JP5881638B2 - Arsenic treatment method - Google Patents

Arsenic treatment method Download PDF

Info

Publication number
JP5881638B2
JP5881638B2 JP2013075224A JP2013075224A JP5881638B2 JP 5881638 B2 JP5881638 B2 JP 5881638B2 JP 2013075224 A JP2013075224 A JP 2013075224A JP 2013075224 A JP2013075224 A JP 2013075224A JP 5881638 B2 JP5881638 B2 JP 5881638B2
Authority
JP
Japan
Prior art keywords
arsenic
heat
sulfur
volatiles
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013075224A
Other languages
Japanese (ja)
Other versions
JP2014198655A (en
Inventor
良介 辰巳
良介 辰巳
和浩 波多野
和浩 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52002315&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5881638(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013075224A priority Critical patent/JP5881638B2/en
Priority to CL2014000748A priority patent/CL2014000748A1/en
Priority to ARP140101402A priority patent/AR095926A1/en
Publication of JP2014198655A publication Critical patent/JP2014198655A/en
Application granted granted Critical
Publication of JP5881638B2 publication Critical patent/JP5881638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、砒素の処理方法に関し、特に、砒素を含む銅鉱石の処理に利用可能な砒素の処理方法に関する。   The present invention relates to a method for treating arsenic, and more particularly, to a method for treating arsenic that can be used for treating copper ore containing arsenic.

近年、世界中で稼働している銅鉱山において、採取される銅鉱石は、初生硫化鉱主体となってきており、鉄・硫黄、その他の不純物が増加し、銅品位は低下傾向にある。これは、乾式銅製錬向けの銅精鉱生産コストの増加を招く。   In recent years, copper ores collected at copper mines operating all over the world have become the primary sulfide ore, and iron, sulfur and other impurities have increased, and the copper quality has been on the decline. This leads to an increase in copper concentrate production costs for dry copper smelting.

銅鉱石中の不純物の中で、最も問題視されているのは砒素である。砒素は、その存在形態にもよるが、極めて有害であり、産業分野での用途も僅少であるため、大部分は、安定的な形態で廃棄または貯蔵する必要がある。   Of the impurities in copper ore, arsenic is considered the most problematic. Although arsenic depends on the form of its existence, it is extremely harmful and has few applications in the industrial field, so most of it needs to be disposed or stored in a stable form.

そのため、買鉱乾式製錬所では、購入する銅精鉱中の砒素に対して、ある一定の制限(通常<0.3mass%程度)を付与している。鉱山側は、制限を超過した場合には、超過量に応じペナルティを製錬所側へ支払うことが一般的である。   For this reason, the purchase smelting smelter imposes certain restrictions (usually <about 0.3 mass%) on arsenic in the copper concentrate to be purchased. When the limit is exceeded, the mine side generally pays a penalty to the smelter according to the excess amount.

従って、鉱山にとってみれば、コスト低減、鉱山寿命延長のため、砒素を多く含む硫化鉱の効率的な処理方法は、重要な関心事である。一方、買鉱乾式製錬所側にとってみても、良質な鉱石の枯渇、銅精鉱需給の逼迫により、将来的に砒素を多く含む銅精鉱への対応が必要となる可能性が高い。   Therefore, from the mine's point of view, an efficient method for treating sulfide ore containing a large amount of arsenic is an important concern for cost reduction and mine life extension. On the other hand, the purchase smelter is likely to need to deal with arsenic-rich copper concentrate in the future due to depletion of high-quality ore and tight supply and demand of copper concentrate.

特開2009−39666号公報(特許文献1)では、砒素含有化合物を水分が少なくコンパクトな結晶化合物粒子形態とした後、得られた結晶化合物を樹脂でコートする砒素の処理方法が開示されている。   Japanese Patent Application Laid-Open No. 2009-39666 (Patent Document 1) discloses an arsenic treatment method in which an arsenic-containing compound is made into a compact crystalline compound particle form with less moisture and then the obtained crystalline compound is coated with a resin. .

一方で、砒素を多く含む銅鉱石については、一般的に、コストをかけて選鉱段階でこれを除き、低砒素品位銅精鉱としている。しかしながら、近年は、高砒素品位銅精鉱のまま、または、選鉱段階で除かれた、高砒素含有精鉱を処理する試みもある。   On the other hand, copper ores containing a large amount of arsenic are generally made into low arsenic grade copper concentrate by removing the cost at the beneficiation stage. However, in recent years, there have also been attempts to treat high arsenic-containing concentrates that remain as high-arsenic grade copper concentrates or have been removed during the beneficiation stage.

例えば、特開2012−87400号公報(特許文献1)では、砒素を比較的高濃度で含む硫砒銅鉱或いは硫砒銅鉱を含む銅精鉱を不活性雰囲気中で焙焼処理し、硫化砒素を主体とする揮発物と、黄銅鉱を主体とする焼鉱に分け、焼鉱を湿式処理する方法が開示されている。   For example, in Japanese Patent Application Laid-Open No. 2012-87400 (Patent Document 1), copper arsenite containing arsenic at a relatively high concentration or copper concentrate containing arsenite is roasted in an inert atmosphere, and arsenic sulfide is mainly used. A method of wet-treating the sinter is divided into a volatile matter to be burned and a sinter mainly composed of chalcopyrite.

特開2009−39666号公報JP 2009-39666 A 特開2012−87400号公報JP 2012-87400 A

特許文献1に記載された方法では、砒素含有化合物を樹脂でコートすることにより、砒素の溶出を抑えることが可能である。しかしながら、砒素含有化合物を樹脂でコートする方法以外の、より簡便な方法で砒素を安定的な形態に処理するための別の方法の検討も求められてきている。   In the method described in Patent Document 1, arsenic elution can be suppressed by coating an arsenic-containing compound with a resin. However, other methods for treating arsenic into a stable form by a simpler method other than the method of coating an arsenic-containing compound with a resin have been demanded.

特許文献2に記載された発明は、硫砒銅鉱或いは硫砒銅鉱を含む銅精鉱から焼鉱を取り出して、この焼鉱を湿式処理することついては開示があるが、銅鉱石から得られた砒素を含む揮発物の具体的な処理方法については記載も検討もされていない。   The invention described in Patent Document 2 discloses that a sinter is extracted from a copper concentrate containing arsenite or a copper concentrate containing arsenite, and this sinter is wet-treated, but contains arsenic obtained from copper ore. No specific treatment method for volatiles has been described or studied.

上記課題を鑑み、本発明は、砒素を含む銅鉱石に含まれる砒素を貯蔵及び保存に適した安定的な形態に処理可能な砒素の処理方法を提供する。   In view of the above problems, the present invention provides an arsenic treatment method capable of treating arsenic contained in copper ore containing arsenic into a stable form suitable for storage and preservation.

上記課題を解決するために、本発明者が鋭意検討したところ、砒素を含む銅鉱石を焙焼して銅鉱石から砒素を含む揮発物を抽出し、この揮発物に所定の処理を施すことで、砒素の溶出を抑制可能な安定的な形態にできることを見出した。   In order to solve the above-mentioned problems, the present inventor has intensively studied, roasting copper ore containing arsenic, extracting volatiles containing arsenic from the copper ore, and applying a predetermined treatment to the volatiles. The present inventors have found that a stable form capable of suppressing arsenic elution can be obtained.

以上の知見を基礎として完成した本発明は一側面において、砒素を含む銅鉱石を不活性ガス雰囲気において焙焼し、黄銅鉱と、砒素硫化物を含む揮発物とに分離させる焙焼工程と、焙焼工程で得られた揮発物を、不活性ガス雰囲気において熱処理し、揮発物中の砒素硫化物を融解させる熱処理工程とを含む砒素の処理方法である。 The present invention completed on the basis of the above knowledge is, in one aspect, a roasting step of roasting copper ore containing arsenic in an inert gas atmosphere and separating it into chalcopyrite and volatiles containing arsenic sulfide, The arsenic treatment method includes a heat treatment step of heat-treating the volatile matter obtained in the roasting step in an inert gas atmosphere to melt the arsenic sulfide in the volatile matter.

本発明に係る砒素の処理方法は一実施形態において、熱処理工程において、揮発物を200〜600℃で熱処理することを含む。   In one embodiment, the method for treating arsenic according to the present invention includes heat-treating volatiles at 200 to 600 ° C. in a heat treatment step.

本発明に係る砒素の処理方法は別の一実施形態において、焙焼工程で得られた揮発物に硫黄を添加することを更に含む。   In another embodiment, the method for treating arsenic according to the present invention further includes adding sulfur to the volatiles obtained in the roasting step.

本発明に係る砒素の処理方法は更に別の一実施形態において、焙焼工程で得られた揮発物中に含まれる硫黄の砒素に対する質量比(S/As質量比)を1.2以上となるように調整することを含む。   In yet another embodiment of the method for treating arsenic according to the present invention, the mass ratio (S / As mass ratio) of sulfur to arsenic contained in the volatiles obtained in the roasting step is 1.2 or more. Including adjusting.

本発明によれば、砒素を含む銅鉱石に含まれる砒素を、貯蔵及び保存に適した安定的な形態に処理可能な砒素の処理方法が提供できる。また、本発明によれば、資源化されていない砒素を含む銅精鉱を乾式製錬向け銅精鉱とすることができる。   ADVANTAGE OF THE INVENTION According to this invention, the processing method of the arsenic which can process the arsenic contained in the copper ore containing arsenic to the stable form suitable for storage and preservation | save can be provided. Moreover, according to this invention, the copper concentrate containing the arsenic which is not recycled can be used as the copper concentrate for dry smelting.

焙焼工程で得られた揮発物の性状を示す顕微鏡写真の例である。It is an example of the microscope picture which shows the property of the volatile matter obtained at the roasting process. 熱処理工程で得られた熱処理物の性状を表す顕微鏡写真の例である。It is an example of the microscope picture showing the property of the heat processing thing obtained at the heat processing process. 熱処理工程における処理温度と熱処理物のAs溶出量との関係を表すグラフである。It is a graph showing the relationship between the process temperature in a heat processing process, and the As elution amount of heat processing material. 熱処理工程における処理時間と熱処理時の揮発物のS/As質量比とAs溶出量との関係を表すグラフである。It is a graph showing the relationship between the processing time in a heat treatment process, the S / As mass ratio of the volatiles at the time of heat treatment, and the As elution amount.

以下、本発明を実施するための実施の形態について説明する。本発明の実施の形態に係る砒素の処理方法における処理対象物は、砒素を含む銅鉱石である。具体的には、例えば、硫砒銅鉱(Cu3AsS4)、四面砒銅鉱(Cu12As413)、または、これら砒素を含む銅鉱が混在する銅精鉱等が利用可能である。なお、これら銅鉱石の他にも、砒素を含む鉱石であって以下に示す二段階処理により処理可能な鉱石であれば、上記銅鉱石には限定されないことは勿論である。 Embodiments for carrying out the present invention will be described below. The processing object in the arsenic processing method according to the embodiment of the present invention is copper ore containing arsenic. Specifically, for example, copper arsenite (Cu 3 AsS 4 ), tetrahedral arsenite (Cu 12 As 4 S 13 ), or copper concentrate in which copper ores containing these arsenic are mixed can be used. In addition to these copper ores, it is a matter of course that the present invention is not limited to the copper ores as long as they are ores containing arsenic and can be processed by the following two-stage treatment.

例えば、本発明に利用可能な硫砒銅鉱を主体とする銅精鉱の品位は、共存する黄鉄鉱(FeS2)や脈石成分の品位によって異なるが、典型的には、銅を15〜35質量%、砒素を3〜15質量%含む。 For example, the grade of copper concentrate mainly composed of arsenite that can be used in the present invention varies depending on the grade of coexisting pyrite (FeS 2 ) and gangue components, but typically copper is 15 to 35% by mass. And 3-15% by mass of arsenic.

本実施形態では、銅精鉱を、鉱物種及び品位が変化しない温度で、予備乾燥することが好ましい。通常、高温空気で銅精鉱を乾燥させる際には、乾燥機出口における銅精鉱の温度をおよそ90℃とし、銅精鉱の水分率を0.5質量%以下とする。   In this embodiment, it is preferable to pre-dry the copper concentrate at a temperature at which the mineral species and quality do not change. Normally, when copper concentrate is dried with high-temperature air, the temperature of the copper concentrate at the outlet of the dryer is set to approximately 90 ° C., and the moisture content of the copper concentrate is set to 0.5 mass% or less.

乾燥した銅精鉱は、不活性ガス雰囲気中で、550℃〜700℃において、10〜60分間焙焼する(焙焼工程)。不活性ガスとしては、例えば窒素ガスが用いられる。焙焼工程における処理温度、および雰囲気の制御は、硫砒銅鉱主体の銅精鉱を、硫化砒素と黄銅鉱等に変換にするのに必要な条件であり、反応時間は、未反応硫砒銅鉱を残さないために、必要な時間である。   The dried copper concentrate is roasted at 550 ° C. to 700 ° C. for 10 to 60 minutes in an inert gas atmosphere (roasting step). For example, nitrogen gas is used as the inert gas. Control of the treatment temperature and atmosphere in the roasting process is a necessary condition for converting copper concentrate mainly composed of arsenite to arsenic sulfide and chalcopyrite, and the reaction time leaves unreacted arsenite. There is no time needed.

焙焼工程において、銅精鉱中の砒素硫化物の生成反応は、下記(1)式または(2) 式に従う。元の精鉱中に黄鉄鉱等が多く含まれていれば、(1)式中で添加するSは、(3)式の通り、処理温度帯における黄鉄鉱の分解によって、生成するSにより補填されるため不要となる。

4Cu3AsS4+12FeS+2S →12CuFeS2+As46 (1)
4Cu3AsS4+12FeS → 12CuFeS2+As44 (2)
FeS2 → FeS + S (3)
In the roasting process, the formation reaction of arsenic sulfide in the copper concentrate follows the following formula (1) or (2). If the original concentrate contains a lot of pyrite, etc., the S added in the formula (1) is compensated by the generated S by the decomposition of the pyrite in the treatment temperature zone as shown in the formula (3). Therefore, it becomes unnecessary.

4Cu 3 AsS 4 + 12FeS + 2S → 12CuFeS 2 + As 4 S 6 (1)
4Cu 3 AsS 4 + 12FeS → 12CuFeS 2 + As 4 S 4 (2)
FeS 2 → FeS + S (3)

焙焼工程は、例えばロータリキルンなどを用いて行われる。上記(1)〜(3)式に示すように、焙焼によって、砒素を含む硫化化合物が生成され、生成した砒素化合物は、温度に応じた蒸気圧で揮発し、原料銅精鉱中から除去される。   The roasting process is performed using, for example, a rotary kiln. As shown in the above formulas (1) to (3), a sulfurized compound containing arsenic is generated by roasting, and the generated arsenic compound volatilizes at a vapor pressure corresponding to the temperature and is removed from the raw copper concentrate. Is done.

この焙焼処理の結果、原料銅精鉱から、黄銅鉱とキューバ鉱を主体とする焼鉱と、揮発して回収される砒素化合物(硫化砒素)と単体硫黄を含む揮発物とが得られる。焼鉱の黄銅鉱とキューバ鉱の比率は、550℃〜700℃の温度範囲では、反応前に含まれる黄銅鉱、輝銅鉱などの硫化銅鉱量と、反応前に含まれる黄鉄鉱量、及び添加される黄鉄鉱量により変化する。   As a result of this roasting treatment, the raw copper concentrate provides a calcined ore mainly composed of chalcopyrite and Cubanite, and an arsenic compound (arsenic sulfide) recovered by volatilization and a volatile substance containing elemental sulfur. In the temperature range of 550 ° C to 700 ° C, the ratio of chalcopyrite to chalcopyrite and cuba ore is the amount of copper ore such as chalcopyrite and chalcopyrite included before the reaction, the amount of pyrite included before the reaction, and added. Varies depending on the amount of pyrite.

焙焼工程において揮発したAs硫化物および単体硫黄はガス形態であるため、不活性雰囲気下のまま冷却し、固化させて回収する。図1は、回収した揮発物の顕微鏡写真の例を示している。回収した揮発物は、直径約10〜15μm程度の粒状粒子を含み、As品位の異なる内層1と外層2の二層構造を備える。   Since As sulfide and elemental sulfur volatilized in the roasting process are in a gas form, they are cooled, solidified and recovered in an inert atmosphere. FIG. 1 shows an example of a micrograph of recovered volatiles. The recovered volatiles include granular particles having a diameter of about 10 to 15 μm and have a two-layer structure of an inner layer 1 and an outer layer 2 having different As grades.

揮発物粒子の内層1は砒素を約30mol%、硫黄を約70mol%含む層で構成されている。揮発物粒子の外層2は砒素を約5mol%、硫黄を約95mol%含む層で構成されている。即ち、焙焼工程で得られる粒状粒子は、砒素を粒子内部に多く含む内層1の外側を硫黄を多く含む外層2で覆った二層構造を有している。   The inner layer 1 of volatile particles is composed of a layer containing about 30 mol% arsenic and about 70 mol% sulfur. The outer layer 2 of volatile particles is composed of a layer containing about 5 mol% arsenic and about 95 mol% sulfur. That is, the granular particles obtained in the roasting process have a two-layer structure in which the outer side of the inner layer 1 containing a large amount of arsenic inside the particles is covered with the outer layer 2 containing a large amount of sulfur.

焙焼工程後に実施する熱処理工程では、図1に示す揮発物粒子に対して更に不活性ガス雰囲気中で熱処理を行い、揮発物中の砒素硫化物(硫化砒素)を融解させることで、揮発物の砒素溶出性をより低減させる。 In the heat treatment step carried out after the roasting step, the volatile particles shown in FIG. 1 are further heat-treated in an inert gas atmosphere to melt arsenic sulfide (arsenic sulfide) in the volatile matter, thereby producing volatile matter. Further reduces the arsenic elution property.

不活性ガスとしては、例えば窒素ガスが用いられる。熱処理工程の処理温度は200〜600℃とすることが好ましく、より好ましくは250〜400℃である。処理温度が200℃よりも低い場合には、揮発物中の砒素硫化物が十分に融解せず、砒素溶出量の低減効果が十分に得られない場合がある。処理温度が600℃よりも高い場合には、揮発物中の砒素硫化物として含まれる硫化水素がガス化して揮発するため、熱処理物が回収できない場合がある。 For example, nitrogen gas is used as the inert gas. The treatment temperature in the heat treatment step is preferably 200 to 600 ° C, more preferably 250 to 400 ° C. When the processing temperature is lower than 200 ° C., the arsenic sulfide in the volatiles may not be sufficiently melted, and the effect of reducing the arsenic elution amount may not be sufficiently obtained. When the processing temperature is higher than 600 ° C., hydrogen sulfide contained as arsenic sulfide in the volatiles is gasified and volatilizes, so that the heat-treated product may not be recovered.

熱処理工程の処理時間は、処理温度によっても異なるが、完全に反応を進めるために、少なくとも30分以上、より好ましくは50分以上行うことが、熱処理物のAs溶出量低減の効果の面からは好ましい。   Although the treatment time of the heat treatment step varies depending on the treatment temperature, in order to completely advance the reaction, it is preferable to carry out the treatment for at least 30 minutes or more, more preferably 50 minutes or more from the aspect of reducing the As elution amount of the heat treatment product. preferable.

熱処理工程に際し、揮発物に対して硫黄を添加することが好ましい。熱処理工程の処理温度が高くなるにつれて、硫黄の揮発量が増加して揮発物中の砒素濃度が高くなることで、硫黄が砒素と反応することによる砒素の溶出抑制効果が小さくなるからである。例えば、S/As質量比3.0の揮発物を400℃で処理した場合には、揮発物中のS分が揮発してS/As質量比が2.4程度に低下し、500℃で処理した場合にはS分が揮発してS/As質量比が1.2程度にまで低下する場合がある。添加する硫黄源としては単体硫黄が取り扱いの面からみて好ましい。硫黄の添加は、熱処理工程前に行ってもよいし、熱処理工程中に添加してもよい。   In the heat treatment step, it is preferable to add sulfur to the volatile matter. This is because as the treatment temperature in the heat treatment step increases, the volatilization amount of sulfur increases and the arsenic concentration in the volatile matter increases, so that the arsenic elution suppression effect due to the reaction of sulfur with arsenic is reduced. For example, when a volatile matter having an S / As mass ratio of 3.0 is treated at 400 ° C., the S component in the volatile matter is volatilized, and the S / As mass ratio is reduced to about 2.4, at 500 ° C. In the case of treatment, the S component volatilizes and the S / As mass ratio may be reduced to about 1.2. As the sulfur source to be added, simple sulfur is preferable from the viewpoint of handling. Sulfur may be added before the heat treatment step or may be added during the heat treatment step.

熱処理工程においては、揮発物中に含まれる硫黄の砒素に対する質量比(S/As質量比)が1.2以上、より好ましくは2.3以上、更に好ましくは3以上となるように、必要に応じて硫黄を添加することにより揮発物中の硫黄と砒素の濃度を調整することが好ましい。S/As質量比が1.2よりも小さくなると、熱処理の処理時間を長くしても、砒素の溶出低減効果が十分に得られない場合がある。   In the heat treatment step, it is necessary that the mass ratio of sulfur to arsenic (S / As mass ratio) in the volatiles is 1.2 or more, more preferably 2.3 or more, and even more preferably 3 or more. Accordingly, it is preferable to adjust the concentration of sulfur and arsenic in the volatiles by adding sulfur. If the S / As mass ratio is less than 1.2, the arsenic elution reduction effect may not be sufficiently obtained even if the heat treatment time is increased.

なお、S/As質量比の上限に特に制限はないが、S/As質量比が高ければ高いほど、短時間の熱処理でAs溶出抑制効果が得られる。一方で、S/As質量比を高くするために硫黄の添加量を増加させすぎても、As溶出抑制効果は大きく変わらず、むしろ硫黄が砒素に対して過剰となるために過剰な硫黄分の後処理が必要となりコスト上昇を招く場合がある。よって、S/As質量比の上限は6程度とすることができる。   Although there is no particular limitation on the upper limit of the S / As mass ratio, the higher the S / As mass ratio, the more effective the As elution suppression can be achieved with a shorter heat treatment. On the other hand, if the amount of sulfur added is increased too much in order to increase the S / As mass ratio, the As elution suppression effect does not change greatly. Rather, since sulfur is excessive with respect to arsenic, excess sulfur content is not increased. Post-processing is required and may increase costs. Therefore, the upper limit of the S / As mass ratio can be about 6.

熱処理工程においては、単体硫黄の他に、ゴムの老化防止剤を添加してもよい。これにより、より長期間に渡って砒素を含む揮発物から砒素が溶出することを抑制できる。ゴムの老化防止剤としては、例えば、モノフェノール系、ビスフェノール系、ポリフェノール系から選択されるいずれか1種類以上の老化防止剤が利用可能である。   In the heat treatment step, an antioxidant for rubber may be added in addition to elemental sulfur. Thereby, it can suppress that arsenic elutes from the volatile matter containing arsenic over a longer period of time. As the anti-aging agent for rubber, for example, any one or more anti-aging agents selected from monophenol, bisphenol and polyphenol can be used.

図2は、焙焼工程で得られた揮発物に対して360℃で30分熱処理することにより得られた熱処理物の顕微鏡写真の例を示す。熱処理物は、角張った不規則な形状の粒状物質で構成されており、図1に示すような焙焼工程後に得られた揮発物のような砒素と硫黄の存在の偏りは見られない。熱処理工程で得られた熱処理物の砒素品位は12〜15mol%である。   FIG. 2 shows an example of a micrograph of a heat-treated product obtained by heat-treating the volatiles obtained in the roasting process at 360 ° C. for 30 minutes. The heat-treated product is composed of angular and irregularly shaped granular materials, and there is no bias in the presence of arsenic and sulfur such as volatiles obtained after the roasting process as shown in FIG. The heat-treated product obtained in the heat treatment step has an arsenic quality of 12 to 15 mol%.

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

原料銅精鉱として、Cu品位21mass%、Fe品位23mass%、S品位38mass%、As品位6.8mass%の高As品位銅精鉱を使用した。この高As品位銅精鉱に対してX線回折(XRD)及び電子線マイクロアナライザ(EPMA)を用いて特性された主な鉱物組成は、黄銅鉱(CuFeS2)11mass%、黄鉄鉱(FeS2)42mass%、硫砒銅鉱(Cu3AsS4)36mass%、脈石成分(SiO2等)11mass%であった。 As the raw material copper concentrate, a high As grade copper concentrate having a Cu grade of 21 mass%, an Fe grade of 23 mass%, an S grade of 38 mass%, and an As grade of 6.8 mass% was used. The main mineral composition characterized using X-ray diffraction (XRD) and electron microanalyzer (EPMA) for this high As grade copper concentrate is 11 mass% of chalcopyrite (CuFeS 2 ), pyrite (FeS 2 ). They were 42 mass%, arsenite (Cu 3 AsS 4 ) 36 mass%, and gangue components (SiO 2 etc.) 11 mass%.

この砒素を含む銅精鉱100gを予備乾燥した後、窒素ガス雰囲気中において650℃の処理温度で焙焼したところ、表1に示すように、砒素をほとんど含まない黄銅鉱を含む精鉱(焙焼精鉱)と、砒素を33質量%、硫黄を64質量%含む揮発物とに分離できた。   After 100 g of this copper concentrate containing arsenic was pre-dried and then baked at a processing temperature of 650 ° C. in a nitrogen gas atmosphere, as shown in Table 1, the concentrate containing the chalcopyrite containing almost no arsenic (roasted Sinter) and volatiles containing 33% by mass of arsenic and 64% by mass of sulfur.

(熱処理工程における処理温度の影響)
焙焼工程で得られた揮発物を冷却、固化して回収したところ、揮発物のS/As質量比は2.3であった。この揮発物に対して、揮発物中のS/As質量比が4.1となるように単体硫黄を添加した。この揮発物を、熱処理時間30分、熱処理温度を150〜400℃の範囲で変化させて、熱処理物を得た。得られた熱処理物を、米国環境保護庁(EPA)における土壌汚染物質の溶出分析(TCLP)により確認した。即ち、熱処理物の溶出分析では、粒径9.5mm未満(0.5〜5mm)の熱処理物に対し、溶出溶媒として脱イオン水、酢酸または酢酸緩衝液を使用し、pHを2.88及び4.93とし、液固比20、温度22.3℃、振とう方法は回転振とうで30rpm、振とう時間を18時間で、固液分離を加圧ろ過(0.6〜0.8μmGFFフィルタ使用)として溶出分析を行った。結果を図3に示す。
(Influence of treatment temperature in heat treatment process)
When the volatiles obtained in the roasting step were cooled, solidified and recovered, the S / As mass ratio of the volatiles was 2.3. Single sulfur was added to the volatiles so that the S / As mass ratio in the volatiles was 4.1. The volatile matter was subjected to a heat treatment time of 30 minutes and the heat treatment temperature was changed in the range of 150 to 400 ° C. to obtain a heat treated product. The heat-treated product obtained was confirmed by soil pollutant elution analysis (TCLP) at the US Environmental Protection Agency (EPA). That is, in the elution analysis of the heat-treated product, deionized water, acetic acid or an acetic acid buffer solution is used as the elution solvent for the heat-treated product having a particle size of less than 9.5 mm (0.5 to 5 mm), and the pH is set to 2.88 and 4.93, liquid-solid ratio 20, temperature 22.3 ° C., shaking method is rotary shaking 30 rpm, shaking time 18 hours, solid-liquid separation under pressure filtration (0.6-0.8 μm GFF filter Elution analysis as a use). The results are shown in FIG.

図3に示すように、熱処理工程の処理温度を150℃から200℃に上昇させると熱処理物のAs溶出量は急激に少なくなった。図3より、処理温度200℃以上とすると、砒素溶出量を10mg/L以下に低減できることが分かる。   As shown in FIG. 3, when the treatment temperature in the heat treatment step was increased from 150 ° C. to 200 ° C., the As elution amount of the heat treatment product rapidly decreased. FIG. 3 shows that the arsenic elution amount can be reduced to 10 mg / L or less when the processing temperature is 200 ° C. or higher.

(熱処理工程における処理時間と硫黄添加の影響)
焙焼工程で得られた揮発物を冷却、固化して回収した揮発物(S/As質量比2.3)と、この揮発物に単体硫黄を添加してS/As質量比を4.1及び5.9にそれぞれ調整した3試料に対して、窒素ガス雰囲気下で処理温度280℃で熱処理した。熱処理により得られた熱処理物に対してpHを4.93とした以外は上述の熱処理物の分析条件(TCLP)と同様の条件で溶出分析を行った。結果を図4に示す。
(Effect of treatment time and sulfur addition in heat treatment process)
The volatiles obtained by cooling and solidifying the volatiles obtained in the roasting step (S / As mass ratio 2.3), and simple sulfur added to the volatiles to give an S / As mass ratio of 4.1. 3 samples adjusted to 5.9 and 5.9, respectively, were heat-treated in a nitrogen gas atmosphere at a processing temperature of 280 ° C. The elution analysis was performed under the same conditions as the analysis conditions (TCLP) for the heat-treated product described above except that the pH was 4.93 with respect to the heat-treated product obtained by the heat treatment. The results are shown in FIG.

図4に示すように、処理時間が長くなるにつれて、熱処理工程で得られる熱処理物のAs溶出量を低減できた。また、S/As質量比2.3の揮発物を熱処理することにより、As溶出量を20mg/L以下に低減することができた。S/As質量比を4.1或いは5.9として硫黄の存在比を高くした揮発物では、更にAs溶出量を2mg/L以下にまで低減できた。   As shown in FIG. 4, as the treatment time increased, the As elution amount of the heat-treated product obtained in the heat treatment step could be reduced. Moreover, the amount of As elution was able to be reduced to 20 mg / L or less by heat-treating the volatile matter having an S / As mass ratio of 2.3. In the volatile matter in which the S / As mass ratio was 4.1 or 5.9 and the abundance ratio of sulfur was increased, the As elution amount could be further reduced to 2 mg / L or less.

(揮発物と熱処理物との砒素溶出量)
上記焙焼工程で得られた揮発物自体と、この揮発物を280℃で30分熱処理した熱処理物とに対し、JIS K 0058−1に基づく溶出実験を行ったところ、熱処理を行わなかった揮発物のAs溶出量は255mg/Lであった。一方、揮発物に対して熱処理を実施した後の熱処理物のAs溶出量は9mg/Lであり、本発明による熱処理工程を実施することでAs溶出量を大幅に低減できた。
なお、本発明は以下の態様を包含する。
(1)砒素を含む銅鉱石を不活性ガス雰囲気において焙焼し、黄銅鉱と、砒素硫化物を含む揮発物とに分離させる焙焼工程と、
前記焙焼工程で得られた前記揮発物を、不活性ガス雰囲気において熱処理し、前記揮発物中の前記砒素硫化物を融解させる熱処理工程と
を含む砒素の処理方法。
(2)前記熱処理工程において、前記揮発物を200〜600℃で熱処理することを含む(1)に記載の砒素の処理方法。
(3)前記焙焼工程で得られた前記揮発物に硫黄を添加することを更に含む(1)又は(2)に記載の砒素の処理方法。
(4)前記焙焼工程で得られた前記揮発物中に含まれる硫黄の砒素に対する質量比(S/As質量比)を1.2以上となるように調整することを含む(1)〜(3)のいずれかに記載の砒素の処理方法。

(Arsenic elution amount of volatiles and heat-treated products)
An elution experiment based on JIS K 0058-1 was performed on the volatile matter obtained in the roasting step and a heat-treated product obtained by heat-treating the volatile matter at 280 ° C. for 30 minutes. The As elution amount of the product was 255 mg / L. On the other hand, the As elution amount of the heat-treated product after performing heat treatment on the volatiles was 9 mg / L, and the As elution amount could be greatly reduced by performing the heat treatment step according to the present invention.
In addition, this invention includes the following aspects.
(1) A roasting step of roasting copper ore containing arsenic in an inert gas atmosphere and separating it into chalcopyrite and volatiles containing arsenic sulfide;
A heat treatment step of heat-treating the volatile matter obtained in the roasting step in an inert gas atmosphere to melt the arsenic sulfide in the volatile matter;
Arsenic treatment method including
(2) The method for treating arsenic according to (1), wherein in the heat treatment step, the volatile material is heat treated at 200 to 600 ° C.
(3) The method for treating arsenic according to (1) or (2), further comprising adding sulfur to the volatile matter obtained in the roasting step.
(4) It includes adjusting the mass ratio (S / As mass ratio) of sulfur to arsenic contained in the volatiles obtained in the roasting step to be 1.2 or more (1) to ( The method for treating arsenic according to any one of 3).

1:内層
2:外層

1: Inner layer 2: Outer layer

Claims (3)

砒素を含む銅鉱石を不活性ガス雰囲気において焙焼し、黄銅鉱と、砒素硫化物を含む揮発物とに分離させる焙焼工程と、
前記焙焼工程で分離された前記揮発物を、不活性ガス雰囲気において熱処理し、前記揮発物中の前記砒素硫化物を融解させ、当該揮発物中に含まれる硫黄の砒素に対する質量比(S/As質量比)を1.2以上となるように調整する熱処理工程と
を含む砒素の処理方法。
A roasting step of roasting copper ore containing arsenic in an inert gas atmosphere and separating it into chalcopyrite and volatiles containing arsenic sulfide;
The volatile matter separated in the roasting step is heat-treated in an inert gas atmosphere to melt the arsenic sulfide in the volatile matter, and the mass ratio of sulfur to arsenic in the volatile matter (S processing method of arsenic and a heat treatment step you adjusted to a / as mass ratio) 1.2 or more.
前記熱処理工程において、前記揮発物を200〜600℃で熱処理することを含む請求項1に記載の砒素の処理方法。   The arsenic treatment method according to claim 1, wherein in the heat treatment step, the volatile material is heat treated at 200 to 600 ° C. 5. 前記焙焼工程で得られた前記揮発物に硫黄を添加することを更に含む請求項1又は2に記載の砒素の処理方法。   The method for treating arsenic according to claim 1 or 2, further comprising adding sulfur to the volatile matter obtained in the roasting step.
JP2013075224A 2013-03-29 2013-03-29 Arsenic treatment method Active JP5881638B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013075224A JP5881638B2 (en) 2013-03-29 2013-03-29 Arsenic treatment method
CL2014000748A CL2014000748A1 (en) 2013-03-29 2014-03-26 Method for arsenic processing comprising a calcination process in which a copper mineral containing arsenic is calcined in an inert gas atmosphere to separate chalcopyrite from a volatile matter containing arsenic sulfides, and a thermal treatment process to dissolve the arsenic sulfides in volatile matter
ARP140101402A AR095926A1 (en) 2013-03-29 2014-03-27 METHOD FOR PROCESSING ARSENIC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013075224A JP5881638B2 (en) 2013-03-29 2013-03-29 Arsenic treatment method

Publications (2)

Publication Number Publication Date
JP2014198655A JP2014198655A (en) 2014-10-23
JP5881638B2 true JP5881638B2 (en) 2016-03-09

Family

ID=52002315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075224A Active JP5881638B2 (en) 2013-03-29 2013-03-29 Arsenic treatment method

Country Status (3)

Country Link
JP (1) JP5881638B2 (en)
AR (1) AR095926A1 (en)
CL (1) CL2014000748A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5840644B2 (en) * 2013-03-29 2016-01-06 Jx日鉱日石金属株式会社 Arsenic treatment method
US10598571B2 (en) 2015-12-22 2020-03-24 Cyberdyne Inc. Performance evaluation apparatus and performance evaluation method for wearable motion assistance device
WO2017113267A1 (en) * 2015-12-31 2017-07-06 耒阳市焱鑫有色金属有限公司 Method for removing arsenic from arsenic-rich material by sublimation
CN109136576B (en) * 2018-09-19 2021-08-24 昆明理工大学 Method for removing arsenic from arsenic-containing smoke dust
JP7183506B2 (en) * 2018-10-30 2022-12-06 住友金属鉱山株式会社 Copper concentrate processing method
CN109500059B (en) * 2018-11-26 2020-05-15 北京高能时代环境技术股份有限公司 Transformation and microcapsule curing stabilization method for arsenic sulfide slag
CN111893293B (en) * 2020-07-06 2022-03-15 南京金焰锶业有限公司 Method for extracting precious metals from concentrate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325711B2 (en) * 1975-01-22 1978-07-28
JPS53117676A (en) * 1977-03-24 1978-10-14 Nippon Mining Co Ltd Treating method for arsenic sulfide sludge
JPS5659627A (en) * 1979-10-13 1981-05-23 Sumitomo Metal Mining Co Ltd Treatment of arsenic sulfide precipitate
JPS6217140A (en) * 1985-07-15 1987-01-26 Sumitomo Metal Mining Co Ltd Method for removing impurity from copper sulfide concentrate
JP5654321B2 (en) * 2010-10-20 2015-01-14 Jx日鉱日石金属株式会社 Copper concentrate processing method

Also Published As

Publication number Publication date
AR095926A1 (en) 2015-11-25
JP2014198655A (en) 2014-10-23
CL2014000748A1 (en) 2014-07-25

Similar Documents

Publication Publication Date Title
JP5881638B2 (en) Arsenic treatment method
JP6267042B2 (en) Arsenic treatment method
AU2011318944B2 (en) Copper concentrate treatment method
CA2908370C (en) Method of recovering gold from gold ores containing pyrite
RU2553141C2 (en) Method of ferromolybdenum production from molybdenite
JP2013209719A (en) Method for treating copper concentrate
JP5840644B2 (en) Arsenic treatment method
WO2020132751A1 (en) Method for obtaining antimony trioxide (sb2o3), arsenic trioxide (as2o3) and lead (pb)
CN108138260B (en) Process for producing metals and derivatives thereof from copper-and sulfur-containing materials
JP6784789B2 (en) Arsenic treatment method and arsenic-containing compounds
EP3064601B1 (en) Method and device for processing flue dust
ES2887206T3 (en) Method for producing a concentrate containing metals, rare metals and rare earth metals from waste generated in the zinc production chain and concentrate obtained by said method
JP6542560B2 (en) Method of treating non-ferrous smelting slag
CA2844453A1 (en) Method for processing arsenic
KR20190097377A (en) Method of recovering cobalt from byproduct generated in smelting of zinc
JPS5929659B2 (en) Indium separation method
Klein et al. Gold losses by cementation and thermal reduction in the gold recovery circuits
JP5651978B2 (en) Method for recovering sodium and sulfur components from sulfurized copper slag
JP7183506B2 (en) Copper concentrate processing method
US735903A (en) Method of manufacturing spelter from zinc ores.
JP2019151862A (en) Method for recovering tin from copper smelting dust and recovered tin
US957231A (en) Process of treating impure copper matte and ores.
Liu et al. Novel Process for Comprehensive Utilization of Iron Concentrate Recovered from Zinc Kiln Slag
JP2023167518A (en) Method for producing crude zinc oxide sintered ore
Peltekov et al. Behavior of arsenic in hydrometallurgical zinc production and environmental impact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160202

R150 Certificate of patent or registration of utility model

Ref document number: 5881638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250