outdoor unit 10 to prevent the refrigerant from leaking from the outdoor unit 10 to the outside. When it is necessary to release the refrigerant from the outdoor unit 10 or from the entire refrigeration cycle including the radiation panel 30, the refrigerant is released through the three-way valve 20.

輻射パネル30は室内の壁際に立設されることが多く、板金製部品と合成樹脂製部品により構成される正面形状矩形の筐体31の内部に複数の放熱部32が配置されている。簡潔さを尊び「放熱部」と命名したが、この部品は暖房運転時に周囲の空気に対し放熱を行うだけでなく、冷房運転時に周囲の空気から吸熱を行うものでもある。   The radiation panel 30 is often erected on the wall of the room, and a plurality of heat dissipating portions 32 are disposed inside a front-shaped rectangular casing 31 made up of sheet metal parts and synthetic resin parts. Although it was named “heat radiating part” for simplicity, this part not only radiates heat to the surrounding air during heating operation, but also absorbs heat from the surrounding air during cooling operation.

放熱部32は筒状の部品であり、垂直に配置される。図6、7に示すように、中心の冷媒管33を放熱フィン34が取り囲む、というのが放熱部32の基本的な構成である。冷媒管33と放熱フィン34は銅やアルミニウムのような熱伝導の良い金属で形成され、互いに密着する。なお、ここで言う「垂直」とは厳密な垂直方向に限られない。多少の傾きを含む垂直方向であってもよい。   The heat radiating part 32 is a cylindrical part and is arranged vertically. As shown in FIGS. 6 and 7, the basic configuration of the heat radiating section 32 is that the heat radiating fins 34 surround the central refrigerant pipe 33. The refrigerant pipe 33 and the heat radiating fins 34 are formed of a metal having good heat conductivity such as copper or aluminum and are in close contact with each other. The “vertical” referred to here is not limited to a strict vertical direction. The vertical direction including some inclination may be used.

図6の放熱フィン34も図7の放熱フィン34も複数のフィンが放射状に展開する水平断面形状を有している。図6の放熱フィン34は軸線方向に沿って二つ割りにされた部品として形成され、冷媒管33を前後から挟み込んでいる。図7の放熱フィン34は単一の部品であり、中心の、車輪で言えばハブに相当する部分に冷媒管33が挿入されている。言うまでもないが、図6、7に示す放熱部32の構造は単なる例示であり、異なる断面形状の放熱フィン34を用いることもできるし、冷媒管33と放熱フィン34を異なる様式で組み合わせることも可能である。   Both the heat dissipating fins 34 in FIG. 6 and the heat dissipating fins 34 in FIG. 7 have a horizontal cross-sectional shape in which a plurality of fins expand radially. 6 is formed as a part divided into two along the axial direction, and sandwiches the refrigerant tube 33 from the front and rear. The radiating fin 34 in FIG. 7 is a single component, and a refrigerant pipe 33 is inserted in a central portion corresponding to a wheel in terms of wheels. Needless to say, the structure of the heat dissipating part 32 shown in FIGS. 6 and 7 is merely an example, and heat dissipating fins 34 having different cross-sectional shapes can be used, or the refrigerant pipe 33 and the heat dissipating fins 34 can be combined in different ways. It is.

筐体31の内部に複数(図においては7本)の放熱部32が互いに並行するように配置される。筐体31の前面には放熱部32を露出させる開口部35が設けられている。複数の放熱部32は全て冷媒配管17、18に接続される。図3に示す接続構成例では全ての放熱部32が冷媒配管17、18に並列接続される。図4に示す接続構成例では全ての放熱部32を直列接続したものが冷媒配管17、18に接続されている。   A plurality (seven in the figure) of heat radiating portions 32 are arranged in the housing 31 so as to be parallel to each other. An opening 35 for exposing the heat radiating portion 32 is provided on the front surface of the housing 31. The plurality of heat radiation portions 32 are all connected to the refrigerant pipes 17 and 18. In the connection configuration example shown in FIG. 3, all the heat radiating portions 32 are connected in parallel to the refrigerant pipes 17 and 18. In the connection configuration example shown in FIG. 4, all the heat radiating sections 32 are connected in series to the refrigerant pipes 17 and 18.

複数の放熱部32を接続するのに、図3、4に示した方式以外の方式を採用することもできる。例えば、複数の放熱部32を所定本数ずつグループ分けし、同一グループに属する放熱部32は互いに並列接続し、グループ同士を直列接続するといった方式も可能である。あるいは、複数の放熱部32を所定本数ずつグループ分けし、同一グループに属する放熱部32は直列接続し、グループ同士を並列接続するといった方式も可能である。   A system other than the system shown in FIGS. 3 and 4 may be employed to connect the plurality of heat radiation units 32. For example, it is possible to group a plurality of heat dissipating units 32 by a predetermined number, connect the heat dissipating units 32 belonging to the same group in parallel, and connect the groups in series. Alternatively, it is also possible to group a plurality of heat dissipating parts 32 by a predetermined number, connect the heat dissipating parts 32 belonging to the same group in series, and connect the groups in parallel.

輻射式空気調和機1の運転制御を行う上で、各所の温度を知ることが不可欠である。この目的のため、室外機10と輻射パネル30に温度検出器が配置される。室外機10においては、室外側熱交換器14に温度検出器21が配置され、圧縮機12の吐出部となる吐出管12aに温度検出器22が配置され、圧縮機12の吸入部となる吸入管12bに温度検出器23が配置され、膨張弁15と二方弁19の間の冷媒配管に温度検出器24が配置されている。輻射パネル30には温度検出器36が配置される。温度検出器21、22、23、24、36はいずれもサーミスタにより構成される。   In order to control the operation of the radiant air conditioner 1, it is indispensable to know the temperature of each place. For this purpose, temperature detectors are arranged in the outdoor unit 10 and the radiation panel 30. In the outdoor unit 10, a temperature detector 21 is disposed in the outdoor heat exchanger 14, and a temperature detector 22 is disposed in the discharge pipe 12 a serving as the discharge unit of the compressor 12, and the suction serving as the suction unit of the compressor 12. A temperature detector 23 is disposed in the pipe 12 b, and a temperature detector 24 is disposed in the refrigerant pipe between the expansion valve 15 and the two-way valve 19. A temperature detector 36 is disposed on the radiation panel 30. Each of the temperature detectors 21, 22, 23, 24, and 36 is formed of a thermistor.

温度検出器36は放熱部32の温度測定を目的とするが、放熱部32に直接取り付けられるのでなく、図3に示す通り、液体冷媒用の冷媒配管17に取り付けられる。温度検出器36を冷媒配管17に配置するのは次の理由による。すなわち放熱部32は位置(特に上下の位置)によって温度が異なるため、どの位置に温度検出器36を配置するかを決めるのが難しい。   The temperature detector 36 is intended to measure the temperature of the heat radiating section 32, but is not directly attached to the heat radiating section 32 but is attached to the refrigerant pipe 17 for liquid refrigerant as shown in FIG. The reason for arranging the temperature detector 36 in the refrigerant pipe 17 is as follows. That is, since the temperature of the heat radiating portion 32 varies depending on the position (particularly the upper and lower positions), it is difficult to determine at which position the temperature detector 36 is disposed.

複数の放熱部32を結ぶ冷媒経路がどのように設計されているかによっても放熱部32の表面温度は左右される。冷媒経路が単一経路の場合、圧力損失や冷媒の気液相変化によって温度差が生じやすい。冷媒経路が複数経路の場合、経路によって温度差が生じる可能性がある。また、温度検出器には感温性を良くするために金属で覆われているものがある。放熱部32を構成する金属と温度検出器に使われている金属の種類が異なる場合、それらの接触部において異種金属による電位差が生じ、電蝕を起こす可能性がある。いずれにしても、放熱部32のどの位置に温度検出器36を配置するかを決めるのは容易ではない。   The surface temperature of the heat radiating portion 32 also depends on how the refrigerant path connecting the plurality of heat radiating portions 32 is designed. When the refrigerant path is a single path, a temperature difference is likely to occur due to a pressure loss or a gas-liquid phase change of the refrigerant. When there are a plurality of refrigerant paths, a temperature difference may occur depending on the path. Some temperature detectors are covered with metal to improve temperature sensitivity. When the metal constituting the heat radiating portion 32 and the metal used in the temperature detector are different, a potential difference due to a different metal is generated at the contact portion, and there is a possibility of causing electric corrosion. In any case, it is not easy to determine at which position of the heat radiation part 32 the temperature detector 36 is arranged.

筐体31の内部の冷媒配管17を温度検出器36の取付箇所とすれば、上記の問題は解消される。冷媒配管17は、冷房運転時には膨張弁15で絞られた冷媒が流入する箇所であり、暖房運転時には凝縮した冷媒が放熱部32から流出する箇所である。   If the refrigerant pipe 17 inside the casing 31 is used as the attachment location of the temperature detector 36, the above problem is solved. The refrigerant pipe 17 is a location where the refrigerant throttled by the expansion valve 15 flows in during the cooling operation, and a location where the condensed refrigerant flows out from the heat radiating unit 32 during the heating operation.

冷房運転時には冷媒配管17に気液二相状態の冷媒(ただし、気化があまり進んでいない、液相冷媒が多い状態の冷媒)が流れるので、言い換えれば冷媒の気液相変化が少ないので、冷媒配管17の温度を放熱部32の温度として取り扱うことができる。一方、暖房運転時には冷媒配管17は冷凍サイクルの過冷却部(液相部)となり、液体の冷媒が溜まるため、冷媒配管17の温度を直ちに放熱部32の温度として取り扱うことはできない。しかしながら、後述する「補正温度」の考え方により、暖房運転時においても温度検出器36の測定温度から放熱部32の表面温度を求めることができる。   Since the refrigerant in the gas-liquid two-phase state (however, the vaporization has not progressed so much and the liquid-phase refrigerant is abundant) flows through the refrigerant pipe 17 during the cooling operation, in other words, since the gas-liquid phase change of the refrigerant is small, the refrigerant The temperature of the pipe 17 can be handled as the temperature of the heat radiation part 32. On the other hand, during the heating operation, the refrigerant pipe 17 becomes a supercooling part (liquid phase part) of the refrigeration cycle, and liquid refrigerant accumulates, so that the temperature of the refrigerant pipe 17 cannot be immediately handled as the temperature of the heat radiating part 32. However, the surface temperature of the heat radiating section 32 can be obtained from the measured temperature of the temperature detector 36 even during the heating operation based on the concept of “correction temperature” described later.

温度検出器36の取付位置は、冷媒配管17の筐体31内部分の中でも比較的上位にある部分とされる。このような場所を温度検出器36の取付位置として選択した理由は後で説明する。   The attachment position of the temperature detector 36 is a relatively higher portion of the refrigerant pipe 17 in the casing 31. The reason why such a place is selected as the mounting position of the temperature detector 36 will be described later.

輻射式空気調和機1の全体制御を司るのは図8に示す制御部40である。制御部40は
室内温度が使用者によって設定された目標値に達するように制御を行う。
The control unit 40 shown in FIG. 8 controls the overall control of the radiant air conditioner 1. The control unit 40 performs control so that the room temperature reaches a target value set by the user.

制御部40は、圧縮機12、四方弁13、膨張弁15、及び室外側送風機16に対して動作指令を発する。また制御部40は温度検出器21〜24、及び温度検出器36からそれぞれの検出温度の出力信号を受け取る。制御部40は温度検出器21〜24及び温度検出器36からの出力信号を参照しつつ、圧縮機12と室外側送風機16に対し運転指令を発し、四方弁13と膨張弁15に対しては状態切り替えの指令を発する。   The control unit 40 issues an operation command to the compressor 12, the four-way valve 13, the expansion valve 15, and the outdoor blower 16. The control unit 40 receives output signals of the detected temperatures from the temperature detectors 21 to 24 and the temperature detector 36. While referring to the output signals from the temperature detectors 21 to 24 and the temperature detector 36, the control unit 40 issues an operation command to the compressor 12 and the outdoor fan 16, and to the four-way valve 13 and the expansion valve 15. Issue a status switch command.

図1は輻射式空気調和機1が冷房運転(除湿運転)あるいは除霜運転を行っている状態を示す。圧縮機12から吐出された高温高圧の冷媒は室外側熱交換器14に入り、そこで室外空気との熱交換が行われる。すなわち冷媒は室外空気に対し放熱を行う。放熱し、凝縮して液状となった冷媒は室外側熱交換器14から膨張弁15を通じて輻射パネル30の放熱部に送られ、減圧し膨張して低温低圧となり、放熱部32の表面温度を下げる。表面温度の下がった放熱部32は室内空気から吸熱し、これにより室内空気は冷やされる。吸熱後、低温の気体状の冷媒は圧縮機12に戻る。室外側送風機16によって生成された気流が室外側熱交換器14からの放熱を促進する。   FIG. 1 shows a state in which the radiant air conditioner 1 is performing a cooling operation (dehumidifying operation) or a defrosting operation. The high-temperature and high-pressure refrigerant discharged from the compressor 12 enters the outdoor heat exchanger 14 where heat exchange with outdoor air is performed. That is, the refrigerant dissipates heat to the outdoor air. The refrigerant that has dissipated heat and is condensed to be liquid is sent from the outdoor heat exchanger 14 to the heat dissipating part of the radiation panel 30 through the expansion valve 15, decompressed and expanded to a low temperature and low pressure, and the surface temperature of the heat dissipating part 32 is lowered. . The heat dissipating part 32 whose surface temperature has dropped absorbs heat from the room air, thereby cooling the room air. After the heat absorption, the low-temperature gaseous refrigerant returns to the compressor 12. The airflow generated by the outdoor fan 16 promotes heat dissipation from the outdoor heat exchanger 14.

図2は輻射式空気調和機1が暖房運転を行っている状態を示す。この時は四方弁13が切り替えられて冷房運転時と冷媒の流れが逆になる。すなわち、圧縮機12から吐出された高温高圧の冷媒は放熱部32に入り、そこで室内空気との熱交換が行われる。すなわち冷媒は室内空気に対し放熱を行い、室内空気は暖められる。放熱し、凝縮して液状となった冷媒は放熱部32から膨張弁15を通じて室外側熱交換器14に送られ、減圧し膨張して室外側熱交換器14の表面温度を下げる。表面温度の下がった室外側熱交換器14は室外空気から吸熱する。吸熱後、低温の気体状の冷媒は圧縮機12に戻る。室外側送風機16によって生成された気流が室外側熱交換器14による吸熱を促進する。吸熱により室外側熱交換器14に付着した霜は、除霜運転を行うことにより取り除かれる。   FIG. 2 shows a state where the radiant air conditioner 1 is performing a heating operation. At this time, the four-way valve 13 is switched, and the refrigerant flow is reversed from that during the cooling operation. That is, the high-temperature and high-pressure refrigerant discharged from the compressor 12 enters the heat radiating section 32 where heat exchange with room air is performed. That is, the refrigerant dissipates heat to the room air, and the room air is warmed. The refrigerant that has dissipated heat and is condensed to become liquid is sent from the heat dissipating section 32 to the outdoor heat exchanger 14 through the expansion valve 15, and is decompressed and expanded to lower the surface temperature of the outdoor heat exchanger 14. The outdoor heat exchanger 14 whose surface temperature has dropped absorbs heat from outdoor air. After the heat absorption, the low-temperature gaseous refrigerant returns to the compressor 12. The airflow generated by the outdoor fan 16 promotes heat absorption by the outdoor heat exchanger 14. Frost adhering to the outdoor heat exchanger 14 due to heat absorption is removed by performing a defrosting operation.

輻射式空気調和機1の運転時のフローチャートを図9に示す。図9に記載されているのは暖房運転時のフローチャートである。   FIG. 9 shows a flowchart when the radiation type air conditioner 1 is operated. FIG. 9 shows a flowchart during heating operation.

暖房運転が開始されると、ステップ#101で温度検出が行われる。この場合の温度検出は温度検出器36による温度検出である。前述の通り温度検出器36は冷媒配管17に配置されており、輻射パネル30の表面温度(より正確に言うならば放熱部32の表面温度)を直接検出するものではない。また、過冷却度がどのような値になるかによっても冷媒配管17の温度と輻射パネル30の表面温度の差が変化する。そこで暖房運転時には、冷媒配管17の温度から放熱部32の過冷却度を予測して温度を補正することにより、輻射パネル30の表面温度を予測する。具体的には、ステップ#102で、温度検出器36が検出した温度に図10の表に示す補正温度を加えて温度補正を行う。   When the heating operation is started, temperature detection is performed in step # 101. The temperature detection in this case is temperature detection by the temperature detector 36. As described above, the temperature detector 36 is disposed in the refrigerant pipe 17 and does not directly detect the surface temperature of the radiation panel 30 (more precisely, the surface temperature of the heat radiating unit 32). Further, the difference between the temperature of the refrigerant pipe 17 and the surface temperature of the radiation panel 30 varies depending on what value the degree of supercooling is. Therefore, during the heating operation, the surface temperature of the radiation panel 30 is predicted by correcting the temperature by predicting the degree of supercooling of the heat radiating unit 32 from the temperature of the refrigerant pipe 17. Specifically, in step # 102, temperature correction is performed by adding the correction temperature shown in the table of FIG. 10 to the temperature detected by the temperature detector 36.

図10の表では、圧縮機12の回転数をパラメータにとり、回転数が1,000rpmのとき補正温度は6℃、回転数が2,000rpmのとき補正温度は6℃、回転数が3,000rpmのとき補正温度は8℃、回転数が4,000rpmのとき補正温度は10℃、回転数が5,000rpmのとき補正温度は12℃、回転数が6,000rpmのとき補正温度は14℃、回転数が7,000rpmのとき補正温度は14℃、となっている。圧縮機12の回転数と補正温度の関係をグラフ化したものが図11である。   In the table of FIG. 10, the rotation speed of the compressor 12 is taken as a parameter. When the rotation speed is 1,000 rpm, the correction temperature is 6 ° C., and when the rotation speed is 2,000 rpm, the correction temperature is 6 ° C. and the rotation speed is 3,000 rpm. The correction temperature is 8 ° C., the rotation speed is 4,000 rpm, the correction temperature is 10 ° C., the rotation speed is 5,000 rpm, the correction temperature is 12 ° C., and the rotation speed is 6,000 rpm, the correction temperature is 14 ° C. The correction temperature is 14 ° C. when the rotation speed is 7,000 rpm. FIG. 11 is a graph showing the relationship between the rotation speed of the compressor 12 and the correction temperature.

図10、11に示した補正温度は単なる例示であり、輻射パネル30の大きさや圧縮機12の能力など、様々な条件により補正温度の値が変化することは言うまでもない。補正温度は実験を重ねて決定することが好ましい。   The correction temperature shown in FIGS. 10 and 11 is merely an example, and it goes without saying that the value of the correction temperature changes depending on various conditions such as the size of the radiation panel 30 and the capacity of the compressor 12. It is preferable to determine the correction temperature through repeated experiments.

上記のように、温度検出器36が検出した温度を補正して求めた輻射パネル30の表面温度を参照しつつ、制御部40は輻射式空気調和機1の暖房運転の制御を行う。   As described above, the control unit 40 controls the heating operation of the radiant air conditioner 1 while referring to the surface temperature of the radiant panel 30 obtained by correcting the temperature detected by the temperature detector 36.

ステップ#103では、輻射パネル30が設定温度以上の高温になったか、どうかを制御部40が調べる。この場合の温度検出にも温度検出器36を利用することができる。輻射パネル30が設定温度以上の温度になったときはステップ#104に進み、制御部40は輻射パネル30の過熱を防止する制御を行う。輻射パネル30が設定温度以上の高温に達しなければ、制御部40はその時点の暖房運転を継続する。輻射パネル30の過熱を防止する制御としては、例えば、圧縮機12の回転数を下げる、膨張弁15の開度を上げる(開く)、室外側送風機16の回転数を下げる、などの制御が考えられる。   In step # 103, the control unit 40 checks whether or not the radiation panel 30 has reached a temperature higher than the set temperature. The temperature detector 36 can also be used for temperature detection in this case. When the radiation panel 30 reaches a temperature equal to or higher than the set temperature, the process proceeds to step # 104, and the control unit 40 performs control to prevent the radiation panel 30 from overheating. If the radiant panel 30 does not reach a higher temperature than the set temperature, the control unit 40 continues the heating operation at that time. As control for preventing overheating of the radiation panel 30, for example, control such as lowering the rotational speed of the compressor 12, increasing (opening) the opening degree of the expansion valve 15, or lowering the rotational speed of the outdoor blower 16 is considered. It is done.

上記のように、輻射パネル30が設定温度以上の温度になったかどうかを調べるのに温度検出器36を利用することにより、つまり空調制御用の温度検出器36を保護用の温度検出器に兼用することにより、輻射式空気調和機1の制御システムを簡素化することができる。   As described above, by using the temperature detector 36 to check whether or not the radiation panel 30 has reached a temperature higher than the set temperature, that is, the temperature detector 36 for air conditioning control is also used as a temperature detector for protection. By doing so, the control system of the radiation type air conditioner 1 can be simplified.

冷房運転(除湿運転)あるいは除霜運転の場合には、温度検出器36が検出した温度を放熱部32の表面温度として取り扱うことができる。このため、暖房運転の場合のような温度補正は必要ない。   In the case of cooling operation (dehumidifying operation) or defrosting operation, the temperature detected by the temperature detector 36 can be handled as the surface temperature of the heat radiating unit 32. For this reason, temperature correction as in the case of heating operation is not necessary.

前述の通り、温度検出器36は冷媒配管17の筐体31内部分に取り付けられているので、輻射パネル30の冷媒経路が冷房運転時の冷媒経路であるか暖房運転時の冷媒経路であるかに関係なく、同じ位置で輻射パネル30の表面温度を検出できる。このため、冷房運転時と暖房運転時とで制御の仕様を変える必要がない。   As described above, since the temperature detector 36 is attached to the inside of the casing 31 of the refrigerant pipe 17, whether the refrigerant path of the radiation panel 30 is the refrigerant path during the cooling operation or the refrigerant path during the heating operation. Regardless of, the surface temperature of the radiation panel 30 can be detected at the same position. For this reason, it is not necessary to change the control specifications between the cooling operation and the heating operation.

冷房運転(除湿運転)時、放熱部32には結露水が発生する。温度検出器36は筐体31内の冷媒配管17の中でも比較的上位の部分に取り付けられているので、放熱部32の結露水が放熱部32の下方にドレン水として溜まったとしても(ドレン水は放熱部32の下方に配置された図示しないドレンパンに受けられる)、ドレン水に接触せずにいられる。このため、温度検出器36の検出温度に誤りが生じたり、温度検出器36が故障したりすることを懸念せずに済む。放熱部32ほどではないにせよ、冷媒配管17にも結露水が生じるが、その結露水による影響を小さくする上でも、冷媒配管17の上位部分に温度検出器36を配置することは有意義である。なお、図1においては、放熱部32よりも上方の筐体31の上枠内を通る冷媒配管17に温度検出器36を設けている。   During the cooling operation (dehumidifying operation), condensed water is generated in the heat radiating unit 32. Since the temperature detector 36 is attached to a relatively upper part of the refrigerant pipe 17 in the casing 31, even if the condensed water in the heat radiating portion 32 is accumulated as drain water below the heat radiating portion 32 (drain water). Is received by a drain pan (not shown) disposed below the heat dissipating part 32), and is not in contact with drain water. For this reason, there is no need to worry that an error occurs in the temperature detected by the temperature detector 36 or that the temperature detector 36 fails. Although not as much as the heat radiating section 32, condensed water is also generated in the refrigerant pipe 17. However, in order to reduce the influence of the condensed water, it is meaningful to arrange the temperature detector 36 in the upper part of the refrigerant pipe 17. . In FIG. 1, a temperature detector 36 is provided in the refrigerant pipe 17 that passes through the upper frame of the casing 31 above the heat radiating section 32.

図4のように複数の放熱部32を直列接続した場合においても、温度検出部36は冷媒配管17の上位部分に配置する。また複数の放熱部32を直列接続している場合、図5に示す通り、輻射パネル30の上部において放熱部32同士を接続する冷媒配管37に温度検出器36を取り付けることもできる。この構成であっても温度検出器36を結露水から保護できる。要は、結露水の発生しにくい箇所に温度検出器36を配置する、というのが守るべき事柄である。   Even in the case where a plurality of heat radiation parts 32 are connected in series as shown in FIG. 4, the temperature detection part 36 is arranged in the upper part of the refrigerant pipe 17. Further, when a plurality of heat radiating portions 32 are connected in series, as shown in FIG. 5, the temperature detector 36 can be attached to the refrigerant pipe 37 that connects the heat radiating portions 32 to each other at the upper part of the radiation panel 30. Even with this configuration, the temperature detector 36 can be protected from condensed water. In short, the fact that the temperature detector 36 is arranged at a place where the condensed water hardly occurs is a matter to be protected.

これまで、放熱部32は垂直に配置するものとして話を進めてきたが、放熱部32を水平に配置する構成も可能である。その場合の放熱フィン34は、冷媒管33の軸線に直交する薄板を、互いの間に間隔を置いて多数配置する構成とするのがよい。   Up to now, the heat radiation part 32 has been described as being arranged vertically, but a structure in which the heat radiation part 32 is arranged horizontally is also possible. In this case, the heat dissipating fins 34 may be configured by arranging a large number of thin plates perpendicular to the axis of the refrigerant pipe 33 with a space therebetween.

以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。   Although the embodiments of the present invention have been described above, the scope of the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the invention.

本発明は輻射式空気調和機に広く利用可能である。   The present invention is widely applicable to a radiant air conditioner.

1 輻射式空気調和機
10 室外機
11 筐体
12 圧縮機
13 四方弁
14 室外側熱交換器
15 膨張弁
16 室外側送風機
17、18 冷媒配管
30 輻射パネル
31 筐体
32 放熱部
36 温度検出器
40 制御部
DESCRIPTION OF SYMBOLS 1 Radiation-type air conditioner 10 Outdoor unit 11 Case 12 Compressor 13 Four-way valve 14 Outdoor heat exchanger 15 Expansion valve 16 Outdoor blower 17, 18 Refrigerant piping 30 Radiation panel 31 Case 32 Heat radiation part 36 Temperature detector 40 Control unit

Claims (3)

室内に配置される輻射パネルと、室外側熱交換器と、前記輻射パネル及び前記室外側熱交換器に冷媒配管を通じて冷媒を循環させる圧縮機とを備えた輻射式空気調和機において、
前記輻射パネルは筐体内に放熱部を配置したものであり、
前記放熱部に接続される前記冷媒配管の前記筐体内部分に当該冷媒配管の温度を検出する温度検出器が取り付けられ、
当該空気調和機の制御部は前記温度検出器からの出力信号を参照して制御を行い、冷房運転時は前記温度検出器が検出した温度を前記輻射パネルの表面温度として参照し、暖房運転時は前記温度検出器が検出した温度に前記圧縮器の回転数に応じた補正温度を加えた温度を前記輻射パネルの表面温度として参照することを特徴とする輻射式空気調和機。
In a radiant air conditioner comprising a radiant panel disposed indoors, an outdoor heat exchanger, and a compressor that circulates refrigerant through refrigerant piping through the radiant panel and the outdoor heat exchanger,
The radiation panel has a heat dissipating part disposed in a housing,
A temperature detector that detects the temperature of the refrigerant pipe is attached to the inside part of the casing of the refrigerant pipe connected to the heat radiating section,
Control unit of the air conditioner have reference lines to control the output signal from the temperature detector, cooling operation by referring to the temperature of the temperature detector detects as the surface temperature of the radiant panels, heating operation The radiation air conditioner is characterized in that a temperature obtained by adding a correction temperature corresponding to the rotation speed of the compressor to the temperature detected by the temperature detector is referred to as the surface temperature of the radiation panel .
前記温度検出器が取り付けられる前記冷媒配管は液体冷媒用の冷媒配管であることを特徴とする請求項1に記載の輻射式空気調和機。   The radiant air conditioner according to claim 1, wherein the refrigerant pipe to which the temperature detector is attached is a refrigerant pipe for liquid refrigerant. 前記冷媒配管の前記筐体内部分で、比較的上位にある部分に前記温度検出器が取り付けられることを特徴とする請求項1または2に記載の輻射式空気調和機 The radiant air conditioner according to claim 1 or 2, wherein the temperature detector is attached to a relatively upper portion of the refrigerant pipe in the casing .
JP2012117647A 2012-05-23 2012-05-23 Radiant air conditioner Expired - Fee Related JP5898569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012117647A JP5898569B2 (en) 2012-05-23 2012-05-23 Radiant air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012117647A JP5898569B2 (en) 2012-05-23 2012-05-23 Radiant air conditioner

Publications (2)

Publication Number Publication Date
JP2013245832A JP2013245832A (en) 2013-12-09
JP5898569B2 true JP5898569B2 (en) 2016-04-06

Family

ID=49845756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012117647A Expired - Fee Related JP5898569B2 (en) 2012-05-23 2012-05-23 Radiant air conditioner

Country Status (1)

Country Link
JP (1) JP5898569B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112503715A (en) * 2020-12-11 2021-03-16 广东美的暖通设备有限公司 Control method, air conditioning system and computer storage medium

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201501227WA (en) * 2014-05-09 2015-12-30 Eco Factory Co Ltd Air conditioning system
CN105318422A (en) * 2014-07-25 2016-02-10 青岛海尔智能技术研发有限公司 Radiation type air conditioning system
CN105241029A (en) * 2015-11-03 2016-01-13 青岛海尔空调器有限总公司 Operation control method for radiation air conditioner
CN105570997B (en) * 2016-02-26 2018-10-19 汪洋 A kind of interior radiation cooling method and low-temperature radiant plate split air conditioner
CN107421062A (en) * 2017-07-10 2017-12-01 广东美的暖通设备有限公司 Air-conditioning system, modification method and computer-readable recording medium can be needed
JP2019032133A (en) * 2017-08-09 2019-02-28 シャープ株式会社 air conditioner
CN110017591A (en) * 2019-03-11 2019-07-16 广东美的暖通设备有限公司 Control method, air-conditioning system and its control device of air-conditioning system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2599518B2 (en) * 1991-08-01 1997-04-09 シャープ株式会社 Air conditioner
JP4538919B2 (en) * 2000-08-08 2010-09-08 三菱電機株式会社 Indoor multi air conditioner
JP5316508B2 (en) * 2010-10-12 2013-10-16 ダイキン工業株式会社 Air conditioner floor-standing indoor unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112503715A (en) * 2020-12-11 2021-03-16 广东美的暖通设备有限公司 Control method, air conditioning system and computer storage medium

Also Published As

Publication number Publication date
JP2013245832A (en) 2013-12-09

Similar Documents

Publication Publication Date Title
JP5898569B2 (en) Radiant air conditioner
JP5869955B2 (en) Radiant air conditioner
JP5931688B2 (en) Air conditioner
JP6184503B2 (en) Oil level detection device and refrigeration air conditioner equipped with the oil level detection device
JP2014020594A (en) Air conditioner
JP5961084B2 (en) Radiant air conditioner
JP6254349B2 (en) Heat pump equipment outdoor unit
JP6157789B1 (en) Refrigeration cycle apparatus and refrigerant leakage detection method
JP2014102050A (en) Refrigeration device
WO2018220758A1 (en) Air-conditioning apparatus
JP2015068610A (en) Air conditioner
JP6065962B1 (en) Refrigeration cycle equipment
JP2014156970A (en) Indirect outdoor air cooling machine and combination type air conditioning system
JP5898568B2 (en) Radiant air conditioner
US11733723B2 (en) Economizer temperature extrapolation systems and methods
JP6310077B2 (en) Heat source system
JP2015175531A (en) Refrigeration device unit
JP2010216766A (en) Air conditioner
JP5937421B2 (en) Radiant air conditioner
JP2015224799A (en) Air conditioner
JP2013245829A (en) Radiant type air conditioner
JP4605725B2 (en) Additional condensing device and refrigeration cycle device with additional condensing system using the same
JP6301789B2 (en) Compressor step-out detection system and step-out detection method in a refrigeration cycle
JP6139093B2 (en) Parallel flow heat exchanger
JP5992735B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150113

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160304

R150 Certificate of patent or registration of utility model

Ref document number: 5898569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees