JP5883680B2 - Oil-filled transformer - Google Patents

Oil-filled transformer Download PDF

Info

Publication number
JP5883680B2
JP5883680B2 JP2012039981A JP2012039981A JP5883680B2 JP 5883680 B2 JP5883680 B2 JP 5883680B2 JP 2012039981 A JP2012039981 A JP 2012039981A JP 2012039981 A JP2012039981 A JP 2012039981A JP 5883680 B2 JP5883680 B2 JP 5883680B2
Authority
JP
Japan
Prior art keywords
insulating
paper
oil
coil
insulating paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012039981A
Other languages
Japanese (ja)
Other versions
JP2013175645A (en
Inventor
拓弥 岩崎
拓弥 岩崎
和男 西山
和男 西山
福井 和元
和元 福井
賢治 中ノ上
賢治 中ノ上
将 阿部
将 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2012039981A priority Critical patent/JP5883680B2/en
Publication of JP2013175645A publication Critical patent/JP2013175645A/en
Application granted granted Critical
Publication of JP5883680B2 publication Critical patent/JP5883680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulating Of Coils (AREA)
  • Housings And Mounting Of Transformers (AREA)

Description

本発明は、絶縁紙を用いた巻線を備えた油入変圧器に関する。   The present invention relates to an oil-filled transformer having a winding made of insulating paper.

従来、油入変圧器の巻線に使用される絶縁紙は一般的にクラフト紙を用い、変圧器の冷却及び絶縁に用いられる電気絶縁油は鉱油(鉱物油)がほとんどである。
このクラフト紙と鉱油の組み合わせは以前から実施されており、クラフト紙は繊維の密度が粗で、また、鉱油の粘性は他の油よりも低いため、変圧器の製造過程において絶縁紙のクラフト紙への鉱油の含浸速度がそれなりに速かった。
しかし、従来の上記の油入変圧器はA種仕様(許容温度105℃)で、広く使用されていたが、最近は高温でも油入変圧器(H種仕様:許容温度180℃)を使用する傾向にあり、H種仕様の油入変圧器は、絶縁紙や電気絶縁油を耐熱性の材料を用い、環境問題などを考慮して、電気絶縁油としてシリコーンオイルを、絶縁紙としてノーメックス(ジュポンの登録商標)を用いた変圧器などがある。
Conventionally, kraft paper is generally used as the insulating paper used for the winding of the oil-filled transformer, and mineral oil (mineral oil) is mostly used as the electric insulating oil used for cooling and insulating the transformer.
This combination of kraft paper and mineral oil has been practiced for a long time, and since kraft paper has a coarse fiber density and mineral oil has a lower viscosity than other oils, insulating paper kraft paper is used in the transformer manufacturing process. The impregnation rate of mineral oil into the water was reasonably fast.
However, the conventional oil-filled transformer is widely used in the Class A specification (allowable temperature 105 ° C), but recently, the oil-filled transformer (Type H specification: allowable temperature 180 ° C) is used even at high temperatures. There is a tendency for oil-filled transformers of class H specifications to use insulation paper and electrical insulation oil made of heat-resistant materials, and considering environmental issues, etc., silicone oil as electrical insulation oil, and Nomex (Jupon) as insulation paper. There is a transformer using

この耐熱性の絶縁紙のノーメックスを用い、絶縁油にシリコーンオイルを用いた油入変圧器を製造する場合、コイルは絶縁紙と導線を積層して巻回して形成し、鉄心と組立ててタンク内に設置し、絶縁油を注油して絶縁紙に絶縁油を含浸させる。この絶縁紙の含浸についてノーメックスは繊維が密で、かつシリコーンオイルは粘性が高いため、A種仕様の油入変圧器より多くの時間を要していた。さらに、H種仕様の油入変圧器の小型化を図ろうとすると、導線と絶縁紙に巻回の密度を高くする必要があるため、含浸速度が低下していた。   When manufacturing oil-filled transformers using silicone oil as the insulating oil using this heat-resistant insulating paper nomex, the coil is formed by laminating insulating paper and conductive wire, and is assembled with the iron core in the tank. Insulating paper is impregnated with insulating oil. With respect to the impregnation of this insulating paper, since Nomex has dense fibers and silicone oil has a high viscosity, it takes more time than an oil-filled transformer of Class A specification. Furthermore, when trying to reduce the size of the oil-filled transformer of the class H specification, it is necessary to increase the winding density of the conductor and the insulating paper, so that the impregnation speed is reduced.

ここで、耐熱性のある絶縁紙及び絶縁油について説明する。
先ず、絶縁紙のノーメックスについて説明する。
ノーメックス繊維は、m−フェニレンジアミンとイソフタル酸クロリドから共縮重合して得られるメタ系アラミド繊維で、(1)優れた耐熱性があり、−40〜+120℃の温度範囲で安定した物理特性を示し、(2)優れた寸法安定性、(3)優れた耐摩耗性、(4)高い初期弾性率、(5)優れた耐水性、耐薬品性、(6)370℃以上で炭化するが溶解しない、等の特性を有している。
Here, heat-resistant insulating paper and insulating oil will be described.
First, nomex of insulating paper will be described.
Nomex fiber is a meta-aramid fiber obtained by co-condensation polymerization from m-phenylenediamine and isophthalic acid chloride. (1) Excellent heat resistance and stable physical properties in the temperature range of -40 to + 120 ° C. (2) Excellent dimensional stability, (3) Excellent wear resistance, (4) High initial elastic modulus, (5) Excellent water resistance, chemical resistance, (6) Carbonized at 370 ° C or higher It has characteristics such as not dissolving.

また、電気的特性において、絶縁破壊電圧、誘電率、固有抵抗値等の電気的諸特性は広範囲の温度変化にもほとんど影響を受けない。
また、耐薬品性において、(1)ほとんどの有機溶媒、酸、アルカリ、塩類に耐性を有し、溶液中での使用も可能で、(2)冷媒、洗浄に使用されるフッ素化合物にも耐性を有し、(3)各種ワニス、接着剤、鉱油(鉱物油)、シリコーン油にも適合し、性能を十分発揮できる、特性を有している。
特許文献1(特開平8−27692号公報)には、上記のノーメックス繊維について説明されている。
Further, in the electrical characteristics, electrical characteristics such as dielectric breakdown voltage, dielectric constant, and specific resistance value are hardly affected by a wide range of temperature changes.
In addition, in chemical resistance, (1) it is resistant to most organic solvents, acids, alkalis and salts, it can be used in solution, and (2) it is also resistant to refrigerants and fluorine compounds used for cleaning. (3) It is compatible with various varnishes, adhesives, mineral oils (mineral oils), and silicone oils, and has a characteristic that it can sufficiently exhibit its performance.
Patent Document 1 (Japanese Patent Laid-Open No. 8-27692) describes the above Nomex fiber.

次に、シリコーンオイルについて説明する。
H種仕様の油入変圧器に用いられるシリコーンオイルは、一般的にジメチルシリコーンオイルで、ジメチルシリコーンオイルの特性について述べる。
ジメチルシリコーンオイルは、通常の鉱油系潤滑油がC−C結合であるのに対し、Si−O結合がその骨格を成していて、珪素にメチル基などが結合した珪素有機化合物の重合体で、耐熱性、電気絶縁性に優れ、化学式は〔化1〕の通りである。
Next, silicone oil will be described.
The silicone oil used in the oil-filled transformer of Class H specification is generally dimethyl silicone oil, and the characteristics of dimethyl silicone oil will be described.
Dimethyl silicone oil is a polymer of a silicon organic compound in which an ordinary mineral oil-based lubricating oil has a C—C bond, whereas a Si—O bond forms its skeleton and a methyl group or the like is bonded to silicon. It has excellent heat resistance and electrical insulation, and its chemical formula is as shown in [Chemical Formula 1].

Figure 0005883680
Figure 0005883680

また、シリコーンオイルは、比較的重合度の低く、水をはじく性質があり、温度による粘度の変化が鉱油系または植物系のオイルに比べて非常に少なく、そのほぼ1/50の変化に過ぎない。耐熱性については、空気中での酸化に対して安定で、150℃以下ではほとんど酸化による変化を受け付けず、空気中では、180℃以上になると酸化が始まり、高温になるほど酸化が促進されて粘度の上昇が大きくなる。また、耐寒性に優れ、−40〜−50℃でも流動性を保つ。表面張力は小さく、比重は、体積膨張率が水や鉱油などに比べて大きく、その比重や体積は温度により大きく変化する。 Silicone oil has a relatively low degree of polymerization and water repellent properties, and its viscosity change due to temperature is very small compared to mineral oil or vegetable oil, which is only about 1/50 of that change. . As for heat resistance, it is stable against oxidation in air, and hardly receives changes due to oxidation below 150 ° C. In air, oxidation starts when the temperature rises above 180 ° C, and the higher the temperature, the more the oxidation is accelerated and the viscosity increases. The rise of Moreover, it is excellent in cold resistance and maintains fluidity even at -40 to -50 ° C. The surface tension is small and the specific gravity is larger than that of water or mineral oil, and the specific gravity and volume vary greatly with temperature.

また、ジメチルシリコーンオイルの比熱は、有機油の中では最も小さいものに属し、水の約1/3程度で、熱伝導率は水の約1/4程度で、粘度が増すにつれて、熱伝導率は大きくなるが、100mm/s 以上でほぼ一定になる。
シリコーンオイルの溶剤への溶解性は、シリコーンオイルの種類や粘度によって異なり、ジメチルシリコーンオイルは非極性のため、トルエン、キシレンなどの芳香族系溶剤、ガソリン、ケロシンなどの非極性溶剤には溶解するが、水やアルコールなどの極性溶剤には難溶である。また、一般に低粘度、低分子量のものほどよく溶解する。
The specific heat of dimethyl silicone oil belongs to the smallest among organic oils, about 1/3 of water, and the thermal conductivity is about 1/4 of water. As the viscosity increases, the thermal conductivity increases. Increases, but becomes substantially constant at 100 mm 2 / s or more.
The solubility of silicone oil in solvents varies depending on the type and viscosity of the silicone oil, and dimethyl silicone oil is nonpolar, so it dissolves in aromatic solvents such as toluene and xylene, and nonpolar solvents such as gasoline and kerosene. However, it is hardly soluble in polar solvents such as water and alcohol. In general, those having lower viscosity and lower molecular weight are better dissolved.

ジメチルシリコーンオイルは、化学的に不活性でほとんどの金属に対しても腐食性を示さず、化学的に極めて安定で、室温では濃度10%以下のアルカリ水溶液あるいは30%以下の酸に対してはほとんど影響を受けない。
また、絶縁破壊の強さが、鉱油系で最良の絶縁油より優れ、極めて体積抵抗率が高く、また、比誘電率や誘電正接が広い周波数領域や温度範囲で変化が少ない、などの電気特性を示す。ジメチルシリコーンオイルは、他の絶縁油より吸湿性が大きく、絶縁破壊電圧が水分より大きく影響されるため、水分管理に注意が必要である。
Dimethylsilicone oil is chemically inert and not corrosive to most metals, is extremely chemically stable, and is less than 10% alkaline aqueous solution at room temperature or less than 30% acid at room temperature. Almost unaffected.
In addition, the dielectric breakdown strength is superior to that of the best insulating oil in mineral oil, the volume resistivity is extremely high, and the relative permittivity and dielectric loss tangent are small in a wide frequency range and temperature range. Indicates. Since dimethyl silicone oil has higher hygroscopicity than other insulating oils, and the dielectric breakdown voltage is more greatly affected than moisture, attention must be paid to moisture management.

上記のように電気絶縁油のジメチルシリコーンオイルは、電気絶縁特性、耐熱、耐寒性に優れ、引火点が高く、化学的に安定なので、電気機器の冷却絶縁用液体として利用され、新幹線車両変圧器の絶縁油として使用されている。   As mentioned above, dimethyl silicone oil, an electrical insulating oil, has excellent electrical insulating properties, heat resistance, and cold resistance, has a high flash point, and is chemically stable, so it is used as a liquid for cooling insulation of electrical equipment. Used as insulating oil.

特開平8−27692号公報JP-A-8-27692

一般的に、絶縁紙に対する電気絶縁油の含浸速度は紙目方向が最も速く、次に紙目直交方向、最後に厚さ方向となっている。
図6に、絶縁紙における各方向の絶縁油の含浸速度を示す特性図を示す。
図6において、横軸に含浸時間、縦軸に含浸距離をとり、絶縁紙のたて方向すなわち紙目方向の特性曲線200、絶縁紙のよこ方向すなわち紙目方向に直交する方向の特性曲線210、および絶縁紙の厚み方向の特性曲線220を示している。
図6に示した特性図において、例えば含浸時間がAの点においては厚さ方向の含浸距離を1とすると、たて方向(紙目方向)は含浸距離が約20倍、よこ方向(紙目方向に対し直交する方向)が約14倍となっており、絶縁紙に対する電気絶縁油の含浸速度は紙目方向が最も速く、次に紙目直交方向、最後に厚さ方向となっていることが分かる。
Generally, the impregnation speed of the electric insulating oil into the insulating paper is the fastest in the paper direction, then in the direction perpendicular to the paper, and finally in the thickness direction.
FIG. 6 is a characteristic diagram showing the impregnation speed of the insulating oil in each direction in the insulating paper.
In FIG. 6, the horizontal axis represents the impregnation time, the vertical axis represents the impregnation distance, the characteristic curve 200 in the direction of the insulation paper, that is, the grain direction, and the characteristic curve 210 in the direction of the insulation paper, that is, the direction perpendicular to the grain direction. And a characteristic curve 220 in the thickness direction of the insulating paper.
In the characteristic diagram shown in FIG. 6, for example, when the impregnation time is A, if the impregnation distance in the thickness direction is 1, the impregnation distance is about 20 times in the vertical direction (paper grain direction) and the transverse direction (paper grain) The direction of orthogonal to the direction) is about 14 times, and the impregnation speed of the electrical insulating oil to the insulating paper is the fastest in the paper grain direction, then in the direction perpendicular to the paper grain, and finally in the thickness direction. I understand.

さらに、絶縁紙は絶縁耐力(絶縁性能)を向上させるために、カレンダー加工というものがなされている。これは、高温・高圧によって絶縁紙の厚さ方向にプレスをかける作業となり、絶縁紙表面が薄いフィルムで覆われたような状態となる。絶縁耐力を向上させるためにこの加工は必要となるが、絶縁紙の厚さ方向からの絶縁液体の含浸が制限されるため、絶縁紙内部に完全に絶縁液体を含浸させようとすると膨大な時間を要する。   Furthermore, in order to improve the dielectric strength (insulation performance), the insulating paper is called calendering. This is an operation of pressing in the thickness direction of the insulating paper by high temperature and high pressure, and the surface of the insulating paper is covered with a thin film. This process is necessary to improve the dielectric strength, but since impregnation of the insulating liquid from the thickness direction of the insulating paper is limited, it takes an enormous amount of time to completely impregnate the insulating paper inside the insulating paper. Cost.

また、通常変圧器のコイルを製造する際、ロール状態の絶縁物を巻つけるように使用するため、絶縁紙に対する絶縁油の含浸速度が最も速い紙目方向がロール形状の中に埋もれてしまい、含浸が進んでいく箇所は紙目直交方向からとなっている。
ここで、絶縁紙内部への絶縁油の含浸の必要性を説明すると、絶縁紙単体での絶縁耐力を考える場合、絶縁紙に存在している繊維の隙間(空隙)が最も弱く、その部分において絶縁破壊が発生することになる。絶縁紙内部へ絶縁油が含浸すると、その繊維の隙間が絶縁油と置換されてなくなるため、絶縁紙の性能が向上し、絶縁媒体全体としての性能が向上する。
In addition, when manufacturing a transformer coil, it is usually used to wrap a roll of insulation, so that the paper grain direction with the fastest impregnation rate of insulating oil to the insulating paper is buried in the roll shape, The location where the impregnation proceeds is from the direction perpendicular to the paper grain.
Here, the necessity of impregnation of insulating oil inside the insulating paper will be explained. When considering the dielectric strength of the insulating paper alone, the gap (void) of the fiber existing in the insulating paper is the weakest, and in that part Dielectric breakdown will occur. When the insulating paper is impregnated with the insulating oil, the gap between the fibers is not replaced with the insulating oil, so that the performance of the insulating paper is improved and the performance of the entire insulating medium is improved.

また、部分放電性能を考えた場合、絶縁紙を多くしても部分放電に対する性能は向上せず、むしろ悪化することもあり得る。よって、小型化や部分放電性能を満たすためには、絶縁紙の枚数を多くするだけでなく絶縁油の含浸を考慮する必要がある。   Further, when considering the partial discharge performance, even if the insulating paper is increased, the performance against partial discharge is not improved but may be deteriorated. Therefore, in order to satisfy downsizing and partial discharge performance, it is necessary to consider not only the number of insulating papers but also impregnation with insulating oil.

本発明の目的は、繊維密度の高い絶縁紙に粘性の大きい絶縁油を含浸させる場合、含浸速度をより速く促進するように絶縁紙に加工を施し、変圧器のコイルに用いた油入変圧器を提供することにある。   An object of the present invention is to provide an oil-filled transformer used in a transformer coil by processing the insulating paper so as to accelerate the impregnation speed when impregnating the insulating paper having a high fiber density with the insulating oil having a high viscosity. Is to provide.

本発明は、上記目的を達成するために、鉄心と、コイルと、該鉄心及びコイルを絶縁、冷却する絶縁油とをタンク内に収納した油入変圧器において、前記コイルは、導線と層間紙である絶縁紙を交互に積層して巻回して形成され、該絶縁紙は、巻回方向と紙目方向とを同じとし、巻回方向と直交する方向に短冊状に切断し、該短冊状に切断された絶縁紙が巻回方向にオーバーラップするよう配置し、オーバーラップ部を接着して繋ぎ合せて形成され、該繋ぎ合せて形成した絶縁紙を層間紙として備えることを特徴とする。 In order to achieve the above object, the present invention provides an oil-filled transformer in which an iron core, a coil, and insulating oil for insulating and cooling the iron core and the coil are housed in a tank. The insulating paper is formed by alternately laminating and winding, and the insulating paper has the same winding direction and paper grain direction, and is cut into strips in a direction perpendicular to the winding direction. insulating paper that has been cut is disposed so as to overlap the winding direction, is formed by joining by bonding Oh Barappu unit, characterized in that it comprises an insulating sheet formed together該繋technique as an interlayer paper.

また、上記の油入変圧器において、前記絶縁紙を前記コイルの外層絶縁部に設置することを特徴とする。   In the oil-filled transformer, the insulating paper is installed in an outer layer insulating portion of the coil.

また、鉄心と、コイルと、該鉄心及びコイルを絶縁、冷却する絶縁油とをタンク内に収納した油入変圧器において、前記コイルは、導線と層間紙である絶縁紙を交互に積層して巻回して形成され、該絶縁紙は、紙目方向を巻回方向と直交する方向とし、巻回方向に対して紙目方向が直交する方向に短冊状に切断し、該短冊状に切断された絶縁紙が巻回方向にオーバーラップするよう配置し、オーバーラップ部を接着して繋ぎ合せて形成され、該繋ぎ合せて形成した絶縁紙を層間紙として備えることを特徴とする。 Further, in the oil-filled transformer in which the iron core, the coil, and the insulating oil for insulating and cooling the iron core and the coil are housed in the tank, the coil is formed by alternately laminating the conductive wire and the insulating paper as the interlayer paper. The insulating paper is formed by winding and is cut into strips in the direction perpendicular to the winding direction, and the paper direction is perpendicular to the winding direction. insulating paper is arranged to overlap the winding direction, is formed by joining by bonding overlapping portions, characterized in that it comprises an insulating sheet formed together該繋technique as an interlayer sheet.

また、上記載油入変圧器において、前記絶縁紙を前記コイルの内層絶縁部に設置することを特徴とする。   In the above oil-filled transformer, the insulating paper is installed in an inner layer insulating portion of the coil.

油入変圧器のコイルに使用する絶縁紙にカレンダー加工を施し、さらに繊維が密な絶縁紙に粘性の高い絶縁油が含浸し易いように加工を施し、変圧器コイルに使用することで含浸速度が促進されて絶縁性能が向上する油入変圧器を提供できる。   The insulation paper used for the coil of the oil-filled transformer is calendered, and further, the insulation paper with dense fibers is processed so as to be easily impregnated with high-viscosity insulating oil, and used for the transformer coil. It is possible to provide an oil-filled transformer in which the insulation performance is improved by promoting the above.

本発明のコイルを備えた油入変圧器の外観斜視図である。It is an external appearance perspective view of an oil-filled transformer provided with the coil of the present invention. 本発明のコイルの構造を示す断面図である。It is sectional drawing which shows the structure of the coil of this invention. 従来のコイルの絶縁紙を示す外観斜視図である。It is an external appearance perspective view which shows the insulating paper of the conventional coil. 本発明のコイルの絶縁紙を示す外観斜視図である。It is an external appearance perspective view which shows the insulating paper of the coil of this invention. 変圧器本体の内部構成を示す斜視図である。It is a perspective view which shows the internal structure of a transformer main body. 絶縁紙における各方向での絶縁油の含浸速度を示す特性図である。It is a characteristic view which shows the impregnation speed | velocity | rate of the insulating oil in each direction in insulating paper. 本発明の加工を施した絶縁紙の構成を示す図である。It is a figure which shows the structure of the insulating paper which gave the process of this invention. 本発明の別の加工を施した絶縁紙の構成を示す図である。It is a figure which shows the structure of the insulating paper which gave another process of this invention. 絶縁紙の表面を示す写真である。It is a photograph which shows the surface of insulation paper. 絶縁紙の紙目方向に直交する方向の断面を示す写真である。It is a photograph which shows the cross section of the direction orthogonal to the paper grain direction of insulation paper. 絶縁紙の紙目方向の断面を示す写真である。It is a photograph which shows the cross section of the grain direction of insulation paper. 変圧器タンク内の圧力をパラメータとしたときの絶縁紙への絶縁油の含浸特性を示す図である。It is a figure which shows the impregnation characteristic of the insulating oil to an insulating paper when the pressure in a transformer tank is made into a parameter.

以下、本発明の油入変圧器の実施の形態を図面を用いて説明する。
(実施例1)
図1は、本発明の絶縁紙を用いたコイルを備えた油入変圧器の外観斜視図である。
図1において、油入変圧器1はアモルファスや珪素鋼板などの鉄心及び鉄心に装着したコイルを絶縁、冷却する絶縁油を収納したタンク容器2を備え、このタンク容器2の周縁に波リブ3を設けて、鉄心やコイルなどから発生する熱を冷却する構成となっている。
また、図1において、9は波リブ3の上下に溶接して固定した溶接線で、波リブ3に強度を持たせ変形するのを防止している。7はタンク容器2の上部に設置された一次側端子で、8はタンク容器2の上部に設置された二次側端子で、変圧器で昇圧又は降圧した電圧を負荷側に送るため接続する端子である。また300は絶縁油をタンク内に注油する注油口である。
Hereinafter, embodiments of the oil-filled transformer of the present invention will be described with reference to the drawings.
Example 1
FIG. 1 is an external perspective view of an oil-filled transformer provided with a coil using the insulating paper of the present invention.
In FIG. 1, an oil-filled transformer 1 includes an iron core such as amorphous or silicon steel plate and a tank container 2 containing insulating oil for insulating and cooling a coil attached to the iron core, and a wave rib 3 is provided on the periphery of the tank container 2. It is configured to cool the heat generated from the iron core or coil.
In FIG. 1, reference numeral 9 denotes a welding line welded and fixed to the top and bottom of the wave rib 3 to prevent the wave rib 3 from being deformed. 7 is a primary side terminal installed at the upper part of the tank container 2, and 8 is a secondary side terminal installed at the upper part of the tank container 2, which is connected to send the voltage stepped up or down by the transformer to the load side. It is. Reference numeral 300 denotes an oil inlet for injecting insulating oil into the tank.

次に、図2を用いて油入変圧器のコイルの構造について説明する。
図2はコイル10の構造を示す図で、図2(a)において、11は外装絶縁部、12は層間に絶縁紙を巻回した高圧コイル部、13は低圧コイルと高圧コイル間の絶縁部、14は層間に絶縁紙を巻回した低圧コイル部である。
また、図2(b)に示すようにコイル10は導線40と絶縁部30を交互に積層して巻回して構成される。
Next, the structure of the coil of the oil-filled transformer will be described with reference to FIG.
FIG. 2 is a diagram showing the structure of the coil 10. In FIG. 2 (a), 11 is an exterior insulating part, 12 is a high voltage coil part in which insulating paper is wound between layers, and 13 is an insulating part between the low voltage coil and the high voltage coil. , 14 is a low voltage coil portion in which insulating paper is wound between layers.
Further, as shown in FIG. 2B, the coil 10 is configured by alternately laminating and winding the conductive wires 40 and the insulating portions 30.

コイル10を製造する場合、一般に巻型を使用し、この巻型の上から低圧コイル14及び高圧コイル11を巻回し、導線40の層間に絶縁紙30を使用している。
また、低圧コイル又は高圧コイルは、図2(b)に示すように、導線、絶縁紙、導線、絶縁紙、・・・の順に巻回し、層を重ねて製造する。
低圧コイル又は高圧コイルが規定の巻回数に達すると、内側が低圧コイルの場合は低圧コイルの上から高圧コイルを巻回し、内側が高圧コイルの場合は高圧コイルの上から低圧コイルを巻回する。
このとき、低圧と高圧間では電位差が大きくなるため絶縁紙を数回〜数十回巻回して絶縁耐力を付ける。
低圧コイル及び高圧コイルを巻き終わると、最後に外装絶縁11を施して、コイル10の製造は完了する。
When the coil 10 is manufactured, a winding mold is generally used, and the low voltage coil 14 and the high voltage coil 11 are wound around the winding mold, and the insulating paper 30 is used between the conductive wires 40.
Moreover, as shown in FIG.2 (b), a low voltage coil or a high voltage coil is manufactured by winding in order of conducting wire, insulating paper, conducting wire, insulating paper, and so on.
When the low voltage coil or high voltage coil reaches the specified number of turns, if the inside is a low voltage coil, the high voltage coil is wound from above the low voltage coil, and if the inside is a high voltage coil, the low voltage coil is wound from above the high voltage coil. .
At this time, since the potential difference increases between the low pressure and the high pressure, the insulation paper is wound several to several tens of times to provide the dielectric strength.
When the low voltage coil and the high voltage coil have been wound, the outer insulation 11 is finally applied, and the manufacture of the coil 10 is completed.

また、コイルの製造方法について説明する。先ず、図3に示すようなロール状の絶縁紙20を横向きにおき、コイルの芯となる巻枠を回転させながら、導線40と絶縁紙20を積層して巻回して製造する。絶縁紙20の紙目方向が巻回方向(矢印方向)とすると、ローラ状の絶縁紙20は、必ず紙目方向に直交する方向がコイルおよび絶縁紙の幅方向の端面となる。従って、絶縁紙20は、紙目方向と直交する方向、すなわち図2(a)の上下の端面より絶縁油を含浸するため含浸速度は遅くなる。   A method for manufacturing the coil will be described. First, the roll-shaped insulating paper 20 as shown in FIG. 3 is placed sideways, and the conductor 40 and the insulating paper 20 are laminated and wound while rotating the winding frame serving as the core of the coil. If the paper direction of the insulating paper 20 is the winding direction (arrow direction), the roller-shaped insulating paper 20 always has the end face in the width direction of the coil and the insulating paper in the direction orthogonal to the paper direction. Accordingly, the insulating paper 20 is impregnated with the insulating oil from the direction perpendicular to the grain direction, that is, from the upper and lower end surfaces of FIG.

図3の問題を解消するため、本発明の絶縁紙の構成について説明する。
ここで、本発明の絶縁紙の構成において基本となっていることは、絶縁紙の端面および端面以外の絶縁油を含浸する箇所を増やす構成としていることである。すなわち、絶縁紙での端面以外の絶縁油を含浸する箇所を増加することで、従来よりも短い時間で絶縁紙全体の含浸を完了させることである。
In order to solve the problem of FIG. 3, the configuration of the insulating paper of the present invention will be described.
Here, what is fundamental in the configuration of the insulating paper of the present invention is that the end surface of the insulating paper and the number of places impregnated with insulating oil other than the end surface are increased. That is, it is possible to complete the impregnation of the entire insulating paper in a shorter time than before by increasing the number of places where the insulating oil is impregnated other than the end face.

図4は本発明の絶縁紙の構成を示す一実施例である。
図4において、絶縁紙はロール状の巻回方向に対し直交する方向に紙目方向がくるように加工して、絶縁紙の幅の端面から絶縁油が含浸し易い構成としている。
図4の構成は、紙目方向の絶縁紙を幅寸法の長さに短冊状に切断し、繋ぎ合せて、巻回方向に直交する方向に紙目方向(矢印方向)がくるように構成している。
FIG. 4 shows an example of the structure of the insulating paper of the present invention.
In FIG. 4, the insulating paper is processed so that the grain direction is in a direction orthogonal to the roll-shaped winding direction, and the insulating oil is easily impregnated from the end face of the width of the insulating paper.
The configuration of FIG. 4 is configured so that the insulating paper in the grain direction is cut into strips to the length of the width dimension and joined so that the grain direction (arrow direction) is in a direction perpendicular to the winding direction. ing.

次に、図1に示した油入変圧器のタンク内の構成を図5に示す。
図5において、2はタンク容器、40はコイル、50は鉄心、60は絶縁油を示す。油入変圧器の製造工程において、変圧器の鉄心とコイルの組立体のタンキングを行いタンク用2内に設置し、すべての結線を接続し完了した後にタンク内に注油口300から絶縁油を注油する。
従って、このような構成において、コイルの導線間の絶縁紙内に沁み込む絶縁油は、絶縁油に接している絶縁紙の端面から含浸され易く、コイルの導線の層間に余裕を持てば絶縁紙の端面以外の内側においても含浸される。
Next, FIG. 5 shows a configuration in the tank of the oil-filled transformer shown in FIG.
In FIG. 5, 2 is a tank container, 40 is a coil, 50 is an iron core, and 60 is insulating oil. In the manufacturing process of the oil-filled transformer, the transformer core and coil assembly are tanked and installed in the tank 2 and after all the connections have been connected and completed, the insulating oil is injected into the tank from the oil inlet 300. To do.
Therefore, in such a configuration, the insulating oil that penetrates into the insulating paper between the conductors of the coil is easily impregnated from the end face of the insulating paper that is in contact with the insulating oil. Impregnation is also performed on the inner side other than the end face.

次に、本発明の他の実施例について図7を用いて説明する。
図7(a)は従来の絶縁紙70で、図3の従来のロール状の絶縁紙20を伸ばした状態を示し、その紙目方向(矢印方向)がコイルの巻回方向であることを示す。ここで、図7以降、矢印は紙目方向を表す。
図7(b)は、絶縁紙80を紙目方向と直交するように短冊状に切断し、コイルの巻回方向に短冊状の絶縁紙をオーバーラップし、オーバーラップ部を接着して繋ぎ合せて、層間紙として使用する場合を示している。図7(b)において点線部がオーバーラップしている箇所を示す。
Next, another embodiment of the present invention will be described with reference to FIG.
FIG. 7A shows a conventional insulating paper 70 in which the conventional roll-shaped insulating paper 20 of FIG. 3 is stretched, and the paper grain direction (arrow direction) is the coil winding direction. . Here, in FIG. 7 and subsequent figures, the arrows indicate the paper grain direction.
In FIG. 7B, the insulating paper 80 is cut into strips so as to be orthogonal to the paper grain direction, the strip-shaped insulating paper is overlapped in the coil winding direction, and the overlapping portions are bonded and joined together. In this case, it is used as an interlayer paper. FIG. 7B shows a portion where the dotted line portions overlap.

この図7(b)の構成は、絶縁紙を紙目方向に短く短冊状に切断して繋ぎ合せているため、切断面が複数箇所あり、さらに含浸する距離が短いため絶縁油の含浸速度は速く、絶縁紙全体を含浸するまでの時間を短縮できる。
そして、この構成の絶縁紙を用いる場合は、図2に示した外装絶縁部11に用いるとその効果が発揮できる。
図7(b)の絶縁紙の製造方法については、ロール状の絶縁紙を引き伸ばし、所定の間隔で切断し、切断した短冊状の絶縁紙をオーバーラップさせながらオーバーラップ部を接着して繋ぎ合せ、再度ロール状に巻き取って製造する方法がある。
In the configuration of FIG. 7 (b), since the insulating paper is cut into a short strip in the direction of the paper and joined together, there are a plurality of cut surfaces and the impregnation distance is short. The time required to impregnate the entire insulating paper can be shortened quickly.
And when using the insulation paper of this structure, the effect can be exhibited if it uses it for the exterior insulation part 11 shown in FIG.
As for the method of manufacturing the insulating paper shown in FIG. 7B, the roll-shaped insulating paper is stretched and cut at a predetermined interval, and the overlapping portions are bonded and joined while overlapping the cut strip-shaped insulating paper. There is a method of winding it again into a roll.

図7(c)は、絶縁紙90の巻回方向に対して、紙目方向が直交する方向に絶縁紙を短冊状に切断し、短冊状の絶縁紙をオーバーラップし、オーバーラップした箇所を接着して繋ぎ合せて、導線間の層間紙として使用する場合を示している。
この構成においては、導線と絶縁紙を積層し巻回してコイルを製造し、タンキングしてタンク内に絶縁油を注油して、絶縁油を絶縁紙に含浸させる場合、コイルの端面すなわち巻回された絶縁紙の端面より含浸するため、幅方向からの含浸は紙目方向のためその速度は速くなる。
FIG. 7 (c) shows that the insulating paper is cut into strips in a direction perpendicular to the winding direction of the insulating paper 90, and the strip-shaped insulating paper is overlapped. The case where it is used as an interlayer paper between conductive wires by bonding and joining is shown.
In this configuration, when a coil is manufactured by laminating and winding a conductive wire and insulating paper, tanking is performed, and insulating oil is injected into the tank, and the insulating paper is impregnated with the insulating paper. Since the impregnation is performed from the end face of the insulating paper, the impregnation from the width direction is faster due to the paper grain direction.

図7(d)は、絶縁紙100の紙目方向と同じである巻回方向において、紙目方向と直交する方向のスリット101を複数個配置し、スリット101は絶縁紙100の巻回方向に3列設け、中央列と両側列のスリットの位置をずらして配置する場合を示している。
このようにスリット101を複数個配置することで、このスリット101より絶縁油が紙目方向に含浸し、図7(b)のような効果を得る。
すなわち、図7(d)の構成は、短冊状に切断して接着していないが、短冊状に切断する幅の箇所にスリットを配置しているため、含浸速度を速くすることができる。
FIG. 7D shows a plurality of slits 101 arranged in a direction perpendicular to the paper grain direction in the winding direction that is the same as the paper grain direction of the insulating paper 100, and the slits 101 are arranged in the winding direction of the insulating paper 100. The case where three rows are provided and the positions of the slits in the center row and the side rows are shifted is shown.
By arranging a plurality of slits 101 in this way, insulating oil is impregnated in the paper grain direction from the slits 101, and the effect as shown in FIG. 7B is obtained.
That is, although the structure of FIG. 7D is not cut and bonded to a strip shape, the impregnation speed can be increased because the slits are arranged at the width of the strip shape.

図7(e)は、絶縁紙110の紙目方向と同じである巻回方向において、紙目方向と同じ方向のスリット111を複数個配置し、スリット111は絶縁紙110の巻回方向に3列設け、中央列と両側列のスリットの位置をずらして配置する場合を示している。
このような図7(e)に示したスリット111の配置は、図7(a)の構成よりも絶縁油の含浸速度は速く、スリット111の個数を増加することで速度を向上させることができる。
In FIG. 7E, in the winding direction that is the same as the paper direction of the insulating paper 110, a plurality of slits 111 in the same direction as the paper direction are arranged, and three slits 111 are arranged in the winding direction of the insulating paper 110. The case where arrangement | positioning arrange | positions and has shifted the position of the slit of a center row | line and a both-sides row | line is shown.
The arrangement of the slits 111 shown in FIG. 7 (e) has a higher impregnation rate of the insulating oil than the configuration of FIG. 7 (a), and the speed can be improved by increasing the number of the slits 111. .

次に、別の実施例について図8を用いて説明する。
図8(a)は、絶縁紙120の紙目方向と同じである巻回方向において、紙目方向と直交する方向の細長い孔のスロット121を複数個配置し、スロット121は巻回方向に3列設け、中央列と両側列のスロット121の位置をずらして配置している図を示している。
この図8(a)の構成において、スロット121より絶縁油が含浸しコイルの絶縁紙全体に図7(a)よりも速く沁み込ませることができる。
ここで、スロットの方向は細長い孔の長い方向を指している。
Next, another embodiment will be described with reference to FIG.
In FIG. 8A, in the winding direction which is the same as the paper grain direction of the insulating paper 120, a plurality of slots 121 having elongated holes in the direction orthogonal to the paper grain direction are arranged. The figure which has provided the row | line | column and has shifted and arrange | positioned the position of the slot 121 of a center row | line and a both-side row | line | column is shown.
In the configuration of FIG. 8A, the insulating oil is impregnated from the slot 121, and the entire insulating paper of the coil can be swollen faster than FIG. 7A.
Here, the slot direction indicates the long direction of the elongated hole.

図8(b)は、絶縁紙130の紙目方向と同じである巻回方向において、紙目方向と同じ方向のスロット131を複数個配置し、スロット131は巻回方向に3列設け、中央列と両側列のスロット131の位置をずらして配置した図を示す。
この図8(b)の構成において、図8(a)の構成とスロットの方向が異なり紙目方向と直交しているため、絶縁油の含浸速度は劣るが、図7(a)の構成よりは含浸速度は速い。
In FIG. 8B, in the winding direction which is the same as the paper direction of the insulating paper 130, a plurality of slots 131 are arranged in the same direction as the paper direction, and the slots 131 are provided in three rows in the winding direction. The figure which shifted and arrange | positioned the position of the slot 131 of a row | line | column and a both-side row | line | column is shown.
In the configuration of FIG. 8B, the slot direction is different from the configuration of FIG. 8A and is orthogonal to the paper grain direction, so the impregnation rate of the insulating oil is inferior, but from the configuration of FIG. 7A. Impregnation rate is fast.

図8(c)は、絶縁紙140の紙目方向と同じである巻回方向において、紙目方向と同じ方向のスロット141と直交する方向のスロット142とを交互に配置し、その列を3列配置している。また、中央列と両側列とのスロットの位置をずらして配置している。
このような図8(c)の構成において、絶縁紙の紙目方向と同じ巻回方向に対し、スロットが紙目方向と、紙目方向に直交する方向に交互に配置されているため、絶縁油の含浸が上下左右方向であるため、含浸速度は向上する。
In FIG. 8C, in the winding direction which is the same as the paper direction of the insulating paper 140, the slots 141 in the direction orthogonal to the slots 141 in the same direction as the paper direction are alternately arranged, and the row is divided into three. Arranged in columns. Further, the slot positions of the center row and the side rows are shifted from each other.
In such a configuration of FIG. 8C, the slots are alternately arranged in the paper direction and the direction perpendicular to the paper direction with respect to the same winding direction as the paper direction of the insulating paper. Since the impregnation of oil is in the vertical and horizontal directions, the impregnation speed is improved.

次に、図8(d)は、絶縁紙150の紙目方向と同じ巻回方向において、紙目方向と同方向のスリット151と、紙目方向と直交する方向のスリット152とを交互に配置し、この配置した列を3列配置した図を示す。
この図8(d)の構成において、絶縁紙150に紙目方向及び紙目方向に直交する方向のスリットを交互に配置しているため、図8(c)と同様の含浸速度を得ることができる。
ここで、図7及び図8において、スリット及びスロットを複数個配置し、3列の場合について説明しているが、3列に限るものではない。
Next, in FIG. 8D, in the same winding direction as the paper direction of the insulating paper 150, slits 151 in the same direction as the paper direction and slits 152 in a direction perpendicular to the paper direction are alternately arranged. And the figure which arranged this arrangement | sequence row | line | column 3 rows is shown.
In the configuration of FIG. 8D, the slits in the grain direction and the direction perpendicular to the grain direction are alternately arranged in the insulating paper 150, so that the same impregnation speed as in FIG. 8C can be obtained. it can.
Here, in FIG. 7 and FIG. 8, a case where a plurality of slits and slots are arranged and three rows are described has been described, but it is not limited to three rows.

図9はSEMによる絶縁紙の表面の拡大写真(倍率400倍)で、図10は絶縁紙の紙目方向に直交する方向の断面拡大写真(倍率200倍)で、図11は絶縁紙の紙目方向の断面拡大写真(倍率200倍)を示している。
図9の絶縁紙の表面は、繊維が絡み合って空隙がないことが分かる。また、図10の絶縁紙の紙目方向に直交する方向の断面写真では僅かに空隙(黒っぽい塊)が散見され、図11の絶縁紙の紙目方向の断面を見ると、空隙が図10に比べ、数多く存在することが分かる。
従って、絶縁紙の紙目方向がより絶縁油を含浸し易いことが見て取れる。
9 is an enlarged photograph of the surface of insulating paper by SEM (magnification 400 times), FIG. 10 is an enlarged photograph of a cross section in a direction orthogonal to the grain direction of the insulating paper (magnification 200 times), and FIG. The cross-sectional enlarged photograph (magnification 200 times) of the eye direction is shown.
It can be seen that the surface of the insulating paper in FIG. 9 is intertwined with fibers and has no voids. Further, in the cross-sectional photograph in the direction orthogonal to the grain direction of the insulating paper in FIG. 10, a slight gap (blackish lump) is scattered, and when the section in the grain direction of the insulating paper in FIG. It can be seen that there are many more.
Therefore, it can be seen that the grain direction of the insulating paper is more easily impregnated with the insulating oil.

(実施例2)
次に、コイルの層間紙である絶縁紙への絶縁油の含浸速度をさらに速くする方法について説明する。
図12は、変圧器のタンク内の圧力をパラメータとして、横軸に含浸時間、縦軸に含浸距離を取り、測定した特性を示す図である。
図12において、ゲージ圧を0kgf/cm、0.8kgf/cm、2.0kgf/cmと変化させた場合、含浸時間Aの点でみると、含浸距離は圧力が高い方が長くなり、0kgf/cmを基準にすると、0.8kgf/cmの場合は約1.4倍含浸距離が延び、さらに2.0kgf/cmの場合は約1.8倍伸びていることが分かる。
従って、図12の特性により、図1に示した油入変圧器へ絶縁油をタンクの注油口300から注油した後、バルブ(不図示)などにより窒素ガスなどの気体をタンク内の気層部に押し込むことで絶縁油の圧力を上昇することが可能で、上記に説明した絶縁紙への含浸速度をより向上させることができる。
(Example 2)
Next, a method for further increasing the impregnation speed of the insulating oil into the insulating paper that is the interlayer paper of the coil will be described.
FIG. 12 is a graph showing measured characteristics with the pressure in the tank of the transformer as a parameter, the impregnation time on the horizontal axis, and the impregnation distance on the vertical axis.
12, a gauge pressure of 0kgf / cm 2, 0.8kgf / cm 2, when varying the 2.0 kgf / cm 2, when viewed in terms of the impregnation time A, impregnation distance becomes longer towards higher pressures and referenced to 0 kgf / cm 2, extends about 1.4 times the impregnation distance in the case of 0.8 kgf / cm 2, it is apparent that a further case of 2.0 kgf / cm 2 extends about 1.8 times .
Therefore, according to the characteristics shown in FIG. 12, after insulating oil is injected into the oil-filled transformer shown in FIG. 1 from the oil filler port 300 of the tank, a gas such as nitrogen gas is supplied to the gas layer in the tank by a valve (not shown). It is possible to increase the pressure of the insulating oil by pushing it in, and the impregnation speed into the insulating paper described above can be further improved.

(実施例3)
次に、コイルの絶縁紙への絶縁油の含浸速度を速くする別の方法について説明する。
この方法は、絶縁油の温度を上昇させて粘性を低くし含浸するものである。
絶縁油は、一般に温度を上昇すると粘性が低くなる傾向を示し、いわゆるサラサラの状態になり毛細管現象が促進され、繊維のあるものには吸収され易くなる。
油入変圧器のタンク内の絶縁油を上昇させる方法は、注油した後ヒータなどの熱源をタンク内に入れて絶縁油の温度を上昇させる方法やタンク外で温めた絶縁油をタンク内に注油する方法などがある。
従いまして、実施例1で述べた本発明の絶縁紙をコイルに巻回し用いた場合、絶縁油の温度を上昇させて使用すると、さらに絶縁紙の含浸速度が上昇させることができる。
(Example 3)
Next, another method for increasing the impregnation rate of the insulating oil into the insulating paper of the coil will be described.
This method raises the temperature of the insulating oil to lower the viscosity and impregnate.
Insulating oil generally shows a tendency to decrease in viscosity when the temperature rises, and is in a so-called smooth state, the capillary phenomenon is promoted, and it is easily absorbed by those having fibers.
In order to raise the insulation oil in the tank of the oil-filled transformer, after adding oil, heat source such as a heater is put in the tank to raise the temperature of the insulation oil, or insulation oil heated outside the tank is injected into the tank There are ways to do it.
Therefore, when the insulating paper of the present invention described in the first embodiment is wound around a coil and used by increasing the temperature of the insulating oil, the impregnation speed of the insulating paper can be further increased.

また、本発明の絶縁紙の加工は、ノーメックス絶縁紙だけでなく、クラフト紙などの絶縁紙にも適応できる。   The processing of the insulating paper of the present invention can be applied not only to Nomex insulating paper but also to insulating paper such as kraft paper.

1‥油入変圧器 2‥タンク容器 3‥波リブ
7‥一次側端子 8‥二次側端子 300‥注油口
10‥コイル 11‥外装絶縁部 12‥高圧コイル部
13‥高圧コイルと低圧コイル間の絶縁部
14‥低圧コイル部 40‥導線 50‥鉄心
60‥絶縁油
20、30、70、80、90、100,110,120,130,140,150‥絶縁紙
101、111、151、152:スリット
121、131、141、142:スロット
DESCRIPTION OF SYMBOLS 1 ... Oil-filled transformer 2 ... Tank container 3 ... Wave rib 7 ... Primary side terminal 8 ... Secondary side terminal 300 ... Oil inlet 10 ... Coil 11 ... Exterior insulation part 12 ... High voltage coil part 13 ... Between high voltage coil and low voltage coil Insulating part 14 ... Low voltage coil part 40 ... Conductor 50 ... Iron core 60 ... Insulating oil 20, 30, 70, 80, 90, 100, 110, 120, 130, 140, 150 ... Insulating paper 101, 111, 151, 152: Slit 121, 131, 141, 142: Slot

Claims (4)

鉄心と、コイルと、該鉄心及びコイルを絶縁、冷却する絶縁油とをタンク内に収納した油入変圧器において、
前記コイルは、導線と層間紙である絶縁紙を交互に積層して巻回して形成され、
該絶縁紙は、巻回方向と紙目方向とを同じとし、巻回方向と直交する方向に短冊状に切断し、該短冊状に切断された絶縁紙が巻回方向にオーバーラップするよう配置し、オーバーラップ部を接着して繋ぎ合せて形成され
該繋ぎ合せて形成した絶縁紙を層間紙として備えることを特徴とする油入変圧器。
In an oil-filled transformer in which an iron core, a coil, and insulating oil for insulating and cooling the iron core and the coil are stored in a tank,
The coil is formed by alternately laminating and winding conductive paper and insulating paper as interlayer paper,
The insulating paper has the same winding direction and grain direction, and is cut into strips in a direction perpendicular to the winding direction, and the insulating paper cut into the strips is arranged so as to overlap in the winding direction. and it is formed by joining by bonding Oh Barappu portion,
Oil-filled transformers, characterized in that it comprises an insulating sheet formed together該繋technique as an interlayer sheet.
請求項1記載の油入変圧器において、
前記絶縁紙を前記コイルの外層絶縁部に設置することを特徴とする油入変圧器。
The oil-filled transformer according to claim 1,
An oil-filled transformer, wherein the insulating paper is installed in an outer layer insulating portion of the coil.
鉄心と、コイルと、該鉄心及びコイルを絶縁、冷却する絶縁油とをタンク内に収納した油入変圧器において、
前記コイルは、導線と層間紙である絶縁紙を交互に積層して巻回して形成され、
該絶縁紙は、紙目方向を巻回方向と直交する方向とし、巻回方向に対して紙目方向が直交する方向に短冊状に切断し、該短冊状に切断された絶縁紙が巻回方向にオーバーラップするよう配置し、オーバーラップ部を接着して繋ぎ合せて形成され
該繋ぎ合せて形成した絶縁紙を層間紙として備えることを特徴とする油入変圧器。
In an oil-filled transformer in which an iron core, a coil, and insulating oil for insulating and cooling the iron core and the coil are stored in a tank,
The coil is formed by alternately laminating and winding conductive paper and insulating paper as interlayer paper,
The insulating paper has a paper grain direction perpendicular to the winding direction, and is cut into strips in a direction perpendicular to the winding direction, and the insulating paper cut into the strips is wound. Placed to overlap in the direction, formed by bonding and joining the overlapped part,
Oil-filled transformers, characterized in that it comprises an insulating sheet formed together該繋technique as an interlayer sheet.
請求項3記載の油入変圧器において、
前記絶縁紙を前記コイルの内層絶縁部に設置することを特徴とする油入変圧器。
In the oil-filled transformer according to claim 3,
An oil-filled transformer, wherein the insulating paper is installed in an inner layer insulating portion of the coil.
JP2012039981A 2012-02-27 2012-02-27 Oil-filled transformer Active JP5883680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012039981A JP5883680B2 (en) 2012-02-27 2012-02-27 Oil-filled transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012039981A JP5883680B2 (en) 2012-02-27 2012-02-27 Oil-filled transformer

Publications (2)

Publication Number Publication Date
JP2013175645A JP2013175645A (en) 2013-09-05
JP5883680B2 true JP5883680B2 (en) 2016-03-15

Family

ID=49268291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012039981A Active JP5883680B2 (en) 2012-02-27 2012-02-27 Oil-filled transformer

Country Status (1)

Country Link
JP (1) JP5883680B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101853795B1 (en) 2018-02-23 2018-05-03 주식회사 신성이엔티 Low loss and reduced-weight type transformer and manufacturing method thereof
KR101853794B1 (en) 2018-02-23 2018-05-03 주식회사 신성이엔티 High efficiency and compact type transformer and manufacturing method thereof
JP7144739B2 (en) * 2018-11-30 2022-09-30 株式会社かんでんエンジニアリング Deterioration Estimation Method of Heat Resistant Insulating Paper
CN117116606B (en) * 2023-10-18 2024-03-12 河北宝利输变电设备制造有限公司 Low-noise distribution transformer device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145078A (en) * 1982-02-24 1983-08-29 株式会社フジクラ Method of winding paper of cable connector
US4487991A (en) * 1983-07-15 1984-12-11 The United States Of America As Represented By The United States Department Of Energy Fully synthetic taped insulation cables
JPS6163765U (en) * 1984-10-01 1986-04-30
JPS62261113A (en) * 1986-05-08 1987-11-13 Toshiba Corp Processing method for insulating sheet of foil wound transformer
JP3490524B2 (en) * 1994-03-24 2004-01-26 三菱電機株式会社 Coil manufacturing apparatus and manufacturing method
JPH07320546A (en) * 1994-05-25 1995-12-08 Showa Electric Wire & Cable Co Ltd Insulated wire for oil-immersed transformer
JPH103819A (en) * 1996-06-14 1998-01-06 Fujikura Ltd Plastic laminated paper for insulation oil impregnation
JP3803162B2 (en) * 1997-04-04 2006-08-02 株式会社フジクラ DC high viscosity oil immersion power cable
JP4041926B2 (en) * 1997-11-12 2008-02-06 日本ケミコン株式会社 Electrolytic capacitor and manufacturing method thereof
JPH11224821A (en) * 1998-02-05 1999-08-17 Matsushita Electric Ind Co Ltd Electromagnetic coil
JP2001126932A (en) * 1999-10-26 2001-05-11 Fuji Electric Co Ltd Transformer
JP5354159B2 (en) * 2008-09-22 2013-11-27 住友電気工業株式会社 Solid cable manufacturing method

Also Published As

Publication number Publication date
JP2013175645A (en) 2013-09-05

Similar Documents

Publication Publication Date Title
JP5883680B2 (en) Oil-filled transformer
Brown Linking corrosion and catastrophic failure in low-power metallized polypropylene capacitors
JP5848579B2 (en) Segment coil, segment coil manufacturing method, and stator
WO2019176254A1 (en) Assembled wire, method of manufacturing assembled wire and segment coil
CN101399111B (en) Electrical winding conductor with a rectangular cross section
CN104620475A (en) Armature of rotating electrical machine and method for manufacturing same
WO2013094488A1 (en) Lead wire for static induction device, insulating structure for lead wire, transformer having same, and method for insulating lead wire
JP5969052B2 (en) High voltage stator coil with reduced power chip-up
CN201611583U (en) Porous insulating paper belt acetal self-adhesive transposed conductor
WO2019062922A1 (en) Conductor segment and stator assembly thereof, and motor
JP6293585B2 (en) Electrical insulating paper and static induction machine using the same
US9142338B2 (en) Oil transformer insulation module
CN101728024A (en) Method for manufacturing tinned winding wire
CN104795923A (en) High-heat-conductivity insulating structure and manufacturing method thereof
CN207184198U (en) The insulation system of wound rotor coil
JP2007281333A (en) Metallized film capacitor
JP6017948B2 (en) coil
JP2013055279A (en) Stationary induction apparatus
JP2018195666A (en) Coil and manufacturing method of coil
WO2019062917A1 (en) Conductor segment, stator assembly and motor
JP2013232463A (en) Stationary induction electric appliance
JP5954610B2 (en) Composite paper solid submarine cable for DC
JP2010192574A (en) Electrolytic capacitor
KR102067390B1 (en) Shunt reactor
CN202584923U (en) High-power low-loss cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140606

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160208

R150 Certificate of patent or registration of utility model

Ref document number: 5883680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150