JP5897760B1 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP5897760B1
JP5897760B1 JP2015210335A JP2015210335A JP5897760B1 JP 5897760 B1 JP5897760 B1 JP 5897760B1 JP 2015210335 A JP2015210335 A JP 2015210335A JP 2015210335 A JP2015210335 A JP 2015210335A JP 5897760 B1 JP5897760 B1 JP 5897760B1
Authority
JP
Japan
Prior art keywords
flow path
heat radiation
side wall
cooling device
pins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015210335A
Other languages
Japanese (ja)
Other versions
JP2016164968A (en
Inventor
宏将 菅原
宏将 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Calsonic Kansei Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2015210335A priority Critical patent/JP5897760B1/en
Application granted granted Critical
Publication of JP5897760B1 publication Critical patent/JP5897760B1/en
Publication of JP2016164968A publication Critical patent/JP2016164968A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】流路全体の流速の均等化を図った冷却装置を提供する。【解決手段】凹形状の流路11が形成され、液体冷媒が流れる流路部材10と、パワーモジュールが載置され、流路11の凹形状の開口を閉塞する蓋部材20と、を備え、蓋部材20には、流路11内に突出する放熱ピン群21が千鳥配列で形成され、流路11において放熱ピン群21を間に挟む側壁12には、複数の凸部12Aが設けられ、それぞれの凸部12Aは、最も前記側壁12に近い放熱ピン21a1同士の間に向かって突出するように設けられ、且つ、凸部21と放熱ピン12を非接触とする冷却装置。【選択図】図5A cooling device that equalizes the flow velocity of the entire flow path is provided. A flow path member 10 in which a concave flow path 11 is formed and a liquid refrigerant flows, and a lid member 20 on which a power module is placed and closes the concave opening of the flow path 11 are provided. The lid member 20 is formed with a staggered arrangement of heat dissipation pin groups 21 protruding into the flow path 11, and a plurality of convex portions 12A are provided on the side wall 12 sandwiching the heat dissipation pin group 21 in the flow path 11. Each of the convex portions 12A is a cooling device that is provided so as to protrude between the heat radiation pins 21a1 closest to the side wall 12 and that makes the convex portions 21 and the heat radiation pins 12 non-contact. [Selection] Figure 5

Description

本発明は、パワーモジュール等を冷却する冷却装置に関する。   The present invention relates to a cooling device for cooling a power module and the like.

パワーMOSFETやIGBTなどのパワー半導体を搭載したパワーモジュール等を冷
却する冷却装置は、電気自動車やハイブリッド自動車等において広く用いられている。
A cooling device that cools a power module or the like on which a power semiconductor such as a power MOSFET or IGBT is mounted is widely used in electric vehicles, hybrid vehicles, and the like.

ここで、冷却水等の液体冷媒を用い、液体冷媒の流路に放熱ピンを複数設けた構成の冷
却装置に関する技術は種々提案されている(例えば、特許文献1等)。
Here, various techniques related to a cooling device having a configuration in which a plurality of heat radiation pins are provided in a flow path of the liquid refrigerant using a liquid refrigerant such as cooling water have been proposed (for example, Patent Document 1).

特許文献1に記載の電力変換装置に開示される冷却装置は、図12に示すように、冷媒
を流通させる流路510を形成する筐体501と、流路510内に配置されて冷媒との間
で熱交換を行う複数の放熱ピン533を有している。また、流路510の側壁512には
、複数の邪魔板513が突設されている。
As shown in FIG. 12, the cooling device disclosed in the power conversion device described in Patent Document 1 includes a housing 501 that forms a flow path 510 through which a refrigerant flows, and a cooling medium disposed in the flow path 510. It has a plurality of heat radiation pins 533 that perform heat exchange between them. A plurality of baffle plates 513 project from the side wall 512 of the channel 510.

このような邪魔板513を設けることにより、冷媒が放熱ピン533へ導かれるため、
冷却効率を向上させることができる。即ち、放熱ピン533の上流側では、邪魔板513
により放熱ピン533側に流路が絞られるためピン間の流速が上がり、冷却効率が向上す
る。
By providing such a baffle plate 513, the refrigerant is guided to the heat dissipation pin 533,
Cooling efficiency can be improved. That is, on the upstream side of the heat dissipation pin 533, the baffle plate 513 is provided.
As a result, the flow path is narrowed toward the heat radiating pin 533, so that the flow velocity between the pins is increased and the cooling efficiency is improved.

特開2013−13255号公報JP2013-13255A

しかしながら、上記のような従来技術では、放熱ピン533の配列による凸凹部で流速
に不均衡を生じ、冷媒は放熱ピン533の間から抵抗の低い側壁512側へ流れるため、
側壁512における流速が速くなってしまう。
However, in the prior art as described above, the flow velocity is imbalanced by the convex and concave portions due to the arrangement of the heat radiation pins 533, and the refrigerant flows from between the heat radiation pins 533 to the side wall 512 having a low resistance.
The flow velocity at the side wall 512 is increased.

そのため、各放熱ピン533間と、側壁512側とにおける冷却性能に差異を生じ、パ
ワーモジュール等を均一に冷却できないという不都合を生じる。
For this reason, there is a difference in cooling performance between the heat radiation pins 533 and the side wall 512 side, resulting in inconvenience that the power module or the like cannot be uniformly cooled.

本発明は、上記課題に鑑みてなされたものであり、流路全体の流速を均等化することので
きる冷却装置を提供することを目的とする。
This invention is made | formed in view of the said subject, and it aims at providing the cooling device which can equalize the flow velocity of the whole flow path.

上記目的を達成するため、本発明に係る冷却装置は、凹形状の流路が形成され、液体冷媒
が流れる流路部材と、放熱対象部材が載置され、流路の凹形状の開口を閉塞する蓋部材と
、を備え、蓋部材には、流路内に突出する複数の放熱ピンが千鳥配列で形成され、流路に
おいて放熱ピンを間に挟む側壁には、複数の凸部が設けられ、それぞれの前記凸部は、最
も側壁に近い放熱ピン同士の間に向かって突出するように設けられ、且つ、凸部と放熱ピ
ンを非接触とすることを要旨とする。
In order to achieve the above object, a cooling device according to the present invention has a concave channel formed, a channel member through which a liquid refrigerant flows, and a heat radiation target member are placed, and the concave opening of the channel is closed. A plurality of radiating pins projecting into the flow path are formed in a staggered arrangement, and a plurality of convex portions are provided on the side wall sandwiching the radiating pins in the flow path. Each of the convex portions is provided so as to protrude between the radiating pins closest to the side walls, and makes the bulging portion and the radiating pins non-contact.

本発明によれば、放熱ピンが配置された領域における流速の均等化を図ることができる
According to the present invention, it is possible to equalize the flow velocity in the region where the heat radiating pins are arranged.

実施の形態に係る冷却装置の構成例を示す全体斜視図である。It is a whole perspective view which shows the structural example of the cooling device which concerns on embodiment. 実施の形態に係る冷却装置の要部を構成する流路部材の構成例を示す斜視図である。It is a perspective view which shows the structural example of the flow-path member which comprises the principal part of the cooling device which concerns on embodiment. 流路部材が備える凸部の形成例を示す拡大斜視図である。It is an expansion perspective view which shows the example of formation of the convex part with which a flow-path member is provided. 実施の形態に係る冷却装置の他の要部を構成する蓋部材の構成例を示す斜視図である。It is a perspective view which shows the structural example of the cover member which comprises the other principal part of the cooling device which concerns on embodiment. 流路部材が備える第1の実施例に係る凸部と、蓋部材が備える放熱ピンとの位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of the convex part which concerns on 1st Example with which a flow-path member is provided, and the thermal radiation pin with which a cover member is provided. 流路部材が備える第2の実施例に係る凸部と、蓋部材が備える放熱ピンとの位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of the convex part which concerns on 2nd Example with which a flow-path member is provided, and the thermal radiation pin with which a cover member is provided. 流路部材が備える第3の実施例に係る凹部の形成例を示す拡大斜視図である。It is an expansion perspective view which shows the example of formation of the recessed part which concerns on a 3rd Example with which a flow-path member is provided. 流路部材が備える第3の実施例に係る凹部と、蓋部材が備える放熱ピンとの位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of the recessed part which concerns on the 3rd Example with which a flow-path member is provided, and the thermal radiation pin with which a cover member is provided. 流路部材が備える第4の実施例に係る凸部と、蓋部材が備える放熱ピンとの位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of the convex part which concerns on a 4th Example with which a flow-path member is provided, and the thermal radiation pin with which a cover member is provided. 流路部材が備える第5の実施例に係る凹部と、蓋部材が備える放熱ピンとの位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of the recessed part which concerns on the 5th Example with which a flow-path member is provided, and the thermal radiation pin with which a cover member is provided. 放熱ピンの他の配列の例を示す平面図(a)、(b)である。It is a top view (a) and (b) which show the example of other arrangement of a radiating pin. 従来技術に係る冷却装置の構成例を示す概略構成図である。It is a schematic block diagram which shows the structural example of the cooling device which concerns on a prior art. 他の実施の形態の構成を示す断面斜視図である。It is a cross-sectional perspective view which shows the structure of other embodiment. 他の実施の形態の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of other embodiment. 図14におけるA-Aの断面図である。It is sectional drawing of AA in FIG. 他の実施の形態の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of other embodiment. 図16におけるB-Bの断面図である。It is sectional drawing of BB in FIG.

以下、本発明の一例としての実施の形態を図面に基づいて詳細に説明する。ここで、添
付図面において同一の部材には同一の符号を付しており、また、重複した説明は省略され
ている。なお、ここでの説明は本発明が実施される最良の形態であることから、本発明は
当該形態に限定されるものではない。
Hereinafter, an embodiment as an example of the present invention will be described in detail with reference to the drawings. Here, in the accompanying drawings, the same reference numerals are given to the same members, and duplicate descriptions are omitted. In addition, since description here is the best form by which this invention is implemented, this invention is not limited to the said form.

(実施の形態に係る冷却装置)
[冷却装置の概略構成]
図1から図4を参照して、実施の形態に係る冷却装置1の概略構成について説明する。
(Cooling device according to the embodiment)
[Schematic configuration of cooling device]
With reference to FIGS. 1 to 4, a schematic configuration of a cooling device 1 according to the embodiment will be described.

ここで、図1は、実施の形態に係る冷却装置1の構成例を示す全体斜視図、図2は、冷
却装置1の要部を構成する流路部材10の構成例を示す斜視図、図3は、流路部材10が
備える凸部12Aの形成例を示す拡大斜視図、図4は、他の要部を構成する蓋部材20の
構成例を示す斜視図である。
Here, FIG. 1 is an overall perspective view illustrating a configuration example of the cooling device 1 according to the embodiment, and FIG. 2 is a perspective view illustrating a configuration example of a flow path member 10 that constitutes a main part of the cooling device 1. 3 is an enlarged perspective view showing an example of the formation of the convex portion 12A included in the flow path member 10, and FIG. 4 is a perspective view showing an example of the configuration of the lid member 20 constituting another main part.

図1に示す冷却装置1は、図2に示すように液体冷媒(図示せず)の流路11(凹形状
)を有する流路部材10と、図4に示すように複数の放熱ピン21aを備える蓋部材20
とから構成されている。蓋部材20は、流路11の凹形状の開口を閉塞している。
The cooling device 1 shown in FIG. 1 includes a flow path member 10 having a flow path 11 (concave shape) of a liquid refrigerant (not shown) as shown in FIG. 2, and a plurality of heat radiation pins 21a as shown in FIG. Lid member 20 provided
It consists of and. The lid member 20 closes the concave opening of the flow path 11.

なお、図1に示す冷却装置1では、流路部材10に対して、蓋部材20を位置合わせし
て設置した後、蓋部材20のネジ孔22および流路部材10のネジ孔15にネジ30が螺
合されて両部材10、20が締結されている。
In the cooling device 1 shown in FIG. 1, after the lid member 20 is positioned and installed with respect to the flow path member 10, the screw 30 is inserted into the screw hole 22 of the lid member 20 and the screw hole 15 of the flow path member 10. Are screwed together to fasten both members 10 and 20 together.

図2に示す流路部材10は、例えば銅やアルミニウム等の金属材で構成され、長手方向
の略中央部に冷却水等の液体冷媒(図示せず)を流通させる流路11が形成されている。
The flow path member 10 shown in FIG. 2 is made of, for example, a metal material such as copper or aluminum, and a flow path 11 for flowing a liquid refrigerant (not shown) such as cooling water is formed in a substantially central portion in the longitudinal direction. Yes.

流路11の長手方向の両端には、外部から液体冷媒を導入する流入口13と、液体冷媒
を外部に排出する流出口14が穿設されている。なお、矢印D1は液体冷媒の流通方向を
示す。
At both ends in the longitudinal direction of the flow path 11, an inlet 13 for introducing the liquid refrigerant from the outside and an outlet 14 for discharging the liquid refrigerant to the outside are formed. The arrow D1 indicates the flow direction of the liquid refrigerant.

また、流路部材10の上面の周縁部には、ネジ孔15が設けられている。   Further, a screw hole 15 is provided in the peripheral edge portion of the upper surface of the flow path member 10.

そして、図2および図3に示すように、流路11の側壁12には、蓋部材20が備える
放熱ピン21a(図4参照)と平行に所定間隔で設けられる複数の凸部12Aが一体的に
形成されている。特に図示しないが、蓋部材20の上面(放熱ピン21aが形成される面
の反対側)には、パワーMOSFETやIGBTなどのパワー半導体が搭載される。
As shown in FIGS. 2 and 3, the side wall 12 of the flow path 11 is integrally provided with a plurality of convex portions 12 </ b> A provided at predetermined intervals in parallel with the heat radiation pins 21 a (see FIG. 4) provided in the lid member 20. Is formed. Although not particularly illustrated, a power semiconductor such as a power MOSFET or IGBT is mounted on the upper surface of the lid member 20 (on the side opposite to the surface on which the heat radiation pins 21a are formed).

なお、凸部12A等の具体的な構成例(実施例)については後述する。   A specific configuration example (example) of the convex portion 12A and the like will be described later.

図4に示すように、蓋部材20の一面には、複数の放熱ピン21aから成る放熱ピン群
21が立設されている。
As shown in FIG. 4, a heat radiating pin group 21 including a plurality of heat radiating pins 21 a is erected on one surface of the lid member 20.

蓋部材20および放熱ピン群21は、例えば銅やアルミニウム等の金属材で一体的に構
成されている。
The lid member 20 and the radiating pin group 21 are integrally formed of a metal material such as copper or aluminum.

なお、放熱ピン21aの配列例の詳細については後述する。   The details of the arrangement example of the heat radiation pins 21a will be described later.

また、蓋部材20の周縁部には、ネジ孔22が穿設されている。   Further, a screw hole 22 is formed in the peripheral edge portion of the lid member 20.

[第1の実施例に係る凸部について]
図5を参照して、流路部材10が備える第1の実施例に係る凸部12Aと、蓋部材20
が備える放熱ピン21a(21a1、21a2・・・)との位置関係について説明する。
[About the convex portion according to the first embodiment]
With reference to FIG. 5, the convex portion 12 </ b> A according to the first embodiment provided in the flow path member 10 and the lid member 20.
The positional relationship with the radiation pins 21a (21a1, 21a2,.

本実施例において、放熱ピン群21は、千鳥配列となっている。より詳細には、側壁1
2と直近の列(流通方向D1に沿った1列目)に属する放熱ピン21a1、側壁12から
離間する2列目に属する放熱ピン21a2、3列目に属する放熱ピン21a3、4列目に
属する放熱ピン21a4・・・、n(整数)列目に属する放熱ピン21an・・・のよう
に配列される。ちなみに、図5でいえば、流通方向D1に沿ったX方向への並びを列とし
、Y方向に沿った並びを行とする。
In the present embodiment, the radiating pin group 21 has a staggered arrangement. More specifically, side wall 1
2 and the heat radiation pin 21a1 belonging to the nearest row (the first row along the flow direction D1), the heat radiation pin 21a2 belonging to the second row separated from the side wall 12, and the heat radiation pin 21a3 belonging to the third row and the fourth row The heat dissipating pins 21a4... Are arranged like the heat dissipating pins 21an. Incidentally, in FIG. 5, the arrangement in the X direction along the distribution direction D1 is a column, and the arrangement along the Y direction is a row.

また、図5に示す例では、例えば放熱ピン21a2の中心を通る仮想線E1のように、
各列に属する放熱ピンは、流通方向D1の一直線上に所定間隔で設けられている。
Further, in the example shown in FIG. 5, for example, an imaginary line E1 passing through the center of the heat dissipation pin 21a2,
The heat dissipation pins belonging to each row are provided at a predetermined interval on a straight line in the flow direction D1.

また、各列の放熱ピン21a1、21a2・・・は、各周縁が例えば仮想線F1、F2
に接するように配列されている。換言すれば、各行における放熱ピン(例えば、21a2
と21a4)の間隔は、放熱ピンの直径分の距離となっている。
Further, each of the radiating pins 21a1, 21a2,.
It is arranged so that it touches. In other words, the radiating pins in each row (for example, 21a2
And 21a4) is the distance corresponding to the diameter of the heat dissipation pin.

そして、各放熱ピン21a1、21a2・・・は、流路11の流通方向D1と該流通方
向D1の直交方向にそれぞれ所定間隔(図5に示す例では等間隔)で、且つ、流路11の
流通方向D1に沿って並ぶ各列に属するものと次列に属するもの同士が交互に直交方向に
シフトして配置されている。
Each of the heat dissipation pins 21a1, 21a2,... Has a predetermined interval (equal interval in the example shown in FIG. 5) in the flow direction D1 of the flow path 11 and the direction orthogonal to the flow direction D1, and Those belonging to each row aligned along the distribution direction D1 and those belonging to the next row are alternately shifted in the orthogonal direction.

このような配列により、仮に、端部側から流路11を流通方向D1に見た場合に、直線
的に見通せる流路がなくなり、液体冷媒を均等に各放熱ピン21a1、21a2・・・に
接触させることができる。
With such an arrangement, if the flow path 11 is viewed from the end side in the flow direction D1, there is no linear flow path, and the liquid refrigerant is uniformly contacted with the heat radiation pins 21a1, 21a2,. Can be made.

そして、流路の側壁12には、複数の凸部12Aが、流路方向D1に沿った所定間隔で
、且つ、放熱ピン群21とは非接触となるように設けられている。この凸部12Aは、流
路方向D1の方向において、側壁12と最も近接する列に属する放熱ピン21a1同士の
間であって、側壁12と最も近接する列からみて2列目の放熱ピン21a2と対向するよ
うに配置される。一方、流路の側壁12において、放熱ピン21a1と対向する箇所は、
平面部121となっている。
A plurality of convex portions 12 </ b> A are provided on the side wall 12 of the flow path at predetermined intervals along the flow path direction D <b> 1 so as not to be in contact with the heat radiation pin group 21. The protrusion 12A is located between the heat radiation pins 21a1 belonging to the row closest to the side wall 12 in the direction of the flow path direction D1, and the second heat radiation pin 21a2 when viewed from the row closest to the side wall 12. It arrange | positions so that it may oppose. On the other hand, in the side wall 12 of the flow path, the location facing the heat dissipation pin 21a1 is
The flat portion 121 is formed.

すなわち、本実施形態においては、凸部12Aは、放熱ピンの隔行ごとに配置されること
から、側壁12付近を流れる液体冷媒は、凸部12Aと放熱ピン21a2の間と、平面部
121と放熱ピン21a1の間と、を交互に流れるため、側壁12付近で液体冷媒が直線
的に流れないようになっている。
That is, in this embodiment, since the convex portion 12A is arranged for every separation of the heat radiating pins, the liquid refrigerant flowing in the vicinity of the side wall 12 is radiated between the convex portion 12A and the heat radiating pin 21a2, and between the flat surface portion 121 and the heat radiation. Since the liquid flows alternately between the pins 21 a 1, the liquid refrigerant does not flow linearly in the vicinity of the side wall 12.

また、各凸部12Aと、側壁12と最も近接する列に属する放熱ピン21a1との隙間
距離L1、L2が、シフトして配置された放熱ピン(例えば、放熱ピン21a1と放熱ピ
ン21a2)間の隙間距離(L10、L11)と同じ距離となるように設定される。
In addition, the gap distances L1 and L2 between the projections 12A and the heat radiation pins 21a1 belonging to the row closest to the side wall 12 are shifted between the heat radiation pins (for example, the heat radiation pins 21a1 and 21a2). The distance is set to be the same as the gap distance (L10, L11).

即ち、図5に示す例では、側壁12と直近の列(1列目)に属する各放熱ピン21a1
は、流通方向D1に隣合う一対の凸部12A(例えば、12A1、12A2)の間に位置
し、各放熱ピン21a1と一対の凸部12A1、12A2との各隙間距離L1、L2は、
放熱ピン21a1と放熱ピン21a2間の隙間距離L10、L11と実質的に等距離とな
るように構成されている。
That is, in the example shown in FIG. 5, each heat radiation pin 21a1 belonging to the side wall 12 and the nearest row (first row).
Is located between a pair of convex portions 12A (for example, 12A1, 12A2) adjacent to the flow direction D1, and the clearance distances L1, L2 between the heat radiation pins 21a1 and the pair of convex portions 12A1, 12A2 are:
The gap distances L10 and L11 between the heat radiation pin 21a1 and the heat radiation pin 21a2 are substantially equal to each other.

なお、本実施例において、流路11の側壁12に形成される凸部12Aは、放熱ピン2
1a(21a1、21a2・・・)の断面形状の半分(即ち、半円状の断面形状)と同じ
形状とされている。すなわち、凸部12Aは、半円柱状となっている。
In this embodiment, the convex portion 12A formed on the side wall 12 of the flow path 11 is formed by the heat radiation pin 2.
1a (21a1, 21a2,...) Half of the cross-sectional shape (ie, a semicircular cross-sectional shape). That is, the convex portion 12A has a semi-cylindrical shape.

これにより、側壁12と直近の列に属する各放熱ピン21aと側壁12とで形成される
流路の断面形状と、他の列に属する各放熱ピン21a2、21a3・・・間で形成される
流路の断面形状とが近似した形状となるので、液体冷媒の流体抵抗を、側壁12付近と各
放熱ピン21a2、21a3・・・間(流通方向における中央部分)とで略同等とするこ
とができる。したがって、流路11全体の流速を均等化することができ、パワーモジュー
ル等の被冷却物を均一に冷却することができる。
Thereby, the cross-sectional shape of the flow path formed by the side wall 12 and each heat radiation pin 21a belonging to the nearest row and the side wall 12, and the flow formed between each heat radiation pin 21a2, 21a3,. Since the cross-sectional shape of the path is an approximate shape, the fluid resistance of the liquid refrigerant can be made substantially equal between the vicinity of the side wall 12 and between each heat radiation pin 21a2, 21a3,. . Therefore, the flow velocity of the entire flow path 11 can be equalized, and an object to be cooled such as a power module can be uniformly cooled.

なお、冷却水等の液体冷媒は、凸部12Aの表面に沿ってスムーズに流通するので、凸
部12A付近で液体冷媒が淀むことがなく、側壁12付近と各放熱ピン21a2、21a
3・・・間との流速差を低減することができる。
In addition, since the liquid refrigerant such as cooling water flows smoothly along the surface of the convex portion 12A, the liquid refrigerant does not stagnate in the vicinity of the convex portion 12A, and the vicinity of the side wall 12 and the heat radiation pins 21a2, 21a.
The difference in the flow rate between 3... Can be reduced.

また、側壁12側の流速が上がることを抑制できるので、流路全体の流速あるいは流量
を上げることができ、冷却効率を一層向上させることができる。
Moreover, since it can suppress that the flow velocity by the side wall 12 side goes up, the flow velocity or flow volume of the whole flow path can be raised, and cooling efficiency can be improved further.

また、本実施例では、凸部12Aを設けたことで、側壁12の表面積が増大し、これに
よって放熱も促進される。すなわち、凸部12Aを放熱部材としても利用している。また
、凸部12Aが平面部121と一体形で形成されていることも、放熱の観点で有利となっ
ている。
Further, in the present embodiment, by providing the convex portion 12A, the surface area of the side wall 12 is increased, thereby promoting heat dissipation. That is, the convex portion 12A is also used as a heat radiating member. In addition, it is advantageous from the viewpoint of heat dissipation that the convex portion 12A is formed integrally with the flat surface portion 121.

[第2の実施例に係る凸部について]
図6を参照して、流路部材10が備える第2の実施例に係る凸部12Bと、蓋部材20
が備える放熱ピン21a(21a1、21a2・・・)との位置関係について説明する。
[About the convex portion according to the second embodiment]
With reference to FIG. 6, the convex part 12B which concerns on 2nd Example with which the flow-path member 10 is provided, and the cover member 20
The positional relationship with the radiation pins 21a (21a1, 21a2,.

なお、放熱ピン21a(21a1、21a2・・・)の形状、配列等については、上述
の第1の実施例と同様であるので、同一符号を付して重複した説明は省略する。
Note that the shape, arrangement, and the like of the heat radiation pins 21a (21a1, 21a2,...) Are the same as those in the first embodiment described above, and thus the same reference numerals are given and redundant descriptions are omitted.

第2の実施例に係る凸部12Bでは、図6に示すように、断面形状が、放熱ピン21a
(21a1、21a2・・・)の断面形状と略同じ形とされている。
In the convex part 12B according to the second embodiment, as shown in FIG. 6, the cross-sectional shape is the heat radiation pin 21a.
(21a1, 21a2,...) Are substantially the same as the cross-sectional shape.

また、各放熱ピン21a1と一対の凸部(例えば、12B1、12B2)との各隙間距
離L3、L4は、等距離となるように構成されている。
Further, the gap distances L3 and L4 between each heat radiation pin 21a1 and a pair of convex portions (for example, 12B1 and 12B2) are configured to be equidistant.

これにより、側壁12と直近の列に属する各放熱ピン21aと側壁12とで形成される
流路の断面形状と、他の列に属する各放熱ピン21a2、21a3・・・間で形成される
流路の断面形状とが近似した形状となるので、液体冷媒の流体抵抗を、側壁12付近と各
放熱ピン21a2、21a3・・・間とで略同等とすることができる。したがって、流路
11全体の流速を均等化することができ、パワーモジュール等の被冷却物を均一に冷却す
ることができる。
Thereby, the cross-sectional shape of the flow path formed by the side wall 12 and each heat radiation pin 21a belonging to the nearest row and the side wall 12, and the flow formed between each heat radiation pin 21a2, 21a3,. Since the cross-sectional shape of the path approximates, the fluid resistance of the liquid refrigerant can be made substantially equal between the vicinity of the side wall 12 and between the heat radiation pins 21a2, 21a3,. Therefore, the flow velocity of the entire flow path 11 can be equalized, and an object to be cooled such as a power module can be uniformly cooled.

また、凸部12Bの断面形状は、図6に示す場合に限定されず、放熱ピン21a(21
a1、21a2・・・)の断面形状の少なくとも一部と同じ形状とされる場合であっても
よい。
Moreover, the cross-sectional shape of the convex part 12B is not limited to the case shown in FIG.
a1, 21a2,...)) may be the same shape as at least a part of the cross-sectional shape.

また、側壁12側の流速が上がることを抑制できるので、流路全体の流速あるいは流量
を上げることができ、冷却効率を一層向上させることができる。
Moreover, since it can suppress that the flow velocity by the side wall 12 side goes up, the flow velocity or flow volume of the whole flow path can be raised, and cooling efficiency can be improved further.

[第3の実施例に係る凹部について]
図7および図8を参照して、第3の実施例に係る凹部12Cについて説明する。
[Regarding the recess according to the third embodiment]
With reference to FIGS. 7 and 8, the recess 12C according to the third embodiment will be described.

なお、放熱ピン21a(21a1、21a2・・・)の形状、配列等については、上述
の第1、第2の実施例と同様であるので、同一符号を付して重複した説明は省略する。
In addition, about the shape, arrangement | sequence, etc. of the thermal radiation pin 21a (21a1, 21a2 ...), since it is the same as that of the above-mentioned 1st, 2nd Example, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

図7および図8に示す構成例では、上述の第1、第2の実施例における凸部12A、1
2Bに代えて、側壁12に凹部12Cを所定間隔で設けている。ただし、凹部12Cの先
端を第1及び2実施形態における凸部12A、12Bとみることもできる。
In the configuration example shown in FIGS. 7 and 8, the convex portions 12A, 1 in the first and second embodiments described above.
Instead of 2B, recesses 12C are provided in the side wall 12 at predetermined intervals. However, the tip of the concave portion 12C can be regarded as the convex portions 12A and 12B in the first and second embodiments.

本実施例において、流路11の側壁12に形成される凹部12Cの空隙部の形状は、半
円状の断面形状を有している。
In the present embodiment, the shape of the gap of the recess 12 </ b> C formed on the side wall 12 of the flow path 11 has a semicircular cross-sectional shape.

また、各凹部12Cは、側壁12と直近の列(1列目)に属する各放熱ピン21a1と
対向するように位置し、各放熱ピン21a1と凹部12Cの隙間距離L5は、放熱ピン2
1a2の中心を通る線分(仮想線E1)と放熱ピン21a1の周縁との距離αと実質的に
等距離となるように構成されている。
In addition, each recess 12C is positioned so as to be opposed to each heat dissipation pin 21a1 belonging to the side wall 12 and the nearest row (first row), and the clearance distance L5 between each heat dissipation pin 21a1 and the recess 12C is the heat dissipation pin 2.
The distance α between the line segment passing through the center of 1a2 (virtual line E1) and the peripheral edge of the heat radiation pin 21a1 is substantially equal.

これにより、流路全体の流速を均等化することができ、パワーモジュール等の被冷却物
を均一に冷却することができる。
Thereby, the flow velocity of the whole flow path can be equalized, and to-be-cooled objects, such as a power module, can be cooled uniformly.

なお、凹部12Cの空隙部の断面形状は、図8に示す場合に限定されず、放熱ピン21
a(21a1、21a2・・・)の断面形状の少なくとも一部と近似した形状あるいは相
似形状とされる場合であってもよい。
The cross-sectional shape of the gap portion of the recess 12C is not limited to the case shown in FIG.
The shape may be similar to or similar to at least a part of the cross-sectional shape of a (21a1, 21a2,...).

また、側壁12側の流速が上がることを抑制できるので、流路全体の流速あるいは流量
を上げることができ、冷却効率を一層向上させることができる。
Moreover, since it can suppress that the flow velocity by the side wall 12 side goes up, the flow velocity or flow volume of the whole flow path can be raised, and cooling efficiency can be improved further.

[第4の実施例に係る凸部について]
図9を参照して、第4の実施例に係る凸部50Aについて説明する。
[About the convex portion according to the fourth embodiment]
With reference to FIG. 9, the convex part 50A which concerns on a 4th Example is demonstrated.

図9は、流路部材10が備える第4の実施例に係る凸部50Aと、蓋部材20が備える
放熱ピン21aとの位置関係を示す断面図である。
FIG. 9 is a cross-sectional view showing the positional relationship between the convex portion 50A according to the fourth embodiment provided in the flow path member 10 and the heat radiation pin 21a provided in the lid member 20.

なお、放熱ピン21a(21a1、21a2・・・)の形状、配列等については、上述
の第1から第3の実施例と同様であるので、同一符号を付して重複した説明は省略する。
In addition, about the shape, arrangement | positioning, etc. of the thermal radiation pin 21a (21a1, 21a2 ...), since it is the same as that of the above-mentioned 1st-3rd Example, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

図9に示すように、第4の実施例に係る凸部50Aは、流路11の側壁12に沿って設
置される壁部材50に形成されている。
As shown in FIG. 9, the convex portion 50 </ b> A according to the fourth embodiment is formed on the wall member 50 installed along the side wall 12 of the flow path 11.

より具体的には、側壁12に密着状態で固定される板状の壁部材50の放熱ピン21a
側の表面に、図5に示す第1の実施例に係る凸部12Aと同様の形状を有する凸部50A
が所定間隔で設けられている。
More specifically, the heat dissipation pin 21a of the plate-like wall member 50 fixed to the side wall 12 in close contact.
A convex portion 50A having the same shape as the convex portion 12A according to the first embodiment shown in FIG.
Are provided at predetermined intervals.

なお、板状の壁部材50は、流路部材10を構成する銅やアルミニウムなどよりも耐摩
耗性に優れた材料で構成するとよい。
Note that the plate-like wall member 50 may be made of a material that is more excellent in wear resistance than copper, aluminum, or the like that forms the flow path member 10.

これにより、液体冷媒の流通による凸部50A等の摩耗を低減することができる。   Thereby, wear of convex part 50A etc. by distribution of liquid refrigerant can be reduced.

また、壁部材50と直近の列に属する各放熱ピン21aと壁部材50とで形成される流
路の断面形状と、他の列に属する各放熱ピン21a2、21a3・・・間で形成される流
路の断面形状とが近似した形状となるので、液体冷媒の流体抵抗を、壁部材50付近と各
放熱ピン21a2、21a3・・・間とで略同等とすることができる。したがって、流路
11全体の流速を均等化することができ、パワーモジュール等の被冷却物を均一に冷却す
ることができる。
Moreover, it is formed between the cross-sectional shape of the flow path formed by the wall member 50 and each heat radiation pin 21a belonging to the nearest row and the wall member 50, and each heat radiation pin 21a2, 21a3. Since the cross-sectional shape of the flow path approximates, the fluid resistance of the liquid refrigerant can be made substantially equal between the vicinity of the wall member 50 and between the heat radiation pins 21a2, 21a3,. Therefore, the flow velocity of the entire flow path 11 can be equalized, and an object to be cooled such as a power module can be uniformly cooled.

なお、冷却水等の液体冷媒は、凸部50Aの表面に沿ってスムーズに流通するので、凸
部50A付近で液体冷媒が淀むことがなく、壁部材50付近と各放熱ピン21a2、21
a3・・・間との流速差を低減することができる。
In addition, since the liquid refrigerant such as cooling water flows smoothly along the surface of the convex portion 50A, the liquid refrigerant does not stagnate in the vicinity of the convex portion 50A, and the vicinity of the wall member 50 and the heat radiation pins 21a2, 21.
It is possible to reduce the flow rate difference between a3.

また、凸部50Aの断面形状は、図9に示す場合に限定されず、放熱ピン21a(21
a1、21a2・・・)の断面形状の少なくとも一部と同じ形状とされる場合であっても
よい。
Moreover, the cross-sectional shape of the convex portion 50A is not limited to the case shown in FIG. 9, and the heat dissipation pin 21a (21
a1, 21a2,...)) may be the same shape as at least a part of the cross-sectional shape.

また、壁部材50側の流速が上がることを抑制できるので、流路全体の流速あるいは流
量を上げることができ、冷却効率を一層向上させることができる。
Moreover, since it can suppress that the flow velocity by the side of the wall member 50 goes up, the flow velocity or flow volume of the whole flow path can be raised, and cooling efficiency can be improved further.

[第5の実施例に係る凹部について]
図10を参照して、第5の実施例に係る凹部51Cについて説明する。
[Regarding the recess according to the fifth embodiment]
With reference to FIG. 10, the recessed part 51C which concerns on a 5th Example is demonstrated.

図10は、流路部材10が備える第5の実施例に係る凹部51Cと、蓋部材20が備え
る放熱ピン21aとの位置関係を示す断面図である。
FIG. 10 is a cross-sectional view showing the positional relationship between the recess 51C according to the fifth embodiment provided in the flow path member 10 and the heat radiation pin 21a provided in the lid member 20.

なお、放熱ピン21a(21a1、21a2・・・)の形状、配列等については、上述
の第1から第4の実施例と同様であるので、同一符号を付して重複した説明は省略する。
In addition, about the shape, arrangement | positioning, etc. of the thermal radiation pin 21a (21a1, 21a2 ...), since it is the same as that of the above-mentioned 1st-4th Example, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

図10に示すように、第5の実施例に係る凹部51Cは、流路11の側壁12に沿って
設置される壁部材50に形成されている。
As shown in FIG. 10, the recess 51 </ b> C according to the fifth embodiment is formed in the wall member 50 installed along the side wall 12 of the flow path 11.

より具体的には、側壁12に密着状態で固定される板状の壁部材50の放熱ピン21a
側の表面に、図7および図8に示す第3の実施例に係る凹部12Cと同様の形状を有する
凹部51Cが所定間隔で設けられている。
More specifically, the heat dissipation pin 21a of the plate-like wall member 50 fixed to the side wall 12 in close contact.
On the side surface, recesses 51C having the same shape as the recesses 12C according to the third embodiment shown in FIGS. 7 and 8 are provided at predetermined intervals.

なお、板状の壁部材50は、流路部材10を構成する銅やアルミニウムなどよりも耐摩
耗性に優れた材料で構成するとよい。
Note that the plate-like wall member 50 may be made of a material that is more excellent in wear resistance than copper, aluminum, or the like that forms the flow path member 10.

これにより、液体冷媒の流通による凹部51C等の摩耗を低減することができる。   Thereby, abrasion of the recessed part 51C etc. by distribution | circulation of a liquid refrigerant | coolant can be reduced.

また、各凹部51Cは、壁部材50と直近の列(1列目)に属する各放熱ピン21a1
と対向するように位置し、各放熱ピン21a1と凹部51Cの隙間距離L6は、放熱ピン
21a2の中心を通る仮想線E1と放熱ピン21a1の周縁との距離αと実質的に等距離
となるように構成されている。
これにより、流路全体の流速を均等化することができ、パワーモジュール等の被冷却物を
均一に冷却することができる。
In addition, each of the recesses 51 </ b> C corresponds to each heat radiation pin 21 a 1 belonging to the wall member 50 and the nearest row (first row).
The gap distance L6 between each heat radiation pin 21a1 and the recess 51C is substantially equal to the distance α between the virtual line E1 passing through the center of the heat radiation pin 21a2 and the peripheral edge of the heat radiation pin 21a1. It is configured.
Thereby, the flow velocity of the whole flow path can be equalized, and to-be-cooled objects, such as a power module, can be cooled uniformly.

また、凹部51Cの空隙部の断面形状は、図10に示す場合に限定されず、放熱ピン2
1a(21a1、21a2・・・)の断面形状の少なくとも一部と近似形状あるいは相似
形状とされる場合であってもよい。
Further, the cross-sectional shape of the gap portion of the recess 51C is not limited to the case shown in FIG.
The shape may be an approximate shape or a similar shape to at least a part of the cross-sectional shape of 1a (21a1, 21a2,...).

また、壁部材50側の流速が上がることを抑制できるので、流路全体の流速あるいは流
量を上げることができ、冷却効率を一層向上させることができる。
Moreover, since it can suppress that the flow velocity by the side of the wall member 50 goes up, the flow velocity or flow volume of the whole flow path can be raised, and cooling efficiency can be improved further.

[放熱ピンの他の配列について]
図11(a)、(b)を参照して、放熱ピン21aの他の配列について説明する。
[Other arrangements of heat dissipation pins]
With reference to FIG. 11 (a), (b), the other arrangement | sequence of the thermal radiation pin 21a is demonstrated.

まず、上述の第1から第2の実施例では、例えば図5に示すように、各列の放熱ピン2
1a1、21a2・・・は、各周縁が仮想線F1、F2に接するように配列されていた。
すなわち、各行における放熱ピン(例えば、21a2と21a4)の間隔は、放熱ピンの
直径分の距離となっている。
First, in the first to second embodiments described above, for example, as shown in FIG.
1a1, 21a2,... Are arranged so that their peripheral edges are in contact with the virtual lines F1, F2.
That is, the distance between the heat radiation pins (for example, 21a2 and 21a4) in each row is a distance corresponding to the diameter of the heat radiation pins.

一方、図11(a)に示す配列では、各列の放熱ピン21a1、21a2・・・は、液
体冷媒の流通方向D1と垂直な方向に、幅L20だけオーバーラップ(シフト)するよう
に並べられている。
On the other hand, in the arrangement shown in FIG. 11A, the radiating pins 21a1, 21a2,... In each row are arranged so as to overlap (shift) by a width L20 in a direction perpendicular to the liquid refrigerant flow direction D1. ing.

また、図11(b)に示す配列では、各列の放熱ピン21a1、21a2・・・は、液
体冷媒の流通方向D1と垂直な方向に、幅L21だけオーバーラップ(シフト)するよう
に並べられている。
In the arrangement shown in FIG. 11B, the radiating pins 21a1, 21a2,... In each row are arranged so as to overlap (shift) by a width L21 in a direction perpendicular to the liquid refrigerant flow direction D1. ing.

ここで、L20>L21>0の関係になっている。   Here, the relationship is L20> L21> 0.

すなわち、各行における放熱ピン(例えば、21a2と21a4)の間隔を、放熱ピンの
直径以下の距離としてもよい。
In other words, the distance between the heat radiation pins (for example, 21a2 and 21a4) in each row may be a distance equal to or smaller than the diameter of the heat radiation pins.

このような放熱ピン21aの配列によっても流通方向D1に直線で見通せる流路がなく
なり、液体冷媒を均等に各放熱ピン21a1、21a2・・・に接触させることができる
Even with such an arrangement of the heat radiation pins 21a, there is no flow path that can be seen in a straight line in the flow direction D1, and liquid refrigerant can be evenly brought into contact with the heat radiation pins 21a1, 21a2,.

また、第1から第5の実施例に示す凸部12A等、凹部12C等と、放熱ピン21a1
との位置関係により、流路全体の流速を均等化して、パワーモジュール等の被冷却物を均
一に冷却することができるという同様の効果を奏することができる。
Further, the convex portions 12A and the like, the concave portions 12C and the like shown in the first to fifth embodiments, and the heat radiation pin 21a1.
Therefore, it is possible to achieve the same effect that the flow rate of the entire flow path is equalized and the object to be cooled such as the power module can be cooled uniformly.

[第6の実施例について]
図13を参照して、第6の実施例を説明する。
[About the sixth embodiment]
A sixth embodiment will be described with reference to FIG.

本実施例では、蓋部材20の外周に、流路部材10の上端を囲繞する枠部23を設け流路
部材10の側面上部に溝24aを形成し、リング状のシール部材24(後述する図14を
参照)を収容している。これにより、凸部12A、12B(第3実施例でいえば凹部12
C)を蓋部材20に密着させることができるので、凸部12A、12Bを放熱部材として
も、有効に活用できる。すなわち、パワーモジュールの熱を、放熱ピン群21だけでなく
、凸部12A,12Bに対しても効果的に伝熱させることができ、放熱効果を高めること
ができる。なお、シール部材24を収容する溝については、枠部23に形成してもよい。
In the present embodiment, a frame portion 23 that surrounds the upper end of the flow path member 10 is provided on the outer periphery of the lid member 20, and a groove 24 a is formed in the upper part of the side surface of the flow path member 10. 14). Thus, the convex portions 12A and 12B (the concave portion 12 in the third embodiment).
Since C) can be brought into close contact with the lid member 20, the convex portions 12A and 12B can be effectively used as the heat radiating member. That is, the heat of the power module can be effectively transferred not only to the heat dissipation pin group 21 but also to the convex portions 12A and 12B, and the heat dissipation effect can be enhanced. In addition, you may form in the frame part 23 about the groove | channel which accommodates the sealing member 24. FIG.

[第7の実施例について]
図14及び図15を参照して、第7の実施例を説明する。
[About the seventh embodiment]
A seventh embodiment will be described with reference to FIGS.

本実施例では、図14及び図15に示すように、流路部材10の上面において、凸部12
A、12B及びネジ孔15が形成された周囲(ネジを受ける箇所)を他の箇所よりも高く
するように、段差hを設けている。これにより、凸部12A、12B(第3実施例でいえ
ば凹部12C)を蓋部材20に密着させることができるので、凸部12A、12Bを放熱
部材としても、有効に活用できる。ちなみに、本実施例においても、シール部材24は、
凸部12A、12Bよりも外側、且つ、ネジ孔15の内側に配置されている。
[第8の実施例について]
図16及び図17を参照して、第8の実施例を説明する。
In this embodiment, as shown in FIGS. 14 and 15, the convex portion 12 is formed on the upper surface of the flow path member 10.
The level difference h is provided so that the periphery (location where the screw is received) where A, 12B and the screw hole 15 are formed is higher than other locations. Thereby, since the convex portions 12A and 12B (the concave portion 12C in the third embodiment) can be brought into close contact with the lid member 20, the convex portions 12A and 12B can be effectively used as the heat radiating member. Incidentally, also in this embodiment, the seal member 24 is
It is arranged outside the convex portions 12 </ b> A and 12 </ b> B and inside the screw hole 15.
[About the eighth embodiment]
An eighth embodiment will be described with reference to FIGS.

本実施例では、図16及び図17に示すように、流路部材10の上面において、凸部12
A、12Bの上部と蓋部材20との間にガスケット25を配置した。このガスケット25
は、耐水性及び伝熱性に優れた素材で構成され、例えばカーボンを用いることができる。
これにより、蓋部20から凸部12A、12B(第3実施例でいえば凹部12C)への伝
熱が促進し、凸部12A、12Bを放熱部材としても有効に利用することができる。ちな
みに、本実施例においても、シール部材24は、凸部12A、12Bよりも外側、且つ、
ネジ孔15の内側に配置されている。また、ガスケット25がシール機能も有することか
ら、蓋部材20と流路部材10の間の密封も向上する。
In this embodiment, as shown in FIGS. 16 and 17, the convex portion 12 is formed on the upper surface of the flow path member 10.
A gasket 25 is disposed between the upper part of A and 12B and the lid member 20. This gasket 25
Is made of a material excellent in water resistance and heat conductivity, and for example, carbon can be used.
Thereby, the heat transfer from the cover part 20 to the convex parts 12A and 12B (the concave part 12C in the third embodiment) is promoted, and the convex parts 12A and 12B can be effectively used as a heat radiating member. Incidentally, also in the present embodiment, the sealing member 24 is outside the convex portions 12A and 12B, and
It is arranged inside the screw hole 15. Further, since the gasket 25 also has a sealing function, the sealing between the lid member 20 and the flow path member 10 is improved.

以上本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本明細
書で開示された実施の形態はすべての点で例示であって開示された技術に限定されるもの
ではないと考えるべきである。すなわち、本発明の技術的な範囲は、前記の実施の形態に
おける説明に基づいて制限的に解釈されるものでなく、あくまでも特許請求の範囲の記載
にしたがって解釈すべきであり、特許請求の範囲の記載技術と均等な技術および特許請求
の範囲内でのすべての変更が含まれる。
Although the invention made by the present inventor has been specifically described based on the embodiments, the embodiments disclosed herein are illustrative in all respects and are not limited to the disclosed technology. Should not be considered. That is, the technical scope of the present invention should not be construed restrictively based on the description in the above embodiment, but should be construed according to the description of the scope of claims. All the modifications within the scope of the claims and the equivalent technique to the described technique are included.

1…冷却装置
10…流路部材
11…流路
12…側壁
12A(12A1、12A2)、12B(12B1、12B2)…凸部
12C…凹部
13…流入口
14…流出口
15…ネジ孔
20…蓋部材
21…放熱ピン群
21a(21a1、21a2・・・21an)…放熱ピン
22…ネジ孔
30…ネジ
50…壁部材
50A…凸部
51C…凹部
DESCRIPTION OF SYMBOLS 1 ... Cooling device 10 ... Channel member 11 ... Channel 12 ... Side wall 12A (12A1, 12A2), 12B (12B1, 12B2) ... Convex part 12C ... Concave part 13 ... Inlet 14 ... Outlet 15 ... Screw hole 20 ... Cover Member 21 ... Radiating pin group 21a (21a1, 21a2 ... 21an) ... Radiating pin 22 ... Screw hole 30 ... Screw 50 ... Wall member 50A ... Convex portion 51C ... Concave portion

Claims (5)

凹形状の流路が形成され、液体冷媒が流れる流路部材と、
放熱対象部材が載置され、前記流路の凹形状の開口を閉塞する蓋部材と、を備え、
前記蓋部材には、前記流路内に突出する複数の放熱ピンが千鳥配列で形成され、
前記流路において前記放熱ピンを間に挟む側壁には、複数の凸部が設けられ、
それぞれの前記凸部は、最も前記側壁に近い前記放熱ピン同士の間に向かって突出するように設けられ、且つ、前記凸部と前記放熱ピンを非接触とし、
前記蓋部材は、前記流路部材の外周を囲繞する枠部を有し、
前記枠部又は前記流路部材の外周面のいずれかにシール部材が配置され、
前記蓋部材において前記放熱ピンが形成された面と、前記流路部材の上面が互いに当接する冷却装置。
A channel member in which a concave channel is formed and a liquid refrigerant flows;
A heat radiation target member is placed, and a lid member that closes the concave opening of the flow path,
The lid member is formed with a plurality of heat dissipation pins protruding into the flow path in a staggered arrangement,
A plurality of convex portions are provided on the side wall sandwiching the heat dissipation pin in the flow path,
Each of the convex portions is provided so as to protrude between the heat radiation pins closest to the side wall, and the convex portions and the heat radiation pins are not in contact with each other,
The lid member has a frame portion surrounding the outer periphery of the flow path member,
A seal member is disposed on either the frame portion or the outer peripheral surface of the flow path member,
The cooling device with which the surface in which the said radiation pin was formed in the said lid member, and the upper surface of the said flow-path member contact | abut mutually .
凹形状の流路が形成され、液体冷媒が流れる流路部材と、A channel member in which a concave channel is formed and a liquid refrigerant flows;
放熱対象部材が載置され、前記流路の凹形状の開口を閉塞する蓋部材と、A lid member on which a heat radiation target member is placed and closes the concave opening of the flow path;
前記蓋部材と前記流路部材を締結する締結部材と、A fastening member for fastening the lid member and the flow path member;
前記蓋部材と前記流路部材の間を密封するシール部材と、を備え、A seal member for sealing between the lid member and the flow path member,
前記蓋部材には、前記流路内に突出する複数の放熱ピンが千鳥配列で形成され、The lid member is formed with a plurality of heat dissipation pins protruding into the flow path in a staggered arrangement,
前記流路において前記放熱ピンを間に挟む側壁には、複数の凸部が設けられ、A plurality of convex portions are provided on the side wall sandwiching the heat dissipation pin in the flow path,
それぞれの前記凸部は、最も前記側壁に近い前記放熱ピン同士の間に向かって突出するように設けられ、且つ、前記凸部と前記放熱ピンを非接触とし、Each of the convex portions is provided so as to protrude between the heat radiation pins closest to the side wall, and the convex portions and the heat radiation pins are not in contact with each other,
前記流路部材の上面において、前記凸部は、前記凸部の周囲よりも突出しており、On the upper surface of the flow path member, the convex portion protrudes from the periphery of the convex portion,
前記流路部材の上面において前記締結部材が配置される箇所と、前記凸部の間に前記シール部材が配置される冷却装置。A cooling device in which the sealing member is disposed between a portion where the fastening member is disposed on the upper surface of the flow path member and the convex portion.
請求項1又は2に記載の冷却装置であって、
前記側壁は、最も外側の前記放熱ピンと対向する平面部を有し、
前記液体冷媒は、前記側壁に沿って、前記平面部と前記放熱ピンとの間と、前記凸部と前記放熱ピンの間を交互に流れる冷却装置。
The cooling device according to claim 1 or 2 ,
The side wall has a flat portion facing the outermost heat dissipation pin,
The cooling device in which the liquid refrigerant alternately flows along the side wall between the flat portion and the heat dissipation pin and between the convex portion and the heat dissipation pin.
請求項に記載の冷却装置であって、
前記平面部と前記凸部は、一体形である冷却装置。
The cooling device according to claim 3 ,
The cooling device in which the flat portion and the convex portion are integrated.
請求項1〜のいずれかに記載の冷却装置であって、
前記放熱ピンの千鳥配列において、前記液体冷媒が通過する方向を行又は列としたとき、
前記凸部は、前記放熱ピンの隔行又は隔列ごとに配置される冷却装置。
The cooling device according to any one of claims 1 to 4 ,
In the staggered arrangement of the heat dissipation pins, when the direction in which the liquid refrigerant passes is a row or a column,
The said convex part is a cooling device arrange | positioned for every row or row of the said thermal radiation pin.
JP2015210335A 2015-02-27 2015-10-27 Cooling system Expired - Fee Related JP5897760B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015210335A JP5897760B1 (en) 2015-02-27 2015-10-27 Cooling system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015038075 2015-02-27
JP2015038075 2015-02-27
JP2015210335A JP5897760B1 (en) 2015-02-27 2015-10-27 Cooling system

Publications (2)

Publication Number Publication Date
JP5897760B1 true JP5897760B1 (en) 2016-03-30
JP2016164968A JP2016164968A (en) 2016-09-08

Family

ID=55628678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015210335A Expired - Fee Related JP5897760B1 (en) 2015-02-27 2015-10-27 Cooling system

Country Status (1)

Country Link
JP (1) JP5897760B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176620A1 (en) * 2018-03-15 2019-09-19 三菱電機株式会社 Cooler, power conversion device unit, and cooling system
JP6563161B1 (en) * 2018-03-15 2019-08-21 三菱電機株式会社 Cooler, power converter unit and cooling system
JP7087715B2 (en) * 2018-06-21 2022-06-21 株式会社デンソー Power converter and cooling system
CN111406314B (en) * 2018-06-27 2023-09-22 富士电机株式会社 Cooling device, semiconductor module, and vehicle
FR3098081B1 (en) * 2019-06-30 2023-06-16 Valeo Systemes De Controle Moteur Cooling circuit for electronics housing with power module
CN111295078B (en) * 2019-12-20 2021-12-03 杭州中豪电动科技有限公司 Motor control system cooling water route reposition of redundant personnel structure
WO2023235065A1 (en) * 2022-06-01 2023-12-07 Parker-Hannifin Corporation Heat sink with pin fins and non-straight constant volume flow channel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047258A (en) * 2001-07-30 2003-02-14 Hiroshima Aluminum Industry Co Ltd Water-cooled heat sink
JP2004152945A (en) * 2002-10-30 2004-05-27 Matsushita Electric Ind Co Ltd Contact-type liquid-cooled heat receiving body and cooling system having the same and electronic equipment
WO2012114475A1 (en) * 2011-02-23 2012-08-30 トヨタ自動車株式会社 Cooling device
JP2012222333A (en) * 2011-04-14 2012-11-12 T Rad Co Ltd Heat sink
JP2013120897A (en) * 2011-12-08 2013-06-17 Showa Denko Kk Heat sink
JP2014072395A (en) * 2012-09-28 2014-04-21 Toyota Industries Corp Cooler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047258A (en) * 2001-07-30 2003-02-14 Hiroshima Aluminum Industry Co Ltd Water-cooled heat sink
JP2004152945A (en) * 2002-10-30 2004-05-27 Matsushita Electric Ind Co Ltd Contact-type liquid-cooled heat receiving body and cooling system having the same and electronic equipment
WO2012114475A1 (en) * 2011-02-23 2012-08-30 トヨタ自動車株式会社 Cooling device
JP2012222333A (en) * 2011-04-14 2012-11-12 T Rad Co Ltd Heat sink
JP2013120897A (en) * 2011-12-08 2013-06-17 Showa Denko Kk Heat sink
JP2014072395A (en) * 2012-09-28 2014-04-21 Toyota Industries Corp Cooler

Also Published As

Publication number Publication date
JP2016164968A (en) 2016-09-08

Similar Documents

Publication Publication Date Title
JP5897760B1 (en) Cooling system
US11150028B2 (en) Cooling device with superimposed fin groups and parallel heatpipes
US9844165B2 (en) Advanced heat exchanger with integrated coolant fluid flow deflector
CN103298317B (en) Cooler and cooling device
EP3352215B1 (en) Laminated core type heat sink
JP5983565B2 (en) Cooler
US20130206371A1 (en) Cooling structure
US9651315B2 (en) Fin of heat exchanger and heat exchanger
US10888035B2 (en) Power conversion device
JP2008171840A (en) Liquid-cooling heat sink and design method thereof
BR112013014417A2 (en) EQUIPMENT FOR THE CONVERSION OF THERMAL ENERGY TO ELECTRICITY, EQUIPMENT FOR USING THE EXHAUST GAS HEAT IN AN INTERNAL COMBUSTION ENGINE AND EXHAUST GAS SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
KR20180060262A (en) Plate heat exchanger
WO2014065696A1 (en) Computer module cooler
WO2020009157A1 (en) Heat sink
RU125757U1 (en) COOLER OF COMPUTER COMPUTER MODULES
JP6922645B2 (en) Heat exchanger
JP2012021668A (en) Heat exchanger
KR101449386B1 (en) Marine Engine Cooling for heat exchanger
JP6265949B2 (en) heatsink
JP2023037693A (en) Cooling device
US10108235B2 (en) Information processing apparatus and heat exchanger
RU167555U1 (en) COOLER OF COMPUTER COMPUTER MODULES
JP2023135729A (en) cooling member
JP2020202148A (en) Battery pack
CN219037724U (en) Radiator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160302

R150 Certificate of patent or registration of utility model

Ref document number: 5897760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees