JP5893532B2 - Valve structure - Google Patents

Valve structure Download PDF

Info

Publication number
JP5893532B2
JP5893532B2 JP2012191531A JP2012191531A JP5893532B2 JP 5893532 B2 JP5893532 B2 JP 5893532B2 JP 2012191531 A JP2012191531 A JP 2012191531A JP 2012191531 A JP2012191531 A JP 2012191531A JP 5893532 B2 JP5893532 B2 JP 5893532B2
Authority
JP
Japan
Prior art keywords
channel
arc
valve
path
eccentric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012191531A
Other languages
Japanese (ja)
Other versions
JP2014047850A (en
Inventor
彰久 進藤
彰久 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2012191531A priority Critical patent/JP5893532B2/en
Publication of JP2014047850A publication Critical patent/JP2014047850A/en
Application granted granted Critical
Publication of JP5893532B2 publication Critical patent/JP5893532B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding Valves (AREA)

Description

本発明はバルブの構造に関するものであり、特に高水圧下で作動が可能なバルブの構造に関するものである。   The present invention relates to a valve structure, and more particularly to a valve structure that can be operated under high water pressure.

原子力関連施設では、地下1000m級の坑道が計画されている。
坑道の掘削中に周囲の地盤に薬液を注入する状況が生じる可能性があるが、その地点では地下水頭は最大で10Mpaに達する。
そのレベルの水頭に勝って注入を行うためには、10Mpa以上の水圧下で開閉することができるバルブが要求される。
At a nuclear facility, a 1000m underground tunnel is planned.
During excavation of a mine shaft, there may be a situation where a chemical solution is injected into the surrounding ground, but the groundwater head reaches a maximum of 10 Mpa at that point.
In order to perform injection over that level of water head, a valve that can be opened and closed under a water pressure of 10 Mpa or more is required.

特開2010−106622号公報JP 2010-106622 A

前記した従来の高圧下でのバルブにあっては、次のような問題点がある。
<1> 従来のタイプでは10Mpaでの作動を可能にするために、バルブの駆動系もその圧力に耐える必要があり、大きな動力を必要とした。
<2> 従来の注入用のバルブは3方弁になっていたが、孔内循環を使用するためにはリターンバルブが必要であり、そのタイプで高圧化に耐えるバルブは存在しなかった。
<3> 従来はステンレスのバルブを使用していたが、それを10Mpa下で使用すると、3分程度で摩耗してしまい使用に耐えない。
<4> 従来の押しつける形状のバルブでは、固化したセメントが残るとその厚み分だけ押しつけ過ぎてバルブを破壊するケースがあった。
The conventional valve under high pressure has the following problems.
<1> In the conventional type, in order to enable the operation at 10 Mpa, the valve drive system also needs to withstand the pressure, and requires a large amount of power.
<2> Although the conventional injection valve is a three-way valve, a return valve is required to use the in-hole circulation, and there is no valve that can withstand high pressure in that type.
<3> Conventionally, a stainless steel valve has been used, but if it is used under 10 MPa, it wears out in about 3 minutes and cannot be used.
<4> In the case of a conventional valve having a pressing shape, when solidified cement remains, there is a case in which the valve is broken due to excessive pressing by the thickness.

上記のような課題を解決する本発明のバルブの構造は、10MPa以上の高圧環境下で薬液注入を行う為に用いるバルブの構造であって、流入路と流出路を開放したバルブ容器の内部にセラミック製の流路基盤および偏心円盤を収納し、バルブ容器の内部には、偏心円盤において流路基盤との接触面の反対側にある開放面側に、流入路からの薬液が流入可能な空間を有し、流路基盤には円弧流路と貫通路を備え、円弧流路は平面視が円弧状であり、円弧流路に連通した貫通路は、容器の流出路と連通し、偏心円盤の回転により、円弧流路の開閉度を変更して流体の流量調整を行うように構成したことを特徴としたものである。 The valve structure of the present invention that solves the above problems is a valve structure used for injecting a chemical solution under a high pressure environment of 10 MPa or more, and is provided inside a valve container having an inflow path and an outflow path open. housing a ceramic flow channel base and eccentric plate, inside the valve chamber, the open side opposite the contact surface of the flow path based in eccentric disc, chemical from the inflow channel is can flow It has a space, the channel base is provided with an arc channel and a through channel, the arc channel has an arc shape in plan view, and the through channel communicating with the arc channel communicates with the outflow channel of the container and is eccentric. The present invention is characterized in that the flow rate of the fluid is adjusted by changing the degree of opening and closing of the circular arc flow path by rotating the disk .

本発明のバルブの構造は以上説明したようになるから次のような効果を得ることができる。
<1> バルブの開閉度を偏心円盤の回転角度によって行うから、従来のバルブのように固化したセメントが残って、そのために押しつけすぎて破損するといった状況が発生しない。
<2> 円盤の回転軸の偏心位置次第で回転角度を大きく取ることができるから、微調整を容易に行うことができる。
<3> 偏心円盤や円弧流路をセラミックで構成しておけば、摩耗の激しい高圧化での注入に使用する場合にも高い耐久性を維持することができる。
Since the structure of the valve of the present invention is as described above, the following effects can be obtained.
<1> Since the degree of opening and closing of the valve is performed according to the rotation angle of the eccentric disk, the solidified cement remains as in the conventional valve, so that there is no situation where it is pressed too much and damaged.
<2> Since the rotation angle can be increased depending on the eccentric position of the rotation axis of the disk, fine adjustment can be easily performed.
<3> If the eccentric disk or the circular arc channel is made of ceramic, high durability can be maintained even when used for injection at high pressure where wear is severe.

本発明のバルブの構造の実施例の断面図。Sectional drawing of the Example of the structure of the valve | bulb of this invention. 偏心円盤と流体基盤の関係の説明図。Explanatory drawing of the relationship between an eccentric disk and a fluid base. 流体基盤の一部切欠き説明図。FIG. 3 is a partially cutaway explanatory view of a fluid base. 円弧流路の全開状態の説明図。Explanatory drawing of the fully open state of an arc flow path. 偏心円盤を45°回転させた状態の説明図。Explanatory drawing of the state which rotated the eccentric disk 45 degrees. 偏心円盤を90°回転させた状態の説明図。Explanatory drawing of the state which rotated the eccentric disk 90 degrees. 偏心円盤を135°回転させた状態の説明図。Explanatory drawing of the state which rotated the eccentric disk 135 degrees. 偏心円盤を180°回転させた全閉状態の説明図。Explanatory drawing of the fully-closed state which rotated the eccentric disk 180 degrees.

以下図面を参照にしながら本発明のバルブの構造の好適な実施の形態を詳細に説明する。   Preferred embodiments of the valve structure of the present invention will be described below in detail with reference to the drawings.

<1>全体の構成
本発明のバルブの構造は、バルブ容器1の内部に流路基盤2と偏心円盤3とを収納して構成する。
バルブ容器1にはその一部に流入路4を、他の部分に流出路5を開放して構成する。
そして流路基盤2も偏心円盤3もセラミック製の部材である。
<1> Overall Configuration The valve structure of the present invention is configured by housing a flow path base 2 and an eccentric disk 3 inside a valve container 1.
The valve container 1 is configured by opening an inflow path 4 in a part thereof and an outflow path 5 in another part.
The flow path base 2 and the eccentric disk 3 are ceramic members.

<2>流路基盤
流路基盤2には円弧流路21と連結路22と貫通路23を形成する。
<2> Channel Base In the channel base 2, an arc channel 21, a connection path 22, and a through path 23 are formed.

<2−1>円弧流路
流路基盤2には円弧流路21を形成する。
円弧流路21は平面視が円弧状の溝である。
溝であるから、一定の幅と深さを備え、底面を備え、その上面は開放した状態の流路である。
また円弧であるから、所定の中心点から同一半径で描いた二つの同心円の一部を溝として形成したものである。
溝状の円弧流路21の開放面は、バルブ容器1の流入路4に面して開放している。
<2-1> Arc Channel 21 An arc channel 21 is formed in the channel base 2.
The arc channel 21 is a groove having an arc shape in plan view.
Since it is a groove, it has a certain width and depth, has a bottom surface, and its upper surface is an open channel.
Moreover, since it is an arc, a part of two concentric circles drawn with the same radius from a predetermined center point is formed as a groove.
The open surface of the groove-shaped arc channel 21 faces the inflow path 4 of the valve container 1 and is open.

<2−2>貫通路
流路基盤2には、その表裏を貫通する貫通路23を開設する。
この貫通路23は、円弧流路21の円弧の円心位置に付近に設置する。
貫通路23と円弧流路21とは、連結路22で連通している。
連結路22も一定の幅と深さを備え、底面を備え、その上面は開放した状態の流路である。
この貫通路23は、バルブ容器1の流出路5と連通している。
<2-2> Penetration path The passage base 2 is provided with a penetration path 23 penetrating the front and back.
The through-passage 23 is installed in the vicinity of the center of the arc of the arc channel 21.
The through passage 23 and the circular arc passage 21 communicate with each other through a connection passage 22.
The connecting path 22 also has a certain width and depth, has a bottom surface, and the top surface of the channel 22 is open.
The through passage 23 communicates with the outflow passage 5 of the valve container 1.

<3>偏心円盤
偏心円盤3は、少なくとも片面が平面の正円の円盤である。
そして偏心円盤3は、その円心ではない位置に、平面と直交する方向に回転軸31を設ける。
偏心円盤3の円の半径は、円弧流路21の中心線の円弧の半径、あるいは円弧流路21の外側の円弧の半径とほぼ等しく構成する。
<3> Eccentric Disc The eccentric disc 3 is a disc having a perfect circle having at least one plane.
And the eccentric disk 3 provides the rotating shaft 31 in the direction orthogonal to a plane in the position which is not the center of the circle.
The radius of the circle of the eccentric disk 3 is configured to be approximately equal to the radius of the arc of the center line of the arc channel 21 or the radius of the arc outside the arc channel 21.

<4>流路と偏心円盤
前記したように円弧流路21は上面を開放した溝である。
そこで偏心円盤3は、その面によって、円弧流路21の開放面を蓋状に塞ぐことができる状態で位置させる。
偏心円盤3において、円弧流路21を塞ぐ面は、偏心回転軸31を備えた面とは反対の面である。
<4> Channel and Eccentric Disc As described above, the arc channel 21 is a groove having an open upper surface.
Therefore, the eccentric disk 3 is positioned in a state in which the open surface of the circular arc channel 21 can be closed like a lid by its surface.
In the eccentric disk 3, the surface that closes the circular arc channel 21 is the surface opposite to the surface provided with the eccentric rotation shaft 31.

<5>円盤の回転と流路の開放
前記したように偏心円盤3の回転中心は、円盤の円心とは異なった位置に存在し、かつ偏心円盤3の円の半径は、円弧流路21の中心線の円弧の半径とほぼ等しく構成してある。
そのために偏心円盤3の平面部で円弧流路21の上面を塞いだ場合に、偏心した回転軸31を中心にした偏心円盤3の回転によって、円弧流路21の上面の一部が開放されたり、全部が閉鎖されたりする現象が生じる。
以下、偏心円盤3の回転と円弧流路21の開放状態との関係を説明する。
<5> Rotation of disk and opening of flow path As described above, the rotation center of the eccentric disk 3 exists at a position different from the center of the disk, and the radius of the circle of the eccentric disk 3 is the arc flow path 21. The center line is substantially equal to the radius of the arc.
Therefore, when the upper surface of the arc channel 21 is closed by the flat portion of the eccentric disk 3, a part of the upper surface of the arc channel 21 is opened by the rotation of the eccentric disk 3 around the eccentric rotation shaft 31. The phenomenon that everything is closed occurs.
Hereinafter, the relationship between the rotation of the eccentric disk 3 and the open state of the circular arc channel 21 will be described.

<5−1>全開状態(図4)
偏心円盤3を偏心軸を中心に回転してある位置に来た場合に、円弧流路21の上面のほぼ全体を開放した状態を呈することができる。
図の実施例では円弧流路21の全体にわたってその溝幅の半分を開放した状態を示しているが、偏心円盤3の直径次第では円弧流路21の全体にわたってその上面を開放する状態を呈することもできる。
この状態を、偏心回転軸31の回転0°として以下の説明をする。
<5-1> Fully open state (FIG. 4)
When the eccentric disk 3 is rotated about the eccentric axis, a state where almost the entire upper surface of the circular arc channel 21 is opened can be exhibited.
Although the embodiment shown in the drawing shows a state in which half of the groove width is opened over the entire arc channel 21, the upper surface is opened over the entire arc channel 21 depending on the diameter of the eccentric disk 3. You can also.
This state will be described below assuming that the rotation of the eccentric rotation shaft 31 is 0 °.

<5−2>偏心円盤の回転(図5、6、7)
偏心円盤3の回転軸31を回転することによって、円弧流路21の開放上面が徐々に閉鎖してゆく。
図5では回転軸31を45°回転させた状態、図6では回転軸31を90°回転させた状態、図7では135°回転させた状態を示す。
<5-2> Rotating the eccentric disk (FIGS. 5, 6, and 7)
By rotating the rotating shaft 31 of the eccentric disk 3, the open upper surface of the circular arc channel 21 is gradually closed.
5 shows a state in which the rotary shaft 31 is rotated by 45 °, FIG. 6 shows a state in which the rotary shaft 31 is rotated by 90 °, and FIG. 7 shows a state in which the rotary shaft 31 is rotated by 135 °.

<5−3>全閉状態(図8)
回転軸31を180°回転させると、円弧流路21の上面のすべてを、偏心円盤3の平面によって完全に閉鎖することができる。
<5-3> Fully closed state (FIG. 8)
When the rotary shaft 31 is rotated by 180 °, the entire upper surface of the circular arc channel 21 can be completely closed by the plane of the eccentric disk 3.

<6>バルブとしての機能
上記の偏心円盤3と円弧流路21の開放状態の関係であきらかなように、偏心回転軸31の回転によって、円弧流路21の全開から全閉鎖の状態を形成することができる。
全部開放の場合(図4)には、図1の流入路4からバルブ容器1内に流入してくる流体は、円弧流路21、連結路22、貫通路23を通って流出路5からバルブ容器1外へ流出してゆく。
全部閉鎖の場合(図8)には、流入路4からの流体は流出路5への流出ができず、流体の移動を阻止することができる。
全部開放と全部閉鎖の中間では(図5〜7)、回転軸31の回転角度によって流入路4からの流体の円弧流路21への流入を制限することができるから、微妙な量の流体の流出の調整を行うことができる。
以上のようにバルブとしての機能を達成することができる。
<6> Function as a Valve As clearly shown in the relationship between the eccentric disk 3 and the open state of the arc channel 21, the rotation of the eccentric rotary shaft 31 forms the fully open to fully closed state of the arc channel 21. be able to.
When all are open (FIG. 4), the fluid flowing into the valve container 1 from the inflow path 4 of FIG. 1 passes through the arc flow path 21, the connection path 22, and the through path 23 from the outflow path 5 to the valve. It flows out of the container 1.
When all are closed (FIG. 8), the fluid from the inflow path 4 cannot flow out to the outflow path 5, and the movement of the fluid can be prevented.
In the middle of all opening and all closing (FIGS. 5 to 7), the inflow of the fluid from the inflow path 4 to the circular arc channel 21 can be restricted by the rotation angle of the rotating shaft 31, so that a subtle amount of fluid can flow. Spill adjustments can be made.
As described above, the function as a valve can be achieved.

1:バルブ容器
2:流路基盤
21:円弧流路
22:連結路
23:貫通路
3:偏心円盤
31:偏心回転軸
1: Valve container 2: Channel base 21: Arc channel 22: Connection path 23: Through path 3: Eccentric disk 31: Eccentric rotation shaft

Claims (1)

10MPa以上の高圧環境下で薬液注入を行う為に用いるバルブの構造であって、
流入路と流出路を開放したバルブ容器の内部に、セラミック製の流路基盤および偏心円盤を収納し、
バルブ容器の内部には、偏心円盤において流路基盤との接触面の反対側にある開放面側に、流入路からの薬液が流入可能な空間を有し、
流路基盤には円弧流路と貫通路を備え、
円弧流路は平面視が円弧状であり、
円弧流路に連通した貫通路は、容器の流出路と連通し、
偏心円盤の回転により、円弧流路の開閉度を変更して流体の流量調整を行うように構成したことを特徴とするバルブの構造。
A valve structure used for injecting a chemical solution under a high pressure environment of 10 MPa or more,
The inflow path and outflow path in the interior of the opened valve container, houses a ceramic flow channel base and eccentric plate,
In the inside of the valve container, on the open surface side opposite to the contact surface with the flow path base in the eccentric disk, there is a space into which the chemical solution from the inflow path can flow.
The channel base has an arc channel and a through channel,
The arc channel has an arc shape in plan view,
The through passage that communicates with the arc passage communicates with the outflow passage of the container,
A valve structure characterized in that the flow rate of the fluid is adjusted by changing the degree of opening and closing of the arc flow path by the rotation of the eccentric disk.
JP2012191531A 2012-08-31 2012-08-31 Valve structure Active JP5893532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012191531A JP5893532B2 (en) 2012-08-31 2012-08-31 Valve structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012191531A JP5893532B2 (en) 2012-08-31 2012-08-31 Valve structure

Publications (2)

Publication Number Publication Date
JP2014047850A JP2014047850A (en) 2014-03-17
JP5893532B2 true JP5893532B2 (en) 2016-03-23

Family

ID=50607735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012191531A Active JP5893532B2 (en) 2012-08-31 2012-08-31 Valve structure

Country Status (1)

Country Link
JP (1) JP5893532B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202013103967U1 (en) 2013-09-03 2013-10-23 Bürkert Werke GmbH Rotary valve
KR102403519B1 (en) * 2016-08-24 2022-05-31 삼성전자주식회사 refrigerator
JP2018112305A (en) 2016-08-24 2018-07-19 三星電子株式会社Samsung Electronics Co.,Ltd. Valve structure and refrigerator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2158554B (en) * 1984-05-09 1988-05-18 Gevipi Ag A mixer valve with hard material plaques
JP2545395Y2 (en) * 1991-03-06 1997-08-25 東陶機器株式会社 Water faucets with water treatment devices such as water purifiers
JP2604062Y2 (en) * 1993-01-29 2000-04-10 エヌティエヌ株式会社 Faucet valve device
JP3096179B2 (en) * 1992-10-31 2000-10-10 株式会社ケーブイケー Single lever type hot and cold water mixing faucet
JPH0953734A (en) * 1995-08-10 1997-02-25 Ntn Corp Valve device
JPH10122388A (en) * 1996-10-16 1998-05-15 Ntn Corp Valve device

Also Published As

Publication number Publication date
JP2014047850A (en) 2014-03-17

Similar Documents

Publication Publication Date Title
JP5893532B2 (en) Valve structure
CN102182843A (en) Alternation ball check valve
KR20110098129A (en) Multiple eccentric butterfly valve
BR112015017485B1 (en) Stationary seal, seal set and gearbox
CN204459250U (en) A kind of new type high temperature hard seal ball valve
EP3396219A1 (en) Valves
WO2015188452A1 (en) Valve seat ring and multi-way valve having valve seat ring
CN106461100A (en) Control cartridge with high volumetric flow and variable mixed water outlet
JP6783061B2 (en) Flow switching valve
CN103711933A (en) Top-mounted double-sealing three-section ball valve
KR100794739B1 (en) Manufacturing method of butterfly valve
CN204437297U (en) High-pressure self-balance piston type regulates throttling stop valve
CN206386511U (en) Ball valve and fluid pipe network
CN204025725U (en) A kind of adjustment type stopcock
KR101717497B1 (en) Ball valve
CN201963968U (en) Alternate ball check valve
CN206429693U (en) Floating ball valve is filled in one kind
JP7093177B2 (en) Sealing member and valve for shutting off gas flow
KR100887291B1 (en) A gate valve
CN203703224U (en) Upper-loading type dual-sealing three-way ball valve
US1140510A (en) Irrigating-valve.
KR101496264B1 (en) Water suppling valve for single lever
US20170108125A1 (en) Valve
KR20240044246A (en) Enclosed Derrick for drilling ship with active Shutting Grill
KR20130063978A (en) Gate valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150724

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20151007

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20151021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160224

R150 Certificate of patent or registration of utility model

Ref document number: 5893532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250