JP5894393B2 - Oxide particle dispersion - Google Patents

Oxide particle dispersion Download PDF

Info

Publication number
JP5894393B2
JP5894393B2 JP2011179739A JP2011179739A JP5894393B2 JP 5894393 B2 JP5894393 B2 JP 5894393B2 JP 2011179739 A JP2011179739 A JP 2011179739A JP 2011179739 A JP2011179739 A JP 2011179739A JP 5894393 B2 JP5894393 B2 JP 5894393B2
Authority
JP
Japan
Prior art keywords
dispersion
oxide
metal salt
semiconductor
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011179739A
Other languages
Japanese (ja)
Other versions
JP2013042086A (en
Inventor
眞 水谷
眞 水谷
近藤 浩史
浩史 近藤
聡 蜂屋
聡 蜂屋
雅敏 柴田
雅敏 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2011179739A priority Critical patent/JP5894393B2/en
Publication of JP2013042086A publication Critical patent/JP2013042086A/en
Application granted granted Critical
Publication of JP5894393B2 publication Critical patent/JP5894393B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、分散液、それを用いた半導体薄膜及び半導体デバイスに関する。   The present invention relates to a dispersion, a semiconductor thin film and a semiconductor device using the dispersion.

電界効果型トランジスタ(FET)は、半導体メモリ集積回路の単位電子素子、高周波信号増幅素子、液晶駆動用素子等として広く用いられており、現在最も多く実用化されている半導体デバイスである。   Field effect transistors (FETs) are widely used as unit electronic elements, high-frequency signal amplifying elements, liquid crystal driving elements, and the like of semiconductor memory integrated circuits, and are currently the most widely used semiconductor devices.

その中でも、近年における表示装置のめざましい発展に伴い、液晶表示装置(LCD)のみならず、エレクトロルミネッセンス(EL)表示装置や、フィールドエミッションディスプレイ(FED)等の各種の表示装置において、表示素子に駆動電圧を印加して表示装置を駆動させるスイッチング素子として、電界効果型トランジスタ(FET)の1種である薄膜トランジスタ(TFT)が多用されている。   Among them, with the remarkable development of display devices in recent years, not only liquid crystal display devices (LCD) but also various display devices such as electroluminescence (EL) display devices and field emission displays (FED) are driven by display elements. A thin film transistor (TFT), which is a kind of field effect transistor (FET), is frequently used as a switching element that drives a display device by applying a voltage.

その材料としては、シリコン半導体化合物が最も広く用いられている。一般に、高速動作が必要な高周波増幅素子、集積回路用素子等にはシリコン単結晶が用いられ、液晶駆動用素子等には、大面積化の要求からアモルファスシリコンが用いられている。
アモルファスシリコンは、比較的低温で形成できる利点を有するが、結晶性シリコンと比較してスイッチング速度が遅い。このため、表示装置を駆動するスイッチング素子として使用したときに、高速な動画の表示に追従できない場合がある。
As the material, silicon semiconductor compounds are most widely used. In general, a silicon single crystal is used for a high-frequency amplifier element, an integrated circuit element, and the like that require high-speed operation, and amorphous silicon is used for a liquid crystal driving element and the like because of a demand for a large area.
Amorphous silicon has the advantage that it can be formed at a relatively low temperature, but has a lower switching speed than crystalline silicon. For this reason, when it is used as a switching element for driving a display device, it may not be able to follow high-speed moving image display.

上記問題を解決する材料として酸化物半導体が提案されている。近年、室温プロセスで作製したアモルファス酸化物半導体を用いたフレキシブル薄膜トランジスタが報告されている。これによれば、プラスチック基板上に気相法によりアモルファスZnGaInO層が形成され、高い整流特性が得られている。
しかしながら、気相法は真空設備が必要であり、大面積の表示装置に適用するためには、真空設備が大掛かりかつ複雑となる。
An oxide semiconductor has been proposed as a material for solving the above problems. In recent years, a flexible thin film transistor using an amorphous oxide semiconductor manufactured by a room temperature process has been reported. According to this, an amorphous ZnGaInO 4 layer is formed on a plastic substrate by a vapor phase method, and high rectification characteristics are obtained.
However, the vapor phase method requires vacuum equipment, and the vacuum equipment is large and complicated in order to be applied to a display device having a large area.

このため、塗布等の湿式プロセスによる半導体デバイスの製造が検討されている(特許文献1)。しかしながら、半導体微粒子を塗布して製造したTFTは、粒子間抵抗のために一般的に移動度、オン/オフ比等のTFT性能が悪く、TFT性能を向上するためには、微粒子を焼結して粒子間のキャリア移動度を向上させる必要がある。   For this reason, manufacture of a semiconductor device by a wet process such as coating has been studied (Patent Document 1). However, TFTs manufactured by applying semiconductor fine particles generally have poor TFT performance such as mobility and on / off ratio due to interparticle resistance. To improve TFT performance, the fine particles are sintered. Therefore, it is necessary to improve the carrier mobility between particles.

半導体微粒子の焼結は高温で行う必要がある。例えば、非特許文献2では、InとGaの原子比が1:1のクラスターを塗布して製造した薄膜を600℃で焼成している。
しかしながら、このような高温工程を設けると、高温に耐えうる基板を選定しなければならず、また、製造装置を高性能化する必要が生じる。これらは半導体デバイスの製造において大きな制約となる。
尚、非特許文献2に開示された方法は、我々の検討により、成膜性にも課題があることが分かった。
The semiconductor fine particles must be sintered at a high temperature. For example, in Non-Patent Document 2, a thin film manufactured by applying a cluster having an atomic ratio of In and Ga of 1: 1 is baked at 600 ° C.
However, when such a high-temperature process is provided, a substrate that can withstand high temperatures must be selected, and it is necessary to improve the performance of the manufacturing apparatus. These are major limitations in the manufacture of semiconductor devices.
Note that the method disclosed in Non-Patent Document 2 has been found to have a problem in film forming property by our examination.

特開2007−42690号公報JP 2007-42690 A

Angew.Chem.Int.Ed.2008,47,9484‐9486Angew. Chem. Int. Ed. 2008, 47, 9484-9486

本発明の目的は、容易に成膜でき、かつ低温焼成で半導体デバイスに好適な半導体薄膜が得られる分散液を提供することである。   An object of the present invention is to provide a dispersion liquid that can be easily formed into a film and can be obtained by a low-temperature baking to obtain a semiconductor thin film suitable for a semiconductor device.

本発明によれば、以下の分散液、半導体薄膜及び半導体デバイスが提供される。
1.酸化物粒子、金属塩及び分散媒を含む分散液。
2.前記酸化物粒子のBET粒子径が100nm以下である1に記載の分散液。
3.前記酸化物粒子がSn,Zn,In及びGaから選ばれる1以上の金属の酸化物である1又は2に記載の分散液。
4.前記酸化物粒子がコアシェル型粒子であり、Sn,Zn及びInから選ばれる1以上の金属の酸化物をコアとし、かつSn,Zn,In,Ga,Al,Ti,Zr,Hf及びCuから選ばれる1以上の金属の酸化物をシェルとする1〜3のいずれかに記載の分散液。
5.前記金属塩がSn,Zn,In及びGaから選ばれる1以上の金属の塩である1〜4のいずれかに記載の分散液。
6.前記金属塩がInの硝酸塩とGaの硝酸塩の混合物である1〜5のいずれかに記載の分散液。
7.1〜6のいずれかに記載の分散液から得られる半導体薄膜。
8.7に記載の半導体薄膜を半導体層として用いる半導体デバイス。
According to the present invention, the following dispersion, semiconductor thin film, and semiconductor device are provided.
1. A dispersion containing oxide particles, a metal salt, and a dispersion medium.
2. 2. The dispersion according to 1, wherein the oxide particles have a BET particle size of 100 nm or less.
3. The dispersion according to 1 or 2, wherein the oxide particles are oxides of one or more metals selected from Sn, Zn, In, and Ga.
4). The oxide particle is a core-shell type particle, the core is one or more metal oxides selected from Sn, Zn and In, and is selected from Sn, Zn, In, Ga, Al, Ti, Zr, Hf and Cu. 4. The dispersion according to any one of 1 to 3, wherein one or more metal oxides are used as a shell.
5. The dispersion according to any one of 1 to 4, wherein the metal salt is a salt of one or more metals selected from Sn, Zn, In, and Ga.
6). The dispersion according to any one of 1 to 5, wherein the metal salt is a mixture of a nitrate of In and a nitrate of Ga.
The semiconductor thin film obtained from the dispersion liquid in any one of 7.1-6.
A semiconductor device using the semiconductor thin film according to 8.7 as a semiconductor layer.

本発明によれば、容易に成膜でき、かつ低温焼成で半導体デバイスに好適な半導体薄膜が得られる分散液を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the dispersion liquid which can form into a film easily and can obtain the semiconductor thin film suitable for a semiconductor device by low-temperature baking can be provided.

本発明の一実施形態である薄膜トランジスタの概略断面図である。It is a schematic sectional drawing of the thin-film transistor which is one Embodiment of this invention. 実施例1で作製した薄膜トランジスタの概略断面図である。1 is a schematic cross-sectional view of a thin film transistor manufactured in Example 1. FIG.

本発明の分散液は、酸化物粒子、金属塩及び分散媒の混合物からなる。酸化物粒子を含むことにより成膜性が向上する。また、分散液から得られる半導体膜を使用して製造した半導体デバイスの動作特性、特にTFTの性能(移動度、オン/オフ比等)が向上する。   The dispersion of the present invention comprises a mixture of oxide particles, a metal salt and a dispersion medium. The film formability is improved by including oxide particles. In addition, the operating characteristics of a semiconductor device manufactured using a semiconductor film obtained from the dispersion, particularly the performance of the TFT (mobility, on / off ratio, etc.) are improved.

酸化物粒子は好ましくは半導体粒子であり、半導体粒子は、バンドギャップが3.0eV以上、好ましくは3.1eV以上の金属酸化物の1種又は2種以上からなることが好ましい。これにより、透明な酸化物半導体膜が形成できる。   The oxide particles are preferably semiconductor particles, and the semiconductor particles are preferably composed of one or more metal oxides having a band gap of 3.0 eV or more, preferably 3.1 eV or more. Thereby, a transparent oxide semiconductor film can be formed.

バンドギャップが3.0eV以上である金属酸化物としては、SiO(8.95eV)、SnO(3.8〜4.0eV)、ZnO(3.3〜3.6eV)、In(3.6〜4.2eV)、Ga(4.8〜5.0eV)等が挙げられるが、これらに限定されるものではない。
中でも、製造コストの観点からSnO及びZnOが好ましく、化学的な安定性の観点からSnOが好ましい。
また、高移動度の観点からSnO,ZnO及びInが好ましい。さらに、SnO又はZnOを用いると、稀少元素の使用を低減できるため好ましい。
Examples of the metal oxide having a band gap of 3.0 eV or more include SiO 2 (8.95 eV), SnO 2 (3.8 to 4.0 eV), ZnO (3.3 to 3.6 eV), In 2 O 3. (3.6 to 4.2 eV), Ga 2 O 3 (4.8 to 5.0 eV), and the like, but are not limited thereto.
Among these, SnO 2 and ZnO are preferable from the viewpoint of manufacturing cost, and SnO 2 is preferable from the viewpoint of chemical stability.
Further, preferably SnO 2, ZnO and In 2 O 3 in view of high mobility. Furthermore, it is preferable to use SnO 2 or ZnO because the use of rare elements can be reduced.

酸化物粒子は、BET法を用いて求めた粒子径(BET粒子径)が100nm以下(超微粒子)であることが好ましく、50nm以下であることがさらに好ましい。粒子径が100nmを超えると、塗布膜が白濁し膜性が悪くなる可能性が生じる。100nm以下であれば、透明な塗布膜が得られ、これを半導体層に用いたTFTは、安定したTFT動作(移動度、オン/オフ比)が得られる。   The oxide particles preferably have a particle diameter (BET particle diameter) determined by the BET method of 100 nm or less (ultrafine particles), and more preferably 50 nm or less. If the particle diameter exceeds 100 nm, the coating film may become cloudy and the film properties may be deteriorated. When the thickness is 100 nm or less, a transparent coating film is obtained, and a TFT using this as a semiconductor layer can obtain a stable TFT operation (mobility, on / off ratio).

また、これらの酸化物粒子(コア粒子)の表面に、金属酸化物(シェル)を付着加熱処理して、コア粒子表面の少なくとも一部を被覆したコアシェル型微粒子を用いることによって、分散媒への分散性が向上し、形成される薄膜の膜質が均一で良好になるために、結果としてTFT動作にばらつきが少なくなる。   In addition, by using core-shell type fine particles in which at least a part of the surface of the core particle is coated by heat-treating a metal oxide (shell) on the surface of the oxide particle (core particle), heat treatment to the dispersion medium is performed. Since dispersibility is improved and the film quality of the formed thin film is uniform and good, as a result, variations in TFT operation are reduced.

被覆に用いる金属酸化物としてはSn,Zn,In,Ga,Al,Ti,Zr,Hf及びCuから選ばれる1以上の金属の酸化物が挙げられ、Zn,In,Gaが好ましい。   Examples of the metal oxide used for coating include oxides of one or more metals selected from Sn, Zn, In, Ga, Al, Ti, Zr, Hf, and Cu, and Zn, In, and Ga are preferable.

被覆に用いる金属酸化物としてSn,Zn,In,Ga又はAlを用いると、その酸化物粒子を用いたFETは電界効果移動度が向上し、Ti,Zr又はHfを用いた場合、酸素を取り込みやすいためコアシェル型粒子の酸素欠損が低減され、キヤリア濃度を低減し良好なTFT性能とすることができる。
また、コアシェル型粒子を構成する他の金属元素に対して価数の低いCu等の元素を用いることによっても、キヤリア濃度を低減することができる。
When Sn, Zn, In, Ga, or Al is used as the metal oxide used for coating, the field effect mobility of the FET using the oxide particles is improved. When Ti, Zr, or Hf is used, oxygen is incorporated. Since it is easy, oxygen deficiency of the core-shell type particles is reduced, the carrier concentration can be reduced, and good TFT performance can be obtained.
The carrier concentration can also be reduced by using an element such as Cu having a low valence with respect to other metal elements constituting the core-shell type particles.

コアとシェルを形成する金属酸化物に透明のものを選択すれば、透明な酸化物粒子を形成できる。例えば、コアとして酸化錫又は酸化インジウム、シェルとしてインジウム−ガリウムアモルファス酸化物又はインジウム−ガリウム−亜鉛アモルファス酸化物を選択する。   Transparent metal particles can be formed by selecting a transparent metal oxide that forms the core and shell. For example, tin oxide or indium oxide is selected as the core, and indium-gallium amorphous oxide or indium-gallium-zinc amorphous oxide is selected as the shell.

コアシェル型微粒子は、コア粒子に、少なくとも1種の金属化合物を溶解又は分散させた溶液を混合し、上記混合物を200〜800℃で反応させることにより製造できる。   The core-shell type fine particles can be produced by mixing a solution in which at least one metal compound is dissolved or dispersed in the core particles and reacting the mixture at 200 to 800 ° C.

上記金属化合物は、上記シェルの金属酸化物に対応する金属化合物であり、好ましくは硝酸塩、炭酸塩、酢酸塩、水酸化物又はハロゲン化物であり、水和物であってもよい。コア粒子に上記の溶液を混合すると、コア粒子の表面に溶液が含浸する。混合は例えばボールミルにより1〜20時間行う。   The metal compound is a metal compound corresponding to the metal oxide of the shell, and is preferably a nitrate, carbonate, acetate, hydroxide or halide, and may be a hydrate. When the above solution is mixed with the core particles, the surface of the core particles is impregnated with the solution. Mixing is performed, for example, for 1 to 20 hours using a ball mill.

コアシェル型微粒子が形成されていることは、電子顕微鏡によって観察することは難しいが、コアシェル型微粒子のXRD分析において、コア粒子に起因する回折ピークのみが見られることや、コアシェル型微粒子の電気伝導性の測定において、電気伝導度にシェル物質の量依存性にピークが観察されること、等から判断することができる。   The formation of the core-shell type fine particles is difficult to observe with an electron microscope, but in the XRD analysis of the core-shell type fine particles, only the diffraction peak due to the core particles can be seen, and the electrical conductivity of the core-shell type fine particles In this measurement, it can be judged from the fact that a peak is observed in the amount dependency of the shell substance on the electric conductivity.

次に、この混合物を200〜800℃、好ましくは300〜600℃で反応させて、上記の金属化合物に対応する金属酸化物を生成する。この金属酸化物は上記コア粒子の表面の少なくとも一部又は全部を覆う。
この反応は、例えば不活性ガス雰囲気(窒素等)又は大気雰囲気下で、例えば0.1〜10時間で行う。
Next, this mixture is reacted at 200 to 800 ° C., preferably 300 to 600 ° C., to produce a metal oxide corresponding to the above metal compound. This metal oxide covers at least part or all of the surface of the core particle.
This reaction is performed, for example, in an inert gas atmosphere (nitrogen or the like) or an air atmosphere, for example, for 0.1 to 10 hours.

酸化物粒子は、後述する金属塩(金属塩溶液である場合は溶質)に対して5wt%以上75wt%以下用いることが好ましい。5wt%未満であると成膜性改良に効果が無い場合がある。一方、75wt%超であると、製造した半導体デバイス(特に、TFT)が安定した動作特性(移動度、オン/オフ比等)を示さない可能性がある。   The oxide particles are preferably used in an amount of 5 wt% or more and 75 wt% or less with respect to a metal salt (a solute in the case of a metal salt solution) described later. If it is less than 5 wt%, there may be no effect in improving the film formability. On the other hand, if it exceeds 75 wt%, the manufactured semiconductor device (in particular, TFT) may not exhibit stable operating characteristics (mobility, on / off ratio, etc.).

本発明の分散液に用いる金属塩としては、硝酸インジウム、硝酸ガリウム、硝酸亜鉛等の硝酸塩、又は酢酸塩が挙げられる。金属塩を用いることにより、酸化物粒子のみからなる膜よりも高いTFT性能が得られる半導体膜を得ることができる。
金属塩は、好ましくはSn,Zn,In及びGaから選択される1以上の金属の硝酸塩又は酢酸塩であり、より好ましくはInの硝酸塩とGaの硝酸塩の混合物である。
Examples of the metal salt used in the dispersion of the present invention include nitrates such as indium nitrate, gallium nitrate, and zinc nitrate, or acetates. By using a metal salt, it is possible to obtain a semiconductor film in which higher TFT performance can be obtained than a film made only of oxide particles.
The metal salt is preferably one or more metal nitrates or acetates selected from Sn, Zn, In and Ga, more preferably a mixture of In nitrate and Ga nitrate.

本発明の分散液の分散媒としては、水又は非水系溶媒が使用できる。非水系溶媒としては、アルコール類、ケトン類、エーテル類、エステル類、芳香族系溶媒等が挙げられ、環境性から非芳香族系の溶媒が好ましい。
中でも、プロピレングリコールモノメチルエーテル(PGME)、エタノール等のアルコール類が好ましい。これらは1種で使用してもよく、2種以上を混合して使用してもよい。
As a dispersion medium of the dispersion liquid of the present invention, water or a non-aqueous solvent can be used. Examples of the non-aqueous solvent include alcohols, ketones, ethers, esters, aromatic solvents, and the like, and non-aromatic solvents are preferable from the environmental viewpoint.
Of these, alcohols such as propylene glycol monomethyl ether (PGME) and ethanol are preferable. These may be used alone or in combination of two or more.

本発明の分散液は、上述した酸化物粒子、金属塩及び分散媒の他に、界面活性剤等の市販の分散剤、例えばビッグケミー社のDISPERBYK2000(商品名)等を添加してもよい。   In addition to the above-described oxide particles, metal salt, and dispersion medium, a commercially available dispersant such as a surfactant, for example, DISPERBYK2000 (trade name) manufactured by Big Chemie may be added to the dispersion of the present invention.

尚、本発明の分散液は実質的に酸化物粒子、金属塩及び分散媒からなっていてもよい。
本発明において「実質的」とは、分散液としての効果が上記に起因すること、又は分散液の95重量%以上100重量%以下(好ましくは98重量%以上100重量%以下)が上記成分であることを意味する。
上記のように本発明の分散液は、実質的に酸化物粒子、金属塩及び分散媒からなっており、本発明の効果を損なわない範囲で他に不可避不純物を含んでいてもよい。
The dispersion of the present invention may substantially consist of oxide particles, a metal salt and a dispersion medium.
In the present invention, “substantially” means that the effect as a dispersion results from the above, or 95% by weight to 100% by weight (preferably 98% by weight to 100% by weight) of the dispersion is the above component. It means that there is.
As described above, the dispersion of the present invention is substantially composed of oxide particles, a metal salt, and a dispersion medium, and may contain other inevitable impurities as long as the effects of the present invention are not impaired.

本発明の分散液は、上述した酸化物粒子及び金属塩を分散媒に添加し、混合分散することにより得られる。例えば、酸化物粒子を直接金属塩溶液に添加し、ビーズミル等の分散機器に入れて数時間作動させて製造することができる。また、金属塩を含まない酸化物粒子の分散液を作製し、金属塩溶液と混合してもよい。   The dispersion of the present invention can be obtained by adding the above-described oxide particles and metal salt to a dispersion medium and mixing and dispersing them. For example, it can be produced by adding oxide particles directly to a metal salt solution and placing them in a dispersing device such as a bead mill and operating for several hours. Alternatively, a dispersion of oxide particles not containing a metal salt may be prepared and mixed with the metal salt solution.

本発明では、酸化物粒子の分散液と金属塩の溶液とを、それぞれ調製し、これらを混合して分散液とすることが好ましい。この場合、酸化物粒子の分散媒及び金属塩溶液の溶媒が本発明の分散液の分散媒である。
尚、本発明では、これらの成分を予め混合した状態で貯蔵してもよく、また、半導体膜作製の直前に混合してもよい。
In the present invention, it is preferable to prepare a dispersion of oxide particles and a solution of metal salt, respectively, and mix them to form a dispersion. In this case, the dispersion medium of the oxide particles and the solvent of the metal salt solution are the dispersion medium of the dispersion liquid of the present invention.
In the present invention, these components may be stored in a premixed state, or may be mixed immediately before the production of the semiconductor film.

酸化物粒子の分散液は、上述した酸化物粒子を分散媒に分散したものであり、市販の酸化物粒子分散液を用いてもよい。
金属塩の溶液は、上述した金属塩を分散媒に溶解させたものである。特に、金属塩として、Inの硝酸塩とGaの硝酸塩の混合物であり、Inの硝酸塩1モルに対して、Gaの硝酸塩が0.01〜0.7モルである混合物が好ましい。この金属塩混合物をPGMEに溶解させた溶液は、アミン類を添加しなくとも非常に安定で固形分の沈降もないため好適である。
The oxide particle dispersion is obtained by dispersing the above-described oxide particles in a dispersion medium, and a commercially available oxide particle dispersion may be used.
The metal salt solution is obtained by dissolving the above-described metal salt in a dispersion medium. In particular, the metal salt is a mixture of In nitrate and Ga nitrate, and a mixture of 0.01 to 0.7 mol of Ga nitrate with respect to 1 mol of In nitrate is preferable. A solution in which this metal salt mixture is dissolved in PGME is preferable because it is very stable and does not precipitate solids without adding amines.

金属塩溶液の金属塩濃度は、半導体デバイスで使用する半導体膜の要求に合わせて適宜調整することができる。例えば、TFTの半導体膜を形成する場合、TFTの半導体膜として機能する膜厚に成膜できる濃度にする。この濃度は通常1wt%以上である。上限としては、金属塩が凝集、沈降しない濃度である20wt%以下が好ましい。   The metal salt concentration of the metal salt solution can be appropriately adjusted according to the requirements of the semiconductor film used in the semiconductor device. For example, when a TFT semiconductor film is formed, the concentration is set so that the film thickness can function as a TFT semiconductor film. This concentration is usually 1 wt% or more. The upper limit is preferably 20 wt% or less, which is a concentration at which the metal salt does not aggregate or settle.

本発明の半導体薄膜は、本発明の分散液を用いて基材に塗布、乾燥し、焼成することで、容易に形成することができる。
塗布手段としては、スピンコーター法の他、例えば、印刷法、インクジェット方式、及びディスペンサー方式等の、基板又は基体に向かって分散液を吐出する方法が挙げられる。
半導体薄膜を形成する基材としては、薄膜トランジスタの場合、ゲート絶縁膜が挙げられる。
The semiconductor thin film of the present invention can be easily formed by coating, drying and baking on a substrate using the dispersion of the present invention.
Examples of the application means include a spin coater method, and other methods such as a printing method, an ink jet method, and a dispenser method that discharge a dispersion toward a substrate or a substrate.
In the case of a thin film transistor, the base material for forming the semiconductor thin film includes a gate insulating film.

塗布後、塗膜を加熱等により乾燥し、焼成処理して成膜する。
乾燥は通常、分散剤が蒸発して固形分(溶質)の薄膜が形成されるまで行なう。乾燥は、不活性ガス雰囲気中又は大気雰囲気中で行なうことができる。乾燥温度と乾燥時間は、膜の形成状態を考慮して、適宜設定できる。例えば、室温〜100℃程度、5分〜1時間程度である。
乾燥後、焼成処理を行うことで半導体デバイス(TFT)の性能が向上し、高い移動度を得ることができる。
After coating, the coating film is dried by heating or the like, and baked to form a film.
Drying is usually carried out until the dispersant evaporates and a solid (solute) thin film is formed. Drying can be performed in an inert gas atmosphere or in an air atmosphere. The drying temperature and drying time can be appropriately set in consideration of the film formation state. For example, the temperature is about room temperature to about 100 ° C. and about 5 minutes to 1 hour.
By performing the baking treatment after drying, the performance of the semiconductor device (TFT) is improved and high mobility can be obtained.

焼成の条件は特に限定されないが、焼成温度は50℃〜500℃が好適であり、さらに好ましくは100℃〜300℃であり、特に好適には150℃〜300℃である。これ以下の温度では十分な移動度が得られず、またこれ以上の温度では半導体デバイスの性能が飽和するためエネルギーの無駄となるおそれがある。   The firing conditions are not particularly limited, but the firing temperature is preferably 50 ° C to 500 ° C, more preferably 100 ° C to 300 ° C, and particularly preferably 150 ° C to 300 ° C. Sufficient mobility cannot be obtained at a temperature lower than this, and energy may be wasted at temperatures higher than this because the performance of the semiconductor device is saturated.

また、焼成処理を初めに窒素雰囲気で行い、次いで大気雰囲気で行うことも、半導体デバイス(TFT)の性能向上に効果的である。その理由は明確ではないが、大気雰囲気での焼成により酸素欠陥が修復され、過剰なキャリヤー(電荷)が少なくなるためと考えられる。   In addition, performing the firing process first in a nitrogen atmosphere and then in an air atmosphere is also effective in improving the performance of the semiconductor device (TFT). The reason is not clear, but it is considered that oxygen defects are repaired by firing in an air atmosphere and excess carriers (charges) are reduced.

本発明の半導体デバイスは、上述した本発明の半導体薄膜を有していればよく、他については、公知の部材、構成が適用できる。半導体デバイスとしては、電界効果型トランジスタ(FET)、バイポーラトランジスタ、積層型半導体装置、発光素子等を挙げることができる。
以下、本発明の半導体デバイスの一実施形態として、TFTについて説明する。
The semiconductor device of the present invention only needs to have the above-described semiconductor thin film of the present invention, and other members and configurations can be applied. Examples of the semiconductor device include a field effect transistor (FET), a bipolar transistor, a stacked semiconductor device, and a light emitting element.
Hereinafter, a TFT will be described as an embodiment of the semiconductor device of the present invention.

図1は、本発明の半導体デバイスの一実施形態である薄膜トランジスタの概略断面図である。
薄膜トランジスタ1は、基板(ゲート電極)10上に絶縁膜20を有し、絶縁膜20上に所定の間隔をあけて形成された一対のソース電極30及びドレイン電極40を有し、ソース電極30及びドレイン電極40の間の絶縁膜20を覆うようにチャネル層50が設けられている。
チャネル層50が本発明の分散液から形成した薄膜からなる。
本実施形態では、基板10がゲート電極を兼ねており、基板10に印加される電圧によってソース電極30とドレイン電極40の間のチャネル層50に流れる電流が制御されることで、薄膜トランジスタ1がオン/オフ動作する。
FIG. 1 is a schematic cross-sectional view of a thin film transistor which is an embodiment of a semiconductor device of the present invention.
The thin film transistor 1 has an insulating film 20 on a substrate (gate electrode) 10, and has a pair of a source electrode 30 and a drain electrode 40 formed on the insulating film 20 at a predetermined interval. A channel layer 50 is provided so as to cover the insulating film 20 between the drain electrodes 40.
The channel layer 50 is made of a thin film formed from the dispersion of the present invention.
In the present embodiment, the substrate 10 also serves as a gate electrode, and the current flowing through the channel layer 50 between the source electrode 30 and the drain electrode 40 is controlled by the voltage applied to the substrate 10, so that the thin film transistor 1 is turned on. / Off operation.

実施例1
(1)金属塩溶液の調製
硝酸ガリウム・8水和物0.60g(0.0015mol)、硝酸インジウム・3水和物4.79g(0.0135mol)、1−メトキシ−2−プロパノール45.01gを容器にとり、室温で7時間撹拌した。16時間静置後、さらに4時間撹拌した。孔径0.2μmのメンブランフィルターでろ過して金属塩溶液(以下IGOゾル)を得た。
Example 1
(1) Preparation of metal salt solution 0.60 g (0.0015 mol) of gallium nitrate octahydrate, 4.79 g (0.0135 mol) of indium nitrate trihydrate, 45.01 g of 1-methoxy-2-propanol Was placed in a container and stirred at room temperature for 7 hours. After standing for 16 hours, the mixture was further stirred for 4 hours. The solution was filtered through a membrane filter having a pore size of 0.2 μm to obtain a metal salt solution (hereinafter referred to as IGO sol).

(2)金属塩溶液と酸化物微粒子分散液の混合溶液(分散液)の調製
上記IGOゾル1gをサンプル瓶に秤量し、これに市販のシリカゾルであるスノーテックスO(日産化学工業株式会社製、20wt%、BET粒子径20nm)溶液0.045gを添加し、超音波洗浄器にて4時間分散させ、混合溶液を得た。
(2) Preparation of Mixed Solution (Dispersion) of Metal Salt Solution and Oxide Fine Particle Dispersion 1 g of the above IGO sol was weighed into a sample bottle, and this was commercially available silica sol Snowtex O (manufactured by Nissan Chemical Industries, Ltd., 0.045 g of a 20 wt%, BET particle size of 20 nm) solution was added and dispersed for 4 hours with an ultrasonic cleaner to obtain a mixed solution.

(3)薄膜トランジスタ(TFT)の作製
図2に示すトップコンタクト型のTFT2を作製した。
300nm厚みの熱酸化膜(SiO膜)付きの導電性シリコン基板を使用した。熱酸化膜がゲート絶縁膜20として機能し、導電性シリコン部がゲート電極10として機能する。
(3) Production of Thin Film Transistor (TFT) A top contact type TFT 2 shown in FIG. 2 was produced.
A conductive silicon substrate with a 300 nm thick thermal oxide film (SiO 2 film) was used. The thermal oxide film functions as the gate insulating film 20, and the conductive silicon portion functions as the gate electrode 10.

この基板上に、上記(2)の分散液をスピンコーターで塗布し、大気雰囲気にて100℃30分間乾燥し、その後、窒素雰囲気のグローブボックス内に入れ、ホットプレートにて270℃で1時間焼成し、その後大気中にてさらに300℃で1時間焼成処理を行い、薄膜(チャネル層)50を作製した。
尚、上記100℃30分間の乾燥の前に、大気下で1時間静置し、膜の安定性を目視で評価した。膜が吸湿してやせ細る等の変化は見られず、安定性に優れることが明らかになった。
On this substrate, the dispersion liquid of (2) above was applied with a spin coater, dried in an air atmosphere at 100 ° C. for 30 minutes, then placed in a glove box in a nitrogen atmosphere and heated on a hot plate at 270 ° C. for 1 hour. Baking was performed, and then a baking process was further performed at 300 ° C. for 1 hour in the air to produce a thin film (channel layer) 50.
In addition, before drying at 100 ° C. for 30 minutes, the film was left to stand in the atmosphere for 1 hour, and the stability of the film was visually evaluated. Changes such as thinning of the film due to moisture absorption were not observed, and it was revealed that the film was excellent in stability.

その後、金属マスクを用いてチャネル部の両端付近に金を蒸着し、ソース電極30及びドレイン電極40を形成した。ソース・ドレイン電極間の間隙200μm、幅3000μmのチャネル部を有するTFT2を作製した。   Thereafter, using a metal mask, gold was deposited near both ends of the channel portion to form the source electrode 30 and the drain electrode 40. A TFT 2 having a channel portion with a gap of 200 μm between the source and drain electrodes and a width of 3000 μm was produced.

作製したTFTについて、ソース−ドレイン間電流Idsを測定した。Idsの測定は、半導体パラメータアナライザー(ケースレー4200)を用い、室温、遮光環境下で、ソース−ドレイン間の電圧を30Vに固定して、ゲート電圧を−100Vから+30Vまで変化させて行った。
移動度及びドレイン電流の最大値と最小値の比(オン/オフ比)を算出し、TFT特性の目安とした。TFT特性は良好であった。結果を表1に示す。
With respect to the fabricated TFT, a source-drain current Ids was measured. Ids was measured by using a semiconductor parameter analyzer (Keutley 4200), fixing the source-drain voltage to 30 V and changing the gate voltage from −100 V to +30 V in a light-shielding environment at room temperature.
The ratio of the maximum value and the minimum value of the mobility and drain current (on / off ratio) was calculated and used as a guideline for TFT characteristics. TFT characteristics were good. The results are shown in Table 1.

実施例2
(1)半導体微粒子分散液の調製
酸化錫超微粒子(三菱マテリアル株式会社製、商品名S−1、BET粒子径20nm)0.04gをPGME4gに添加し、市販の分散剤(BYK−2000:ビックケミージャパン株式会社製、高分子量タイプ湿潤分散剤)0.004gをさらに添加して、超音波洗浄機にて4時間分散させて半導体微粒子分散液を調製した。
Example 2
(1) Preparation of Semiconductor Fine Particle Dispersion 0.04 g of tin oxide ultrafine particles (Mitsubishi Materials Co., Ltd., trade name S-1, BET particle diameter 20 nm) was added to 4 g of PGME, and a commercially available dispersant (BYK-2000: BIC Further, 0.004 g of a high molecular weight type wetting and dispersing agent manufactured by Chemie Japan Co., Ltd. was added and dispersed for 4 hours with an ultrasonic cleaner to prepare a semiconductor fine particle dispersion.

(2)混合溶液(分散液)の調製
実施例1(1)のIGOゾル(金属塩溶液)0.5gをサンプル瓶に秤量し、これに上記の半導体微粒子分散液2.5gを添加し、超音波洗浄器にて4時間分散させて混合溶液を得た。
素子加熱条件を270℃窒素雰囲気1時間、さらに大気中にて250℃1時間とした他は実施例1と同様にTFTを作製し、成膜性、移動度、オン/オフ比を評価した。結果を表1に示す。
(2) Preparation of mixed solution (dispersion) 0.5 g of IGO sol (metal salt solution) of Example 1 (1) was weighed into a sample bottle, and 2.5 g of the above semiconductor fine particle dispersion was added thereto, The mixture solution was obtained by dispersing in an ultrasonic cleaner for 4 hours.
A TFT was fabricated in the same manner as in Example 1 except that the element heating conditions were 270 ° C. for 1 hour in a nitrogen atmosphere and further in the air at 250 ° C. for 1 hour, and the film formability, mobility, and on / off ratio were evaluated. The results are shown in Table 1.

実施例3
(1)コアシェル型半導体微粒子の調製
酸化錫超微粒子(三菱マテリアル株式会社製、商品名S−1、BET粒子径20nm)を9.348g秤量し、硝酸インジウム・3水和物0.22g、硝酸ガリウム・8水和物0.248g及び硝酸亜鉛・6水和物0.184gを水2gに混合、溶解した水溶液をこれに加え、遊星ボールミルにて2時間混合した。
水を含む混合物を乾燥機にて90℃で3時間、大気雰囲気下で乾燥した後、500℃で30分間焼成し、淡黄色の微粒子酸化物を得た。この微粒子のBET粒子径は22nmであった。
Example 3
(1) Preparation of core-shell type semiconductor fine particles 9.348 g of tin oxide ultrafine particles (Mitsubishi Materials Co., Ltd., trade name S-1, BET particle diameter 20 nm) are weighed, 0.22 g of indium nitrate trihydrate, nitric acid 0.248 g of gallium octahydrate and 0.184 g of zinc nitrate hexahydrate were mixed with 2 g of water, and a dissolved aqueous solution was added thereto, followed by mixing with a planetary ball mill for 2 hours.
The water-containing mixture was dried at 90 ° C. for 3 hours in an air atmosphere in an air atmosphere and then calcined at 500 ° C. for 30 minutes to obtain pale yellow fine particle oxides. The fine particles had a BET particle size of 22 nm.

コアシェル型粒子であることは、XRD測定において、コア粒子に由来する回折ピークのみが観察されたことから判断した。   The core-shell type particle was judged from the fact that only the diffraction peak derived from the core particle was observed in the XRD measurement.

(2)分散液の調製、TFT評価
上記半導体微粒子0.04gをPGME4gに添加し、超音波洗浄機にて4時間分散させて半導体微粒子分散液を調製した。
実施例1(1)のIGOゾル(金属塩溶液)1gをサンプル瓶に秤量し、これに上記の半導体微粒子分散液1.0gを添加し、超音波洗浄器にて4時間分散させて混合溶液(分散液)を得た。
素子加熱条件を270℃窒素雰囲気1時間、さらに大気中にて250℃1時間とした他は実施例1と同様にTFTを作製し、成膜性、移動度、オン/オフ比を評価した。結果を表1に示す。
(2) Preparation of dispersion liquid and TFT evaluation The semiconductor fine particle dispersion liquid was prepared by adding 0.04 g of the above-mentioned semiconductor fine particles to 4 g of PGME and dispersing it for 4 hours with an ultrasonic cleaner.
1 g of the IGO sol (metal salt solution) of Example 1 (1) was weighed into a sample bottle, 1.0 g of the above-mentioned semiconductor fine particle dispersion was added thereto, and the mixture was dispersed by an ultrasonic cleaner for 4 hours. (Dispersion) was obtained.
A TFT was fabricated in the same manner as in Example 1 except that the element heating conditions were 270 ° C. for 1 hour in a nitrogen atmosphere and further in the air at 250 ° C. for 1 hour, and the film formability, mobility, and on / off ratio were evaluated. The results are shown in Table 1.

実施例4
(1)コアシェル型半導体微粒子の調製
酸化錫超微粒子(三菱マテリアル株式会社製、商品名S−1、BET粒子径20nm)を9.333g秤量し、硝酸インジウム・3水和物0.593g及び硝酸ガリウム・8水和物0.074gを水2gに混合、溶解した水溶液をこれに加え、遊星ボールミルにて2時間混合した。
水を含む混合物を乾燥機にて90℃で3時間、大気雰囲気下で乾燥した後、500℃で30分間焼成し、淡黄色の微粒子酸化物を得た。この微粒子のBET粒子径は22nmであった。
Example 4
(1) Preparation of core-shell type semiconductor fine particles 9.333 g of tin oxide ultrafine particles (trade name S-1, manufactured by Mitsubishi Materials Corporation, BET particle diameter 20 nm) are weighed, 0.593 g of indium nitrate trihydrate and nitric acid An aqueous solution prepared by mixing and dissolving 0.074 g of gallium octahydrate in 2 g of water was added thereto and mixed for 2 hours in a planetary ball mill.
The water-containing mixture was dried at 90 ° C. for 3 hours in an air atmosphere in an air atmosphere and then calcined at 500 ° C. for 30 minutes to obtain pale yellow fine particle oxides. The fine particles had a BET particle size of 22 nm.

コアシェル型粒子であることは、XRD測定において、コア粒子に由来する回折ピークのみが観察されたことから判断した。   The core-shell type particle was judged from the fact that only the diffraction peak derived from the core particle was observed in the XRD measurement.

(2)分散液の調製、TFT評価
上記半導体微粒子0.04gをPGME4gに添加し、超音波洗浄機にて4時間分散させ、半導体微粒子分散液を調製した。
実施例1(1)のIGOゾル(金属塩溶液)0.5gをサンプル瓶に秤量し、これに上記の半導体微粒子分散液1.0gを添加し、超音波洗浄器にて4時間分散させて混合溶液(分散液)を得た。
素子加熱条件を270℃窒素雰囲気1時間、さらに大気中にて250℃1時間とした他は実施例1と同様にTFTを作製し、成膜性、移動度、オン/オフ比を評価した。結果を表1に示す。
(2) Preparation of dispersion, TFT evaluation 0.04 g of the above-mentioned semiconductor fine particles were added to 4 g of PGME and dispersed for 4 hours with an ultrasonic cleaner to prepare a semiconductor fine particle dispersion.
0.5 g of the IGO sol (metal salt solution) of Example 1 (1) was weighed into a sample bottle, and 1.0 g of the above-mentioned semiconductor fine particle dispersion was added thereto, and dispersed in an ultrasonic cleaner for 4 hours. A mixed solution (dispersion) was obtained.
A TFT was fabricated in the same manner as in Example 1 except that the element heating conditions were 270 ° C. for 1 hour in a nitrogen atmosphere and further in the air at 250 ° C. for 1 hour, and the film formability, mobility, and on / off ratio were evaluated. The results are shown in Table 1.

実施例5
(1)コアシェル型半導体微粒子の調製
酸化インジウム微粒子(アジア物性株式会社製、BET比表面積27m/g、BET粒子径27nm)を9.279g秤量し、硝酸インジウム・3水和物0.64g及び硝酸ガリウム・8水和物0.08gを水2gに混合、溶解した水溶液をこれに加え、遊星ボールミルにて2時間混合した。
水を含む混合物を乾燥機にて90℃で3時間、大気雰囲気下で乾燥した後、500℃で30分間焼成し、淡黄色の微粒子酸化物を得た。この微粒子のBET粒子径は21nmであった。
Example 5
(1) Preparation of core-shell type semiconductor fine particles 9.279 g of indium oxide fine particles (manufactured by Asian Physical Properties Co., Ltd., BET specific surface area 27 m 2 / g, BET particle diameter 27 nm) are weighed, 0.64 g of indium nitrate trihydrate and An aqueous solution prepared by mixing and dissolving 0.08 g of gallium nitrate octahydrate in 2 g of water was added thereto and mixed for 2 hours in a planetary ball mill.
The water-containing mixture was dried at 90 ° C. for 3 hours in an air atmosphere in an air atmosphere and then calcined at 500 ° C. for 30 minutes to obtain pale yellow fine particle oxides. The fine particles had a BET particle size of 21 nm.

コアシェル型粒子であることは、XRD測定において、コア粒子に由来する回折ピークのみが観察されたことから判断した。   The core-shell type particle was judged from the fact that only the diffraction peak derived from the core particle was observed in the XRD measurement.

(2)分散液の調製、TFT評価
上記半導体微粒子0.04gをPGME4gに添加し、超音波洗浄機にて4時間分散させて半導体微粒子分散液を調製した。
実施例1(1)のIGOゾル(金属塩溶液)0.75gをサンプル瓶に秤量し、これに上記の半導体微粒子分散液1.0gを添加し、超音波洗浄器にて4時間分散させて混合溶液(分散液)を得た。
素子加熱条件を270℃窒素雰囲気1時間、さらに大気中にて250℃1時間とした他は実施例1と同様にTFTを作製し、成膜性、移動度、オン/オフ比を評価した。結果を表1に示す。
(2) Preparation of dispersion liquid and TFT evaluation The semiconductor fine particle dispersion liquid was prepared by adding 0.04 g of the above-mentioned semiconductor fine particles to 4 g of PGME and dispersing it for 4 hours with an ultrasonic cleaner.
0.75 g of the IGO sol (metal salt solution) of Example 1 (1) was weighed into a sample bottle, 1.0 g of the above-mentioned semiconductor fine particle dispersion was added thereto, and dispersed for 4 hours with an ultrasonic cleaner. A mixed solution (dispersion) was obtained.
A TFT was fabricated in the same manner as in Example 1 except that the element heating conditions were 270 ° C. for 1 hour in a nitrogen atmosphere and further in the air at 250 ° C. for 1 hour, and the film formability, mobility, and on / off ratio were evaluated. The results are shown in Table 1.

比較例1
実施例1(1)のIGOゾル(金属塩溶液)を用いて、実施例1と同様にしてTFTを作製した。大気中で静置したところ膜が吸湿してやせ細り、膜形状を保つことができず性能評価に至らなかった。
Comparative Example 1
A TFT was produced in the same manner as in Example 1 using the IGO sol (metal salt solution) of Example 1 (1). When allowed to stand in the atmosphere, the film absorbed moisture and thinned, and the film shape could not be maintained, leading to failure in performance evaluation.

Figure 0005894393
Figure 0005894393

本発明の分散液は、半導体デバイスで使用する半導体薄膜形成液として好適である。本発明の半導体薄膜は、薄膜トランジスタ等、各種半導体デバイスに使用できる。   The dispersion liquid of the present invention is suitable as a semiconductor thin film forming liquid used in semiconductor devices. The semiconductor thin film of the present invention can be used for various semiconductor devices such as thin film transistors.

1,2 薄膜トランジスタ
10 基板(ゲート電極)
20 絶縁膜
30 ソース電極
40 ドレイン電極
50 チャネル層
1, 2 Thin film transistor 10 Substrate (gate electrode)
20 Insulating film 30 Source electrode 40 Drain electrode 50 Channel layer

Claims (8)

酸化物粒子、金属塩及び分散媒を含み、
前記酸化物粒子がSiO 又はコアシェル型粒子であり、前記コアシェル型粒子が、Sn,Zn及びInから選ばれる1以上の金属の酸化物をコアとし、かつSn,Zn,In,Ga,Al,Ti,Zr,Hf及びCuから選ばれる1以上の金属の酸化物をシェルとし、
前記酸化物粒子のBET粒子径が100nm以下であり、
前記金属塩がSn,Zn,In及びGaから選ばれる1以上の金属の塩であり、
前記酸化物粒子が、前記金属塩(金属塩溶液である場合は溶質)に対して5wt%以上75wt%以下である分散液。
Oxide particles, a metal salt and a dispersion medium seen including,
The oxide particles are SiO 2 or core-shell type particles, and the core-shell type particles have one or more metal oxides selected from Sn, Zn and In as cores, and Sn, Zn, In, Ga, Al, The shell is an oxide of one or more metals selected from Ti, Zr, Hf and Cu,
The oxide particles have a BET particle size of 100 nm or less,
The metal salt is a salt of one or more metals selected from Sn, Zn, In and Ga;
A dispersion in which the oxide particles are 5 wt% or more and 75 wt% or less with respect to the metal salt (a solute in the case of a metal salt solution) .
前記酸化物粒子のBET粒子径が50nm以下である請求項1に記載の分散液。 The dispersion according to claim 1, wherein the oxide particles have a BET particle diameter of 50 nm or less. 前記酸化物粒子がSiO である請求項1又は2に記載の分散液。 The dispersion according to claim 1, wherein the oxide particles are SiO 2 . 前記酸化物粒子がコアシェル型粒子であり、Sn及びInから選ばれる1以上の金属の酸化物をコアとし、かつZn,In及びGaから選ばれる1以上の金属の酸化物をシェルとする請求項1又は2に記載の分散液。 The oxide particle is a core-shell type particle, and an oxide of one or more metals selected from Sn and In is used as a core, and an oxide of one or more metals selected from Zn , In and Ga is used as a shell. The dispersion liquid according to 1 or 2 . 前記金属塩がIn及びGaから選ばれる1以上の金属の塩である請求項1〜4のいずれかに記載の分散液。 The dispersion according to any one of claims 1 to 4, wherein the metal salt is a salt of one or more metals selected from In and Ga. 前記金属塩がInの硝酸塩とGaの硝酸塩の混合物である請求項1〜5のいずれかに記載の分散液。   The dispersion according to claim 1, wherein the metal salt is a mixture of a nitrate of In and a nitrate of Ga. 請求項1〜6のいずれかに記載の分散液から得られる半導体薄膜。   The semiconductor thin film obtained from the dispersion liquid in any one of Claims 1-6. 請求項7に記載の半導体薄膜を半導体層として用いる半導体デバイス。
A semiconductor device using the semiconductor thin film according to claim 7 as a semiconductor layer.
JP2011179739A 2011-08-19 2011-08-19 Oxide particle dispersion Expired - Fee Related JP5894393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011179739A JP5894393B2 (en) 2011-08-19 2011-08-19 Oxide particle dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011179739A JP5894393B2 (en) 2011-08-19 2011-08-19 Oxide particle dispersion

Publications (2)

Publication Number Publication Date
JP2013042086A JP2013042086A (en) 2013-02-28
JP5894393B2 true JP5894393B2 (en) 2016-03-30

Family

ID=47890191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011179739A Expired - Fee Related JP5894393B2 (en) 2011-08-19 2011-08-19 Oxide particle dispersion

Country Status (1)

Country Link
JP (1) JP5894393B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102226985B1 (en) * 2013-08-19 2021-03-11 이데미쓰 고산 가부시키가이샤 Oxide semiconductor substrate and schottky barrier diode
KR102267094B1 (en) * 2013-08-19 2021-06-18 이데미쓰 고산 가부시키가이샤 Oxide semiconductor substrate and schottky barrier diode
CN105551955A (en) * 2016-02-23 2016-05-04 华南理工大学 Preparation method for oxide thin film and thin film transistor
JP6913473B2 (en) * 2017-01-31 2021-08-04 旭化成株式会社 A dispersion liquid for forming a semiconductor film of a semiconductor element, a method for manufacturing a semiconductor film using the dispersion, and a method for manufacturing a semiconductor element.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009126734A (en) * 2007-11-21 2009-06-11 Mitsubishi Paper Mills Ltd Method for producing silica dispersion and method for producing inkjet recording material
JP2010093165A (en) * 2008-10-10 2010-04-22 Konica Minolta Holdings Inc Manufacturing method of electrode, and thin film transistor element and organic electroluminescent element using the same
JP2011124289A (en) * 2009-12-08 2011-06-23 Sekisui Chem Co Ltd Metal oxide semiconductor particle dispersed composition
JP2012212642A (en) * 2010-08-27 2012-11-01 Sekisui Chem Co Ltd Metal oxide particle dispersion composition

Also Published As

Publication number Publication date
JP2013042086A (en) 2013-02-28

Similar Documents

Publication Publication Date Title
Hwan Hwang et al. An ‘aqueous route’for the fabrication of low-temperature-processable oxide flexible transparent thin-film transistors on plastic substrates
Chen et al. Solution-processed metal-oxide thin-film transistors: A review of recent developments
US8013331B2 (en) Thin film transistor, method of manufacturing the same, and electronic device using the same
Du Ahn et al. A review on the recent developments of solution processes for oxide thin film transistors
Meyers et al. Aqueous inorganic inks for low-temperature fabrication of ZnO TFTs
Mahmoud et al. Highly ferromagnetic, transparent conducting electrode based on Ce1− xCuxO2 thin film for spintronic applications
Jeong et al. Metal salt-derived In–Ga–Zn–O semiconductors incorporating formamide as a novel co-solvent for producing solution-processed, electrohydrodynamic-jet printed, high performance oxide transistors
JP5215158B2 (en) Inorganic crystalline alignment film, method for manufacturing the same, and semiconductor device
TWI559540B (en) Coating liquid for forming metal oxide thin film, metal oxide thin film, field-effect transistor, and method for manufacturing field-effect transistor
Bukke et al. Lanthanum doping in zinc oxide for highly reliable thin-film transistors on flexible substrates by spray pyrolysis
US9059299B2 (en) Method for producing high-performing and electrically stable semi-conductive metal oxide layers, layers produced according to the method and use thereof
TW200902740A (en) Sputtering target, oxide semiconductor film and semiconductor device
KR20150135480A (en) Coating liquid for forming metal oxide film, metal oxide film, field-effect transistor, and method for producing field-effect transistor
KR20180067738A (en) Coating liquid for forming metal oxide thin film, metal oxide thin film, field effect transistor, and method for producing the field effect transistor
JP5894393B2 (en) Oxide particle dispersion
Lee et al. Solution-processed ternary alloy aluminum yttrium oxide dielectric for high performance indium zinc oxide thin-film transistors
KR101333316B1 (en) Metal oxide thin film, preparation method thereof, and solution for the same
Wang et al. Study on field-emission characteristics of electrodeposited Co-doped ZnO thin films
CN106927689A (en) A kind of oxide semiconductor thin-film and its preparation technology
Li et al. Water-based processed and alkoxide-based processed indium oxide thin-film transistors at different annealing temperatures
Li et al. Solution-processed low-operating-voltage thin-film transistors with bottom-gate top-contact structure
Ogura et al. Flexible InGaZnO TFT devices obtained via humid-UV irradiation with an aqueous-fluoroalcoholic precursor
US9978591B2 (en) Formulations comprising ammoniacal hydroxozinc compounds
RU2659030C2 (en) Formulations for producing indium oxide-containing layers, methods for producing said layers and the use thereof
JP5597510B2 (en) Core-shell semiconductor fine particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160226

R150 Certificate of patent or registration of utility model

Ref document number: 5894393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees