JP5895437B2 - Thin steel sheet for warm forming excellent in formability and strength increasing ability, and warm forming method using the same - Google Patents

Thin steel sheet for warm forming excellent in formability and strength increasing ability, and warm forming method using the same Download PDF

Info

Publication number
JP5895437B2
JP5895437B2 JP2011225157A JP2011225157A JP5895437B2 JP 5895437 B2 JP5895437 B2 JP 5895437B2 JP 2011225157 A JP2011225157 A JP 2011225157A JP 2011225157 A JP2011225157 A JP 2011225157A JP 5895437 B2 JP5895437 B2 JP 5895437B2
Authority
JP
Japan
Prior art keywords
room temperature
steel sheet
strength
phase
thin steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011225157A
Other languages
Japanese (ja)
Other versions
JP2012107319A (en
Inventor
金子 真次郎
真次郎 金子
達也 中垣内
達也 中垣内
長滝 康伸
康伸 長滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011225157A priority Critical patent/JP5895437B2/en
Publication of JP2012107319A publication Critical patent/JP2012107319A/en
Application granted granted Critical
Publication of JP5895437B2 publication Critical patent/JP5895437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、主に自動車の構造部材に好適な室温での引張強度(TS)が780MPa以上の高強度薄鋼板(具体的には、高強度熱延鋼板、高強度冷延鋼板、高強度溶融亜鉛めっき鋼板を含む。)に係るものであり、特に、温間成形を施すことにより、高い延性を示すことで優れたプレス成形性を有しながら、成形後には強度の上昇を示すことで高い部材強度を達成する温間成形用薄鋼板および温間成形方法に関する。   The present invention is a high-strength thin steel sheet having a tensile strength (TS) at room temperature of 780 MPa or more suitable for structural members of automobiles (specifically, high-strength hot-rolled steel sheets, high-strength cold-rolled steel sheets, high-strength molten steels). Including galvanized steel sheet.) In particular, by performing warm forming, it exhibits high strength after forming while having excellent press formability by exhibiting high ductility. The present invention relates to a thin steel sheet for warm forming that achieves member strength and a warm forming method.

近年、衝突時における乗員の安全性確保や車体の軽量化による燃費改善を目的として、室温での引張強度(TS)が780MPa以上で、板厚が、例えば3mm以下と薄い高強度薄鋼板の自動車構造部材への適用が積極的に進められている。   In recent years, for the purpose of ensuring the safety of passengers in the event of a collision and improving fuel economy by reducing the weight of the vehicle body, a high-strength steel sheet with a tensile strength (TS) at room temperature of 780 MPa or more and a sheet thickness of 3 mm or less Application to structural members is being actively promoted.

しかしながら、一般的には、鋼板の高強度化は鋼板のプレス成形性の低下につながることから、高強度と優れた成形性を併せ持つ鋼板が望まれている。一方で、鋼板を高温に加熱した状態で塑性加工を施す温間成形を行うことにより、変形抵抗の低減を利用して成形性を向上したり、プレス中の加工−熱処理により強度を上昇する検討が行われている。   However, in general, increasing the strength of a steel sheet leads to a decrease in press formability of the steel sheet, so a steel sheet having both high strength and excellent formability is desired. On the other hand, it is possible to improve the formability by reducing deformation resistance and to increase the strength by working-heat treatment during pressing by performing warm forming that performs plastic working while the steel sheet is heated to a high temperature. Has been done.

成形性を向上する技術では、例えば、特許文献1には、C:0.010〜0.10wt%、Si:0.05〜2.0wt%、Mn:0.50〜3.00wt%、P:0.003〜0.15wt%、S:0.01wt%以下を含有し、残部はFeおよび不可避不純物からなる成分組成を有し、かつその組織が、主相であるフェライト相と第2相であるマルテンサイト相とを主体にして構成され、(100℃におけるYS)/(20℃におけるYS)が0.50以下であることを特徴とする温間プレス成形性に優れた薄鋼板が提案されている。   In the technology for improving the moldability, for example, Patent Document 1 includes C: 0.001 to 0.10 wt%, Si: 0.05 to 2.0 wt%, Mn: 0.50 to 3.00 wt%, P : 0.003 to 0.15 wt%, S: 0.01 wt% or less, with the balance being a component composition composed of Fe and inevitable impurities, and the structure of the ferrite phase and the second phase as the main phase Proposed a thin steel sheet with excellent warm press formability, which is composed mainly of the martensite phase and has a (YS at 100 ° C) / (YS at 20 ° C) of 0.50 or less. Has been.

特許文献2には、質量%にて、C:0.03〜0.2%、Si:0.5%以下、Mn:l〜3%、P:0.1%以下、S:0.1%以下、Cr:0.01〜1%、Al:0.01〜0.1%、N:0.02%以下を含有し、残部はFeおよび不純物からなる組成で、室温における引張強さに対する450℃における引張強さの比が、0.7以下であることを特徴とする高張力薄鋼板が提案されている。   In Patent Document 2, in mass%, C: 0.03 to 0.2%, Si: 0.5% or less, Mn: 1 to 3%, P: 0.1% or less, S: 0.1 %: Cr: 0.01-1%, Al: 0.01-0.1%, N: 0.02% or less, with the balance being composed of Fe and impurities, with respect to the tensile strength at room temperature A high-tensile steel sheet characterized by a ratio of tensile strength at 450 ° C. of 0.7 or less has been proposed.

特許文献3には、質量%で、C:0.01〜0.12%、Si:2.0%以下、Mn:0.01〜2.0%、P:0.2%以下、Al:0.001〜0.1%、N:0.0040〜0.0200%を含み、さらに、Ti:0.001〜0.1%、B:0.01%以下を含有し、残部Feおよび不可避的不純物よりなる組成と、平均結晶粒径が8μm以下のフェライトを主相とする組織を有し、かつ質量%で0.0040〜0.0080%の固溶N量を有することを特徴とする温間プレス成形性に優れた高張力熱延鋼板が提案されている。   In Patent Document 3, in mass%, C: 0.01 to 0.12%, Si: 2.0% or less, Mn: 0.01 to 2.0%, P: 0.2% or less, Al: Including 0.001 to 0.1%, N: 0.0040 to 0.0200%, and further containing Ti: 0.001 to 0.1% and B: 0.01% or less, the remaining Fe and inevitable Characterized by having a composition composed of mechanical impurities, a structure whose main phase is ferrite with an average crystal grain size of 8 μm or less, and a solid solution N content of 0.0040 to 0.0080% by mass%. A high-tensile hot-rolled steel sheet excellent in warm press formability has been proposed.

特許文献4には、質量%で、C:0.05〜0.6%、Si+Al:0.5〜3%、Mn:0.5〜3%、P:0.15%以下、S:0.02%以下を含有し、且つ、母相組織は、平均硬度がピッカース硬度で240Hv以上であるベイニティック・フェライト及び/又はグラニュラー・ベイニティック・フェライトを全組織に対して占積率で70%以上含有し、第2相組織は、残留オーステナイトを全組織に対して占積率で5〜30%含有し、該残留オーステナイト中のC濃度(CγR)は1.0%以上であり、更にベイナイト/マルテンサイトを含有しても良いものであることを特徴とする温間加工による伸び、及び伸びフランジ性に優れた高強度鋼板が提案されている。   In Patent Document 4, in mass%, C: 0.05 to 0.6%, Si + Al: 0.5 to 3%, Mn: 0.5 to 3%, P: 0.15% or less, S: 0 .02% or less, and the matrix structure is composed of bainitic ferrite and / or granular bainitic ferrite having an average hardness of 240 Hv or more in Picker's hardness with respect to the entire structure. 70% or more, and the second phase structure contains residual austenite in a space ratio of 5 to 30% with respect to the entire structure, and the C concentration (CγR) in the residual austenite is 1.0% or more, Furthermore, a high-strength steel sheet excellent in elongation due to warm working and stretch flangeability, characterized by containing bainite / martensite, has been proposed.

また、強度を上昇する技術では、例えば、特許文献5には、重量%で、C:0.01〜0.20%、Si:0.01〜3.0%、Mn:0.01〜3.0%、P:0.002〜0.2%、S:0.001〜0.020%、Al:0.005〜2.0%、N:0.0002〜0.01%、Mo:0.01〜1.5%、を含有し、更に重量%で、Cr:0.01〜1.5%.Nb:0.005〜0.10%、Ti:0.005〜0.10%、V:0.005〜0.10%、B:0.0003〜0.005%、の1種または2種以上を含有せしめ、その範囲が特定の成分組成式を満足し、かつ残部が鉄および不可避的不純物からなることを特徴とする熱処理硬化能に優れた薄鋼板が提案されている。   In the technique for increasing the strength, for example, in Patent Document 5, C: 0.01 to 0.20%, Si: 0.01 to 3.0%, Mn: 0.01 to 3 in weight%. 0.0%, P: 0.002 to 0.2%, S: 0.001 to 0.020%, Al: 0.005 to 2.0%, N: 0.0002 to 0.01%, Mo: 0.01 to 1.5%, and in addition, by weight, Cr: 0.01 to 1.5%. One or two of Nb: 0.005 to 0.10%, Ti: 0.005 to 0.10%, V: 0.005 to 0.10%, B: 0.0003 to 0.005% There has been proposed a thin steel sheet having excellent heat treatment hardenability, characterized by containing the above, the range satisfying a specific component composition formula, and the balance being iron and inevitable impurities.

特許文献6には、質量%で、C:0.02〜0.20%.Si:0.5〜2.0%、Mn:0.5〜2.5%、sol.Al:0.15〜1.2%、N:0.020%以下、かつ、Si(%)+sol.Al(%)≧1.2(%)を満足し、残部がFeおよび不可避的不純物からなり、体積%で10%以上のベイナイト相を含有し、パーライト相とマルテンサイト相の合計が体積%で10%以下である結晶組織を備えた温間成形用高張力鋼板が提案されている。   In Patent Document 6, C: 0.02 to 0.20% by mass%. Si: 0.5-2.0%, Mn: 0.5-2.5%, sol. Al: 0.15-1.2%, N: 0.020% or less, and Si (%) + sol. Al (%) ≧ 1.2 (%) is satisfied, the balance is made of Fe and inevitable impurities, contains 10% or more bainite phase by volume%, and the sum of pearlite phase and martensite phase is volume%. A high-tensile steel sheet for warm forming having a crystal structure of 10% or less has been proposed.

特開2000−87183号公報JP 2000-87183 A 特開2003−113442号公報Japanese Patent Laid-Open No. 2003-113442 特開2001−234282号公報JP 2001-234282 A 特開2004−190050号公報Japanese Patent Laid-Open No. 2004-190050 特開2000−234153号公報JP 2000-234153 A 特開2002−256388号公報Japanese Patent Laid-Open No. 2002-256388

しかしながら、特許文献1および2に記載された技術は、温間成形での変形抵抗の低下を利用した寸法精度の向上を意図したものであって、温間成形時の成形性(延性)を向上することを意図するものではない。また、特許文献3に記載された技術は、温間成形での変形抵抗の変化を利用した絞り性の向上を意図したものであって、温間成形時の延性については考慮されておらず、適用できる成形様式が限定されてしまうという問題がある。さらに、特許文献1〜3は、いずれも温間加工後の常温(部材の使用環境)における強度については考慮されていない。特許文献4に記載された技術は、母相組織の平均硬度と残留オーステナイト中のC濃度及びその体積率を制御して延性と伸びフランジ性を向上するものであるが、温間加工後の常温(部材の使用環境)における強度については考慮されていない。さらに、特許文献5に記載された技術は、転位密度の高い母相組織中に温間成形で微細炭化物を形成させて強度を上昇させることを意図したものであり、特許文献6に記載された技術は、転位密度の高い母相組織を温間成形で歪み時効硬化させて強度を上昇させることを意図したものであるが、いずれも温間成形時の成形性については何ら考慮がされていない。   However, the techniques described in Patent Documents 1 and 2 are intended to improve the dimensional accuracy using the reduction in deformation resistance in warm forming, and improve the formability (ductility) during warm forming. It is not intended to be. In addition, the technique described in Patent Document 3 is intended to improve drawability using a change in deformation resistance in warm forming, and does not consider ductility during warm forming. There is a problem that applicable molding modes are limited. Further, Patent Documents 1 to 3 do not take into account the strength at normal temperature (use environment of the member) after warm working. The technique described in Patent Document 4 is to improve the ductility and stretch flangeability by controlling the average hardness of the matrix structure, the C concentration in the retained austenite, and the volume ratio thereof. The strength in the (use environment of the member) is not considered. Furthermore, the technique described in Patent Document 5 is intended to increase the strength by forming fine carbides by warm forming in a matrix structure having a high dislocation density, and is described in Patent Document 6. The technology is intended to increase the strength by strain-aging hardening of the matrix structure with a high dislocation density by warm forming, but none of them considers the formability during warm forming. .

本発明の目的は、これらの問題を解決し、780MPa以上の引張強度(TS)を有する高強度薄鋼板において、温間成形の適用によりプレス成形性を向上させると同時に、温間成形後の部材においては、その使用環境(常温)における強度を上昇可能な温間成形用薄鋼板およびそれを用いた温間成形方法を提供することにある。   The object of the present invention is to solve these problems and improve the press formability by applying warm forming in a high strength thin steel sheet having a tensile strength (TS) of 780 MPa or more, and at the same time, a member after warm forming Is to provide a warm-forming thin steel sheet capable of increasing the strength in its use environment (normal temperature) and a warm-forming method using the same.

まず、この発明の根拠となる実験事実について述べる。
化学組成(質量%)として、0.089%C−1.38%Si−2.46%Mn−0.012%P−0.0022%S−0.041%Al−0.0026%N−0.22%Crを含有する鋼Aと、0.092%C−0.14%Si−2.41%Mn−0.023%P−0.0011%S−0.035%A1−0.0030%N−0.16%Cr−0.021%Nbを含有する鋼Bを、それぞれ真空溶解炉にて50kg溶製して鋳片とした。
First, experimental facts that form the basis of the present invention will be described.
Steel A containing 0.089% C-1.38% Si-2.46% Mn-0.012% P-0.0022% S-0.041% Al-0.0026% N-0.22% Cr as the chemical composition (mass%) and 0.092% C- Steel B containing 0.14% Si-2.41% Mn-0.023% P-0.0011% S-0.035% A1-0.0030% N-0.16% Cr-0.021% Nb was melted and casted in a vacuum melting furnace. It was a piece.

これらの溶製した鋳片を1250℃に加熱し、粗圧延を施したのち、仕上げ圧延を880℃の温度で行い、620℃で巻取相当熱処理を施して板厚3.2mmの熱延鋼板とした。これら熱延鋼板は酸洗を施して表面のスケールを除去し、さらに圧下率50%の冷間圧延を施して板厚1.6mmの冷延鋼板とした。次いで、750〜900℃で300秒の均熟処理を施した後に、300〜500℃まで冷却し、その温度で120秒保持したのち室温まで冷却し、種々の鋼板を作製した。これらの鋼板について、鋼組織の同定を行うとともに、鋼組織を構成する各相の面積率(%)を測定した。鋼組織(ミクロ組織)は鋼板の圧延方向に平行な板厚断面について、ナイタールによる腐食現出組織を走査型電子顕微鏡(SEM)で5000倍に拡大して鋼組織を同定した。これを画像解析ソフト(Image−Pro;Cybernetics社製)により解析し各相の面積率(%)を求めた。鋼板を板厚l/4位置まで研磨した後に、さらに0.1mmを化学研磨した面を測定面として、X線回折装置でMoのKα線を用いて、面心立方(fcc)鉄の(200)、(220)、(311)面と、体心立方(bcc)鉄の(200)、(211)、(220)面の積分強度を測定し、そのfccの比率をもって残留オーステナイト相の体積率を求め、3次元的に均質と仮定して、これを残留オーステナイト相の面積率(%)とした。また、圧延方向と直角方向にJIS5号引張試験片を採取し、JIS Z2241(2011年)に準拠して、20mm/minのクロスヘッド速度で、試験温度を室温から500℃まで変化した温間引張試験を行い、機械的性質を評価した。一部のサンプルについては、温間引張試験を歪み量0.10で停止し、室温まで冷却したのち、再度引張試験を実施し、機械的特性を評価した。   These melted slabs are heated to 1250 ° C, subjected to rough rolling, finish rolling is performed at a temperature of 880 ° C, and a heat treatment equivalent to winding is performed at 620 ° C to produce a hot rolled steel sheet having a thickness of 3.2 mm. did. These hot-rolled steel sheets were pickled to remove scale on the surface, and further cold-rolled with a reduction rate of 50% to obtain cold-rolled steel sheets with a thickness of 1.6 mm. Next, after aging at 750 to 900 ° C. for 300 seconds, it was cooled to 300 to 500 ° C., held at that temperature for 120 seconds, and then cooled to room temperature to prepare various steel plates. About these steel plates, while identifying steel structure, the area ratio (%) of each phase which comprises steel structure was measured. The steel structure (micro structure) was identified by magnifying the corrosion manifestation structure by Nital by 5,000 times with a scanning electron microscope (SEM) on the thickness cross section parallel to the rolling direction of the steel sheet. This was analyzed by image analysis software (Image-Pro; manufactured by Cybernetics) to determine the area ratio (%) of each phase. After polishing the steel plate to the thickness l / 4 position, and using the surface of 0.1 mm chemically polished as the measurement surface, using the Kα line of Mo with an X-ray diffractometer, the face-centered cubic (fcc) iron (200) , (220), (311) plane, and (200), (211), (220) plane integral strength of body-centered cubic (bcc) iron are measured, and the volume fraction of retained austenite phase is determined by the ratio of its fcc It was determined and assumed to be three-dimensionally homogeneous, and this was defined as the area ratio (%) of the retained austenite phase. In addition, JIS No. 5 tensile test specimens were taken in the direction perpendicular to the rolling direction, and in accordance with JIS Z2241 (2011), the test temperature was changed from room temperature to 500 ° C at a crosshead speed of 20 mm / min. Tests were performed to evaluate mechanical properties. For some samples, the warm tensile test was stopped at a strain amount of 0.10, cooled to room temperature, and then the tensile test was performed again to evaluate the mechanical properties.

上記鋼Aを用いて作製した、鋼組織が、面積率で、ポリゴナルフェライト相が65%、マルテンサイト相が34%および残留オーステナイト相が1%であるサンプル鋼Alと、ポリゴナルフェライト相が6%、マルテンサイト相が67%および残留オーステナイト相が2%および残部がベイナイト相であるサンプル鋼A2の2種類を用意し、また、上記鋼Bを用いて作製した、鋼組織が、面積率で、ポリゴナルフェライト相が54%、マルテンサイト相が44%および残留オーステナイト相が2%であるサンプル鋼Blを用意し、これらのサンプルA1、A2、B1について、引張強度(TS)と全伸び(El)との積の値(TS×El)と試験温度の関係を図1に示す。   Sample steel Al produced by using the above steel A having an area ratio of 65% polygonal ferrite phase, 34% martensite phase and 1% residual austenite phase, and polygonal ferrite phase Two types of sample steel A2, 6%, martensite phase 67%, residual austenite phase 2%, and the balance bainite phase, were prepared. Sample steel Bl with 54% of polygonal ferrite phase, 44% of martensite phase and 2% of retained austenite phase is prepared. For these samples A1, A2 and B1, tensile strength (TS) and total elongation FIG. 1 shows the relationship between the product value of (El) and the test temperature (TS × El).

図1の結果から、サンプル鋼A1では、試験温度が250℃から400℃の範囲でTSとE1との積の値が著しく高い値を示し、温間で優れた成形性を示している。一方、サンプル鋼A2、B1では、TSとE1の積の値の顕著な上昇は認められなかった。   From the results shown in FIG. 1, sample steel A1 shows a remarkably high value of the product of TS and E1 at a test temperature in the range of 250 ° C. to 400 ° C., and shows excellent formability in warm conditions. On the other hand, in sample steels A2 and B1, no significant increase in the value of the product of TS and E1 was observed.

上記したサンプル鋼Al、A2およびB1について、温間での引張試験を歪み量0.10で停止し、室温まで冷却したのち、再度引張試験をしたときのTSから、室温で引張試験をしたときのTSを差し引いた値、すなわちTSの上昇量(△TS)を求めた。求めた△TSと試験温度の関係を図2に示す。   For the sample steels Al, A2 and B1, the warm tensile test was stopped at a strain of 0.10, and after cooling to room temperature, the TS when the tensile test was performed at room temperature was changed from the TS when the tensile test was performed again. The value obtained by subtracting the value, that is, the TS increase (ΔTS) was obtained. The relationship between the obtained ΔTS and test temperature is shown in FIG.

図2の結果から、サンプル鋼A1では、試験温度が250℃から400℃の範囲で△TSが150MPa超えと著しく高い値を示し、高い強度上昇能を示す。一方、サンプル鋼A2、B1では、△TSの上昇傾向は認められるものの、いずれも100MPa以下と低い値であった。   From the results shown in FIG. 2, sample steel A1 shows a remarkably high value of ΔTS exceeding 150 MPa in the test temperature range of 250 ° C. to 400 ° C., and shows a high strength increasing ability. On the other hand, in the sample steels A2 and B1, although an upward trend of ΔTS was recognized, both were low values of 100 MPa or less.

次に、鋼Aについて種々の焼鈍条件で製造したサンプルについて、試験温度が300℃でのTSとElとの積の値TS×Elと、ポリゴナルフェライト相およびマルテンサイト相の面積率との関係をプロットしたものを図3に示す。図3の結果から、ポリゴナルフェライト相の面積率が30%以上の範囲でかつマルテンサイト相の面積率が20%以上の場合にTSとE1との積の値TS×Elが20000以上と著しく高い値を示し、温間で優れた成形性を示すことがわかる。   Next, the relationship between the value TS × El of the product of TS and El at a test temperature of 300 ° C., and the area ratios of the polygonal ferrite phase and the martensite phase for the samples manufactured for steel A under various annealing conditions. 3 is plotted in FIG. From the result of FIG. 3, when the area ratio of the polygonal ferrite phase is in the range of 30% or more and the area ratio of the martensite phase is 20% or more, the value TS × E1 of TS and E1 is remarkably 20000 or more. It shows a high value and shows excellent moldability in warm conditions.

また、鋼Aについて種々の焼鈍条件で製造したサンプルについて、試験温度が300℃でのΔTSと、ポリゴナルフェライト相およびマルテンサイト相の面積率との関係をプロットしたものを図4に示す。図4の結果から、ポリゴナルフェライト相の面積率が30%以上の範囲でかつマルテンサイト相の面積率が20%以上の場合にΔTSが著しく高い値を示し、高い強度上昇能を示すことがわかる。   FIG. 4 shows a plot of the relationship between ΔTS at the test temperature of 300 ° C. and the area ratios of the polygonal ferrite phase and the martensite phase for the samples manufactured for steel A under various annealing conditions. From the result of FIG. 4, when the area ratio of the polygonal ferrite phase is in the range of 30% or more and the area ratio of the martensite phase is 20% or more, ΔTS shows a remarkably high value and shows a high strength increasing ability. Recognize.

本発明者らは、上記した実験結果を踏まえて、780MPa以上の引張強度TSを有する高強度薄鋼板において、温間成形時の延性の向上と温間で予加工を施した後の室温での強度の上昇を両立する方法について、さらに鋭意検討を重ねたところ、以下のことを見出した。   Based on the experimental results described above, the present inventors, in a high-strength thin steel sheet having a tensile strength TS of 780 MPa or more, improved ductility during warm forming and at room temperature after warm pre-processing. As a result of further intensive studies on a method for achieving both strength increases, the following has been found.

(i)成分組成を特定の関係を満足するように適正化した上で、鋼組織を、面積率で、ポリゴナルフェライト相を30%以上、マルテンサイト相を20%以上、かつ、残留オーステナイト相を3%未満の面積率とすることにより、780MPa以上の引張り強度TSを有する高強度薄鋼板において、温間成形時の延性の向上と温間で予加工を施した後の室温での引張強度の上昇を達成できる。 (I) After optimizing the component composition so as to satisfy a specific relationship, the steel structure is in area ratio, the polygonal ferrite phase is 30% or more, the martensite phase is 20% or more, and the residual austenite phase By making the area ratio less than 3%, a high strength thin steel sheet having a tensile strength TS of 780 MPa or more has improved ductility during warm forming and tensile strength at room temperature after warm pre-processing. Can be achieved.

(ii)こうした特性の向上は、上記した特徴を有する薄鋼板を鋼板温度が250〜400℃で、相当塑性歪み量0.02以上の加工を加えることによって得られる。 (Ii) Improvement of such characteristics can be obtained by subjecting a thin steel plate having the above-described characteristics to a processing at a steel plate temperature of 250 to 400 ° C. and an equivalent plastic strain amount of 0.02 or more.

以上の実験事実から本発明を完成させるに至ったのである。本発明の要旨構成は以下の通りである。   From the above experimental facts, the present invention has been completed. The gist of the present invention is as follows.

(1)質量%で、C:0.04〜0.2%、Si:0.5〜2.5%、Mn:1.5〜3.5%、P:0.001〜0.05%、S:0.0001〜0.01%、Al:0.001〜0.1%、N:0.0005〜0.01%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、鋼組織が、面積率で、ポリゴナルフェライト相を30%以上、マルテンサイト相を20%以上および残留オーステナイト相を3%未満含有し、
室温での引張強度(TS)が780MPa以上であり、
室温における歪み量0.05での加工硬化率(WHR(室温))と、300℃における歪み量0.05での加工硬化率(WHR(300))とが下記式(1)を満足し、
室温での引張強度(TS(室温))と、300℃で歪み量0.10の予加工を加えたのちの室温での引張強度(TS(300))とが下記式(2)を満足し、

WHR(300)/WHR(室温)>1.20 ・・・・・(1)
TS(300)−TS(室温)>150(MPa) ・・・・・(2)
室温での引張強度に対する250〜400℃の温度域での引張強度の低下量が150MPa以下であり、さらに、
室温での降伏強度に対する250〜400℃の温度域での降伏強度の上昇量が50MPa以下であることを特徴とする、成形性および強度上昇能に優れた温間成形用薄鋼板。
(1) By mass%, C: 0.04 to 0.2%, Si: 0.5 to 2.5%, Mn: 1.5 to 3.5%, P: 0.001 to 0.05% , S: 0.0001 to 0.01%, Al: 0.001 to 0.1%, N: 0.0005 to 0.01%, with the balance being composed of Fe and inevitable impurities And the steel structure contains, in area ratio, a polygonal ferrite phase of 30% or more, a martensite phase of 20% or more, and a residual austenite phase of less than 3% ,
The tensile strength (TS) at room temperature is 780MPa or more,
The work hardening rate (WHR (room temperature)) at a strain amount of 0.05 at room temperature and the work hardening rate (WHR (300)) at a strain amount of 0.05 at 300 ° C. satisfy the following formula (1).
The tensile strength at room temperature (TS (room temperature)) and the tensile strength at room temperature (TS (300)) after pre-processing with a strain of 0.10 at 300 ° C satisfy the following formula (2).
Record
WHR (300) / WHR (room temperature)> 1.20 (1)
TS (300)-TS (room temperature)> 150 (MPa) (2)
The amount of decrease in the tensile strength in the temperature range of 250 to 400 ° C. with respect to the tensile strength at room temperature is 150 MPa or less,
A thin steel sheet for warm forming excellent in formability and strength increasing capability, wherein an increase in yield strength in a temperature range of 250 to 400 ° C with respect to the yield strength at room temperature is 50 MPa or less.

)前記成分組成は、質量%で、B:0.0003〜0.0050%をさらに含有することを特徴とする上記(1)に記載の成形性および強度上昇能に優れた温間成形用薄鋼板。 ( 2 ) The thin steel sheet for warm forming excellent in formability and strength increasing ability as described in (1) above, wherein the component composition further contains B: 0.0003 to 0.0050% in mass%.

)前記成分組成は、質量%で、Ti:0.0005〜0.1%およびNb:0.0005〜0.05%から選ばれる少なくとも1種の成分をさらに含有することを特徴とする上記(1)又は(2)に記載の成形性および強度上昇能に優れた温間成形用薄鋼板。 ( 3 ) The component composition further comprises at least one component selected from Ti: 0.0005 to 0.1% and Nb: 0.0005 to 0.05% by mass%. (1) or (2) A thin steel sheet for warm forming excellent in formability and strength increasing ability described in 1.

)前記成分組成は、質量%で、Cr:0.01〜1.0%およびMo:0.01〜1.0%から選ばれる少なくとも1種の成分を含有することを特徴とする上記(1)〜()のいずれかに記載の成形性および強度上昇能に優れた温間成形用薄鋼板。 ( 4 ) Said component composition contains at least 1 sort (s) chosen from Cr: 0.01-1.0% and Mo: 0.01-1.0% by the mass% of said (1)-( 3 ) characterized by the above-mentioned. A thin steel sheet for warm forming excellent in formability and strength increasing ability according to any one of the above.

)上記(1)〜()のいずれかに記載の薄鋼板であって、前記マルテンサイト相の一部又は全部が焼戻しマルテンサイトであることを特徴とする成形性および強度上昇能に優れた温間成形用薄鋼板。 ( 5 ) The thin steel plate according to any one of (1) to ( 4 ) above, wherein a part or all of the martensite phase is tempered martensite, and the formability and strength increasing ability are characterized. Excellent thin steel sheet for warm forming.

)上記(1)〜()のいずれかに記載の薄鋼板であって、更に、面積率でベイナイト相を30%未満の分率で含有することを特徴とする成形性および強度上昇能に優れた温間成形用薄鋼板。 ( 6 ) Formability and strength increase characterized by being a thin steel plate according to any one of (1) to ( 5 ) above, further comprising a bainite phase in an area ratio of less than 30%. High performance thin steel sheet for warm forming.

)上記(1)〜()のいずれかに記載の薄鋼板に、250〜400℃の温度域で相当塑性歪み量:0.02以上の温間加工を施すことを特徴とする温間成形方法。 ( 7 ) Warm forming characterized by subjecting the thin steel sheet according to any one of (1) to ( 6 ) above to a warm working with an equivalent plastic strain amount of 0.02 or more in a temperature range of 250 to 400 ° C. Method.

本発明によれば、780MPa以上の引張り強度TSを有する高強度薄鋼板において、温間成形を適用することでプレス成形性を向上して部品形状の自由度を高め、より成形難易度の高い部品の高強度化が可能となる。さらに、本発明により製造した構造部材を自動車車体に適用することにより、より一層の乗員の安全性確保や、大幅な車体の軽量化による燃費改善を図ることができる。   According to the present invention, in a high-strength thin steel sheet having a tensile strength TS of 780 MPa or more, by applying warm forming, the press formability is improved, the degree of freedom of part shape is increased, and the part having a higher degree of forming difficulty The strength can be increased. Furthermore, by applying the structural member manufactured according to the present invention to the automobile body, it is possible to further ensure the safety of the occupant and improve the fuel consumption by significantly reducing the weight of the vehicle body.

図1は、サンプル鋼A1、A2、B1について、引張強度(TS)と全伸び(El)との積の値(TS×El)と、試験温度の関係をプロットした図である。FIG. 1 is a graph plotting the relationship between the test temperature and the product value (TS × El) of tensile strength (TS) and total elongation (El) for sample steels A1, A2, and B1. 図2は、サンプル鋼Al、A2およびB1について、温間での引張試験を歪み量0.10で停止したのち、室温まで冷却したのち、再度引張試験をしたときのTSから、室温で引張試験をしたときのTSを差し引いた値、すなわちTSの上昇量(△TS)と、試験温度の関係をプロットした図である。Fig. 2 shows the sample steels Al, A2 and B1, which were subjected to a tensile test at room temperature from TS when the tensile test was stopped at a strain amount of 0.10, cooled to room temperature, and then retested. It is the figure which plotted the value which subtracted TS at the time, ie, the raise amount ((DELTA) TS) of TS, and the test temperature. 図3は、鋼Aについて種々の焼鈍条件で製造したサンプルについて、TSとElとの積の値TS×Elと、ポリゴナルフェライト相およびマルテンサイト相の面積率との関係をプロットした図である。FIG. 3 is a graph plotting the relationship between the product value TS × El of TS and El and the area ratios of the polygonal ferrite phase and the martensite phase for samples manufactured under various annealing conditions for Steel A. . 図4は、鋼Aについて種々の焼鈍条件で製造したサンプルについて、TSの上昇量(△TS)と、ポリゴナルフェライト相およびマルテンサイト相の面積率との関係をプロットした図である。FIG. 4 is a graph plotting the relationship between the amount of increase in TS (ΔTS) and the area ratios of the polygonal ferrite phase and martensite phase for the samples manufactured for steel A under various annealing conditions. 図5は、薄鋼板にプレス成形を施す際の状態を説明するための図である。FIG. 5 is a diagram for explaining a state when the thin steel plate is subjected to press forming. 図6は、成形品の口開き量を説明するための図である。FIG. 6 is a diagram for explaining the opening amount of the molded product.

以下に、本発明の詳細を説明する。なお、成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。また、ここでいう「室温」とは、JIS Z 8703で常温と規定される20±15℃の範囲のことを意味する。   Details of the present invention will be described below. Note that “%” representing the content of component elements means “% by mass” unless otherwise specified. The term “room temperature” as used herein means a range of 20 ± 15 ° C. defined as normal temperature by JIS Z 8703.

(1)成分組成
・C:0.04〜0.2%
炭素(C)は、鋼を強化するために重要な元素であり、高い固溶強化能を有するとともに、マルテンサイト相による組織強化を利用する際に、その面積率や硬度を調整するために不可欠な元素である。さらに、鋼中のCは、温間成形時に加工で導入された可動転位とその成形温度下で強い相互作用を示して、その運動を阻害することで、塑性変形の進行のために新たに多量の可動転位を導入させる効果を有する。このため、加工硬化が促進して歪みの伝播性を高めるため、温間成形時には一様伸びが上昇して成形性が向上する。さらに、温間成形後の常温の状態では可動転位はCで固着された状態になるため、上記した可動転位の増殖の促進との相乗効果により、温間加工後に室温で変形したときの強度が著しく上昇する。こうした効果を充分に得るには、C含有量を0.04%以上にすることが必要である。一方、C含有量が0.2%を超えると、溶接性が劣化するともに、マルテンサイト相が著しく硬化して延性が低下する。したがって、C含有量は0.04〜0.2%とする。
(1) Component composition C: 0.04 to 0.2%
Carbon (C) is an important element for strengthening steel, has high solid solution strengthening ability, and is indispensable for adjusting the area ratio and hardness when utilizing structure strengthening by martensite phase. Element. Furthermore, C in steel exhibits a strong interaction at the forming temperature with the movable dislocations introduced during processing during warm forming, and inhibits its movement, so that a large amount of C is newly added for the progress of plastic deformation. This has the effect of introducing movable dislocations. For this reason, since work hardening accelerates | stimulates and the propagation property of distortion is improved, a uniform elongation rises at the time of warm forming, and a moldability improves. Furthermore, since the movable dislocations are fixed in C in the normal temperature state after warm forming, the strength when deformed at room temperature after warm processing is increased by the synergistic effect with the promotion of the growth of the movable dislocations described above. It rises remarkably. In order to obtain such effects sufficiently, it is necessary to make the C content 0.04% or more. On the other hand, if the C content exceeds 0.2%, the weldability deteriorates and the martensite phase is remarkably hardened to lower the ductility. Therefore, the C content is 0.04 to 0.2%.

・Si:0.5〜2.5%
シリコン(Si)は、鋼組織中に占めるポリゴナルフェライト相の面積率を高めるとともに、ポリゴナルフェライト相を清浄化して延性を高める効果がある。さらに、Siは、温間成形時のすべり系を制限する作用があり、可動転位の増殖を促進して加工硬化能を高めて延性を向上する。こうした効果を得るには、Si量を0.5%以上にする必要がある。一方、Si量が、2.5%を超えると、効果が飽和するとともに、表面性状に甚大な問題を生ずるようになる。したがって、Si量は0.5〜2.5%とする。
・ Si: 0.5-2.5%
Silicon (Si) has the effect of increasing the area ratio of the polygonal ferrite phase in the steel structure and cleaning the polygonal ferrite phase to increase the ductility. Furthermore, Si has an action of limiting the slip system during warm forming, and promotes the proliferation of movable dislocations to increase work hardening ability and improve ductility. In order to obtain such effects, the Si amount needs to be 0.5% or more. On the other hand, when the amount of Si exceeds 2.5%, the effect is saturated and a serious problem is caused in the surface properties. Therefore, the Si content is 0.5 to 2.5%.

・Mn:1.5〜3.5%
マンガン(Mn)は、鋼の熱間脆化の防止ならびに強度確保のために有効であるとともに、焼入れ性を向上させて複合組織化を容易にする。マルテンサイト相を所定の面積率で得るためには、Mn含有量を1.5%以上にする必要がある。一方、Mn含有量が3.5%を超えると、偏析相の生成が著しくなり、成形性の劣化を招く。したがって、Mn量は1.5〜3.5%とする。尚、所定の分率のマルテンサイト相を得やすくするためには、C含有量が0.12%未満ではMn量は1.6%以上とするのが好ましい。
・ Mn: 1.5-3.5%
Manganese (Mn) is effective for preventing hot embrittlement of steel and ensuring strength, and also improves hardenability and facilitates complex formation. In order to obtain a martensite phase at a predetermined area ratio, the Mn content needs to be 1.5% or more. On the other hand, when the Mn content exceeds 3.5%, the segregation phase is remarkably generated, and the moldability is deteriorated. Therefore, the Mn content is 1.5 to 3.5%. In order to easily obtain a martensite phase having a predetermined fraction, it is preferable that the Mn content is 1.6% or more when the C content is less than 0.12%.

・P:0.001〜0.05%
リン(P)は、所望の強度に応じて添加できる元素であり、また、フェライト変態を促進するために複合組織化にも有効な元素である。こうした効果を得るには、P量を0.001%以上にする必要がある。一方、P量が0.05%を超えると、溶接性やめっき性の低下を招く。したがって、P量は0.001〜0.05%とする。
・ P: 0.001 ~ 0.05%
Phosphorus (P) is an element that can be added according to the desired strength, and is also an element effective for complex organization in order to promote ferrite transformation. In order to obtain such an effect, the P amount needs to be 0.001% or more. On the other hand, if the amount of P exceeds 0.05%, the weldability and the plating property are reduced. Therefore, the P content is 0.001 to 0.05%.

・S:0.0001〜0.01%
硫黄(S)は、粒界に偏析して熱間加工時に鋼を脆化させるとともに、硫化物として存在して局部変形能を低下させるため、その量は0.01%以下、好ましくは0.003%以下、より好ましくは0.001%以下とする必要がある。しかし、生産技術上の制約から、S含有量は0.0001%以上にする必要がある。したがって、S含有量は0.0001〜0.01%、好ましくは0.0001〜0.003%、より好ましくは0.0001〜0.001%とする。
・ S: 0.0001-0.01%
Sulfur (S) segregates at the grain boundaries, embrittles the steel during hot working, and exists as a sulfide to reduce local deformability, so its amount is 0.01% or less, preferably 0.003% or less, More preferably, it should be 0.001% or less. However, the S content needs to be 0.0001% or more due to restrictions on production technology. Therefore, the S content is 0.0001 to 0.01%, preferably 0.0001 to 0.003%, more preferably 0.0001 to 0.001%.

・Al:0.001〜0.1%
アルミニウム(Al)は、フェライト相を生成させ、強度−延性バランスを向上させるのに有効な元素である。こうした効果を得るには、Al含有量を0.001%以上にする必要がある。一方、Al量が0.1%を超えると、表面性状の劣化を招く。したがって、Al量は0.001〜0.1%とする。
・ Al: 0.001 to 0.1%
Aluminum (Al) is an element effective in generating a ferrite phase and improving the strength-ductility balance. In order to obtain such an effect, the Al content needs to be 0.001% or more. On the other hand, when the Al content exceeds 0.1%, the surface properties are deteriorated. Therefore, the Al content is 0.001 to 0.1%.

・N:0.0005〜0.01%
窒素(N)は、鋼の耐時効性を劣化させる元素である。特に、N含有量が0.01%を超えると、耐時効性の劣化が顕著となる。その量は少ないほど好ましいが、生産技術上の制約から、N含有量は0.0005%以上にする必要がある。したがって、N含有量は0.0005〜0.01%とする。
・ N: 0.0005-0.01%
Nitrogen (N) is an element that degrades the aging resistance of steel. In particular, when the N content exceeds 0.01%, deterioration of aging resistance becomes remarkable. The smaller the amount, the better. However, the N content needs to be 0.0005% or more due to limitations in production technology. Therefore, the N content is 0.0005 to 0.01%.

残部は鉄(Fe)および不可避的不純物であるが、以下の理由から、B:0.0003〜0.0050%や、Ti:0.0005〜0.1%およびNb:0.0005〜0.05%から選ばれる少なくともl種の元素や、Cr:0.01〜1.0%およびMo:0.01〜1.0%から選ばれる少なくとも1種の成分を、必要に応じて適宜含有させることができる。   The balance is iron (Fe) and inevitable impurities, but for the following reasons, B: 0.0003 to 0.0050%, Ti: 0.0005 to 0.1%, and Nb: 0.0005 to 0.05%, At least one component selected from Cr: 0.01 to 1.0% and Mo: 0.01 to 1.0% can be appropriately contained as necessary.

・B:0.0003〜0.0050%
ボロン(B)は、焼入れ性を向上させて複合組織化を容易にする元素であって、マルテンサイト相を所定の面積率で得るため、必要に応じて適宜添加する。こうした効果を得るには、B含有量を0.0003%以上にする必要がある。一方、B含有量が0.0050%を超えると、効果が飽和するとともに延性の低下を招く。したがって、B含有量は0.0003〜0.0050%とする。
・ B: 0.0003-0.0050%
Boron (B) is an element that improves hardenability and facilitates complex organization, and is appropriately added as necessary to obtain a martensite phase with a predetermined area ratio. In order to acquire such an effect, it is necessary to make B content 0.0003% or more. On the other hand, if the B content exceeds 0.0050%, the effect is saturated and ductility is reduced. Therefore, the B content is 0.0003 to 0.0050%.

・Ti:0.0005〜0.1%およびNb:0.0005〜0.05%から選ばれる少なくとも1種の成分
チタン(Ti)およびニオブ(Nb)は、ともにCやNと折出物を形成して強度および靭性の向上に有効に寄与する。また、析出強化により鋼を強化するため、所望の強度に応じて添加することができる。また、TiはBと同時に含有させた場合には、NをTiNとして析出させるため、BNの析出が抑制され、上記したBの効果が有効に発現される。こうした効果を得るには、Ti量、Nb量はそれぞれ0.0005%以上にする必要がある。一方、Ti量が0.1%、Nbが0.05%を超えると、析出強化が過度に働き、延性の低下を招く。したがって、Ti量は0.0005〜0.1%、Nb量は0.0005〜0.05%とする。なお、鋼中にTiとNbの双方を含有させる場合には、TiとNbのトータル含有量を0.001〜0.1%の範囲とすることが好ましい。
-At least one component selected from Ti: 0.0005-0.1% and Nb: 0.0005-0.05% Titanium (Ti) and niobium (Nb) are both formed with C and N to improve strength and toughness. It contributes effectively. Moreover, since steel is strengthened by precipitation strengthening, it can be added according to a desired strength. Further, when Ti is contained at the same time as B, N is precipitated as TiN, so that the precipitation of BN is suppressed and the above-described effect of B is effectively expressed. In order to obtain these effects, the Ti content and the Nb content must each be 0.0005% or more. On the other hand, if the Ti content exceeds 0.1% and Nb exceeds 0.05%, precipitation strengthening works excessively, leading to a decrease in ductility. Therefore, the Ti amount is 0.0005 to 0.1%, and the Nb amount is 0.0005 to 0.05%. When both Ti and Nb are contained in the steel, the total content of Ti and Nb is preferably in the range of 0.001 to 0.1%.

・Cr:0.01〜1.0%およびMo:0.01〜1.0%から選ばれる少なくとも1種の成分
クロム(Cr)およびモリブデン(Mo)は、固溶強化元素としての役割のみならず、オーステナイト相を安定化させて複合組織化を容易にするため、マルテンサイト相を所定の面積率で得るために必要に応じて添加することができる。こうした効果を得るには、CrおよびMo含有量は、それぞれ0.01%以上にする必要がある。一方、CrおよびMo含有量がともに1.0%を超えると、めっき性、成形性、スポット溶接性が劣化する。したがって、CrおよびMo含有量はともに0.01〜1.0%とする。なお、鋼中にCrとMoの双方を含有させる場合には、CrとMoのトータル含有量を0.02〜1.0%の範囲とすることが好ましい。
・ At least one component selected from Cr: 0.01 to 1.0% and Mo: 0.01 to 1.0% Chromium (Cr) and molybdenum (Mo) not only serve as solid solution strengthening elements but also stabilize the austenite phase. In order to facilitate complex organization, a martensite phase can be added as necessary to obtain a predetermined area ratio. In order to obtain such effects, the Cr and Mo contents must each be 0.01% or more. On the other hand, if both the Cr and Mo contents exceed 1.0%, the plateability, formability, and spot weldability deteriorate. Therefore, the Cr and Mo contents are both 0.01-1.0%. When both Cr and Mo are contained in the steel, the total content of Cr and Mo is preferably in the range of 0.02 to 1.0%.

(2)鋼組織
本発明の薄鋼板は、鋼組織が、面積率で、ポリゴナルフェライト相:30%以上、マルテンサイト相:20%以上および残留オーステナイト相:3%未満含有する。
(2) Steel structure In the thin steel sheet of the present invention, the steel structure contains, by area ratio, polygonal ferrite phase: 30% or more, martensite phase: 20% or more, and residual austenite phase: less than 3%.

鋼組織(ミクロ組織)は、温間成形時の延性の向上と温間加工後の常温での強度を上昇するためには、ポリゴナルフェライト相とマルテンサイト相の複合組織にする必要がある。温間成形で導入された可動転位は主に塑性変形を生じ易いポリゴナルフェライト相に分布する。この可動転位と鋼中のCが相互作用することで加工硬化能が高まり延性が向上する。マルテンサイト相はポリゴナルフェライト相中の界面付近に可動転位を導入し、その増殖を助長する作用を有する。このため、上記したポリゴナルフェライト相の温間成形時の延性向上を促進する。一方、温間成形時の可動転位と鋼中のCとの相互作用は、一般的な動的歪み時効現象で見られるように、延性の低下を招いたり、セレーションと呼ばれる変形時の応力の不安定を生じる。ポリゴナルフェライト相とマルテンサイト相との適正な面積率での複合組織とすることで、転位源が分散して歪みの伝播性を高めて加工硬化の促進による延性の向上を有効に発現せしめるとともに、応力のセレーションを解消できる。また、残留オーステナイト相が混在する場合には、鋼中のCがそこに偏在することでポリゴナルフェライト相中の可動転位との相互作用が抑制されるとともに、上記したマルテンサイト相の如き効果が認められない。したがって、ポリゴナルフェライト相を30%以上、マルテンサイト相を20%以上、残留オーステナイト相を3%未満とする必要がある。尚、上記した温間成形による延性の低下や変形時の応力不安定を極力回避するためには、ポリゴナルフェライト相の分率は75%未満とするのが好ましい。   The steel structure (microstructure) needs to be a composite structure of polygonal ferrite phase and martensite phase in order to improve ductility during warm forming and increase the strength at room temperature after warm working. Movable dislocations introduced by warm forming are mainly distributed in the polygonal ferrite phase that is prone to plastic deformation. The interaction between this movable dislocation and C in the steel increases work hardening ability and improves ductility. The martensite phase has a function of introducing a mobile dislocation near the interface in the polygonal ferrite phase and promoting its growth. For this reason, the ductility improvement at the time of warm forming of the above-mentioned polygonal ferrite phase is promoted. On the other hand, the interaction between movable dislocations during warm forming and C in steel causes a decrease in ductility, as seen in the general dynamic strain aging phenomenon, and stress deformation during deformation called serration. Stabilize. By forming a composite structure with an appropriate area ratio of polygonal ferrite phase and martensite phase, dislocation sources are dispersed to increase strain propagation and effectively improve ductility by promoting work hardening. The stress serration can be eliminated. In addition, when the retained austenite phase is mixed, the presence of C in the steel is unevenly distributed to suppress the interaction with the movable dislocations in the polygonal ferrite phase, and the effects such as the martensite phase described above can be obtained. unacceptable. Therefore, it is necessary that the polygonal ferrite phase is 30% or more, the martensite phase is 20% or more, and the retained austenite phase is less than 3%. In order to avoid the decrease in ductility and the stress instability during deformation as much as possible, it is preferable that the fraction of the polygonal ferrite phase is less than 75%.

さらに、マルテンサイト相の一部又は全部が焼戻しマルテンサイト相であっても良い。マルテンサイト相が焼戻しマルテンサイト相であっても前記した効果は損なわれない。むしろ、焼戻しマルテンサイト相では比較的に塑性変形能が高いため、焼戻しマルテンサイト相中でも歪み時効硬化が効果的に発現し、一層の温間成形時における加工硬化率の上昇、すなわち延性の向上、及び温間成形後の室温に対する強度上昇を図ることができる。このとき、焼戻しマルテンサイトは、例えば連続焼鈍後の冷却過程で自己焼戻しで生成されるものや、焼鈍後の再加熱による焼戻し処理で生成するものなどが有る。   Furthermore, a part or all of the martensite phase may be a tempered martensite phase. Even if the martensite phase is a tempered martensite phase, the above-described effects are not impaired. Rather, because the plastic deformation ability is relatively high in the tempered martensite phase, strain age hardening is effectively expressed even in the tempered martensite phase, and the work hardening rate during further warm forming, that is, the improvement of ductility, And the intensity | strength raise with respect to room temperature after warm forming can be aimed at. At this time, tempered martensite includes, for example, those generated by self-tempering in the cooling process after continuous annealing and those generated by tempering treatment by reheating after annealing.

さらに、上記したポリゴナルフェライト相とマルテンサイト相、残留オーステナイト相以外の構成相はベイナイト相であることが好ましい。ベイナイト相は本発明の成分組成においては主に板状又はラス状のベイニティックフェライトとそれら界面にマルテンサイト相が存在する集合体として構成される。このような構成を有するベイナイト相をポリゴナルフェライト相とマルテンサイト相、残留オーステナイト相以外の構成相とすることによって、上記したポリゴナルフェライト相とマルテンサイト相において発現されるものと同様の効果を有することになる。このため、ベイナイト相は、温間成形時における加工硬化率の上昇、すなわち延性の向上をより効果的に発現することができる。しかし、ベイナイト相が30%以上存在する場合には、むしろその延性を低下させるため、ベイナイト相を30%未満の分率で含有することが好ましい。   Further, the constituent phases other than the polygonal ferrite phase, the martensite phase, and the retained austenite phase are preferably bainite phases. In the component composition of the present invention, the bainite phase is mainly constituted as an aggregate in which a plate-like or lath-like bainitic ferrite and a martensite phase exist at the interface between them. By making the bainite phase having such a structure a constituent phase other than the polygonal ferrite phase, the martensite phase, and the retained austenite phase, the same effects as those expressed in the polygonal ferrite phase and the martensite phase are obtained. Will have. For this reason, a bainite phase can express the raise of the work hardening rate at the time of warm shaping | molding, ie, the improvement of ductility, more effectively. However, when the bainite phase is present at 30% or more, it is preferable to contain the bainite phase in a fraction of less than 30% in order to lower the ductility.

ここで、鋼組織の面積率の測定方法は、鋼板の圧延方向に平行な板厚断面について、ナイタールによる腐食現出組織を走査型電子顕微鏡(SEM)で5000倍に拡大して各相を同定した。これを画像解析ソフト(Image−Pro;Cybernetics社製)により、各々の構成相について当該相とこれ以外の相とに2値化した画像を作製した。このとき、マルテンサイト相と残留オーステナイト相は、識別が困難なため、両相を同一とみなして2値化した。これらをソフトの機能を用いてポリゴナルフェライト相、ベイナイト相およびマルテンサイトと残留オーステナイトとの合計の相の各々について面積率を求めた。鋼板を板厚l/4の位置まで研磨した後に、さらに0.1mmだけ化学研磨した面を測定面として、X線回折装置でMoのKα線を用いて、fcc鉄の(200)、(220)、(311)面と、bcc鉄の(200)、(211)、(220)面の積分強度を測定し、そのfccの比率をもって残留オーステナイト相の体積率を求め、3次元的に均質として、これを残留オーステナイト相の面積率とした。また、上記したマルテンサイトと残留オーステナイトの合計の相の面積率から、これを差し引いてマルテンサイト相の面積率とした。   Here, the method of measuring the area ratio of steel structure is to identify each phase by magnifying the corrosion manifestation structure by Nital with a scanning electron microscope (SEM) 5000 times on the thickness cross section parallel to the rolling direction of the steel sheet. did. An image obtained by binarizing the component phase into the phase and the other phases was prepared for each constituent phase by image analysis software (Image-Pro; manufactured by Cybernetics). At this time, since the martensite phase and the retained austenite phase were difficult to distinguish, both phases were regarded as the same and binarized. Using the soft function of these, the area ratio was determined for each of the polygonal ferrite phase, the bainite phase, and the total phase of martensite and retained austenite. After polishing the steel plate to the position of the thickness l / 4, the surface that was further chemically polished by 0.1 mm was used as the measurement surface, and using Mo Kα rays with an X-ray diffractometer, the fcc iron (200), (220) , (311) surface and the integrated strength of (200), (211), (220) surface of bcc iron, the volume ratio of the retained austenite phase is obtained with the ratio of its fcc, and three-dimensionally homogeneous, This was defined as the area ratio of the retained austenite phase. Further, the area ratio of the martensite phase was subtracted from the area ratio of the total phase of martensite and retained austenite.

また、本発明の薄鋼板では、室温における歪み量0.05での加工硬化率(WHR(室温))と、300℃における歪み量0.05での加工硬化率(WHR(300))とが下記式(1)を満足することが好ましい。 In the thin steel sheet of the present invention, the work hardening rate (WHR ( room temperature )) at a strain amount of 0.05 at room temperature and the work hardening rate (WHR (300)) at a strain amount of 0.05 at 300 ° C. are expressed by the following formula (1). ) Is preferably satisfied.


WHR(300)/WHR(室温)>1.20 ・・・・・(1)
Record
WHR (300) / WHR ( room temperature )> 1.20 (1)

本発明による薄鋼板では、上記したように温間成形で導入する可動転位とCとの相互作用に基づく加工硬化の促進にともない、歪み伝播性が向上(均一伸びが上昇)して延性が向上する。この効果がプレス成形性の向上に有効に発現するには、比較的高い歪みの領域で加工硬化率が上昇しなければならない。具体的には、300℃における歪み量0.05での加工硬化率の室温における歪み量0.05での加工硬化率に対する比率を1.20超えにすることが好ましい。ここでいう「歪み量」は、JIS Z 2241(2011年)に準拠した引張試験によって測定し、真歪で評価した。また、加工硬化率は、引張試験で測定した真応力(σ)−真歪(ε)曲線において、歪み量0.05での応力と歪みの傾き(dσ/dε)として求めたものであり、上記の比率は、300℃で引張試験した場合の歪み量0.05における加工硬化率と、室温で引張試験した場合の歪み量0.05における加工硬化率との比を示している。   In the thin steel sheet according to the present invention, as described above, along with the acceleration of work hardening based on the interaction between movable dislocations introduced by warm forming and C, strain propagation improves (uniform elongation increases) and ductility improves. To do. In order for this effect to be effectively manifested in improving press formability, the work hardening rate must increase in a relatively high strain region. Specifically, the ratio of the work hardening rate at a strain amount of 0.05 at 300 ° C. to the work hardening rate at a strain amount of 0.05 at room temperature is preferably set to exceed 1.20. The “strain amount” here was measured by a tensile test based on JIS Z 2241 (2011) and evaluated by true strain. Further, the work hardening rate is obtained as the stress and strain slope (dσ / dε) at a strain amount of 0.05 in the true stress (σ) -true strain (ε) curve measured by a tensile test, The ratio indicates a ratio between a work hardening rate at a strain amount of 0.05 when a tensile test is performed at 300 ° C. and a work hardening rate at a strain amount of 0.05 when a tensile test is performed at room temperature.

また、本発明の薄鋼板では、室温での引張強度(TS(室温))と、300℃で歪み量0.10の予加工を加えたのちの室温での引張強度(TS(300))とが下記式(2)を満足することが好ましい。 Further, in the thin steel sheet of the present invention, the tensile strength at room temperature (TS ( room temperature )) and the tensile strength at room temperature (TS (300)) after pre-processing with a strain amount of 0.10 at 300 ° C. are as follows: It is preferable to satisfy Formula (2).


TS(300)−TS(室温)>150(MPa) ・・・・・(2)
TS (300) -TS ( room temperature )> 150 (MPa) (2)

本発明による鋼板では、温間成形時に導入される可動転位とCの相互作用により加工硬化能が向上するため、同じ歪み量まで加工したとしても温間成形では室温での成形に比較して、より大きい転位密度で可動転位が蓄積されている。さらには、これらの可動転位の多くは鋼中のCで固着された状態にある。このため、温間成形で予加工(プレス加工)を加えたのちに室温で再度の変形を加えた場合には、これらの一連の工程を室温で行った場合に比較して強度が高くなる。この効果を自動車部材の性能、特に衝突特性で有効に発現して板厚低減による車体の軽量化に寄与するには、300℃で歪み量0.10の予加工を加えたのちの室温での引張強度は室温での引張強度に対して、少なくとも150MPa超えの上昇代を有することが好適である。   In the steel sheet according to the present invention, the work hardening ability is improved by the interaction between the movable dislocations introduced at the time of warm forming and C, so even if processed to the same strain amount, in warm forming compared to forming at room temperature, Mobile dislocations are accumulated with a higher dislocation density. Furthermore, many of these movable dislocations are in a state of being fixed by C in the steel. For this reason, when a deformation | transformation is again performed at room temperature after adding a pre-processing (press process) by warm forming, intensity | strength becomes high compared with the case where these series of processes are performed at room temperature. In order to contribute to the weight reduction of the car body by reducing the plate thickness by effectively expressing this effect in the performance of automobile parts, especially the collision characteristics, tensile strength at room temperature after pre-processing with strain of 0.10 at 300 ° C It is preferable to have an increase margin of at least 150 MPa with respect to the tensile strength at room temperature.

また、本発明の薄鋼板では、室温での引張強度に対する250〜400℃の温度域での引張強度の低下量が150MPa以下であることが好ましい。本発明による鋼板は250〜400℃の温度域で温間成形される。一般に、成形温度を上昇させることで歪みの回復や焼き戻し作用などで鋼板強度は低下する傾向を示すが、引張強度の低下量が150MPaよりも大きいと、特に絞り成形で破断耐力が低下してプレス割れの原因になる。したがって、室温での引張強度に対する250〜400℃の温度域での引張強度の低下量が150MPa以下とすることが望ましい。   Moreover, in the thin steel plate of this invention, it is preferable that the fall amount of the tensile strength in the temperature range of 250-400 degreeC with respect to the tensile strength at room temperature is 150 MPa or less. The steel sheet according to the present invention is warm-formed in a temperature range of 250 to 400 ° C. In general, steel sheet strength tends to decrease due to strain recovery and tempering effect by increasing the forming temperature, but if the amount of decrease in tensile strength is greater than 150 MPa, the rupture yield strength decreases particularly in draw forming. Causes press cracks. Therefore, it is desirable that the amount of decrease in the tensile strength in the temperature range of 250 to 400 ° C. with respect to the tensile strength at room temperature is 150 MPa or less.

さらに、本発明の薄鋼板では、室温での降伏強度に対する250〜400℃の温度域での降伏強度の上昇量が50MPa以下であることが好ましい。本発明による薄鋼板は、温間成形時に導入される可動転位とCの相互作用により加工硬化能を向上させる。この相互作用は降伏強度を上昇させる傾向を示すが、その上昇量が50MPaよりも大きい場合には、スプリングバック量が増大して温間成形によるプレス部材の寸法精度を損なう場合がある。したがって、室温での降伏強度に対する250〜400℃の温度域での降伏強度の上昇量が50MPa以下であることが望ましい。   Furthermore, in the thin steel sheet of the present invention, it is preferable that the yield strength increase in a temperature range of 250 to 400 ° C. with respect to the yield strength at room temperature is 50 MPa or less. The thin steel sheet according to the present invention improves work hardening ability by the interaction between movable dislocations and C introduced during warm forming. This interaction tends to increase the yield strength. If the amount of increase is greater than 50 MPa, the amount of spring back increases and the dimensional accuracy of the press member by warm forming may be impaired. Therefore, it is desirable that the yield strength increase in the temperature range of 250 to 400 ° C. with respect to the yield strength at room temperature is 50 MPa or less.

(3)温間成形方法
本発明の温間成形方法は、上記した薄鋼板に、鋼板温度が250〜400℃で、相当塑性歪み量0.02以上の温間加工を施す工程を含む。温間成形により導入される歪みと鋼中のCが相互作用して、加工硬化を促進し延性を向上させるためには、Cが充分に拡散が可能で、かつ、転位の回復や消滅が起こらない適正な温度範囲でプレス成形を施す必要がある。
(3) Warm forming method The warm forming method of the present invention includes a step of subjecting the above-described thin steel plate to a warm working with a steel plate temperature of 250 to 400 ° C. and an equivalent plastic strain amount of 0.02 or more. Strain introduced by warm forming interacts with C in the steel to promote work hardening and improve ductility, so that C can diffuse sufficiently and dislocation recovery and disappearance occur. It is necessary to perform press molding in an appropriate temperature range.

鋼板温度が250℃未満では、可動転位が導入されたとしても、Cが自由に拡散できないため相互作用が有効に発現しない。一方、400℃超えでは可動転位が導入されたとしても、転位の回復や消滅を生じてしまうため、充分なC量を含有していても相互作用が有効に発現しない。また、温間成形による、相当塑性歪み量が0.02未満の場合には、導入される可動転位の密度が充分でなく、加工硬化の促進による延性の向上や強度の上昇を図ることができない。   When the steel plate temperature is less than 250 ° C., even if movable dislocations are introduced, C cannot be freely diffused, so that the interaction is not effectively exhibited. On the other hand, even if mobile dislocations are introduced at temperatures exceeding 400 ° C., recovery and disappearance of the dislocations occur, so that even if a sufficient amount of C is contained, the interaction is not effectively expressed. Further, when the amount of plastic strain due to warm forming is less than 0.02, the density of movable dislocations to be introduced is not sufficient, and it is not possible to improve ductility and increase strength by promoting work hardening.

本発明で用いられる高強度薄鋼板については、特にその製造方法を規定しないが、一般的な鋼板製造プロセスで製造することが可能であり、その品種としては、例えば、熱延鋼板、冷延鋼板、溶融亜鉛めっき鋼板で代表される表面処理鋼板などが挙げられる。   The high-strength thin steel sheet used in the present invention is not particularly defined for its production method, but can be produced by a general steel sheet production process. Examples of the types include hot-rolled steel sheets and cold-rolled steel sheets. And a surface-treated steel sheet represented by a hot-dip galvanized steel sheet.

例えば、熱延鋼板として製造する場合には、スラブは、マクロ偏析を防止するため、連続鋳造法で製造するのが好ましいが、造塊法、薄スラブ鋳造法により製造することもできる。   For example, when manufactured as a hot-rolled steel sheet, the slab is preferably manufactured by a continuous casting method in order to prevent macro segregation, but can also be manufactured by an ingot-making method or a thin slab casting method.

スラブを熱間圧延する際、スラブは再加熱されるが、圧延荷重の増大を防止するため、加熱温度は1150℃以上にすることが好ましい。また、スケールロスの増大や燃料原単位の増加を防止するため、加熱温度の上限は1300℃とすることが好ましい。熱間圧延は、粗圧延と仕上圧延により行われるが、仕上圧延は、その後に行う冷間圧延や焼鈍後の成形性の低下を防ぐため、Ar3変態点以上の仕上温度で行うことが好ましい。また、結晶粒の粗大化による組織の不均一やスケール欠陥の発生を防止するため、仕上温度は950℃以下とすることが好ましい。熱間圧延後の鋼板は、スケール欠陥の防止や良好な形状性の確保の観点から、500〜700℃の巻取温度で巻き取ることが好ましい。 When the slab is hot-rolled, the slab is reheated, but the heating temperature is preferably 1150 ° C. or higher in order to prevent an increase in rolling load. Further, in order to prevent an increase in scale loss and an increase in fuel consumption, the upper limit of the heating temperature is preferably 1300 ° C. Hot rolling is performed by rough rolling and finish rolling, but finish rolling is preferably performed at a finishing temperature equal to or higher than the Ar 3 transformation point in order to prevent deterioration of formability after subsequent cold rolling or annealing. . Further, in order to prevent the occurrence of non-uniform structure and scale defects due to the coarsening of crystal grains, the finishing temperature is preferably 950 ° C. or lower. The steel sheet after hot rolling is preferably wound at a winding temperature of 500 to 700 ° C. from the viewpoint of preventing scale defects and ensuring good shape.

冷延鋼板として製造する場合には、上記した巻取り後の熱延鋼板から、スケールを酸洗などにより除去した後、ポリゴナルフェライト相を効率的に生成させるため、圧下率40%以上で冷間圧延されることが好ましい。冷間圧延後の鋼板は、Acl変態点以上(Ac3+50)℃以下の温度域に加熱後、30〜500秒間均熱し、3〜30℃/秒の平均冷却速度で600℃以下の冷却停止温度まで一次冷却した後、250〜600℃の温度域で過時効処理をしたのち、2次冷却する方法によって製造できる。 When manufacturing as a cold-rolled steel sheet, the scale is removed from the hot-rolled steel sheet after winding by pickling or the like, and then a polygonal ferrite phase is efficiently generated. It is preferable to carry out hot rolling. The steel sheet after cold rolling is heated to a temperature range of Ac 1 transformation point to (Ac 3 +50) ° C. and below, then soaked for 30 to 500 seconds, with an average cooling rate of 3 to 30 ° C./second and 600 ° C. and below. After the primary cooling to the cooling stop temperature, an overaging treatment is performed in a temperature range of 250 to 600 ° C., followed by secondary cooling.

表面処理鋼板、例えば溶融亜鉛めっき鋼板として製造する場合には、上記した巻取り後の熱延鋼板から、スケールを酸洗などにより除去した後、ポリゴナルフェライト相を効率的に生成させるため、圧下率40%以上で冷間圧延されることが好ましい。冷間圧延後の鋼板はAcl変態点以上(Ac3+50)℃以下の温度域に加熱後、30〜500秒間均熱し、3〜30℃/秒の平均冷却速度で600℃以下の冷却停止温度まで一次冷却後に、Al量を0.10〜0.20%含む亜鉛めっき浴に浸漬して溶融亜鉛めっき処理を施し、めっきの目付け量を調整するために必要に応じてワイピングを行ったのち、2次冷却する方法によって製造できる。めっき中のFe濃度を調整して、めっきの密着性や塗装後の耐食性を向上させるために、2次冷却に先んじて450〜600℃の温度域で亜鉛めっきを合金化処理することもできる。 In the case of producing a surface-treated steel sheet, for example, a hot-dip galvanized steel sheet, after removing the scale from the hot-rolled steel sheet after winding as described above by pickling, etc., in order to efficiently generate a polygonal ferrite phase, the reduction is performed. Cold rolling is preferably performed at a rate of 40% or more. The steel sheet after cold rolling is heated to a temperature range from Ac l transformation point to (Ac 3 +50) ° C. and below, then soaked for 30 to 500 seconds, and cooled to 600 ° C. and below at an average cooling rate of 3 to 30 ° C./second. After primary cooling to temperature, dip galvanizing treatment by immersing in a galvanizing bath containing 0.10 to 0.20% of Al content, wiping as necessary to adjust the weight of plating, and then secondary cooling It can be manufactured by the method to do. In order to adjust the Fe concentration in the plating and improve the adhesion of the plating and the corrosion resistance after coating, the zinc plating can be alloyed in a temperature range of 450 to 600 ° C. prior to the secondary cooling.

なお、上述したところは、この発明の実施形態の一例を示したにすぎず、請求の範囲において種々の変更を加えることができる。   The above description is merely an example of the embodiment of the present invention, and various modifications can be made within the scope of the claims.

表1に示す成分組成の鋼No.A〜Kを真空溶解炉により溶製し、分塊圧延でシートバースラブとした。   Steel No. having the composition shown in Table 1 A to K were melted in a vacuum melting furnace and formed into a sheet berth slab by partial rolling.

熱延鋼板は、これらのシートバースラブを、熱延鋼板の製造工程を模して、1250℃に加熱し、粗圧延を施したのち、仕上げ圧延を850〜920℃の温度で行い、400〜600℃で巻取相当熱処理を施して鋼組織における各相の構成を調整して作製した。   The hot-rolled steel sheet is heated to 1250 ° C. to simulate the manufacturing process of the hot-rolled steel sheet, and subjected to rough rolling, and then finish rolling at a temperature of 850 to 920 ° C. A heat treatment equivalent to winding was performed at 600 ° C. to adjust the composition of each phase in the steel structure.

冷延鋼板は、冷延鋼板の製造工程を模して、上記した熱延板に酸洗を施して表面のスケールを除去し、さらに圧下率50%の冷間圧延を施し、引き続いて750〜900℃で300秒間の均熱処理を施した後に、200〜500℃まで冷却し30〜1800秒間保持したのち室温まで冷却し、鋼組織における各相の構成を調整して作製した。   The cold-rolled steel sheet imitates the manufacturing process of the cold-rolled steel sheet, removes the surface scale by subjecting the above hot-rolled sheet to pickling, and further performs cold rolling with a reduction rate of 50%, and subsequently 750- After soaking at 900 ° C. for 300 seconds, the sample was cooled to 200 to 500 ° C. and held for 30 to 1800 seconds, and then cooled to room temperature, and the composition of each phase in the steel structure was adjusted.

溶融亜鉛めっき鋼板は、合金化溶融亜鉛めっき鋼板の製造工程を模して、冷延鋼板の作製時に行う、均熱処理、冷却、保持の工程の後、溶融亜鉛めっきを施し、その後、525℃に再加熱し15秒間保持したのち室温まで冷却し、鋼組織における各相の構成を調整して作製した。   The hot dip galvanized steel sheet is similar to the manufacturing process of alloyed hot dip galvanized steel sheet. It was reheated and held for 15 seconds, then cooled to room temperature, and prepared by adjusting the composition of each phase in the steel structure.

Figure 0005895437
Figure 0005895437

これら各種鋼板は、表2に示すように、それぞれの鋼板の種類に従い、熱延鋼板を「HOT」、冷延鋼板を「COLD」および溶融亜鉛めっき鋼板を「GA」として示して分類した。   As shown in Table 2, these various steel sheets were classified according to the type of each steel sheet, indicating the hot rolled steel sheet as “HOT”, the cold rolled steel sheet as “COLD”, and the hot dip galvanized steel sheet as “GA”.

得られた各種鋼板について、鋼組織の同定を行うとともに、その面積率(%)を測定した。鋼組織は、鋼板の圧延方向に平行な板厚断面について、ナイタールによる腐食現出組織を走査型電子顕微鏡(SEM)で5000倍に拡大して各相を同定した。これを画像解析ソフト(Image−Pro;Cybernetics社製)により解析し、各々の構成相について当該相とこれ以外の相とに2値化した画像を作製した。マルテンサイト相と残留オーステナイト相は、識別が困難なため、両相を同一とみなして2値化した。これらをソフトの機能を用いてポリゴナルフェライト相、ベイナイト相およびマルテンサイトと残留オーステナイトとの合計の相の各々について面積率を求めた。鋼板を板厚l/4の位置まで研磨した後に、さらに0.1mmだけ化学研磨した面を測定面として、X線回折装置でMoのKα線を用いて、fcc鉄の(200)、(220)、(311)面と、bcc鉄の(200)、(211)、(220)面の積分強度を測定し、そのfccの比率をもって残留オーステナイト相の体積率を求め、3次元的に均質として、これを残留オーステナイト相の面積率とした。上記したマルテンサイトと残留オーステナイトの合計の相の面積率から、これを差し引いてマルテンサイト相の面積率とした。また、圧延方向と直角方向にJIS5号引張試験片を採取し、JIS Z 2241(2011年)に準拠して、20mm/minのクロスヘッド速度で室温での引張試験を行って、引張り強度TSおよび降伏強度YSとを測定した。これらの鋼板の鋼組織および機械的特性を表2に示す。   About each obtained steel plate, while identifying the steel structure, the area ratio (%) was measured. The steel structure was identified by magnifying the corrosion manifestation structure by Nital with a scanning electron microscope (SEM) 5000 times in the thickness cross section parallel to the rolling direction of the steel sheet. This was analyzed by image analysis software (Image-Pro; manufactured by Cybernetics), and for each constituent phase, an image binarized into the phase and other phases was prepared. Since the martensite phase and the retained austenite phase are difficult to distinguish, both phases were regarded as the same and binarized. Using the soft function of these, the area ratio was determined for each of the polygonal ferrite phase, the bainite phase, and the total phase of martensite and retained austenite. After polishing the steel plate to the position of the thickness l / 4, the surface that was further chemically polished by 0.1 mm was used as the measurement surface, and using Mo Kα rays with an X-ray diffractometer, the fcc iron (200), (220) , (311) surface and the integrated strength of (200), (211), (220) surface of bcc iron, the volume ratio of the retained austenite phase is obtained with the ratio of its fcc, and three-dimensionally homogeneous, This was defined as the area ratio of the retained austenite phase. The area ratio of the martensite phase was subtracted from the area ratio of the total phase of martensite and retained austenite. In addition, JIS No. 5 tensile test specimens were collected in the direction perpendicular to the rolling direction, and subjected to a tensile test at room temperature at a crosshead speed of 20 mm / min in accordance with JIS Z 2241 (2011). Yield strength YS was measured. Table 2 shows the steel structure and mechanical properties of these steel sheets.

Figure 0005895437
Figure 0005895437

さらに、温間成形での特性を評価するため、圧延方向と直角方向にJIS5号引張試験片を採取し、JIS Z 2241(2011年)に準拠して、20mm/minのクロスヘッド速度で、試験温度が250〜400℃の範囲で引張試験を行い、機械的特性を評価した。このときの300℃での試験と室温での試験における応力−歪み関係から、300℃における歪み量0.05での加工硬化率の室温における歪み量0.05での加工硬化率の比率を求めた。室温でのTSから、試験温度が250〜400℃で最も低いTSを差し引く事で温間加工時のTS低下量を求めた。また、試験温度が250〜400℃で最も高いYSから、室温でのYSを差し引く事で温間加工時のYS上昇量を求めた。加えて、300℃での温間引張試験を歪み量が0.10の時点で停止し、室温に冷却した後に再度引張試験を実施して、機械的特性を評価した。300℃で歪み量0.10の予加工を加えたのちの室温での引張強度から、室温での引張強度を差し引く事で温間加工後のTS上昇量を求めた。   Furthermore, in order to evaluate the properties in warm forming, JIS No. 5 tensile test specimens were taken in the direction perpendicular to the rolling direction and tested at a crosshead speed of 20 mm / min in accordance with JIS Z 2241 (2011). Tensile tests were performed in the temperature range of 250 to 400 ° C. to evaluate mechanical properties. From the stress-strain relationship in the test at 300 ° C. and the test at room temperature at this time, the ratio of the work hardening rate at a strain amount of 0.05 at room temperature to the work hardening rate at a strain amount of 0.05 at 300 ° C. was determined. By subtracting the lowest TS at a test temperature of 250 to 400 ° C. from the TS at room temperature, the amount of TS decrease during warm working was determined. Further, the amount of increase in YS during warm working was determined by subtracting YS at room temperature from the highest YS at a test temperature of 250 to 400 ° C. In addition, the warm tensile test at 300 ° C. was stopped when the strain amount was 0.10, and after cooling to room temperature, the tensile test was performed again to evaluate the mechanical properties. The amount of increase in TS after warm working was determined by subtracting the tensile strength at room temperature from the tensile strength at room temperature after applying pre-processing with a strain amount of 0.10 at 300 ° C.

また、これら鋼板に温間プレス成形を施し、プレス成形性およびプレス成形品を用いた耐衝撃特性を評価した。鋼板は220mm×300mmのサイズのブランク板とし、300℃に加熱したのち、長手方向に300mmで断面がハット形状の柱状の部材を図5に模式的に示すように、鋼板1をダイ2上に置き、しわ押さえ部材3で鋼板1の外端部を固定した上でパンチ4を用いてプレス成形を施し、割れの発生しない最大の成形高さ(限界成形高さ)を測定し、300℃における限界成形高さの室温における限界成形高さに対する比率を求めた。また、同様の試験を成形高さ30mmで試験を停止して、成形品の縦壁部について相当塑性歪みを求めた。相当塑性歪み(ε´)はミーゼスの相当歪みの式において平面歪み変形を仮定して部材長手方向の歪みをゼロとした体積一定の原則に基づき、板厚歪みから下記に示す式を用いて計算した。このとき、成形後の板厚は成形深さが15mmの位置で測定した。また、図6に示すように成形品の口開き量を測定し、室温における口開き量に対する300℃における口開き量の比率を求めた。さらに、このハット部材の底部(フランジ部側)に同一の鋼板を溶接して断面がハット形状の角柱状の部品を作製し、この長手軸方向に高さ10mの位置から、重量が750kgの重錘を落下衝突させて変位および荷重を測定した。このときの荷重値を変位50mmまで積分して吸収エネルギーを算出し、室温で成形したハット部品の吸収エネルギーに対する300℃で成形したハット部品での吸収エネルギーの比率を求めた。結果を表3に示す。

ε´=2/√3×ε
ε=ln(t/t
但し、ε´は相当塑性歪み、εは板厚歪み(真歪み)、tは成形後の板厚(mm)、tはブランク板(成形前)の板厚(mm)である。
Further, these steel sheets were subjected to warm press forming, and press formability and impact resistance characteristics using the press formed products were evaluated. The steel plate is a blank plate having a size of 220 mm × 300 mm, heated to 300 ° C., and the steel plate 1 is placed on the die 2 as schematically shown in FIG. After placing the outer end of the steel plate 1 with the wrinkle holding member 3, press forming is performed using the punch 4, and the maximum forming height at which cracks do not occur (limit forming height) is measured. The ratio of the critical molding height to the critical molding height at room temperature was determined. Further, the same test was stopped at a molding height of 30 mm, and the equivalent plastic strain was determined for the vertical wall portion of the molded product. Equivalent plastic strain (ε ') is calculated from the plate thickness strain using the following formula based on the principle of constant volume with zero strain in the longitudinal direction of the member assuming the plane strain deformation in the Mises equivalent strain formula. did. At this time, the plate thickness after molding was measured at a position where the molding depth was 15 mm. Moreover, as shown in FIG. 6, the opening amount of the molded product was measured, and the ratio of the opening amount at 300 ° C. to the opening amount at room temperature was obtained. Further, the same steel plate is welded to the bottom (flange side) of the hat member to produce a prismatic part with a hat-shaped cross section, and a weight of 750 kg is measured from the position of a height of 10 m in the longitudinal axis direction. The weight was dropped and collided to measure the displacement and load. The absorbed energy was calculated by integrating the load value at this time up to a displacement of 50 mm, and the ratio of the absorbed energy in the hat part molded at 300 ° C. to the absorbed energy of the hat part molded at room temperature was obtained. The results are shown in Table 3.
Ε ′ = 2 / √3 × ε t
ε t = ln (t / t 0 )
Where ε ′ is the equivalent plastic strain, ε t is the plate thickness strain (true strain), t is the plate thickness (mm) after forming, and t 0 is the plate thickness (mm) of the blank plate (before forming).

Figure 0005895437
Figure 0005895437

発明例による鋼板は、300℃で成形した場合には、室温で成形した場合に比較して、限界成形高さが10%以上(比率1.10以上)の向上を示しながら、これによる口開き量の増減は5%以内(比率0.95〜1.05)と寸法精度の低下は認められず、温間成形の適用で著しくプレス成形性が向上している。さらに、重錘落下試験での吸収エネルギーも300℃での成形部品では、室温での成形部品に比較して15%以上(比率1.15以上)の上昇を示し、耐衝撃特性にも優れていることがわかる。   When the steel sheet according to the invention is formed at 300 ° C., the limit forming height is improved by 10% or more (ratio 1.10 or more) compared with the case of forming at room temperature. The increase / decrease is within 5% (ratio 0.95 to 1.05), and no decrease in dimensional accuracy is observed, and the press formability is remarkably improved by applying warm forming. Furthermore, the absorbed energy in the weight drop test also shows an increase of 15% or more (ratio of 1.15 or more) in molded parts at 300 ° C compared to molded parts at room temperature, and has excellent impact resistance. I understand.

本発明によれば、780MPa以上の引張り強度TSを有する高強度薄鋼板において、温間成形を適用することでプレス成形性を向上して部品形状の自由度を高め、より成形難易度の高い部品の高強度化が可能となる。さらに、本発明により製造した構造部材を自動車車体に適用することにより、より一層の乗員の安全性確保や、大幅な車体の軽量化による燃費改善を図ることができる。   According to the present invention, in a high-strength thin steel sheet having a tensile strength TS of 780 MPa or more, by applying warm forming, the press formability is improved, the degree of freedom of part shape is increased, and the part having a higher degree of forming difficulty The strength can be increased. Furthermore, by applying the structural member manufactured according to the present invention to the automobile body, it is possible to further ensure the safety of the occupant and improve the fuel consumption by significantly reducing the weight of the vehicle body.

1 鋼板
2 ダイ
3 しわ押さえ部材
4 パンチ
1 Steel plate 2 Die 3 Wrinkle holding member 4 Punch

Claims (7)

質量%で、C:0.04〜0.2%、Si:0.5〜2.5%、Mn:1.5〜3.5%、P:0.001〜0.05%、S:0.0001〜0.01%、Al:0.001〜0.1%、N:0.0005〜0.01%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、鋼組織が、面積率で、ポリゴナルフェライト相を30%以上、マルテンサイト相を20%以上および残留オーステナイト相を3%未満含有し、
室温での引張強度(TS)が780MPa以上であり、
室温における歪み量0.05での加工硬化率(WHR(室温))と、300℃における歪み量0.05での加工硬化率(WHR(300))とが下記式(1)を満足し、
室温での引張強度(TS(室温))と、300℃で歪み量0.10の予加工を加えたのちの室温での引張強度(TS(300))とが下記式(2)を満足し、


WHR(300)/WHR(室温)>1.20 ・・・・・(1)
TS(300)−TS(室温)>150(MPa) ・・・・・(2)

室温での引張強度に対する250〜400℃の温度域での引張強度の低下量が150MPa以下であり、さらに、
室温での降伏強度に対する250〜400℃の温度域での降伏強度の上昇量が50MPa以下であることを特徴とする、成形性および強度上昇能に優れた温間成形用薄鋼板。
In mass%, C: 0.04 to 0.2%, Si: 0.5 to 2.5%, Mn: 1.5 to 3.5%, P: 0.001 to 0.05%, S: Steel containing 0.0001 to 0.01%, Al: 0.001 to 0.1%, N: 0.0005 to 0.01%, the balance being composed of Fe and inevitable impurities, The structure contains an area ratio of 30% or more of the polygonal ferrite phase, 20% or more of the martensite phase and less than 3% of the retained austenite phase ,
The tensile strength (TS) at room temperature is 780MPa or more,
The work hardening rate (WHR (room temperature)) at a strain amount of 0.05 at room temperature and the work hardening rate (WHR (300)) at a strain amount of 0.05 at 300 ° C. satisfy the following formula (1).
The tensile strength at room temperature (TS (room temperature)) and the tensile strength at room temperature (TS (300)) after pre-processing with a strain of 0.10 at 300 ° C satisfy the following formula (2).

Record
WHR (300) / WHR (room temperature)> 1.20 (1)
TS (300)-TS (room temperature)> 150 (MPa) (2)

The amount of decrease in the tensile strength in the temperature range of 250 to 400 ° C. with respect to the tensile strength at room temperature is 150 MPa or less,
A thin steel sheet for warm forming excellent in formability and strength increasing capability, wherein an increase in yield strength in a temperature range of 250 to 400 ° C with respect to the yield strength at room temperature is 50 MPa or less.
前記成分組成は、質量%で、B:0.0003〜0.0050%をさらに含有することを特徴とする請求項に記載の成形性および強度上昇能に優れた温間成形用薄鋼板。 The thin steel sheet for warm forming excellent in formability and strength increasing ability according to claim 1 , wherein the component composition further contains B: 0.0003 to 0.0050% by mass%. 前記成分組成は、質量%で、Ti:0.0005〜0.1%およびNb:0.0005〜0.05%から選ばれる少なくとも1種の成分をさらに含有することを特徴とする請求項1又は2に記載の成形性および強度上昇能に優れた温間成形用薄鋼板。 The component composition further comprises at least one component selected from Ti: 0.0005 to 0.1% and Nb: 0.0005 to 0.05% by mass%, and the moldability according to claim 1 or 2 , A thin steel sheet for warm forming with excellent strength increasing ability. 前記成分組成は、質量%で、Cr:0.01〜1.0%およびMo:0.01〜1.0%から選ばれる少なくとも1種の成分を含有することを特徴とする請求項1〜のいずれか1項に記載の成形性および強度上昇能に優れた温間成形用薄鋼板。 The chemical composition, in mass%, Cr: 0.01% to 1.0% and Mo: according to any one of claims 1 to 3, characterized in that it contains at least one component selected from 0.01% to 1.0% Steel sheet for warm forming with excellent formability and strength raising ability. 請求項1〜のいずれか一項に記載の薄鋼板であって、前記マルテンサイト相の一部又は全部が焼戻しマルテンサイトであることを特徴とする成形性および強度上昇能に優れた温間成形用薄鋼板。 It is the thin steel plate as described in any one of Claims 1-4 , Comprising: Part or all of the said martensite phase is tempered martensite, The warm which was excellent in the moldability and strength raising ability characterized by the above-mentioned. Thin steel sheet for forming. 請求項1〜のいずれか一項に記載の薄鋼板であって、更に、面積率でベイナイト相を30%未満の分率で含有することを特徴とする成形性および強度上昇能に優れた温間成形用薄鋼板。 It is the thin steel plate as described in any one of Claims 1-5 , Comprising: Furthermore, it was excellent in the moldability and strength raising ability characterized by containing the bainite phase in a fraction of less than 30% by area ratio. Thin steel sheet for warm forming. 請求項1〜のいずれか1項に記載の薄鋼板に、250〜400℃の温度域で相当塑性歪み量:0.02以上の温間加工を施すことを特徴とする温間成形方法。 A warm forming method characterized by subjecting the thin steel sheet according to any one of claims 1 to 6 to a warm working with an equivalent plastic strain amount of 0.02 or more in a temperature range of 250 to 400 ° C.
JP2011225157A 2010-10-22 2011-10-12 Thin steel sheet for warm forming excellent in formability and strength increasing ability, and warm forming method using the same Active JP5895437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011225157A JP5895437B2 (en) 2010-10-22 2011-10-12 Thin steel sheet for warm forming excellent in formability and strength increasing ability, and warm forming method using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010237842 2010-10-22
JP2010237842 2010-10-22
JP2011225157A JP5895437B2 (en) 2010-10-22 2011-10-12 Thin steel sheet for warm forming excellent in formability and strength increasing ability, and warm forming method using the same

Publications (2)

Publication Number Publication Date
JP2012107319A JP2012107319A (en) 2012-06-07
JP5895437B2 true JP5895437B2 (en) 2016-03-30

Family

ID=46493220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011225157A Active JP5895437B2 (en) 2010-10-22 2011-10-12 Thin steel sheet for warm forming excellent in formability and strength increasing ability, and warm forming method using the same

Country Status (1)

Country Link
JP (1) JP5895437B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101382981B1 (en) * 2011-11-07 2014-04-09 주식회사 포스코 Steel sheet for warm press forming, warm press formed parts and method for manufacturing thereof
JP6330758B2 (en) * 2015-08-19 2018-05-30 Jfeスチール株式会社 Thin steel sheet for warm forming excellent in formability and its warm forming method
JP6330759B2 (en) * 2015-08-19 2018-05-30 Jfeスチール株式会社 Thin steel sheet for warm forming excellent in formability and strength increasing ability and its warm forming method
KR101770031B1 (en) * 2015-09-23 2017-08-21 현대제철 주식회사 Manufacturing method for molded articles
CN114807737B (en) * 2021-01-21 2023-06-13 宝山钢铁股份有限公司 Hot dip galvanized steel and manufacturing method thereof
CN117305747A (en) * 2022-06-22 2023-12-29 宝山钢铁股份有限公司 High-strength high-forming cold-rolled hot-dip pure zinc strip steel and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001246427A (en) * 2000-03-02 2001-09-11 Sumitomo Metal Ind Ltd Warn forming method and high tensile strength steel sheet excellent in warm formability
JP4109703B2 (en) * 2006-03-31 2008-07-02 株式会社神戸製鋼所 High strength cold-rolled steel sheet with excellent chemical conversion
CN101802238B (en) * 2007-08-01 2012-05-23 株式会社神户制钢所 High-strength steel sheet excellent in bendability and fatigue strength
JP5194841B2 (en) * 2008-01-31 2013-05-08 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof
MX2010010116A (en) * 2008-03-27 2010-10-04 Nippon Steel Corp High-strength galvanized steel sheet, high-strength alloyed hot-dip galvanized sheet, and high-strength cold-rolled steel sheet which excel in moldability and weldability, and manufacturing method for the same.
JP5438302B2 (en) * 2008-10-30 2014-03-12 株式会社神戸製鋼所 High yield ratio high strength hot dip galvanized steel sheet or alloyed hot dip galvanized steel sheet with excellent workability and manufacturing method thereof

Also Published As

Publication number Publication date
JP2012107319A (en) 2012-06-07

Similar Documents

Publication Publication Date Title
US10501832B2 (en) Plated steel sheet
KR101930185B1 (en) High-strength galvanized steel sheet and method for producing the same
JP5315956B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
KR101660216B1 (en) High-strength galvanized steel sheet having excellent formability and crashworthiness and method for manufacturing the same
JP4893844B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and impact resistance and method for producing the same
JP5971434B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
JP6540162B2 (en) High strength cold rolled steel sheet excellent in ductility and stretch flangeability, high strength alloyed galvanized steel sheet, and method for producing them
US20180037964A1 (en) HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING EXCELLENT FORMABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND METHOD FOR PRODUCING SAME
KR101479391B1 (en) Cold rolled steel sheet having excellent shape fixability and method for manufacturing the same
JP5906324B2 (en) Collision energy absorbing member for automobile and manufacturing method thereof
JP6402460B2 (en) High strength steel sheet, high strength hot dip galvanized steel sheet, and high strength alloyed hot dip galvanized steel sheet with excellent impact properties having a maximum tensile strength of 780 MPa or more
JP5895437B2 (en) Thin steel sheet for warm forming excellent in formability and strength increasing ability, and warm forming method using the same
KR20190073469A (en) High strength steel sheet and manufacturing method thereof
US11332804B2 (en) High-strength cold-rolled steel sheet, high-strength coated steel sheet, and method for producing the same
WO2013005670A1 (en) Hot-dip plated cold-rolled steel sheet and process for producing same
JP6540245B2 (en) High strength steel plate excellent in shape freezing property and method for manufacturing the same
KR20200122382A (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP5672946B2 (en) Thin steel sheet for warm forming excellent in formability and strength increasing ability, and warm forming method using the same
KR101963705B1 (en) High-strength steel sheet and method for manufacturing the same
JP6330759B2 (en) Thin steel sheet for warm forming excellent in formability and strength increasing ability and its warm forming method
JP6330758B2 (en) Thin steel sheet for warm forming excellent in formability and its warm forming method
JP2001011565A (en) High strength steel sheet excellent in impact energy absorbability and its production
JP5825204B2 (en) Cold rolled steel sheet
JP5708320B2 (en) Cold rolled steel sheet
KR20210124324A (en) Hot stamped products and steel sheets for hot stamping, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160215

R150 Certificate of patent or registration of utility model

Ref document number: 5895437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250