JP5896315B2 - Regenerative brake control device - Google Patents

Regenerative brake control device Download PDF

Info

Publication number
JP5896315B2
JP5896315B2 JP2014194332A JP2014194332A JP5896315B2 JP 5896315 B2 JP5896315 B2 JP 5896315B2 JP 2014194332 A JP2014194332 A JP 2014194332A JP 2014194332 A JP2014194332 A JP 2014194332A JP 5896315 B2 JP5896315 B2 JP 5896315B2
Authority
JP
Japan
Prior art keywords
regenerative
regenerative brake
shift
vehicle speed
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014194332A
Other languages
Japanese (ja)
Other versions
JP2015029416A (en
Inventor
邦繁 林
邦繁 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2014194332A priority Critical patent/JP5896315B2/en
Publication of JP2015029416A publication Critical patent/JP2015029416A/en
Application granted granted Critical
Publication of JP5896315B2 publication Critical patent/JP5896315B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、走行用動力源である電動機を回生駆動することによって回生ブレーキ力を得る電動車両の回生ブレーキ制御装置の技術分野に関する。   The present invention relates to a technical field of a regenerative brake control device for an electric vehicle that obtains a regenerative braking force by regeneratively driving an electric motor that is a driving power source.

バッテリに充電された電力で電動機を走行用動力源として駆動することにより走行を行う電動車両が知られている(尚、本願における電動車両は、走行用動力源として電動機を有する電気自動車、及び、電動機に加えて内燃機関を備えたハイブリッド電気自動車も含む概念である)。この種の電動車両では、減速時に電動機を回生駆動することで制動力(回生ブレーキ力)を得ると共に、回生発電によって車両の運動エネルギーを電気エネルギーとして回収する。回生ブレーキ力は、エネルギー効率の観点からは高く設定することで回生発電量を多く得ることが好ましいが、一方で減速度が大きくなるためドライバビリティへの悪影響が増大してしまう。このように減速時の回生ブレーキ力は、エネルギー効率やドライバビリティを考慮して設定する必要がある。   There is known an electric vehicle that travels by driving an electric motor with electric power charged in a battery as a driving power source (in addition, the electric vehicle in the present application is an electric vehicle having an electric motor as a driving power source, and The concept includes a hybrid electric vehicle including an internal combustion engine in addition to an electric motor). In this type of electric vehicle, a braking force (regenerative braking force) is obtained by regenerative driving of the electric motor during deceleration, and the kinetic energy of the vehicle is recovered as electric energy by regenerative power generation. The regenerative braking force is preferably set to be high from the viewpoint of energy efficiency, but it is preferable to obtain a large amount of regenerative power generation. On the other hand, since the deceleration increases, the adverse effect on drivability increases. Thus, the regenerative braking force during deceleration needs to be set in consideration of energy efficiency and drivability.

特許文献1ではこのような事情に鑑みて、運転手がシフトレバーなどの操作部材を操作することによって、減速時の回生ブレーキ力(回生レベル)の大きさを段階的に選択できるようにしている。これにより、走行状態に応じて運転手が必要と考える回生ブレーキ力を能動的に得ることができ、エネルギー効率とドライバビリティの両立を図っている。   In Patent Document 1, in view of such circumstances, the driver can select the magnitude of the regenerative braking force (regenerative level) at the time of deceleration by operating an operation member such as a shift lever. . As a result, the regenerative braking force that the driver thinks is necessary according to the traveling state can be actively obtained, and both energy efficiency and drivability are achieved.

実用新案登録第2579650号Utility model registration No. 2579650

上記特許文献1では、操作部材の操作回数に応じて回生ブレーキ力(回生レベル)を段階的に制御している。ここで、実際の走行で運転手が意図する回生ブレーキ力は様々であり、このような操作部材には、走行状態に応じた操作性が求められる。例えば市街地走行のように運転手の操作負担を軽減したい場合には、少ない操作回数で所定回生レベルに変更可能であることが好ましい。一方、例えばスポーツ走行のようにきめ細かく回生ブレーキ力の切換制御を行いたい場合には、逆に所定回生レベルに変更するための操作回数が多くなることが好ましい。しかしながら、上記特許文献1では、回生ブレーキ力を所定回生レベルするために必要な操作部材の操作回数は、予め一義的に決められており、運転手側で変更することができないため、このような多様な要求に応じることが難しい。   In the said patent document 1, the regenerative brake force (regenerative level) is controlled in steps according to the frequency | count of operation of an operation member. Here, the regenerative braking force intended by the driver in actual travel varies, and such an operation member is required to have operability according to the travel state. For example, when it is desired to reduce the driver's operation burden as in urban driving, it is preferable that the level can be changed to a predetermined regeneration level with a small number of operations. On the other hand, for example, when it is desired to perform fine switching control of the regenerative braking force as in sports running, it is preferable that the number of operations for changing to a predetermined regenerative level is increased. However, in Patent Document 1 described above, the number of operations of the operation member necessary for setting the regenerative braking force to a predetermined regeneration level is uniquely determined in advance and cannot be changed on the driver side. Difficult to meet various demands.

本発明は上述の問題点に鑑みなされたものであり、走行状態に応じた操作性で、回生ブレーキを所定回生レベルに容易に制御可能な回生ブレーキ制御装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a regenerative brake control device that can easily control a regenerative brake to a predetermined regenerative level with operability according to a traveling state.

(1)本発明に係る回生ブレーキ制御装置は上記課題を解決するために、車輪を駆動する電動機を設定された回生レベルに応じた回生比率に制御して回生ブレーキ力を得る電動車両の回生ブレーキ制御装置において、運転者の操作により前記回生レベルを初期値に対して強弱設定可能に設けられた回生ブレーキ力設定手段と、前記回生ブレーキ力設定手段に基づいて設定された回生比率となるように前記電動機を制御する回生ブレーキ制御手段と、車速が設定目標値になるように自動的に制御する車速一定モードと車間距離を所定値に維持するよう自動的に制御する車間一定モードとを有する自動車速制御手段と、を備え、前記回生ブレーキ制御手段は、前記自動車速制御手段が前記車速一定モードで作動している場合には、前記初期値より前記回生比率を弱める設定を禁止し、前記自動車速制御手段が前記車間一定モードで作動している場合には、前記回生ブレーキ力設定手段による設定に関わらず前記回生レベルを前記初期値に戻すことを特徴とする。 (1) In order to solve the above problems, a regenerative brake control device according to the present invention controls a motor that drives a wheel to a regenerative ratio according to a set regenerative level to obtain a regenerative brake force. In the control device, the regenerative braking force setting means provided so as to be able to set the regenerative level with respect to an initial value by a driver's operation, and a regenerative ratio set based on the regenerative braking force setting means. An automobile having regenerative brake control means for controlling the electric motor, a constant vehicle speed mode for automatically controlling the vehicle speed to a set target value, and a constant inter-vehicle mode for automatically controlling the vehicle distance to be maintained at a predetermined value. comprising a speed control means, wherein the regenerative brake control means, when the automatic vehicle speed control means is operating in the constant vehicle speed mode, from the initial value Prohibits setting of weakening the serial regeneration ratio, when said automatic vehicle speed control means is operating in the inter-vehicle constant mode, to return the regenerative level regardless of the setting by the regenerative braking force setting means to the initial value It is characterized by.

(2)本発明の一態様では、上記(1)の構成において、前記回生ブレーキ制御手段は、前記自動車速制御手段が前記車速一定モードで作動される際に前記回生レベルが前記初期値より弱く設定されている場合は前記回生レベルを前記初期値に戻す。 (2) In an aspect of the present invention, in the configuration of (1), the regenerative brake control unit is configured such that the regeneration level is weaker than the initial value when the vehicle speed control unit is operated in the constant vehicle speed mode. If set, the regeneration level is returned to the initial value.

(3)本発明の一態様では、上記(1)の構成において、前記回生ブレーキ制御手段は前記自動車速制御手段が前記車間一定モードで作動している場合には、前記回生ブレーキ力設定手段の操作による設定をキャンセルする。 (3) In an aspect of the present invention, in the configuration of the above (1) , the regenerative brake control means includes the regenerative brake force setting means when the vehicle speed control means is operating in the inter-vehicle constant mode . Cancel the operation settings.

(4)本発明の一態様では、上記(1)から(3)のいずれか1の構成において、前記初期値はシフトレバーを通常走行モードに対応するDポジションにした場合に設定される回生レベルである。 (4) In one aspect of the present invention, in any one of the configurations (1) to (3) , the initial value is a regeneration level set when the shift lever is set to a D position corresponding to the normal travel mode. It is.

(5)本発明の一態様では、上記(1)から(4)のいずれか1の構成において、前記回生ブレーキ力設定手段は運転手がステアリングを握った状態での操作により前記回生レベルを設定するよう構成されている。 (5) In an aspect of the present invention, in any one of the configurations (1) to (4) , the regenerative braking force setting unit sets the regenerative level by an operation in a state where the driver holds the steering wheel. It is configured to

本発明によれば、走行状態に応じた操作性で、回生ブレーキを所定回生レベルに容易に制御可能な回生ブレーキ制御装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the regenerative brake control apparatus which can control a regenerative brake to a predetermined regeneration level easily with the operativity according to a driving | running | working state can be provided.

本実施例に係る回生ブレーキ制御装置が搭載された電動車両の全体構成を示す概略図である。It is the schematic which shows the whole structure of the electric vehicle carrying the regenerative brake control apparatus which concerns on a present Example. 電動車両の運転席に設けられたシフトレバーの周辺構成を真上側から示す模式図である。It is a schematic diagram which shows the periphery structure of the shift lever provided in the driver's seat of the electric vehicle from right above. 電動車両の運転席に設けられたステアリングにおけるパドルスイッチの周辺構成を示す模式図であるFIG. 3 is a schematic diagram showing a peripheral configuration of a paddle switch in a steering wheel provided in a driver seat of an electric vehicle. シフトレバー及びパドルスイッチによって設定可能な回生ブレーキ力を示す概念図である。It is a conceptual diagram which shows the regenerative braking force which can be set by a shift lever and a paddle switch. 電動車両に搭載された回生ブレーキ制御装置の構成を機能的に示すブロック図である。It is a block diagram which shows functionally the structure of the regenerative brake control apparatus mounted in the electric vehicle. 回生ブレーキ制御装置による回生ブレーキのシフト段の移行を摸式的に示す状態遷移図である。It is a state transition diagram which shows typically shift of the shift stage of regenerative brake by a regenerative brake control device. 回生ブレーキ制御装置による回生ブレーキのシフト段の移行を摸式的に示す状態遷移図である。It is a state transition diagram which shows typically shift of the shift stage of regenerative brake by a regenerative brake control device. 図6の第1変形例である。It is the 1st modification of FIG. 図6の第2変形例である。It is the 2nd modification of FIG.

以下、図面に基づいて本発明の実施の形態を例示的に詳しく説明する。但し、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りはこの発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, embodiments of the present invention will be exemplarily described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention only to those unless otherwise specified. This is just an example.

図1は本実施例に係る回生ブレーキ制御装置が搭載された電動車両(以下、適宜「車両」と称する)の全体構成を示す概略図である。図1では、走行用動力源として電動機であるフロントモータ1a及びリヤモータ1bがそれぞれフロント側及びリヤ側に設けられている(以下、フロントモータ1a及びリヤモータ1bを総称する場合には「モータ1」と記載する)。車両にはバッテリ2が搭載されており、予め直流電力が充電されている。バッテリ2から放電された電力は、フロントインバータ3a及びリヤインバータ3bで交流変換した後、フロントモータ1a及びリヤモータ1bにそれぞれ供給される。フロントモータ1aから出力された動力はフロントトランスアスクル4aを介してフロント駆動輪5aに伝達され、リヤモータ1bから出録された動力はリヤトランスアスクル4bを介してリヤ駆動輪5bに伝達される。   FIG. 1 is a schematic diagram showing the overall configuration of an electric vehicle (hereinafter referred to as “vehicle” as appropriate) on which a regenerative brake control device according to the present embodiment is mounted. In FIG. 1, a front motor 1a and a rear motor 1b, which are electric motors, are provided on the front side and the rear side, respectively, as driving power sources (hereinafter, the front motor 1a and the rear motor 1b are collectively referred to as “motor 1”). To describe). A battery 2 is mounted on the vehicle, and DC power is charged in advance. The electric power discharged from the battery 2 is AC converted by the front inverter 3a and the rear inverter 3b, and then supplied to the front motor 1a and the rear motor 1b, respectively. The power output from the front motor 1a is transmitted to the front drive wheel 5a via the front trans-asscle 4a, and the power recorded from the rear motor 1b is transmitted to the rear drive wheel 5b via the rear-trans-asscle 4b.

モータ1は車両の減速時や降板路をアクセルオフで走行する場合に回生駆動され、発電機として機能する。モータ1の回生駆動時にはブレーキフィーリング(回生ブレーキ)を与えられると共に、運動エネルギーをバッテリ2に電気エネルギーとして回収する。モータ1の回生駆動では交流電力が発電され、インバータ3で直流変換された後、バッテリ2に充電される。このように電動車両では、モータ1の回生駆動によって、運動エネルギーを電気エネルギーとしてバッテリ2に回収することでエネルギーの有効利用がなされる。尚、モータ1の回生ブレーキ力の大きさは、後述する回生ブレーキ制御によって段階的に制御可能になっている。   The motor 1 is regeneratively driven when the vehicle decelerates or travels on a descending road with the accelerator off, and functions as a generator. When the motor 1 is regeneratively driven, a brake feeling (regenerative brake) is given, and kinetic energy is recovered into the battery 2 as electric energy. In the regenerative drive of the motor 1, AC power is generated, and after DC conversion by the inverter 3, the battery 2 is charged. Thus, in the electric vehicle, the energy is effectively used by collecting the kinetic energy as electric energy in the battery 2 by the regenerative driving of the motor 1. Note that the magnitude of the regenerative braking force of the motor 1 can be controlled stepwise by regenerative brake control described later.

このような車両の運転席には運転手の操作によって走行モードを切り換え可能なシフトレバー6(第1の回生ブレーキ力設定手段)が設けられている。図2は車両の運転席に設けられたシフトレバー6の周辺構成を真上側から示す模式図である。   A shift lever 6 (first regenerative braking force setting means) capable of switching the driving mode by a driver's operation is provided in the driver's seat of such a vehicle. FIG. 2 is a schematic diagram showing the peripheral configuration of the shift lever 6 provided in the driver's seat of the vehicle from directly above.

シフトレバー6は初期状態として図示のホームポジションに設定されており、運転手が矢印に沿って前後左右にシフトポジションを変更することにより、対応する走行モードに切り換え可能になっている。ここで、Nポジションは電動機1の動力を駆動輪5に伝達しないニュートラルモードであり、Dポジションは前進走行を行う通常走行モードであり、Rポジションは後退走行を行う後退モードを示している。   The shift lever 6 is set to the illustrated home position as an initial state, and can be switched to a corresponding travel mode by the driver changing the shift position back and forth and right and left along the arrows. Here, the N position is a neutral mode in which the power of the electric motor 1 is not transmitted to the drive wheels 5, the D position is a normal travel mode in which the vehicle travels forward, and the R position indicates a reverse mode in which the vehicle travels backward.

Dポジションを選択することで通常走行モードにある場合、シフトレバー6をBポジションに操作することによって、モータ1の回生ブレーキ力を段階的にシフトできる。運転手がシフトレバー6をBポジションに操作した後にシフトレバー6を開放すると、シフトレバー6は自動的にホームポジションに復帰するように構成されており、Bポジションへの操作回数に応じて回生ブレーキ力(回生比率)が段階的にシフトするようになっている。   When in the normal travel mode by selecting the D position, the regenerative braking force of the motor 1 can be shifted stepwise by operating the shift lever 6 to the B position. When the driver releases the shift lever 6 after operating the shift lever 6 to the B position, the shift lever 6 automatically returns to the home position, and regenerative braking is performed according to the number of operations to the B position. The power (regenerative ratio) shifts in stages.

シフトレバー6の操作状態は、該シフトレバー6に内蔵されたシフトセンサ及びセレクトセンサ(不図示)によって検出される。シフトセンサはシフトレバーの前後方向(図2において上下方向)の操作状態を電圧信号として出力し、セレクトセンサはシフトレバーの左右方向の操作状態を電圧信号として出力する。後述するように、車両の制御系は、このようなシフトセンサ及びセレクトセンサから出力された電圧信号を取得することにより、シフトレバー6がどのポジションに操作されたかを把握できるようになっている。   The operation state of the shift lever 6 is detected by a shift sensor and a select sensor (not shown) built in the shift lever 6. The shift sensor outputs the operation state of the shift lever in the front-rear direction (vertical direction in FIG. 2) as a voltage signal, and the select sensor outputs the operation state of the shift lever in the left-right direction as a voltage signal. As will be described later, the vehicle control system can grasp which position the shift lever 6 is operated by acquiring the voltage signals output from the shift sensor and the select sensor.

図3は車両の運転席に設けられたステアリング9におけるパドルスイッチ10(第2の回生ブレーキ力設定手段)の周辺構成を示す模式図である。パドルスイッチ10は回生ブレーキ力を減少方向に段階的に切り換え可能なパドルプラススイッチ10aと回生ブレーキ力を増加方向に段階的に切り換え可能なパドルマイナススイッチ10bとを備えており、運転手がステアリング9を握った状態で操作可能に構成されている。   FIG. 3 is a schematic diagram showing the peripheral configuration of the paddle switch 10 (second regenerative braking force setting means) in the steering 9 provided in the driver's seat of the vehicle. The paddle switch 10 includes a paddle plus switch 10a that can switch the regenerative braking force stepwise in the decreasing direction and a paddle minus switch 10b that can switch the regenerative braking force stepwise in the increasing direction. It can be operated while holding

ここで図4はシフトレバー6及びパドルスイッチ10によって設定可能な回生ブレーキ力を示す概念図である。ここで、回生ブレーキ力とは回生比率のことであり、回生比率とは一定速度で計測した際の回生量を示す。電動機1の回生ブレーキ力はその大きさによってB0〜B5の6段階のシフト段が設定されている。ここで、それぞれのシフト段を回生レベルとし、シフトレバー6によって設定可能な一連のシフト段をまとめて第1のシフトパターンとし、パドルスイッチ10によって設定可能な一連のシフト段をまとめて第2のシフトパターンとする。回生ブレーキ力はB0からB5に向かうに従って強くなり、運転手の減速フィーリングや回生レベルが増大するようになっている。   FIG. 4 is a conceptual diagram showing the regenerative braking force that can be set by the shift lever 6 and the paddle switch 10. Here, the regenerative braking force is a regenerative ratio, and the regenerative ratio indicates a regenerative amount when measured at a constant speed. The regenerative braking force of the electric motor 1 is set to six shift stages B0 to B5 depending on the magnitude thereof. Here, each shift stage is set to a regeneration level, a series of shift stages that can be set by the shift lever 6 are collectively set as a first shift pattern, and a series of shift stages that can be set by the paddle switch 10 are collectively set to a second level. A shift pattern is used. The regenerative braking force increases as it goes from B0 to B5, so that the driver's deceleration feeling and regenerative level increase.

シフトレバー6によって選択可能な第1のシフトパターンは、シフト段D、B、BLから構成されている。シフト段Dはシフトレバー6をDポジションに操作することによって選択可能であり、回生ブレーキ力は初期値たるB2に相当している。シフト段Bにはシフトレバー6をDポジションからBポジションに一回操作することにより移行し、シフト段Dより回生ブレーキ力が強いB3に設定されている。シフト段BLにはシフトレバー6を更に一回Bポジションに操作することにより移行し、シフト段Bより回生ブレーキ力が強いB5に設定されている。
ここで、B2からB3への回生比率の変化量よりB3からB5への回生比率の変化量の方が大きい。このように、シフトレバー6で設定される回生レベル間における回生比率の変化量を、回生比率が高い回生レベルほど大きく設定することによって、回生量を大きく変更する場合においても、シフトレバー6の操作によって、素早く運転手が望む回生量を得ることができる。
またシフトレバー6はパドルスイッチ10に比べてシフト段数が少なくなっており、所定回生レベルを設定するための操作回数が少なくなるように設定されている。そのため、シフトレバー6ではパドルスイッチ10に比べて同じ回生量を得るためのシフト操作の回数が少なくなるため、少ない操作回数で回生ブレーキ力を容易に増減制御でき、運転手の操作負担の軽減に適している。
The first shift pattern that can be selected by the shift lever 6 includes shift stages D, B, and BL. The shift stage D can be selected by operating the shift lever 6 to the D position, and the regenerative braking force corresponds to the initial value B2. The shift stage B is shifted by operating the shift lever 6 once from the D position to the B position, and the regenerative braking force is set to B3 stronger than the shift stage D. The shift stage BL is shifted by further operating the shift lever 6 to the B position once, and the regenerative braking force is set to B5 stronger than the shift stage B.
Here, the amount of change in the regeneration ratio from B3 to B5 is larger than the amount of change in the regeneration ratio from B2 to B3. Thus, even when the amount of change in the regeneration ratio between the regeneration levels set by the shift lever 6 is set larger as the regeneration level has a higher regeneration ratio, the operation of the shift lever 6 can be performed even when the regeneration amount is greatly changed. Thus, the regenerative amount desired by the driver can be obtained quickly.
The shift lever 6 has a smaller number of shift stages than the paddle switch 10 and is set so that the number of operations for setting a predetermined regeneration level is reduced. As a result, the shift lever 6 requires fewer shift operations to obtain the same regeneration amount than the paddle switch 10, so the regenerative braking force can be easily increased / decreased with a smaller number of operations, thereby reducing the driver's operation burden. Is suitable.

パドルスイッチ10によって選択可能な第2のシフトパターンは、シフト段BA、BB、BC、BD、BE、BFの回生レベルから構成されており、第1のシフトパターンに比べてシフト段数が多くなっている。シフト段BA、BB、BC、BD、BE、BFはそれぞれ回生ブレーキ力がB0、B1、B2、B3、B4、B5に相当しており、パドルプラススイッチ10a及びパドルマイナススイッチ10bの操作回数に応じて移行できるようになっている。
ここで、B0、B1、B2、B3、B4、B5の各々の回生比率の変化量は等しくしてもよい。このようにパドルスイッチ10によって設定される回生レベル間における回生比率の変化料を等しく設定することによって、段階的に回生量を増減できるので、きめ細やかな回生制御が可能となる。
またパドルスイッチ10はシフトレバー6に比べてシフト段数が多くなっており、所定回生レベルを設定するための操作回数が多くなるように設定されていることからも、きめ細やかな回生ブレーキ力の制御に適している。
The second shift pattern can be selected by the paddle switch 10, shift stage BA, BB, BC, BD, BE, and consists regeneration level BF, so the shift stages than many first shift pattern Yes. Shift stages BA, BB, BC, BD, BE, and BF have regenerative braking powers corresponding to B0, B1, B2, B3, B4, and B5, respectively, and correspond to the number of operations of paddle plus switch 10a and paddle minus switch 10b. Can be migrated.
Here, the amount of change in the regeneration ratio of each of B0, B1, B2, B3, B4, and B5 may be equal. In this way, by setting the regenerative ratio change fee between the regeneration levels set by the paddle switch 10 equal, the regeneration amount can be increased or decreased step by step, so that fine regeneration control is possible.
Further, since the paddle switch 10 has a larger number of shift stages than the shift lever 6 and is set so that the number of operations for setting a predetermined regeneration level is increased, fine control of the regenerative braking force is performed. Suitable for

このように所定回生レベルに設定するための操作回数が異なるシフトレバー6及びパドルスイッチ10を備えることにより、走行状態に応じて運転者の意図に沿った回生ブレーキ力の制御が可能になる。特に、シフトレバー6ではパドルスイッチ10に比べて同じ回生量を得るためのシフト操作の回数が少なくなるため、少ない操作回数で回生ブレーキ力を容易に増減制御でき、運転手の操作負担の軽減に適している。逆に、パドルスイッチ10ではシフトレバー6に比べてシフト操作回数が多く設定されているため、きめ細やかな回生ブレーキ力の制御に適している。   By providing the shift lever 6 and the paddle switch 10 having different operations for setting the predetermined regeneration level in this way, it is possible to control the regenerative braking force in accordance with the driver's intention according to the traveling state. In particular, since the shift lever 6 requires fewer shift operations to obtain the same regenerative amount than the paddle switch 10, the regenerative braking force can be easily increased / decreased with a smaller number of operations, thereby reducing the operation burden on the driver. Is suitable. On the contrary, the paddle switch 10 is suitable for fine regenerative braking force control because the number of shift operations is set larger than that of the shift lever 6.

このような各シフト段のうち、第1のシフトパターンのBと第2のシフトパターンのBD、及び、第1のシフトパターンのBLと第2のシフトパターンのBFは、回生比率が等しくなる回生レベルを有するシフト段として共有されている。より詳しくは後述するが、これにより、所定回生レベルを設定するための操作回数が異なることで使い勝手の異なるシフトレバー6及びパドルスイッチ10をスムーズに使い分けることができる。その結果、回生ブレーキ力設定手段による回生レベルの切り換えの自由度が上がり、多様な走行パターンに対応することができる。   Among these shift stages, the first shift pattern B and the second shift pattern BD, and the first shift pattern BL and the second shift pattern BF have the same regeneration ratio. Shared as a shift stage having a level. As will be described in detail later, this makes it possible to smoothly use the shift lever 6 and the paddle switch 10 which are different in usability because the number of operations for setting the predetermined regeneration level is different. As a result, the degree of freedom in switching the regeneration level by the regenerative braking force setting means is increased, and it is possible to deal with various traveling patterns.

このようなシフトパターンに基づいた回生ブレーキ力の制御は、車両に搭載された回生ブレーキ制御装置にて実施される。図5は車両に搭載された回生ブレーキ制御装置の構成を機能的に示すブロック図である。   Control of the regenerative braking force based on such a shift pattern is performed by a regenerative brake control device mounted on the vehicle. FIG. 5 is a block diagram functionally showing the configuration of the regenerative brake control device mounted on the vehicle.

シフトレバー6の操作ポジションは、該シフトレバー6に内蔵されたシフトセンサ及びセレクトセンサから出力された電圧信号を、シフトセンサ電圧検知部12及びセレクトセンサ電圧検知部13にて検出し、シフトレバー判定部14にて判定される。一方、パドルプラススイッチ10a及びパドルマイナススイッチ10bの操作は、パドルプラススイッチ検出部15及びパドルマイナススイッチ検出部16によって検出される。   The operating position of the shift lever 6 is determined by detecting the voltage signal output from the shift sensor and the select sensor built in the shift lever 6 by the shift sensor voltage detecting unit 12 and the select sensor voltage detecting unit 13 and determining the shift lever. Determined by the unit 14. On the other hand, the operation of the paddle plus switch 10 a and the paddle minus switch 10 b is detected by the paddle plus switch detection unit 15 and the paddle minus switch detection unit 16.

シフトポジション判定部17は、シフトレバー判定部14、パドルプラススイッチ検出部15及びパドルマイナススイッチ検出部16のそれぞれの検出結果に基づいて、回生ブレーキ力のシフト段を決定する。具体的には、回生ブレーキ力の初期シフト段(D)を基準として、シフトレバー6のBポジションへの操作回数、並びに、パドルプラススイッチ10a及びパドルマイナススイッチ10bの操作回数に応じて、切り換えるべきシフト段を決定する。 The shift position determination unit 17 determines the shift stage of the regenerative braking force based on the detection results of the shift lever determination unit 14, the paddle plus switch detection unit 15, and the paddle minus switch detection unit 16. Specifically, switching should be performed in accordance with the number of operations of the shift lever 6 to the B position and the number of operations of the paddle plus switch 10a and the paddle minus switch 10b with reference to the initial shift stage (D) of the regenerative braking force. Determine the shift stage.

シフトポジション判定部17で回生ブレーキのシフト段が決定されると、シフトポジション表示部18はコンビネーションメータ19に決定したシフト段を表示して運転手に報知する。一方、回生ブレーキ制御部20は、シフトポジション判定部17で決定されたシフト段になるように、フロントモータ制御部21及びリヤモータ制御22を介してフロントモータ1a及び1bに命令を行い、回生ブレーキ力を制御する。   When the shift position of the regenerative brake is determined by the shift position determination unit 17, the shift position display unit 18 displays the determined shift stage on the combination meter 19 and notifies the driver. On the other hand, the regenerative brake control unit 20 issues a command to the front motors 1a and 1b via the front motor control unit 21 and the rear motor control 22 so that the shift stage determined by the shift position determination unit 17 is reached, and the regenerative brake force To control.

また車両の運転席には、車速を自動的に制御するクルーズコントロール制御のON/OFFを切り換えるためのクルーズコントロールスイッチ23が設けられている。クルーズコントロール制御部24では、運転手によってクルーズコントロールスイッチ23が操作されたか否かを判定し、その結果に応じてクルーズコントロール制御を実施する。ここでクルーズコントロール制御とは、車速を自動的に制御する自動車速制御であり、例えば車速を所定値に維持するように走行制御を行うクルーズコントロール制御や、レーダ検出した車間距離を所定値に維持するように走行制御を行うレーダクルーズコントロール制御などがある。   Further, a cruise control switch 23 for switching ON / OFF of cruise control control for automatically controlling the vehicle speed is provided at the driver's seat of the vehicle. The cruise control control unit 24 determines whether or not the cruise control switch 23 is operated by the driver, and performs cruise control control according to the result. Here, the cruise control is an automobile speed control that automatically controls the vehicle speed. For example, the cruise control control that controls the vehicle so that the vehicle speed is maintained at a predetermined value, or the inter-vehicle distance detected by the radar is maintained at a predetermined value. There is a radar cruise control control that performs traveling control as described above.

図6は回生ブレーキ制御装置による回生ブレーキのシフト段の移行を摸式的に示す状態遷移図である。以下では初期状態として、シフトレバー6をDポジションに設定して車両を通常走行させている状態を想定して説明する。尚、図6では状態遷移図を(a)と(b)に分けて記載しているが、これは図示をわかりやすくする趣旨である。   FIG. 6 is a state transition diagram schematically showing the shift of the shift stage of the regenerative brake by the regenerative brake control device. The following description assumes that the vehicle is normally running with the shift lever 6 set to the D position as an initial state. In FIG. 6, the state transition diagram is divided into (a) and (b), but this is intended to make the illustration easy to understand.

図6ではシフトレバー6によって選択可能な第1のシフトパターンを上段に示し、パドルスイッチ10によって選択可能な第2のシフトパターンを下段に示している。それぞれのシフトパターンに含まれるシフト段には、図4で説明した名称と、対応する回生ブレーキの大きさを記載している。   In FIG. 6, the first shift pattern that can be selected by the shift lever 6 is shown in the upper stage, and the second shift pattern that can be selected by the paddle switch 10 is shown in the lower stage. In the shift stage included in each shift pattern, the name described in FIG. 4 and the size of the corresponding regenerative brake are described.

まず図6(a)に示すように、シフトレバー6をBポジションに操作すると、シフト段は初期状態DからBに移行し(実線矢印a)、回生ブレーキの強さはB2からB3に増加する。更に、再度シフトレバー6をBポジションに操作すると、シフト段はBからBLに移行し(実線矢印b)、回生ブレーキはB3からB5に増加する。このようにシフトレバー6をBポジションに操作することによって、第1のシフトパターンに沿って回生ブレーキ力を変更できる。特に第1のシフトパターンは第2のシフトパターンに比べてシフト段数が少ないので、広範囲に亘る回生ブレーキ制御を少ない操作負担で行うことができる。   First, as shown in FIG. 6A, when the shift lever 6 is operated to the B position, the shift stage shifts from the initial state D to B (solid arrow a), and the strength of the regenerative brake increases from B2 to B3. . Further, when the shift lever 6 is operated again to the B position, the shift stage shifts from B to BL (solid arrow b), and the regenerative brake increases from B3 to B5. In this way, by operating the shift lever 6 to the B position, the regenerative braking force can be changed along the first shift pattern. In particular, since the first shift pattern has a smaller number of shift stages than the second shift pattern, regenerative braking control over a wide range can be performed with a small operation burden.

尚、シフト段がBLにある状態で再度シフトレバー6をBポジションに操作した場合、回生ブレーキが更に強いシフト段が存在しないため、現状のまま維持される。また、初期状態に比べて回生ブレーキが強化されているB及びBLでは、シフトレバー6をDポジションに操作することにより、初期状態Dに戻せるようになっている(実線矢印c及びd)。   When the shift lever 6 is operated to the B position again while the shift stage is at BL, the shift stage 6 is maintained as it is because there is no shift stage with stronger regenerative braking. Further, in B and BL in which the regenerative brake is strengthened compared to the initial state, the shift lever 6 can be returned to the initial state D by operating the shift lever 6 to the D position (solid arrows c and d).

シフト段がシフトレバー6によって選択可能なD、B、BLにある場合にパドルスイッチ10を操作すると、第1のシフトパターンから第2のシフトパターンに移行し、隣り合う大きさの回生ブレーキ力を有するシフト段に移行する。具体的に説明すると、シフト段が初期状態Dにある場合にパドルプラススイッチ10aが操作されると、回生ブレーキが一段階弱いBBに移行する(破線矢印e)。一方、シフト段が初期状態Dにある場合にパドルマイナススイッチ10bが操作されると、回生ブレーキが一段階強いBDに移行する(破線矢印f)。
また、シフト段がBにある場合にパドルプラススイッチ10aが操作されると、回生ブレーキが一段階弱いBCに移行する(破線矢印g)。一方、シフト段がBにある場合にパドルマイナススイッチ10bが操作されると、回生ブレーキが一段階強いBEに移行する(破線矢印h)。
また、シフト段がBLにある場合にパドルプラススイッチ10aが操作されると、回生ブレーキが一段階弱いBEに移行する(破線矢印i)。一方、シフト段がBLにある場合にパドルマイナススイッチ10bが操作されると、回生ブレーキが更に強いシフト段が存在しないため、現状のまま維持される。
When the paddle switch 10 is operated when the shift stage is in D, B, and BL that can be selected by the shift lever 6, the first shift pattern shifts to the second shift pattern, and the regenerative braking force of the adjacent magnitude is applied. It shifts to the shift stage which has. More specifically, when the paddle plus switch 10a is operated when the shift stage is in the initial state D, the regenerative brake shifts to BB that is weaker by one stage (broken line arrow e). On the other hand, if the paddle minus switch 10b is operated when the shift stage is in the initial state D, the regenerative brake shifts to a BD that is one step stronger (broken line arrow f).
Further, when the paddle plus switch 10a is operated when the shift stage is at B, the regenerative brake shifts to BC one stage weak (broken line arrow g). On the other hand, if the paddle minus switch 10b is operated when the shift stage is at B, the regenerative brake shifts to BE which is one step stronger (broken line arrow h).
When the paddle plus switch 10a is operated when the shift stage is at BL, the regenerative brake shifts to BE that is weak by one stage (broken line arrow i). On the other hand, if the paddle minus switch 10b is operated when the shift stage is at BL, there is no shift stage with stronger regenerative braking, so that the current state is maintained.

このようにシフト段が第1のシフトパターンにある場合にパドルスイッチ10が操作されると、第2のシフトパターンに移行する。その後、更にパドルスイッチ10が操作されると、その操作に応じて回生ブレーキ力の大きさが隣り合うシフト段に移行する。具体的に言うと、パドルプラススイッチ10aが操作された場合には回生ブレーキが一段階弱い状態に移行し(破線矢印j1〜j5)、パドルマイナススイッチ10bが操作された場合には回生ブレーキが一段階強い状態に移行する(破線矢印k1〜k5)。   When the paddle switch 10 is operated when the shift stage is in the first shift pattern in this way, the process shifts to the second shift pattern. Thereafter, when the paddle switch 10 is further operated, the magnitude of the regenerative braking force shifts to adjacent shift stages in accordance with the operation. Specifically, when the paddle plus switch 10a is operated, the regenerative brake shifts to a weak state by one step (broken arrows j1 to j5), and when the paddle minus switch 10b is operated, the regenerative brake is reduced. Transition to a strong state (broken arrows k1 to k5).

また第2のシフトパターン上におけるシフト段BA〜BFにおいて、パドルプラススイッチ10aを所定期間ON操作した場合、シフト段は初期状態Dに戻る(一点鎖線l1〜l6)。このようにシフトレバー6を用いることなく、パドルスイッチ10の操作のみによって第2のシフトパターンから初期状態Dに戻せるように構成することで、運転手がステアリング9を握ったままの状態で初期化が可能となる。   Further, in the shift stages BA to BF on the second shift pattern, when the paddle plus switch 10a is turned ON for a predetermined period, the shift stage returns to the initial state D (dashed lines 11 to 16). In this way, the configuration is such that the second shift pattern can be returned to the initial state D only by operating the paddle switch 10 without using the shift lever 6, so that the driver can be initialized while holding the steering wheel 9. Is possible.

続いて図6(b)に示すように、シフト段が第2のシフトパターン上にある場合にシフトレバー6がBポジションに操作された場合、第1のシフトパターン上に移行する。そして第1のシフトパターン上のB及びBLのうち、回生ブレーキ力が現状態より大きく、且つ、現状態の回生ブレーキ力に近い状態に移行する。具体的に言えば、シフト段がBA〜BCにある場合にシフトレバー6をBポジションに操作するとBに移行する(実線矢印m1〜m3)。一方、シフト段がBD〜BEにある場合にシフトレバー6がBポジションに操作されるとBLに移行する(実線矢印n1〜n2)。
尚、シフト段がBFにある場合にシフトレバー6がBポジションに操作しても、回生ブレーキが更に強いシフト段が存在しないため、現状のまま維持される。
Subsequently, as shown in FIG. 6B, when the shift lever 6 is operated to the B position when the shift stage is on the second shift pattern, the shift is made on the first shift pattern. Then, among B and BL on the first shift pattern, the state shifts to a state where the regenerative braking force is larger than the current state and close to the regenerative braking force in the current state. Specifically, if the shift lever 6 is operated to the B position when the shift stage is in the range from BA to BC, the shift is made to B (solid arrows m1 to m3). On the other hand, when the shift stage is at BD to BE and the shift lever 6 is operated to the B position, the shift is made to BL (solid arrows n1 to n2).
Even when the shift lever 6 is operated to the B position when the shift stage is at BF, the shift stage 6 is maintained as it is because there is no shift stage with stronger regenerative braking.

以上説明したように、本実施例では所定回生レベルに設定するための操作回数が異なるシフトレバー6及びパドルスイッチ10を備えることにより、走行状態に応じて運転者の意図に沿った回生ブレーキ力の制御が可能になる。   As described above, in the present embodiment, by providing the shift lever 6 and the paddle switch 10 that are different in the number of operations for setting the predetermined regeneration level, the regenerative braking force in accordance with the driver's intention according to the driving state is provided. Control becomes possible.

(第1変形例)
図7は第1変形例の回生ブレーキ制御装置による回生ブレーキのシフト段の移行を摸式的に示す状態遷移図である。第1変形例は運転手によってクルーズコントロールスイッチがONにされることにより、クルーズコントロール制御部24において車速を所定値に維持するようにクルーズコントロール制御を行う点で上記実施例と異なっている。尚、図7では上記実施例と同様の箇所については共通の符号を使用し、重複する説明は適宜省略することとする。
(First modification)
FIG. 7 is a state transition diagram schematically showing the shift of the shift stage of the regenerative brake by the regenerative brake control device of the first modification. The first modified example is different from the above-described embodiment in that the cruise control is performed by the cruise control control unit 24 so that the vehicle speed is maintained at a predetermined value when the cruise control switch is turned on by the driver. In FIG. 7, the same reference numerals are used for the same parts as in the above embodiment, and the overlapping description is omitted as appropriate.

運転手によってクルーズコントロールスイッチ23がONにされると、クルーズコントロール制御部24は車速が設定目標値になるように自動車速制御を行う。このとき回生ブレーキ制御装置は速走行時の回生量が所定値以下にならないように、初期値(B2)より回生レベルの少ないシフト段BA及びBBへの移行を禁止する。例えば、クルーズコントロールスイッチ23がONされる際に、回生ブレーキのシフト段がBA及びBBにある場合には、回生ブレーキが初期値(B2)であるBCに自動的に移行する(点線矢印o及びp)。また、シフト段がD及びBCにある場合にパドルプラススイッチ10aが操作されると、シフト段がBA及びBBに移行しないようにシフト操作がキャンセルされる(点線矢印q及びr)。 When the cruise control switch 23 is turned on by the driver, the cruise control control unit 24 performs vehicle speed control so that the vehicle speed becomes the set target value. In this case the regenerative brake control apparatus as regeneration amount during the constant speed running is not lower than a predetermined value, prohibits the transition of the initial value (B2) to the more regeneration levels less shift stages BA and BB. For example, when the cruise control switch 23 is turned on and the regenerative brake shift stage is at BA and BB, the regenerative brake automatically shifts to BC, which is the initial value (B2) (dotted arrow o and p). If the paddle plus switch 10a is operated when the shift stage is at D and BC, the shift operation is canceled so that the shift stage does not shift to BA and BB (dotted arrows q and r).

(第2変形例)
図8は第2変形例の回生ブレーキ制御装置による回生ブレーキのシフト段の移行を摸式的に示す状態遷移図である。第2変形例は運転手によってクルーズコントロールスイッチがONにされることにより、クルーズコントロール制御部24においてレーダ探知した車間距離を所定値に維持するようにレーダクルーズコントロール制御を行う点で上記実施例と異なっている。尚、図8では上記実施例と同様の箇所については共通の符号を使用し、重複する説明は適宜省略することとする。
(Second modification)
FIG. 8 is a state transition diagram schematically showing the shift of the shift stage of the regenerative brake by the regenerative brake control device of the second modified example. The second modified example is different from the above-described embodiment in that the radar cruise control is performed so that the distance between the vehicles detected by the radar in the cruise control control unit 24 is maintained at a predetermined value when the cruise control switch is turned on by the driver. Is different. In FIG. 8, the same reference numerals are used for the same parts as in the above embodiment, and the overlapping description is omitted as appropriate.

運転手によってクルーズコントロールスイッチ23がONにされると、クルーズコントロール制御部24はレーダ探知した車間距離が所定値に維持されるように自動車速制御を行う。このレーダクルーズコントロール制御では、モータ1の回生ブレーキの制御も含めた統括的な制御が行われるため、シフトレバー6やパドルスイッチ10が操作されたとしても、その操作はキャンセルされ、回生ブレーキのシフト段は初期状態Dに戻される(図8の点線矢印)。   When the cruise control switch 23 is turned on by the driver, the cruise control control unit 24 performs vehicle speed control so that the inter-vehicle distance detected by the radar is maintained at a predetermined value. In this radar cruise control control, since comprehensive control including control of the regenerative brake of the motor 1 is performed, even if the shift lever 6 or the paddle switch 10 is operated, the operation is canceled and the shift of the regenerative brake is performed. The stage is returned to the initial state D (dotted line arrow in FIG. 8).

本発明は、走行用動力源である電動機を回生駆動することによって回生ブレーキ力を得る電動車両の回生ブレーキ制御装置に利用可能である。   The present invention is applicable to a regenerative brake control device for an electric vehicle that obtains a regenerative braking force by regeneratively driving an electric motor that is a power source for traveling.

1 モータ
2 バッテリ
3 インバータ
4 トランスアスクル
5 駆動輪
6 シフトレバー
9 ステアリング
10 パドルスイッチ
12 シフトセンサ電圧検出部
13 セレクトセンサ電圧検出部
14 シフトレバー位置判定部
15 パドルプラススイッチ検出部
16 パドルマイナススイッチ検出部
17 シフトポジション判定部
18 シフトポジション表示部
19 コンビネーションメータ
20 回生ブレーキ制御部
21 フロントモータ制御部
22 リヤモータ制御部
23 クルーズコントロールスイッチ
24 クルーズコントロール制御部
DESCRIPTION OF SYMBOLS 1 Motor 2 Battery 3 Inverter 4 Transaxle 5 Drive wheel 6 Shift lever 9 Steering 10 Paddle switch 12 Shift sensor voltage detection part 13 Select sensor voltage detection part 14 Shift lever position determination part 15 Paddle plus switch detection part 16 Paddle minus switch detection part 17 Shift position determination unit 18 Shift position display unit 19 Combination meter 20 Regenerative brake control unit 21 Front motor control unit 22 Rear motor control unit 23 Cruise control switch 24 Cruise control control unit

Claims (5)

車輪を駆動する電動機を設定された回生レベルに応じた回生比率に制御して回生ブレーキ力を得る電動車両の回生ブレーキ制御装置において、
運転者の操作により前記回生レベルを初期値に対して強弱設定可能に設けられた回生ブレーキ力設定手段と、
前記回生ブレーキ力設定手段に基づいて設定された回生比率となるように前記電動機を制御する回生ブレーキ制御手段と、
車速が設定目標値になるように自動的に制御する車速一定モードと車間距離を所定値に維持するよう自動的に制御する車間一定モードとを有する自動車速制御手段と、
を備え、
前記回生ブレーキ制御手段は、
前記自動車速制御手段が前記車速一定モードで作動している場合には、前記初期値より前記回生比率を弱める設定を禁止し、
前記自動車速制御手段が前記車間一定モードで作動している場合には、前記回生ブレーキ力設定手段による設定に関わらず前記回生レベルを前記初期値に戻すことを特徴とする回生ブレーキ制御装置。
In a regenerative brake control device for an electric vehicle that obtains a regenerative braking force by controlling a motor that drives a wheel to a regenerative ratio according to a set regenerative level,
Regenerative braking force setting means provided so as to be able to set the regenerative level with respect to the initial value by a driver's operation;
Regenerative brake control means for controlling the electric motor to have a regenerative ratio set based on the regenerative brake force setting means;
A vehicle speed control means having a vehicle speed constant mode that automatically controls the vehicle speed to be a set target value and a vehicle constant mode that automatically controls the vehicle distance to be maintained at a predetermined value ;
With
The regenerative brake control means includes
When the vehicle speed control means is operating in the vehicle speed constant mode, prohibiting setting to weaken the regeneration ratio from the initial value ,
The regenerative brake control device, wherein when the vehicle speed control means is operating in the inter-vehicle constant mode, the regenerative level is returned to the initial value regardless of the setting by the regenerative brake force setting means .
前記回生ブレーキ制御手段は、前記自動車速制御手段が前記車速一定モードで作動される際に前記回生レベルが前記初期値より弱く設定されている場合は前記回生レベルを前記初期値に戻すことを特徴とする請求項1に記載の回生ブレーキ制御装置。 The regenerative brake control means returns the regenerative level to the initial value when the regenerative level is set to be weaker than the initial value when the vehicle speed control means is operated in the constant vehicle speed mode. The regenerative brake control device according to claim 1. 前記回生ブレーキ制御手段は前記自動車速制御手段が前記車間一定モードで作動している場合には、前記回生ブレーキ力設定手段の操作による設定をキャンセルすることを特徴とする請求項1に記載の回生ブレーキ制御装置。 2. The regenerative brake control unit according to claim 1, wherein the regenerative brake control unit cancels the setting by the operation of the regenerative brake force setting unit when the vehicle speed control unit operates in the inter-vehicle constant mode. Brake control device. 前記初期値はシフトレバーを通常走行モードに対応するDポジションにした場合に設定される回生レベルであることを特徴とする請求項1からのいずれか1項に記載の回生ブレーキ制御装置。 The regenerative brake control device according to any one of claims 1 to 3 , wherein the initial value is a regenerative level set when the shift lever is set to a D position corresponding to the normal travel mode. 前記回生ブレーキ力設定手段は運転手がステアリングを握った状態での操作により前記回生レベルを設定するよう構成されていることを特徴とする請求項1からのいずれか1項に記載の回生ブレーキ制御装置。
The regenerative brake according to any one of claims 1 to 4 , wherein the regenerative brake force setting means is configured to set the regenerative level by an operation in a state where a driver holds the steering wheel. Control device.
JP2014194332A 2014-09-24 2014-09-24 Regenerative brake control device Active JP5896315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014194332A JP5896315B2 (en) 2014-09-24 2014-09-24 Regenerative brake control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014194332A JP5896315B2 (en) 2014-09-24 2014-09-24 Regenerative brake control device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012281496A Division JP5896301B2 (en) 2012-12-25 2012-12-25 Regenerative brake control device

Publications (2)

Publication Number Publication Date
JP2015029416A JP2015029416A (en) 2015-02-12
JP5896315B2 true JP5896315B2 (en) 2016-03-30

Family

ID=52492736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014194332A Active JP5896315B2 (en) 2014-09-24 2014-09-24 Regenerative brake control device

Country Status (1)

Country Link
JP (1) JP5896315B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017143685A (en) * 2016-02-12 2017-08-17 三菱自動車工業株式会社 Regeneration control device
RU2750051C1 (en) * 2017-12-15 2021-06-21 Ниссан Мотор Ко., Лтд. Method for controlling regenerative braking and apparatus for controlling regenerative braking
JP6826793B2 (en) * 2018-09-28 2021-02-10 本田技研工業株式会社 Control devices, control methods and programs

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168283A (en) * 1999-02-08 2005-06-23 Toyota Motor Corp Vehicle braked by torque of motor and method for controlling same
JP2003252193A (en) * 2002-03-01 2003-09-10 Toyota Motor Corp Deceleration control for vehicle
JP2005039908A (en) * 2003-07-17 2005-02-10 Mitsubishi Motors Corp Regenerative braking control unit of hybrid vehicle
JP4320624B2 (en) * 2004-08-30 2009-08-26 トヨタ自動車株式会社 Vehicle deceleration control device
JP2011239605A (en) * 2010-05-12 2011-11-24 Toyota Motor Corp Controller of vehicle
JP2012086773A (en) * 2010-10-22 2012-05-10 Nissan Motor Co Ltd Traveling control device for vehicle

Also Published As

Publication number Publication date
JP2015029416A (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5896301B2 (en) Regenerative brake control device
US10377242B2 (en) Regenerative brake control device
KR101875641B1 (en) System and method for torque control of electric vehicle
JP6649600B2 (en) Regenerative control device for electric vehicles
JP5652020B2 (en) Creep cut control device for electric vehicle
US20150019097A1 (en) Control system for vehicle
JP6501069B2 (en) Vehicle regenerative control system
JP2015080977A (en) Travel control device of hybrid vehicle
US20170282926A1 (en) Regeneration control apparatus
JP5896315B2 (en) Regenerative brake control device
JP6372772B2 (en) Regenerative brake control device
JP5262692B2 (en) Vehicle brake operation evaluation device, vehicle brake operation evaluation method, brake control device, and battery control device
JP5900746B2 (en) Regenerative control device for electric vehicle
JP5896316B2 (en) Regenerative brake control device
JP2018154230A (en) Control system of hybrid vehicle
JP6291671B2 (en) Vehicle control device
JP2017103980A (en) Vehicular regeneration control apparatus
JP6202410B2 (en) Regenerative brake control device
JP6202411B2 (en) Regenerative brake control device
JP5896311B2 (en) Regenerative brake control device
JP2014057417A (en) Vehicular control device
JP2019088114A (en) Vehicle drive support apparatus
JP2017165262A (en) Work vehicle
JP2011251634A (en) Control device of hybrid car

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160218

R151 Written notification of patent or utility model registration

Ref document number: 5896315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350