JP5883753B2 - Method for producing vinyl chloride monomer - Google Patents

Method for producing vinyl chloride monomer Download PDF

Info

Publication number
JP5883753B2
JP5883753B2 JP2012210202A JP2012210202A JP5883753B2 JP 5883753 B2 JP5883753 B2 JP 5883753B2 JP 2012210202 A JP2012210202 A JP 2012210202A JP 2012210202 A JP2012210202 A JP 2012210202A JP 5883753 B2 JP5883753 B2 JP 5883753B2
Authority
JP
Japan
Prior art keywords
vinyl chloride
chloride monomer
reaction
hydrogen
chloroethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012210202A
Other languages
Japanese (ja)
Other versions
JP2014065667A (en
Inventor
昌紀 島田
昌紀 島田
香織 竹本
香織 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2012210202A priority Critical patent/JP5883753B2/en
Publication of JP2014065667A publication Critical patent/JP2014065667A/en
Application granted granted Critical
Publication of JP5883753B2 publication Critical patent/JP5883753B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、有機化学工業における塩化ビニルモノマーの製造方法に関する。   The present invention relates to a method for producing a vinyl chloride monomer in the organic chemical industry.

ポリ塩化ビニル樹脂は、機械的強度、耐薬品性等に優れており、従来から配管材料、建築材料等の各種用途に用いられている。このポリ塩化ビニル樹脂の製造原料である塩化ビニルモノマーは、従来エチレンの直接塩素化法やオキシクロリネーション法によって合成された1,2−ジクロロエタンを熱分解することにより製造されてきた。   Polyvinyl chloride resin is excellent in mechanical strength, chemical resistance, and the like, and has been conventionally used in various applications such as piping materials and building materials. A vinyl chloride monomer as a raw material for producing this polyvinyl chloride resin has been conventionally produced by thermally decomposing 1,2-dichloroethane synthesized by a direct chlorination method or an oxychlorination method of ethylene.

しかし、このような熱分解反応において、充分な反応効率を得るためには500℃15気圧という高温高圧条件を要し、そのため高性能な設備が必要となり経済的ではなく、また工程も煩雑であった(特許文献1〜3参照)。   However, in such a thermal decomposition reaction, in order to obtain sufficient reaction efficiency, a high-temperature and high-pressure condition of 500 ° C. and 15 atm is required, so that high-performance equipment is required, which is not economical and the process is complicated. (See Patent Documents 1 to 3).

このような従来の塩化ビニルモノマーの合成法を見直し改善する方法として、固体酸触媒による触媒反応により2−クロロエタノールを脱水する方法が考え出された。この方法によれば、これまでよりも低反応温度かつ低圧力で塩化ビニルモノマーを合成することが可能となる(特許文献4参照)。   As a method for reviewing and improving the conventional synthesis method of vinyl chloride monomer, a method of dehydrating 2-chloroethanol by a catalytic reaction with a solid acid catalyst has been devised. According to this method, a vinyl chloride monomer can be synthesized at a lower reaction temperature and lower pressure than before (see Patent Document 4).

特開平5−262682号公報JP-A-5-262682 特開平6−80593号公報JP-A-6-80593 WO2006/098466WO2006 / 098466 特願2011−076985Japanese Patent Application No. 2011-076985

固体酸触媒による触媒反応により2−クロロエタノールを脱水して塩化ビニルモノマーを合成する反応において、固体酸としてゼオライトを用いる場合、水素型のゼオライトが使用されるが、現在市販されている水素型ゼオライトをそのまま用いた反応では、選択率が約40%と低く、より高い選択率となるような触媒を探索する必要がある。本発明は、上記課題を鑑みなされたものであり、より高い選択率を示す触媒を調製することを目的とする。   When zeolite is used as the solid acid in the reaction of synthesizing vinyl chloride monomer by dehydrating 2-chloroethanol by a catalytic reaction with a solid acid catalyst, hydrogen-type zeolite is used, but currently commercially available hydrogen-type zeolite In the reaction using as it is, it is necessary to search for a catalyst having a low selectivity of about 40% and a higher selectivity. This invention is made | formed in view of the said subject, and aims at preparing the catalyst which shows a higher selectivity.

上記の目的を達成するために、本発明は、上記固体酸触媒が、所定量のリンを含むゼオライトであることを特徴とする。すなわち本発明は、
(1)固体酸触媒による触媒反応により、2−クロロエタノールを脱水して塩化ビニルモノマーを製造する方法であって、上記固体酸触媒がP含有水素型ゼオライトであり、ゼオライト中のAlに対するPの原子比が1≦P/Al≦10であり、上記P含有水素型ゼオライトがP含有水素型モルデナイトであることを特徴とする塩化ビニルモノマーの製造方法、
(2)固体酸触媒による触媒反応により、2−クロロエタノールを脱水して塩化ビニルモノマーを製造する方法であって、上記固体酸触媒がP含有水素型ゼオライトであり、ゼオライト中のAlに対するPの原子比が1≦P/Al≦10であり、上記P含有水素型ゼオライトは水素型ゼオライトをリン酸イオンを含む水溶液で処理して得た触媒であり、上記水素型ゼオライトが水素型モルデナイトであることを特徴とする塩化ビニルモノマーの製造方法、
)上記リン酸イオンを含む水溶液がリン酸アンモニウム水溶液又はリン酸水溶液である(2)に記載の塩化ビニルモノマーの製造方法
を提供する。

In order to achieve the above object, the present invention is characterized in that the solid acid catalyst is a zeolite containing a predetermined amount of phosphorus. That is, the present invention
(1) A method of producing vinyl chloride monomer by dehydrating 2-chloroethanol by catalytic reaction with a solid acid catalyst, wherein the solid acid catalyst is a P-containing hydrogen-type zeolite, and P of Al with respect to Al in the zeolite atomic ratio Ri 1 ≦ P / Al ≦ 10 der method of manufacturing vinyl chloride monomer the P-containing hydrogen-type zeolite is characterized by P-containing hydrogen-type mordenite der Rukoto,
(2) A method of producing vinyl chloride monomer by dehydrating 2-chloroethanol by catalytic reaction with a solid acid catalyst, wherein the solid acid catalyst is a P-containing hydrogen-type zeolite, and the amount of P relative to Al in the zeolite is atomic ratio Ri 1 ≦ P / Al ≦ 10 der, the P-containing hydrogen-type zeolite is a catalyst obtained by treating a hydrogen-type zeolite with an aqueous solution containing phosphate ions, the hydrogen form zeolite in hydrogen form mordenite the method of manufacturing vinyl chloride monomer, wherein Rukoto Oh,
( 3 ) The method for producing a vinyl chloride monomer according to ( 2) , wherein the aqueous solution containing phosphate ions is an aqueous ammonium phosphate solution or an aqueous phosphoric acid solution.

本発明によれば、従来の固体酸触媒を用いた場合と比較して、より高選択的に塩化ビニルモノマーを合成することが可能となる。   According to the present invention, it is possible to synthesize a vinyl chloride monomer with higher selectivity than when a conventional solid acid catalyst is used.

[塩化ビニルモノマーの製造方法]
本発明の塩化ビニルモノマーの製造方法では、2−クロロエタノールを、固体酸触媒による触媒反応を利用して脱水する。
[Method for producing vinyl chloride monomer]
In the method for producing a vinyl chloride monomer of the present invention, 2-chloroethanol is dehydrated using a catalytic reaction with a solid acid catalyst.

本発明の塩化ビニルモノマーの製造方法では、その反応形式は特に限定されず、任意の反応形式で行うことができる。例えば固定床式(例えば、固定床気相流通式、固定床液相流通式)、流動床式(例えば、流動床気相流通式、流動床液相流通式)、移動床式(例えば移動床気相流通式、移動床液相流通式)、懸濁床回分式、懸濁床連続式、攪拌槽式、気泡塔式等が実現し得る設備として挙げられる。なかでも、固定床気相流通式、固定床液相流通式及び攪拌槽式が適している。   In the method for producing a vinyl chloride monomer of the present invention, the reaction form is not particularly limited, and can be carried out in any reaction form. For example, fixed bed type (for example, fixed bed gas phase flow type, fixed bed liquid phase flow type), fluidized bed type (for example, fluid bed gas phase flow type, fluid bed liquid phase flow type), moving bed type (for example, moving bed) Examples of the equipment that can be realized include a gas phase flow type, a moving bed liquid phase flow type), a suspension bed batch type, a suspension bed continuous type, a stirring tank type, and a bubble column type. Among these, a fixed bed gas phase flow type, a fixed bed liquid phase flow type, and a stirring tank type are suitable.

<2−クロロエタノール>
この方法で用いる2−クロロエタノールは、従来公知の任意の方法により製造したもののいずれをも用いることができる。例えば、水中に塩素を吹き込むことにより発生させた次亜塩素酸を、エチレンに付加させることにより、製造したものを用いることができる。2−クロロエタノールの純度は特に限定されず、公知の方法によって製造したものを、精製することなくそのまま用いてもよいが、効率的に塩化ビニルモノマーを製造するという観点から、好ましくは50〜100wt%、さらに好ましくは85〜100wt%のものが挙げられる。
<2-Chloroethanol>
As the 2-chloroethanol used in this method, any one produced by any conventionally known method can be used. For example, a product produced by adding hypochlorous acid generated by blowing chlorine into water to ethylene can be used. The purity of 2-chloroethanol is not particularly limited, and a product produced by a known method may be used as it is without purification. However, from the viewpoint of efficiently producing a vinyl chloride monomer, it is preferably 50 to 100 wt. %, More preferably 85 to 100 wt%.

原料として用いる2−クロロエタノールは、気体又は液体のいずれでもよいが、エタノールの脱水反応は、通常、気相で行われることから、気体のものが適している。例えば、2−クロロエタノールを気化器により気化させて用いることが好ましい。なお、2−クロロエタノールは、希釈せずに用いてもよいし、不活性ガスにより希釈して用いてもよい。希釈に用いる不活性ガスとしては、特に限定されないが、窒素、ヘリウム、アルゴン、等が挙げられるが、経済的に製造するという観点から窒素がより好ましい。   2-Chloroethanol used as a raw material may be either gas or liquid, but since a dehydration reaction of ethanol is usually performed in a gas phase, a gas is suitable. For example, 2-chloroethanol is preferably vaporized with a vaporizer. In addition, 2-chloroethanol may be used without diluting, or may be used by diluting with an inert gas. Although it does not specifically limit as an inert gas used for dilution, Although nitrogen, helium, argon, etc. are mentioned, Nitrogen is more preferable from a viewpoint of manufacturing economically.

2−クロロエタノールの脱水反応は、常圧下で行ってもよいし、加圧下で行ってもよい。例えば、1〜0.1MPa程度が挙げられる。   The dehydration reaction of 2-chloroethanol may be performed under normal pressure or under pressure. For example, about 1-0.1 MPa is mentioned.

2−クロロエタノールの反応系への供給量又は供給速度は、例えば、触媒の容積、温度、圧力、2−クロロエタノールの性状等によって適宜調整することができる。例えば、液体及び気体で供給する場合のいずれにおいても、0.1〜10g/時程度が挙げられる。   The supply amount or supply rate of 2-chloroethanol to the reaction system can be appropriately adjusted depending on, for example, the volume of the catalyst, the temperature, the pressure, the properties of 2-chloroethanol, and the like. For example, in either case of supplying in liquid and gas, about 0.1 to 10 g / hour is mentioned.

<固体酸触媒>
本発明の塩化ビニルモノマーの製造方法では、固体酸触媒はP(リン)含有水素型ゼオライトであり、ゼオライト中のAlに対するPの原子比が1≦P/Al≦10であり、好ましくは3≦P/Al≦7である。このようなP/Al比の水素型ゼオライトを触媒として用いることにより、固体酸の特性が2−クロロエタノールの脱水に適する範囲に調製され、選択率を高めることができる。
<Solid acid catalyst>
In the method for producing a vinyl chloride monomer of the present invention, the solid acid catalyst is P (phosphorus) -containing hydrogen zeolite, and the atomic ratio of P to Al in the zeolite is 1 ≦ P / Al ≦ 10, preferably 3 ≦ P / Al ≦ 7. By using such a hydrogen zeolite of P / Al ratio as a catalyst, the characteristics of the solid acid are adjusted in a range suitable for dehydration of 2-chloroethanol, and the selectivity can be increased.

固体酸触媒に用いられる固体酸としては、市販の水素型ゼオライトを用いることができるが、水素型ゼオライトとして水素型モルデナイトを用いることがより好ましい。水素型ゼオライトのシリカ/アルミナ比は、10以上500未満が好ましく、30以上250未満がより好ましい。   As the solid acid used for the solid acid catalyst, commercially available hydrogen-type zeolite can be used, but hydrogen-type mordenite is more preferably used as the hydrogen-type zeolite. The silica / alumina ratio of the hydrogen zeolite is preferably 10 or more and less than 500, more preferably 30 or more and less than 250.

上記P含有水素型ゼオライトは、水素型ゼオライトをリン酸イオンを含む水溶液で処理して得られたものであることが好ましい。リン酸イオンを含む水溶液としては、リン酸水溶液、リン酸ナトリウム水溶液、リン酸アンモニウム水溶液などが挙げられるが、リン酸アンモニウム水溶液が望ましい。リン酸アンモニウムとしてはリン酸二水素アンモニウムやリン酸水素二アンモニウムが挙げられるが、これらのどちらを用いても良い。またこれらを単独で用いてもよいし、二つを任意の割合で混合し、用いてもよい。   The P-containing hydrogen-type zeolite is preferably obtained by treating the hydrogen-type zeolite with an aqueous solution containing phosphate ions. Examples of the aqueous solution containing phosphate ions include a phosphoric acid aqueous solution, a sodium phosphate aqueous solution, and an ammonium phosphate aqueous solution, and an ammonium phosphate aqueous solution is desirable. Examples of ammonium phosphate include ammonium dihydrogen phosphate and diammonium hydrogen phosphate, and either of these may be used. Moreover, these may be used independently and two may be mixed and used in arbitrary ratios.

リン酸イオンを含む水溶液としてリン酸アンモニウム水溶液を用いる場合、リン酸アンモニウムの添加量としてはゼオライト中のAlに対するPの原子比が1≦P/Al≦10、好ましくは3≦P/Al≦7となるようにリン酸アンモニウム水溶液を調製するのが良い。上記例示の他のリン酸イオンを含む水溶液についても同様である。   When an aqueous ammonium phosphate solution is used as the aqueous solution containing phosphate ions, the amount of ammonium phosphate added is such that the atomic ratio of P to Al in the zeolite is 1 ≦ P / Al ≦ 10, preferably 3 ≦ P / Al ≦ 7. It is preferable to prepare an aqueous ammonium phosphate solution so that The same applies to the aqueous solutions containing other phosphate ions exemplified above.

リン酸イオンを含む水溶液での処理の方法としては、P含有水素型ゼオライトにおける、ゼオライト中のAlに対するPの原子比が1≦P/Al≦10となる方法であれば、特に限定されず、リン酸イオンを含む水溶液中に水素型ゼオライトを浸漬・攪拌後、リン酸イオンを含む水素型ゼオライトを濾別・乾燥する方法等が挙げられる。また、濾別せずそのまま乾燥してもよい。   The treatment method using an aqueous solution containing phosphate ions is not particularly limited as long as the atomic ratio of P to Al in the zeolite in the P-containing hydrogen-type zeolite is 1 ≦ P / Al ≦ 10. Examples include a method of immersing and stirring the hydrogen-type zeolite in an aqueous solution containing phosphate ions, and then filtering and drying the hydrogen-type zeolite containing phosphate ions. Moreover, you may dry as it is, without filtering.

リン酸イオンを含む水溶液での処理の方法は、具体的には、以下のようにすることができる。
(1)水素型ゼオライトを空気中300〜600℃で1〜5時間加熱処理し、室温まで乾燥空気下で放冷する。乾燥処理の温度は450〜550℃がより好ましい。加熱処理の時間は2〜3.5時間がより好ましい。
(2)その後、50〜70℃のリン酸イオンを含む水溶液中で3〜8時間ゼオライトを攪拌し、溶媒を蒸発させ、触媒を乾燥させる。上記水溶液の温度は55〜65℃がより好ましい。攪拌時間は5.5〜6.5時間がより好ましい。
Specifically, the treatment with an aqueous solution containing phosphate ions can be performed as follows.
(1) The hydrogen-type zeolite is heat-treated at 300 to 600 ° C. in the air for 1 to 5 hours and allowed to cool to room temperature under dry air. As for the temperature of a drying process, 450-550 degreeC is more preferable. The heat treatment time is more preferably 2 to 3.5 hours.
(2) Thereafter, the zeolite is stirred in an aqueous solution containing phosphate ions at 50 to 70 ° C. for 3 to 8 hours, the solvent is evaporated, and the catalyst is dried. The temperature of the aqueous solution is more preferably 55 to 65 ° C. The stirring time is more preferably 5.5 to 6.5 hours.

以上のように調製した触媒を反応に用いる場合、
(3)触媒を反応開始直前に不活性気体中において300〜600℃で1〜3時間ほど加熱し、そのまま不活性気体中で反応温度まで温度を下げた後、反応に用いるのが好ましい。
不活性気体中での加熱温度は450〜550℃がより好ましく、加熱時間は1.5〜2.5時間がより好ましい。不活性気体としては、窒素、ヘリウム、アルゴン等が挙げられるが、経済的な理由から窒素を用いることがより好ましい。
When the catalyst prepared as described above is used for the reaction,
(3) The catalyst is preferably heated in an inert gas at 300 to 600 ° C. for about 1 to 3 hours immediately before the start of the reaction, and the temperature is lowered as it is to the reaction temperature in an inert gas, and then used for the reaction.
The heating temperature in the inert gas is more preferably 450 to 550 ° C., and the heating time is more preferably 1.5 to 2.5 hours. Examples of the inert gas include nitrogen, helium, and argon, but nitrogen is more preferably used for economic reasons.

触媒量は反応形式によって異なるが、例えば固定床気相流通式であれば、1分間に反応する2−クロロエタノール100重量部に対して、10〜1000重量部程度使用することが適しており、さらに50〜500重量部程度用いることが好ましい。攪拌槽式であれば2−クロロエタノール100重量部に対して、100〜1000重量部程度使用することが適しており、さらに、200〜500重量部程度用いることが好ましい。   Although the amount of catalyst varies depending on the reaction format, for example, in the case of a fixed bed gas phase flow system, it is suitable to use about 10 to 1000 parts by weight with respect to 100 parts by weight of 2-chloroethanol that reacts for 1 minute. Further, it is preferable to use about 50 to 500 parts by weight. If it is a stirring tank type, it is suitable to use about 100-1000 weight part with respect to 2-chloroethanol 100 weight part, Furthermore, it is preferable to use about 200-500 weight part.

反応温度は副生成物の発生を抑えるため、160℃以上300℃未満が好ましい。また反応時間は反応形式によって異なるが、固定床式気相流通式であれば触媒との接触時間で0.1〜3秒程度が適しており、好ましくは0.5〜2秒程度である。攪拌槽式反応装置であれば、10〜120分程度が適しており、好ましくは30〜60分程度である。
反応によって得られた塩化ビニルモノマーは、当該分野で公知の方法により回収することができ、さらに精製してもよい。例えば冷却による副生成物の液化分離のような方法が例示される。
The reaction temperature is preferably 160 ° C. or higher and lower than 300 ° C. to suppress the generation of by-products. In addition, although the reaction time varies depending on the reaction format, in the case of a fixed bed gas phase flow system, the contact time with the catalyst is suitably about 0.1 to 3 seconds, and preferably about 0.5 to 2 seconds. In the case of a stirred tank reactor, about 10 to 120 minutes is suitable, and preferably about 30 to 60 minutes.
The vinyl chloride monomer obtained by the reaction can be recovered by methods known in the art and may be further purified. For example, a method such as liquefaction separation of by-products by cooling is exemplified.

以下に本発明の塩化ビニルモノマーの製造方法の実施例を説明する。   Examples of the method for producing a vinyl chloride monomer of the present invention will be described below.

2−クロロエタノールの脱水反応は、流通式触媒反応装置を用い、触媒は石英製の直管(内径10mm)に充填したものを用いた。
反応ガスおよび反応液は、ガスクロマトグラフ(島津製作所製、商品名GC−2025)、キャピラリーカラム(phenomenex社製、商品名ZB−5ms、30m×0.25mm(内径)、膜厚1.0μm)、水素炎イオン化検出器(FID)を用いて定量した。
For the dehydration reaction of 2-chloroethanol, a flow-type catalytic reactor was used, and the catalyst used was filled in a quartz straight tube (inner diameter 10 mm).
The reaction gas and reaction solution were gas chromatograph (manufactured by Shimadzu Corporation, trade name GC-2025), capillary column (manufactured by phenomenex, trade name ZB-5ms, 30 m × 0.25 mm (inner diameter), film thickness 1.0 μm), hydrogen Quantification was performed using a flame ionization detector (FID).

2−クロロエタノール転化率及び塩化ビニルモノマー選択率を下式で算出した。
・2―クロロエタノール転化率(%)
={(供給2−クロロエタノール量(mol))−(検出2−クロロエタノール量(mol))}/(供給2−クロロエタノール量(mol))×100)
・塩化ビニルモノマー選択率(%)
=塩化ビニルモノマー量(mol)/(各生成物量(mol)×炭素数/2)×100
The 2-chloroethanol conversion rate and vinyl chloride monomer selectivity were calculated by the following equations.
・ 2-Chloroethanol conversion (%)
= {(Supply 2-chloroethanol amount (mol))-(Detected 2-chloroethanol amount (mol))} / (Supply 2-chloroethanol amount (mol)) × 100)
・ Vinyl chloride monomer selectivity (%)
= Vinyl chloride monomer amount (mol) / (each product amount (mol) x number of carbons / 2) x 100

実施例1
空気中500℃で3時間加熱処理したシリカ/アルミナ比240の水素型モルデナイト1.5gを、60℃の0.028mol/Lのリン酸二水素アンモニウム水溶液7.5mL中で6時間攪拌した後、溶媒を蒸発させ、120℃で16時間乾燥させた。以上のように調製したP含有モルデナイト0.6g(P/Al=1;原子比、以下同様)を内径10mmの石英製反応管に充填し、窒素雰囲気下500℃で2時間加熱処理した。その後窒素を流したまま反応温度270℃まで温度を下げ、気化させた2−クロロエタノールを流量1.0g/時及び窒素流量2200mL/時で触媒層に通し、圧力0.1MPa、反応温度270℃の条件下にて反応させた。
反応生成物をガスクロマトグラフで分析したところ、反応経過1時間後において、2−クロロエタノール転化率8.8%、塩化ビニルモノマー選択率41.4%であった。
Example 1
After stirring 1.5 g of hydrogen mordenite having a silica / alumina ratio of 240 heated at 500 ° C. in air for 6 hours in 7.5 mL of 0.028 mol / L ammonium dihydrogen phosphate aqueous solution at 60 ° C. for 6 hours, The solvent was evaporated and dried at 120 ° C. for 16 hours. 0.6 g of P-containing mordenite prepared as described above (P / Al = 1; atomic ratio, the same applies hereinafter) was filled in a quartz reaction tube having an inner diameter of 10 mm and heat-treated at 500 ° C. for 2 hours in a nitrogen atmosphere. Thereafter, the temperature was lowered to 270 ° C. while flowing nitrogen, and vaporized 2-chloroethanol was passed through the catalyst layer at a flow rate of 1.0 g / hour and a nitrogen flow rate of 2200 mL / hour, pressure of 0.1 MPa, reaction temperature of 270 ° C. The reaction was conducted under the following conditions.
When the reaction product was analyzed by gas chromatography, the conversion of 2-chloroethanol was 8.8% and the vinyl chloride monomer selectivity was 41.4% after 1 hour of reaction.

実施例2
空気中500℃で3時間加熱処理したシリカ/アルミナ比240の水素型モルデナイト1.5gを、60℃の0.138mol/Lのリン酸二水素アンモニウム水溶液7.5mL中で6時間攪拌した後、溶媒を蒸発させ、120℃で16時間乾燥させた。以上のように調製したP含有モルデナイト0.6g(P/Al=5)を内径10mmの石英製反応管に充填し、窒素雰囲気下500℃で2時間加熱処理した。その後窒素を流したまま反応温度270℃まで温度を下げ、気化させた2−クロロエタノールを流量1.0g/時及び窒素流量2200mL/時で触媒層に通し、圧力0.1MPa、反応温度270℃の条件下にて反応させた。
反応生成物をガスクロマトグラフで分析したところ、反応経過1時間後において、2−クロロエタノール転化率9.1%、塩化ビニルモノマー選択率60.4%であった。
Example 2
After stirring 1.5 g of hydrogen mordenite having a silica / alumina ratio of 240 heated at 500 ° C. in air for 6 hours in 7.5 mL of 0.138 mol / L ammonium dihydrogen phosphate aqueous solution at 60 ° C., The solvent was evaporated and dried at 120 ° C. for 16 hours. A quartz reaction tube having an inner diameter of 10 mm was filled with 0.6 g of P-containing mordenite (P / Al = 5) prepared as described above, and heat-treated at 500 ° C. for 2 hours in a nitrogen atmosphere. Thereafter, the temperature was lowered to 270 ° C. while flowing nitrogen, and vaporized 2-chloroethanol was passed through the catalyst layer at a flow rate of 1.0 g / hour and a nitrogen flow rate of 2200 mL / hour, pressure of 0.1 MPa, reaction temperature of 270 ° C. The reaction was conducted under the following conditions.
When the reaction product was analyzed by gas chromatography, the conversion of 2-chloroethanol was 9.1% and the vinyl chloride monomer selectivity was 60.4% after 1 hour of reaction.

実施例3
空気中500℃で3時間加熱処理したシリカ/アルミナ比240の水素型モルデナイト1.5gを、60℃の0.0283mol/Lのリン酸水素二アンモニウム水溶液7.5mLで6時間攪拌した後、溶媒を蒸発させ、120℃で16時間乾燥させた。以上のように調製したP含有モルデナイト0.6g(P/Al=1)を内径10mmの石英製反応管に充填し、窒素雰囲気下500℃で2時間加熱処理した。その後窒素を流したまま反応温度270℃まで温度を下げ、気化させた2−クロロエタノールを流量1.0g/時及び窒素流量2200mL/時で触媒層に通し、圧力0.1MPa、反応温度270℃の条件下にて反応させた。
反応生成物をガスクロマトグラフで分析したところ、反応経過1時間後において、2−クロロエタノール転化率6.78%、塩化ビニルモノマー選択率51.02%であった。
Example 3
After stirring 1.5 g of hydrogen mordenite having a silica / alumina ratio of 240 heated at 500 ° C. in air for 6 hours with 7.5 mL of 0.0283 mol / L diammonium hydrogen phosphate aqueous solution at 60 ° C., the solvent Was evaporated and dried at 120 ° C. for 16 hours. 0.6 g (P / Al = 1) of P-containing mordenite prepared as described above was filled in a quartz reaction tube having an inner diameter of 10 mm and heat-treated at 500 ° C. for 2 hours in a nitrogen atmosphere. Thereafter, the temperature was lowered to 270 ° C. while flowing nitrogen, and vaporized 2-chloroethanol was passed through the catalyst layer at a flow rate of 1.0 g / hour and a nitrogen flow rate of 2200 mL / hour, pressure of 0.1 MPa, reaction temperature of 270 ° C. The reaction was conducted under the following conditions.
When the reaction product was analyzed by gas chromatography, it was found that after 1 hour of reaction, the 2-chloroethanol conversion was 6.78% and the vinyl chloride monomer selectivity was 51.02%.

実施例4
空気中500℃で3時間加熱処理したシリカ/アルミナ比240の水素型モルデナイト1.5gを、リン酸二水素アンモニウムが0.0135mol/L、リン酸水素二アンモニウムが0.0139mol/Lとなるよう、リン酸二水素アンモニウムとリン酸水素二アンモニウムを1対1(モル比)で混合し調製した、60℃の水溶液7.5mL中で6時間攪拌した後、溶媒を蒸発させ、120℃で16時間乾燥させた。
以上のように調製したP含有モルデナイト0.6g(P/Al=1)を内径10mmの石英製反応管に充填し、窒素雰囲気下500℃で2時間加熱処理した。その後窒素を流したまま反応温度270℃まで温度を下げ、気化させた2−クロロエタノールを流量1.0g/時及び窒素流量2200mL/時で触媒層に通し、圧力0.1MPa、反応温度270℃の条件下にて反応させた。
反応生成物をガスクロマトグラフで分析したところ、反応経過1時間後において、2−クロロエタノール転化率7.63%、塩化ビニルモノマー選択率46.83%であった。
Example 4
1.5 g of hydrogen mordenite having a silica / alumina ratio of 240 heated at 500 ° C. in air for 0.0135 mol / L of ammonium dihydrogen phosphate and 0.0139 mol / L of diammonium hydrogen phosphate. After stirring for 6 hours in 7.5 mL of an aqueous solution at 60 ° C. prepared by mixing ammonium dihydrogen phosphate and diammonium hydrogen phosphate in a 1: 1 ratio (molar ratio), the solvent was evaporated, Let dry for hours.
0.6 g (P / Al = 1) of P-containing mordenite prepared as described above was filled in a quartz reaction tube having an inner diameter of 10 mm and heat-treated at 500 ° C. for 2 hours in a nitrogen atmosphere. Thereafter, the temperature was lowered to 270 ° C. while flowing nitrogen, and vaporized 2-chloroethanol was passed through the catalyst layer at a flow rate of 1.0 g / hour and a nitrogen flow rate of 2200 mL / hour, pressure of 0.1 MPa, reaction temperature of 270 ° C. The reaction was conducted under the following conditions.
When the reaction product was analyzed by gas chromatography, it was found that the conversion rate of 2-chloroethanol was 7.63% and vinyl chloride monomer selectivity was 46.83% after 1 hour of the reaction.

実施例5
空気中500℃で3時間加熱処理したシリカ/アルミナ比240の水素型モルデナイト1.5gを、60℃の0.0275mol/Lのリン酸水溶液7.5mL中で6時間攪拌した後、溶媒を蒸発させ、120℃で16時間乾燥させた。以上のように調製したP含有モルデナイト0.6g(P/Al=1)を内径10mmの石英製反応管に充填し、窒素雰囲気下500℃で2時間加熱処理した。その後窒素を流したまま反応温度270℃まで温度を下げ、気化させた2−クロロエタノールを流量1.0g/時及び窒素流量2200mL/時で触媒層に通し、圧力0.1MPa、反応温度270℃の条件下にて反応させた。
反応生成物をガスクロマトグラフで分析したところ、反応経過1時間後において、2−クロロエタノール転化率9.3%、塩化ビニルモノマー選択率50.2%であった。
Example 5
After stirring 1.5 g of hydrogen mordenite having a silica / alumina ratio of 240 heated at 500 ° C. in air for 6 hours in 7.5 mL of 0.0275 mol / L phosphoric acid aqueous solution at 60 ° C., the solvent was evaporated. And dried at 120 ° C. for 16 hours. 0.6 g (P / Al = 1) of P-containing mordenite prepared as described above was filled in a quartz reaction tube having an inner diameter of 10 mm and heat-treated at 500 ° C. for 2 hours in a nitrogen atmosphere. Thereafter, the temperature was lowered to 270 ° C. while flowing nitrogen, and vaporized 2-chloroethanol was passed through the catalyst layer at a flow rate of 1.0 g / hour and a nitrogen flow rate of 2200 mL / hour, pressure of 0.1 MPa, reaction temperature of 270 ° C. The reaction was conducted under the following conditions.
When the reaction product was analyzed by gas chromatography, the conversion of 2-chloroethanol was 9.3% and the vinyl chloride monomer selectivity was 50.2% after 1 hour of reaction.

比較例
空気中500℃で3時間加熱処理したシリカ/アルミナ比240の水素型モルデナイト0.6gを内径10mmの石英製反応管に充填し、気化させた2−クロロエタノールを流量1.0g/時及び窒素流量2200mL/時で触媒層に通し、圧力0.1MPa、反応温度270℃の条件下にて反応させた。
反応生成物をガスクロマトグラフで分析したところ、反応経過1時間後において、2−クロロエタノール転化率10.9%、塩化ビニルモノマー選択率28.5%であった。
Comparative Example 0.6 g of hydrogen mordenite having a silica / alumina ratio of 240 heated at 500 ° C. in air for 3 hours was filled in a quartz reaction tube having an inner diameter of 10 mm, and vaporized 2-chloroethanol was supplied at a flow rate of 1.0 g / hour. And a nitrogen flow rate of 2200 mL / hour was passed through the catalyst layer, and the reaction was carried out under the conditions of pressure 0.1 MPa and reaction temperature 270 ° C.
When the reaction product was analyzed by gas chromatography, the conversion of 2-chloroethanol was 10.9% and the vinyl chloride monomer selectivity was 28.5% after 1 hour of the reaction.

本発明の塩化ビニルモノマーの製造方法によれば、より高い選択率で2−クロロエタノールを脱水して塩化ビニルモノマーを得ることができる。さらに、高い選択率とともに高い転化率が得られた。   According to the method for producing a vinyl chloride monomer of the present invention, vinyl chloride monomer can be obtained by dehydrating 2-chloroethanol with higher selectivity. Furthermore, high conversion was obtained with high selectivity.

Claims (3)

固体酸触媒による触媒反応により、2−クロロエタノールを脱水して塩化ビニルモノマーを製造する方法であって、該固体酸触媒がP含有水素型ゼオライトであり、ゼオライト中のAlに対するPの原子比が1≦P/Al≦10であり、前記P含有水素型ゼオライトがP含有水素型モルデナイトであることを特徴とする塩化ビニルモノマーの製造方法。 A method for producing vinyl chloride monomer by dehydrating 2-chloroethanol by a catalytic reaction with a solid acid catalyst, wherein the solid acid catalyst is a P-containing hydrogen-type zeolite, and the atomic ratio of P to Al in the zeolite is 1 ≦ P / Al ≦ 10 der is, the production method of a vinyl chloride monomer, wherein the P-containing hydrogen-type zeolite is characterized by P-containing hydrogen-type mordenite der Rukoto. 固体酸触媒による触媒反応により、2−クロロエタノールを脱水して塩化ビニルモノマーを製造する方法であって、該固体酸触媒がP含有水素型ゼオライトであり、ゼオライト中のAlに対するPの原子比が1≦P/Al≦10であり、前記P含有水素型ゼオライトは水素型ゼオライトをリン酸イオンを含む水溶液で処理して得た触媒であり、前記水素型ゼオライトが水素型モルデナイトであることを特徴とする塩化ビニルモノマーの製造方法。 A method for producing vinyl chloride monomer by dehydrating 2-chloroethanol by a catalytic reaction with a solid acid catalyst, wherein the solid acid catalyst is a P-containing hydrogen-type zeolite, and the atomic ratio of P to Al in the zeolite is 1 ≦ P / Al ≦ 10 der is, the P-containing hydrogen-type zeolite is a catalyst obtained by treating a hydrogen-type zeolite with an aqueous solution containing phosphate ions, the hydrogen-type zeolite is hydrogen form mordenite der Rukoto A process for producing a vinyl chloride monomer characterized by 前記リン酸イオンを含む水溶液がリン酸アンモニウム水溶液又はリン酸水溶液である請求項2に記載の塩化ビニルモノマーの製造方法。 The method for producing a vinyl chloride monomer according to claim 2, wherein the aqueous solution containing phosphate ions is an aqueous ammonium phosphate solution or an aqueous phosphoric acid solution.
JP2012210202A 2012-09-24 2012-09-24 Method for producing vinyl chloride monomer Active JP5883753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012210202A JP5883753B2 (en) 2012-09-24 2012-09-24 Method for producing vinyl chloride monomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012210202A JP5883753B2 (en) 2012-09-24 2012-09-24 Method for producing vinyl chloride monomer

Publications (2)

Publication Number Publication Date
JP2014065667A JP2014065667A (en) 2014-04-17
JP5883753B2 true JP5883753B2 (en) 2016-03-15

Family

ID=50742435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012210202A Active JP5883753B2 (en) 2012-09-24 2012-09-24 Method for producing vinyl chloride monomer

Country Status (1)

Country Link
JP (1) JP5883753B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2238094B1 (en) * 2008-02-07 2017-08-09 Total Research & Technology Feluy Dehydration of alcohols on crystalline silicates
JP2010235487A (en) * 2009-03-31 2010-10-21 Sekisui Chem Co Ltd Method for producing vinyl chloride monomer and vinyl chloride resin
EP2348004A1 (en) * 2010-01-25 2011-07-27 Total Petrochemicals Research Feluy Method for making a catalyst comprising a phosphorus modified zeolite to be used in a MTO or a dehydration process
EP2585422B1 (en) * 2010-06-23 2018-01-10 Total Research & Technology Feluy Dehydration of alcohols on poisoned acidic catalysts
CN102671701B (en) * 2011-12-08 2014-04-09 河南科技大学 Catalyst for synthesizing vinyl chloride monomer and preparation method thereof

Also Published As

Publication number Publication date
JP2014065667A (en) 2014-04-17

Similar Documents

Publication Publication Date Title
US20110137090A1 (en) Process for preparing 2,3,3,3-tetrafluoropropene and 1,3,3,3-tetrafluoropropene
TWI829871B (en) Method for producing halogenated butene compounds
CN106278810B (en) The method of the tetrafluoropropene of coproduction 1,3,3,3 and the trifluoro propene of 1 chlorine 3,3,3
JP2019526588A (en) Method for producing 1,3-cyclohexanedimethanol
KR20130098373A (en) Method for producing phosphorus pentafluoride
JP5883753B2 (en) Method for producing vinyl chloride monomer
JP2014028794A (en) Method for producing 1,3,3,3-tetrafluoropropene
TW201821142A (en) Method for producing oligosilane and device for producing oligosilane
JP5836480B2 (en) Method for producing vinyl chloride monomer
JP2012211097A (en) Method of producing vinyl chloride monomer
JP2015067555A (en) Method of producing vinyl chloride monomer
JP2009107969A (en) Method for producing vinyl chloride
JP2011046649A (en) Method for producing chloroalkane
JP2012214433A (en) Method for producing vinylchloride monomer
CN103664505A (en) Chloropropene production technology
JP6736073B2 (en) Ammonia synthesis catalyst
CN115850024B (en) Method for preparing 1,2, 3-heptafluoropropane or/and hexafluoropropene by gas phase reaction
JP2015086184A (en) Method for producing vinyl chloride monomer
TWI836109B (en) How to make alkanes
JP2015086185A (en) Method of producing methylacetylene
JP2014144941A (en) Method of producing vinyl chloride monomer
CN106892807A (en) A kind of preparation method of isophorone
CN114040903A (en) Process for producing alkane
CN117902574A (en) Hierarchical pore carbon material and application thereof
CN106831377B (en) A kind of preparation method of the isophorone using organic methenamine system quaternary ammonium strong base catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160208

R151 Written notification of patent or utility model registration

Ref document number: 5883753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151