JP5878061B2 - Plain bearing - Google Patents

Plain bearing Download PDF

Info

Publication number
JP5878061B2
JP5878061B2 JP2012078191A JP2012078191A JP5878061B2 JP 5878061 B2 JP5878061 B2 JP 5878061B2 JP 2012078191 A JP2012078191 A JP 2012078191A JP 2012078191 A JP2012078191 A JP 2012078191A JP 5878061 B2 JP5878061 B2 JP 5878061B2
Authority
JP
Japan
Prior art keywords
bearing
coating layer
resin coating
axial direction
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012078191A
Other languages
Japanese (ja)
Other versions
JP2013204807A (en
Inventor
壁谷 泰典
泰典 壁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP2012078191A priority Critical patent/JP5878061B2/en
Publication of JP2013204807A publication Critical patent/JP2013204807A/en
Application granted granted Critical
Publication of JP5878061B2 publication Critical patent/JP5878061B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Description

本発明は、自動車やその他の産業機械用のエンジン等に用いられるすべり軸受に関し、特に、裏金鋼と、前記裏金鋼の上に配置された軸受合金層とを有する軸受基材上に、固体潤滑剤を含む樹脂被覆層を設けた、すべり軸受に関する。   The present invention relates to a sliding bearing used for an engine for automobiles and other industrial machines, and more particularly to solid lubrication on a bearing base material having a back metal and a bearing alloy layer disposed on the back metal. The present invention relates to a plain bearing provided with a resin coating layer containing an agent.

自動車用エンジンのすべり軸受(単に「軸受」と呼ぶこともある。)材料としては、一般に裏金鋼に軸受合金層(ライニング)を設けた軸受が用いられている。近年は高出力及び高回転による自動車エンジンの高性能化が著しく、これら軸受材料に対して、初期なじみ性、耐焼付性、耐久性、耐熱性などの優れたしゅう動性能が望まれている。   As a material for a sliding bearing (sometimes simply referred to as a “bearing”) for an automobile engine, a bearing in which a bearing alloy layer (lining) is provided on a back metal is generally used. In recent years, the performance of automobile engines with high output and high revolution has been remarkably improved, and excellent sliding performance such as initial conformability, seizure resistance, durability, and heat resistance is desired for these bearing materials.

裏金鋼にアルミニウムや銅の軸受合金層(ライニング)を設けた軸受では、耐疲労性や耐焼付性を確保できる一方で、初期なじみ性が不十分である。また、なじみ性確保のために、しゅう動面にSn、Pbなどの軟質金属被膜をさらに施した銅鉛合金軸受では、耐摩耗性が充分でなく、複雑な製造工程を要するためにコストが高いという不具合もあった。   A bearing provided with a bearing alloy layer (lining) of aluminum or copper on the back metal can ensure fatigue resistance and seizure resistance, but has insufficient initial conformability. In addition, in order to ensure conformability, a copper lead alloy bearing in which a soft metal film such as Sn or Pb is further provided on the sliding surface is not sufficient in wear resistance and requires a complicated manufacturing process, resulting in high cost. There was also a problem.

そこで、優れた耐摩耗性を確保するために、軟質金属被膜に代えて、固体潤滑剤とバインダー樹脂とを含む樹脂被覆層が提案されている(特許文献1及び2)。この固体潤滑剤を含んだ樹脂被覆層は軟質金属被膜に比べて耐摩耗特性が良好であり、起動・停止を繰り返す昨今のエンジン運転状況下においても良好な結果を得ている。   Therefore, in order to ensure excellent wear resistance, a resin coating layer including a solid lubricant and a binder resin has been proposed in place of the soft metal coating (Patent Documents 1 and 2). The resin coating layer containing the solid lubricant has better wear resistance than the soft metal coating, and has obtained good results even under recent engine operating conditions in which the engine is repeatedly started and stopped.

特開平4−83914号公報JP-A-4-83914 特許第3133209号公報Japanese Patent No. 3133209

しかしながら、軸受しゅう動面の軸方向における両端部は、軸と軸受が強く接触しやすく、中央部に比べしゅう動時の負荷が大きい。また、固体潤滑剤を含んだ樹脂被覆層は軟質金属被膜よりも硬いため、しゅう動時の変形・摩耗によって被覆層が相手軸に沿うように形状を変える性質、いわゆるなじみ性が低い傾向にある。このように両端部への局部接触と樹脂被覆層のなじみ性の不足とにより、初期焼付けが発生するなど、改善の余地があった。
したがって本発明は、固体潤滑剤を含んだ樹脂被覆層の耐摩耗性を損ねることなく、相手軸へのなじみ性を向上させ、耐摩耗性となじみ性の両立を図ったすべり軸受を提供することを目的とするものである。
However, both ends of the bearing sliding surface in the axial direction tend to make strong contact between the shaft and the bearing, and the load during sliding is larger than that at the center. In addition, since the resin coating layer containing a solid lubricant is harder than the soft metal coating, it tends to have a low property of changing the shape of the coating layer along the other axis due to deformation and wear during sliding, so-called conformability. . Thus, there was room for improvement, such as the occurrence of initial baking due to local contact with both ends and insufficient conformability of the resin coating layer.
Therefore, the present invention provides a plain bearing that improves the conformability to the counterpart shaft without impairing the wear resistance of the resin coating layer containing the solid lubricant, and achieves both wear resistance and conformability. It is intended.

本発明者は、上記目的を達成するために鋭意研鑽を積んだ結果、樹脂被覆層について、軸方向中央部の硬度を軸方向両端部に対して高めることで、両端部を早期に摩耗させ、相手軸にならいやすい、すなわちなじみ性を向上しうることを見出した。   As a result of earnest study to achieve the above-mentioned object, the inventor, as a result of increasing the hardness of the axially central part with respect to the axially opposite ends of the resin coating layer, quickly wears both ends, It was found that it is easy to follow the other party's axis, that is, it can improve compatibility.

すなわち、本発明は、以下の<1>から<9>に関するものである。
<1> 裏金鋼と前記裏金鋼上に設けられた軸受合金層とを有するすべり軸受基材上に、バインダー樹脂及び固体潤滑剤を含む樹脂被覆層が設けられたすべり軸受であって、前記樹脂被覆層は軸方向中央部の硬度が軸方向両端部の硬度よりも高い、すべり軸受。
<2> 前記樹脂被覆層の軸方向の幅寸法を1としたときに、前記軸方向両端部の幅寸法の比が0.3以上0.7以下である、前記<1>に記載のすべり軸受。
<3> 前記樹脂被覆層の軸方向中央部のナノインデンター硬さが軸方向両端部のナノインデンター硬さよりも0.1GPa以上高い、前記<1>又は<2>に記載のすべり軸受
<4> 前記樹脂被覆層の軸方向中央部の表面粗さが0.5μmRa以下である、前記<1>〜<3>のいずれか1に記載のすべり軸受
<5> 前記樹脂被覆層の軸方向の一方の端部の幅寸法に対する他方の端部の幅寸法の比が0.8以上1.25以下である、前記<1>〜<4>のいずれか1に記載のすべり軸受。
<6> 前記樹脂被覆層の軸方向の一方の端部のナノインデンター硬さに対する他方の端部のナノインデンター硬さの比が0.8以上1.25以下である、前記<1>〜<5>のいずれか1に記載のすべり軸受。
<7> 前記固体潤滑剤が二硫化モリブデン及びグラファイトのうち少なくとも一方を含み、樹脂被覆層における固体潤滑剤の含有量が総量で20〜60体積%である、前記<1>〜<6>のいずれか1に記載のすべり軸受。
<8> 前記樹脂被覆層に占める前記固体潤滑剤の含有量が、軸方向中央部に対し軸方向端部の方が大きい、前記<7>に記載のすべり軸受。
<9> 裏金鋼と前記裏金鋼上に設けられた軸受合金層とを有するすべり軸受基材の、軸受合金層の軸方向中央部面に、バインダー樹脂及び固体潤滑剤を含む樹脂組成物を塗布する工程、前記軸受合金層の全面に、固体潤滑剤を含む樹脂組成物を塗布する工程、乾燥工程、焼成工程及び加圧工程を含む、すべり軸受の製造方法。
That is, the present invention relates to the following <1> to <9>.
<1> A sliding bearing in which a resin coating layer containing a binder resin and a solid lubricant is provided on a sliding bearing base material having a backing metal and a bearing alloy layer provided on the backing steel, the resin The coating layer is a plain bearing in which the hardness at the center in the axial direction is higher than the hardness at both ends in the axial direction.
<2> The slip according to <1>, wherein the ratio of the width dimension at both ends in the axial direction is 0.3 or more and 0.7 or less, where the width dimension in the axial direction of the resin coating layer is 1. bearing.
<3> The sliding bearing according to <1> or <2>, wherein the nanoindenter hardness in the axial center portion of the resin coating layer is 0.1 GPa or more higher than the nanoindenter hardness in both axial end portions <4> The sliding bearing <5> according to any one of <1> to <3>, wherein the surface roughness of the central portion in the axial direction of the resin coating layer is 0.5 μmRa or less. Axial direction of the resin coating layer The slide bearing according to any one of <1> to <4>, wherein a ratio of a width dimension of the other end portion to a width dimension of the other end portion is 0.8 or more and 1.25 or less.
<6> The above-mentioned <1>, wherein the ratio of the nanoindenter hardness at the other end to the nanoindenter hardness at one end in the axial direction of the resin coating layer is 0.8 or more and 1.25 or less. The sliding bearing according to any one of ~ <5>.
<7> The above-mentioned <1> to <6>, wherein the solid lubricant contains at least one of molybdenum disulfide and graphite, and the content of the solid lubricant in the resin coating layer is 20 to 60% by volume in total. The plain bearing of any one.
<8> The plain bearing according to <7>, wherein the content of the solid lubricant in the resin coating layer is larger in the axial end portion than in the axial central portion.
<9> A resin composition containing a binder resin and a solid lubricant is applied to the axially central portion surface of a bearing alloy layer of a plain bearing base material having a backing metal and a bearing alloy layer provided on the backing steel. A method of manufacturing a plain bearing, comprising: a step of applying a resin composition containing a solid lubricant to the entire surface of the bearing alloy layer, a drying step, a firing step, and a pressing step.

本発明のすべり軸受は、軸方向中央部の硬度が軸方向両端部より高い樹脂被覆層を設けることにより、硬度が高い中央部によって耐摩耗性が担保される一方で、両端部が早期に摩耗し、相手軸へのなじみ性が良好になり、耐焼付性が向上する。また、軸方向中央部は相手軸との局部的な接触ではなく面接触となるため、圧接により表面粗さが細かくなる結果、低摩擦性も付与される。
このように、本発明のすべり軸受は、軸方向両端部においては、硬度が相対的に低い樹脂被覆層を設けて耐焼付性、ひいてはなじみ性を担い、軸方向中央部においては硬度を相対的に高めて、耐摩耗性と低摩擦性を担うものである。
The sliding bearing of the present invention is provided with a resin coating layer having a higher hardness at the axial center than at both ends in the axial direction. In addition, the conformability to the mating shaft is improved and the seizure resistance is improved. Further, since the central portion in the axial direction is not a local contact with the counterpart shaft but a surface contact, the surface roughness is reduced by the pressure contact, so that low friction is also imparted.
As described above, the sliding bearing of the present invention is provided with a resin coating layer having a relatively low hardness at both axial end portions to provide seizure resistance and consequently conformability, and relative hardness at the axial central portion. To increase wear resistance and low friction.

図1は本発明に係るすべり軸受の一実施形態を示した模式図である。FIG. 1 is a schematic view showing an embodiment of a plain bearing according to the present invention. 図2(a)〜図2(d)は本発明に係るすべり軸受の樹脂被覆層の第一の形成方法を示した模式図である。FIG. 2A to FIG. 2D are schematic views showing a first method for forming the resin coating layer of the slide bearing according to the present invention. 図3(a)〜図3(c)は本発明に係るすべり軸受の樹脂被覆層の第二の形成方法を示した模式図である。FIG. 3A to FIG. 3C are schematic views showing a second method for forming the resin coating layer of the slide bearing according to the present invention. 図4(a)〜図4(c)は本発明に係るすべり軸受の樹脂被覆層の第三の形成方法を示した模式図である。FIG. 4A to FIG. 4C are schematic views showing a third method of forming the resin coating layer of the slide bearing according to the present invention.

以下、本発明を詳細に説明する。
なお、本発明において、すべり軸受における軸方向両端部、軸方向中央部とは、それぞれ、内周面の軸方向両端部、軸方向中央部を意味する。なお、本明細書においてこれらをそれぞれ、両端部、中央部とのみ称する場合もある。
Hereinafter, the present invention will be described in detail.
In addition, in this invention, the axial direction both ends and axial direction center part in a slide bearing mean the axial direction both ends and axial direction center part of an internal peripheral surface, respectively. In the present specification, these may be referred to as both end portions and a central portion, respectively.

図1に本発明に係るすべり軸受の一実施形態を示す。
本発明に係るすべり軸受1は、裏金鋼101と前記裏金鋼101の上に配置された軸受合金層102とを有するすべり軸受基材上に、固体潤滑剤を含む樹脂被覆層103が設けられている。この樹脂被覆層において、軸方向両端部に比して軸方向中央部の硬度が高いことを特徴とする。図1における符号Aが、それぞれ軸方向端部に相当し、軸方向の末端から中央部に向かって一定の範囲を占める部分である。軸方向両端部はこの軸方向端部A,Aを指す。また軸方向中央部Bとは、軸方向両端部A,Aを除いた部分である。
FIG. 1 shows an embodiment of a plain bearing according to the present invention.
The sliding bearing 1 according to the present invention is provided with a resin coating layer 103 containing a solid lubricant on a sliding bearing base material having a backing metal 101 and a bearing alloy layer 102 disposed on the backing metal 101. Yes. This resin coating layer is characterized in that the hardness of the central portion in the axial direction is higher than that of both end portions in the axial direction. A symbol A in FIG. 1 corresponds to an axial end portion, and occupies a certain range from the axial end to the central portion. Both axial ends indicate the axial ends A and A. The axial central portion B is a portion excluding the axial end portions A and A.

軸方向両端部は、前記樹脂被覆層における軸方向の全幅(A+B+A)の幅寸法を1としたときに、軸方向両端部の幅寸法(A+A)の割合が、下限は0.3以上であることが好ましく、0.4以上がより好ましい。また、上限は0.7以下であることが好ましく、0.6以下であることがより好ましい。
両端部の幅寸法がかかる範囲の下限以上であれば、なじみ性に対して得られる効果及び耐焼付性の向上の点から好ましく、またかかる範囲の上限以下であれば、樹脂被覆層のしゅう動面にかかる面圧及び耐摩耗性に対する効果の点から好ましい。
The lower end of the ratio of the width dimension (A + A) of both end portions in the axial direction is 1 or more, assuming that the width dimension of the entire axial width (A + B + A) in the resin coating layer is 1. Is preferably 0.4 or more. Moreover, it is preferable that an upper limit is 0.7 or less, and it is more preferable that it is 0.6 or less.
If the width dimension of both ends is equal to or higher than the lower limit of the range, it is preferable from the viewpoint of the effect obtained with respect to conformability and improvement of seizure resistance. It is preferable from the viewpoint of the effect on the surface pressure and wear resistance applied to the surface.

なお、軸方向端部A同士の幅寸法は同一でも異なっていてもよい。異なる場合、上記範囲内で適宜各端部の幅寸法を決めることができるが、一方の端部の幅寸法が極端に小さい場合には、なじみ性能が確保できなくなり、また両端部で均一に摩耗しないことがあるため、軸方向端部の幅寸法は、一方の端部の幅寸法に対する他方の端部の幅寸法の比が0.8〜1.25の範囲内であることが好ましい。   In addition, the width dimension of axial direction edge part A may be the same, or may differ. If they are different, the width dimension of each end can be determined appropriately within the above range, but if the width dimension of one end is extremely small, the familiarity performance cannot be ensured and the wear at both ends is uniform. Therefore, the ratio of the width dimension of one end to the width dimension of the other end is preferably in the range of 0.8 to 1.25.

本発明における樹脂被覆層の硬度は軸方向中央部が、軸方向両端部より高い。軸方向中央部に対して、軸方向両端部の硬度が低いと、中央部に比べて両端部の摩耗が早く、相手軸にならいやすいという性質を持つことから、なじみ性がよくなる。また、両端部に比べて硬い中央部においては、耐摩耗性を発揮する。   The hardness of the resin coating layer in the present invention is higher at the axial center than at both ends in the axial direction. If the hardness at both axial end portions is lower than that at the axial central portion, wear at both end portions is faster than at the central portion, and the conformability is improved because it has the property of easily following the mating shaft. In addition, wear resistance is exhibited in the central portion which is harder than both end portions.

軸方向中央部の硬度は、ナノインデンター硬さで、軸方向両端部よりも0.1GPa以上高いことが好ましく、0.2〜0.3GPa高いことが好ましい。硬度の差がかかる範囲であれば、耐摩耗性、なじみ性の観点から好ましい。   The hardness of the central portion in the axial direction is nanoindenter hardness, and is preferably 0.1 GPa or more, and preferably 0.2 to 0.3 GPa higher than both end portions in the axial direction. If the difference in hardness is within such a range, it is preferable from the viewpoint of wear resistance and conformability.

また、軸方向中央部の硬度は、ナノインデンター硬さで0.4GPa以上であることが耐摩耗性の観点から好ましく、軸方向両端部の硬度は、ナノインデンター硬さで0.1GPa以上0.4GPa未満であることが、なじみ性と密着性の観点から好ましい。   Further, the hardness of the central portion in the axial direction is preferably 0.4 GPa or more in terms of nanoindenter hardness, and the hardness at both ends in the axial direction is 0.1 GPa or more in terms of nanoindenter hardness. It is preferable that it is less than 0.4 GPa from the viewpoint of conformability and adhesion.

また、軸方向端部A同士の硬度は同一でも異なっていてもよいが、軸とのなじみ性能を確保するため、また両端部が均一に摩耗するために、一方の端部のナノインデンター硬さに対する他方の端部のナノインデンター硬さの比が0.8〜1.25の範囲内であることが好ましい。上記のナノインデンター硬度は、両端部の平均値であるが、それぞれ両端部において、その数値範囲内にあることが好ましい。   In addition, the hardness of the axial end portions A may be the same or different, but in order to ensure the conformability with the shaft and to wear both ends uniformly, the nanoindenter hardness of one end portion The ratio of the nanoindenter hardness at the other end to the thickness is preferably in the range of 0.8 to 1.25. The above-mentioned nanoindenter hardness is an average value at both end portions, and it is preferable that both end portions are within the numerical range.

本発明におけるナノインデンター硬さとは試験装置にナノインデンターを使用して測定した硬度を意味する。ナノインデンターは押圧試験の一種であるが、圧子を微小荷重で数μm程度の深さに一定速度で押し込み、一定時間保持した後に一定の速度で除荷する。その際の変位と荷重から算出した硬さが、ナノインデンター硬さと定義される。   The nanoindenter hardness in the present invention means a hardness measured using a nanoindenter in a test apparatus. A nanoindenter is a kind of pressure test. An indenter is pushed into a depth of about several μm with a minute load at a constant speed, held for a fixed time, and then unloaded at a constant speed. The hardness calculated from the displacement and load at that time is defined as the nanoindenter hardness.

樹脂被覆層は、軸方向中央部の表面粗さが0.5μmRa以下であることが好ましく、0.3μmRa以下であることがより好ましい。軸方向中央部の表面粗さは細かいほどしゅう動抵抗を低減でき、低摩擦性の観点から好ましい。
軸方向中央部の表面粗さをかかる範囲とするには、例えば、後述する樹脂被覆層の形成工程において、加圧処理することが挙げられる。軸方向中央部は相手軸との当たりが弱く、樹脂被覆層を加圧することによって中央部の表面粗さを細かくすることができ、低摩擦性を実現することができる。表面粗さをかかる範囲にするために必要な加圧条件は、樹脂被覆層に含まれるバインダー樹脂や固体潤滑剤の種類や含有量等などに応じて、適宜好適な条件を採用することができる。
The resin coating layer preferably has a surface roughness at the central portion in the axial direction of 0.5 μmRa or less, and more preferably 0.3 μmRa or less. The smaller the surface roughness of the central portion in the axial direction, the smaller the sliding resistance can be reduced, which is preferable from the viewpoint of low friction.
In order to set the surface roughness of the central portion in the axial direction to be in such a range, for example, a pressure treatment may be performed in a resin coating layer forming step described later. The central portion in the axial direction has a weak contact with the counterpart shaft, and by pressing the resin coating layer, the surface roughness of the central portion can be made fine, and low friction can be realized. The pressurization conditions necessary to make the surface roughness within such a range can be appropriately selected according to the type and content of the binder resin and solid lubricant contained in the resin coating layer. .

本発明のすべり軸受けにおける樹脂被覆層は、バインダー樹脂と固体潤滑剤とを含む。   The resin coating layer in the sliding bearing of the present invention contains a binder resin and a solid lubricant.

固体潤滑剤としては特に制限されず、配向性の有無に関わらず、一般に用いられる固体潤滑剤を用いることができる。具体的には二硫化モリブデン(MoS)、グラファイト、六方晶系窒化ホウ素(h−BN)、WS、ポリテトラフルオロエチレン(PTFE)などが挙げられ、中でも低摩擦特性や、樹脂との固体潤滑剤の密着性の点から二硫化モリブデン(MoS)、グラファイトが好ましく用いられる。また、固体潤滑剤は1種で用いても、2種以上を組み合わせて用いてもよい。 The solid lubricant is not particularly limited, and a commonly used solid lubricant can be used regardless of the presence or absence of orientation. Specific examples include molybdenum disulfide (MoS 2 ), graphite, hexagonal boron nitride (h-BN), WS 2 , polytetrafluoroethylene (PTFE), etc. Among them, low friction characteristics and solids with resin From the viewpoint of adhesion of the lubricant, molybdenum disulfide (MoS 2 ) and graphite are preferably used. Moreover, a solid lubricant may be used by 1 type, or may be used in combination of 2 or more type.

固体潤滑剤の含有量は樹脂被覆層全体に対して総量で20〜60体積%あることが好ましい。
固体潤滑剤は、少なくともMoS及びグラファイトのどちらか一方を含み、MoS又はグラファイトの他に固体潤滑剤をさらに含む場合には、MoS又はグラファイトの総量が少なくとも固体潤滑剤全体の70体積%を超えることが好ましい。固体潤滑剤の含有量、配合種類、配合比率については軸方向中央部と軸方向端部で同一でもよいし異なっていてもよいが、なじみ性の観点から、固体潤滑剤の含有量は軸方向端部が軸方向中央部に比べ大きいほうが好ましい。
The total content of the solid lubricant is preferably 20 to 60% by volume with respect to the entire resin coating layer.
Solid lubricant comprises either at least MoS 2 and graphite, in the case where the other MoS 2 or graphite further comprises a solid lubricant, MoS 2 or the total amount of graphite of at least solid lubricant total 70% by volume Is preferably exceeded. The solid lubricant content, blend type, and blend ratio may be the same or different at the axial center and axial end, but from the standpoint of compatibility, the solid lubricant content is axial. It is preferable that the end portion is larger than the central portion in the axial direction.

バインダー樹脂は機械的強度があり耐熱性が高い樹脂が好ましく用いられる。具体的にはポリイミド樹脂(PI)、ポリアミドイミド(PAI)樹脂、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂や、ポリベンゾイミダゾール(PBI)、PES等の熱可塑性樹脂が挙げられる。   As the binder resin, a resin having mechanical strength and high heat resistance is preferably used. Specific examples include thermosetting resins such as polyimide resin (PI), polyamideimide (PAI) resin, epoxy resin, and phenol resin, and thermoplastic resins such as polybenzimidazole (PBI) and PES.

バインダー樹脂は1種で用いても、2種以上を組み合わせて用いてもよく、組み合わせる場合には、PAI樹脂やPI樹脂にPA樹脂やエポキシ樹脂等を組み合わせ、高せん断力を加えポリマーアロイ化しても良いし、バインダー樹脂にカップリン剤等を加えてもよい。   The binder resin may be used alone or in combination of two or more. In the case of combining, a PAI resin or PI resin is combined with a PA resin or an epoxy resin, and a polymer alloy is formed by applying a high shear force. Alternatively, a coupling agent or the like may be added to the binder resin.

樹脂被覆層の厚さは2〜20μmであることが好ましく、3〜9μmであることがより好ましい。かかる範囲であれば、薄すぎて耐摩耗性の効果が劣り、早期に摩耗しやすいということはなく、また厚すぎて自身の疲労性が課題となることもない。   The thickness of the resin coating layer is preferably 2 to 20 μm, and more preferably 3 to 9 μm. If it is within such a range, the effect of wear resistance will be inferior because it is too thin, and it will not be easy to wear at an early stage.

上記樹脂被覆層は裏金鋼と前記裏金鋼の上に配置された軸受合金層とを有する軸受基材上に設けられる。ここで裏金鋼と軸受合金層には、当該分野において従来用いられる種々のものを、種々の条件で用いることができる。   The resin coating layer is provided on a bearing base material having a backing metal and a bearing alloy layer disposed on the backing metal. Here, as the back metal and the bearing alloy layer, various materials conventionally used in the field can be used under various conditions.

軸受合金層はアルミニウム系軸受合金、銅系軸受合金を使用することができる。   As the bearing alloy layer, an aluminum bearing alloy or a copper bearing alloy can be used.

アルミニウム系軸受合金の組成は特に限定されないが、10質量%以下のCr、Si、Mn、Sb、Sr、Fe、Ni、Mo、Ti、W、Zr、V、Cu、Mg、Znなどからなる群より選ばれる1種以上の元素と、20質量%以下のSn、Pb、In、Tl、Biなどからなる群より選ばれる1種以上の元素とを含有する合金を好ましく使用することができる。
前者の群の元素は主として強度及び耐摩耗性を付与し、後者の群の元素は主としてなじみ性を付与し、添加する元素の種類と量により軸受特性を発揮する。
また、アルミ合金鋳物であるAC8A、AC9Bなどの高Si−Al合金からなるピストンのスカート部を下地として、本発明の樹脂被覆層を使用し、その耐摩耗性を向上することもできる。
The composition of the aluminum-based bearing alloy is not particularly limited, but is a group consisting of 10% by mass or less of Cr, Si, Mn, Sb, Sr, Fe, Ni, Mo, Ti, W, Zr, V, Cu, Mg, Zn, and the like. An alloy containing one or more elements selected from the group consisting of 20% by mass or less and one or more elements selected from the group consisting of Sn, Pb, In, Tl, Bi, and the like can be preferably used.
The former group of elements mainly imparts strength and wear resistance, and the latter group of elements mainly imparts conformability, and exhibits bearing characteristics depending on the type and amount of elements added.
Further, the resin coating layer of the present invention can be used with the skirt portion of a piston made of a high Si—Al alloy such as AC8A or AC9B, which is an aluminum alloy casting, as a base, and the wear resistance can be improved.

銅合金の組成は、特に限定されないが、25質量%以下のBiと、10質量%以下のSnと、2質量%以下のP、Ag、In、Ni、Al等を含有する合金を、好ましく使用することができる。
これらの元素において、軟質金属であるBiはなじみ性を発揮し、青銅の基本成分であるSnは高強度性と耐摩耗性を発揮し、その他の成分は補助的に特性を向上する。特に、Pは脱酸素、焼結促進、強化などに有効であり、Agは潤滑油又は銅中の不純物成分Sとの反応でしゅう動特性向上に有効な化合物を形成し、Inは耐食性と潤滑油の濡れ性を向上し、NiやAlは銅を強化する等の作用がある。
The composition of the copper alloy is not particularly limited, but an alloy containing 25% by mass or less of Bi, 10% by mass or less of Sn, and 2% by mass or less of P, Ag, In, Ni, Al, or the like is preferably used. can do.
Among these elements, Bi, which is a soft metal, exhibits conformability, Sn, which is a basic component of bronze, exhibits high strength and wear resistance, and other components supplementarily improve characteristics. In particular, P is effective for deoxygenation, promotion of sintering, strengthening, etc. Ag forms a compound effective for improving sliding characteristics by reaction with lubricating oil or impurity component S in copper, and In is corrosion resistance and lubrication. Oil and wettability are improved, and Ni and Al have effects such as strengthening copper.

軸受合金層は一般に厚さが0.2〜0.5mmである。これを支える裏金鋼は一般に軸径に応じてその厚みを選択することができる。   The bearing alloy layer generally has a thickness of 0.2 to 0.5 mm. The thickness of the backing metal that supports this can generally be selected according to the shaft diameter.

本発明のすべり軸受の形状は円筒状でも半割状でもよい。軸受が半割状である場合には、半割すべり軸受を2個組み合わせて円筒状にして使用される。   The shape of the plain bearing of the present invention may be cylindrical or halved. When the bearing is halved, two halved plain bearings are combined into a cylindrical shape.

本発明のすべり軸受を使用する際、潤滑条件は特に限定されず、潤滑油を用いたオイル潤滑下でも無潤滑下でも適用できる。   When the sliding bearing of the present invention is used, the lubrication conditions are not particularly limited, and it can be applied under oil lubrication using a lubricating oil or under non-lubrication.

次に、本発明に係るすべり軸受を製造する方法について説明する。
すべり軸受の製造方法は、例えば以下の工程を含む。
(a)裏金鋼に合金を圧接することにより、または裏金鋼に合金粉末を散布した後に焼結、圧接することにより、裏金鋼上に軸受合金層を設けた、すべり軸受基材を得る工程、
(b)すべり軸受基材の軸受合金層表面に、当該基材と樹脂被覆層との密着性を確保するための処理を施す工程、
(c)すべり軸受基材の軸受合金層表面に樹脂被覆層を形成する工程。
Next, a method for manufacturing the plain bearing according to the present invention will be described.
The manufacturing method of a slide bearing includes the following processes, for example.
(A) A step of obtaining a plain bearing base material in which a bearing alloy layer is provided on the back metal steel by press-contacting the alloy to the back metal steel, or sintering and press-contacting the alloy metal powder after being dispersed on the back metal steel;
(B) A step of applying a treatment for ensuring adhesion between the base material and the resin coating layer on the surface of the bearing alloy layer of the plain bearing base material;
(C) A step of forming a resin coating layer on the surface of the bearing alloy layer of the slide bearing substrate.

上記工程(b)においては、サンドブラストなどの粗面化処理に代表される物理的処理や、エッチング、化成処理などの化学処理が挙げられる。   Examples of the step (b) include physical treatment represented by roughening treatment such as sand blasting, and chemical treatment such as etching and chemical conversion treatment.

工程(c)の樹脂被覆層を形成する工程、すなわち、軸方向中央部が軸方向端部よりも硬度が高い樹脂被覆層の形成方法を以下に例示するが、本発明に係る軸受における樹脂被覆層の形成方法は、これらの方法に限定されるものではない。   The step of forming the resin coating layer in the step (c), that is, the method of forming the resin coating layer having a hardness in the central portion in the axial direction higher than that in the axial direction end will be exemplified below, but the resin coating in the bearing according to the present invention The method for forming the layer is not limited to these methods.

第一の形成方法を図2(a)〜図2(d)に示す。まず軸受合金層102の軸方向両端部面上にマスキング104を設置した状態で、軸受合金層102の軸方向中央部面にのみ、バインダー樹脂及び固体潤滑剤を含む樹脂組成物(以下「樹脂組成物」とも言う。)を塗布する工程により、樹脂組成物層x1を形成する(図2(a))。その後両端部のマスキング104を除去し、バインダー樹脂及び固体潤滑剤を含む樹脂組成物を軸受合金層102の全面すなわちしゅう動部全面に塗布する工程を経て樹脂組成物層x2を形成する(図2(b))。続いて樹脂組成物中の溶剤を蒸発するために乾燥する工程、バインダー樹脂を硬化するための焼成工程を経て、さらにロールRにより樹脂組成物層を加圧する工程を行う(図2(c))。これにより樹脂被覆層103を形成する(図2(d))。   The first forming method is shown in FIGS. 2 (a) to 2 (d). First, a resin composition containing a binder resin and a solid lubricant (hereinafter referred to as “resin composition”) only on the axially central portion surface of the bearing alloy layer 102 in a state where the masking 104 is installed on both axially opposite end surface surfaces of the bearing alloy layer 102. The resin composition layer x1 is formed by the step of applying the “product” (FIG. 2A). Thereafter, the masking 104 at both ends is removed, and a resin composition layer x2 is formed through a step of applying a resin composition containing a binder resin and a solid lubricant to the entire surface of the bearing alloy layer 102, that is, the entire sliding portion (FIG. 2). (B)). Subsequently, a step of drying to evaporate the solvent in the resin composition, a baking step for curing the binder resin, and a step of pressing the resin composition layer with the roll R are performed (FIG. 2 (c)). . Thereby, the resin coating layer 103 is formed (FIG. 2D).

第一の方法では、上記塗布工程により軸方向中央部の樹脂組成物層の厚みが両端部に比べて厚い状態とし、しゅう動部全面を加圧する。これにより樹脂組成物層の中央部は両端部に比べて強く加圧されるため、樹脂被覆層103の軸方向中央部Bの密度は軸方向両端部A,Aに比べて大きくなり、硬度も高くなる。また、加圧を行うことにより樹脂被覆層の表面粗さが小さくなりしゅう動抵抗を低減できるため、低摩擦性の点からも好ましい。   In the first method, the thickness of the resin composition layer in the central portion in the axial direction is made thicker than both ends by the application step, and the entire sliding portion is pressurized. As a result, the central portion of the resin composition layer is pressed more strongly than both end portions, and therefore the density of the central portion B in the axial direction of the resin coating layer 103 is larger than both end portions A and A in the axial direction, and the hardness is also high. Get higher. Further, by applying pressure, the surface roughness of the resin coating layer is reduced and the sliding resistance can be reduced, which is preferable from the viewpoint of low friction.

樹脂組成物の塗布にあたっては、固体潤滑剤とバインダー樹脂その他の任意成分を混合した塗布液を調製する。また、固体潤滑剤とバインダー樹脂の分散性を高めるためや、塗布液の粘度調整のために、必要に応じてメチルピロリドン等の溶剤を用いることができる。   In applying the resin composition, a coating liquid in which a solid lubricant, a binder resin and other optional components are mixed is prepared. Further, a solvent such as methyl pyrrolidone can be used as necessary for enhancing the dispersibility of the solid lubricant and the binder resin or for adjusting the viscosity of the coating solution.

樹脂組成物を塗布する方法は特に制限されず、ロール法、スプレー法、パッド法、スクリーン印刷法、静電塗装、タンブリングなどが例示され、特にロール法、スプレー法が好ましく用いられる。   The method for applying the resin composition is not particularly limited, and examples thereof include a roll method, a spray method, a pad method, a screen printing method, electrostatic coating, and tumbling. In particular, the roll method and the spray method are preferably used.

軸方向中央部としゅう動部全面とで、塗布する樹脂組成物の種類や塗布方法を変えて、適宜組み合わせて塗布してもよく、さらには塗布する回数や厚みを変えてもよい。   The type and application method of the resin composition to be applied may be changed as appropriate between the central portion in the axial direction and the entire sliding portion, and the number of times and the thickness of application may be changed.

乾燥に際しては、溶剤が蒸発すれば特に方法に制限はないが、40〜120℃で5〜30分の条件で行うことがライニングと樹脂との密着性の点から好ましい。なお、乾燥中の温度は上記温度範囲内で一定であっても昇温等変化させてもよいし、必要に応じて、両端部への樹脂組成物塗布後と、全面への塗布後のそれぞれに乾燥工程を経てもよい。   In drying, the method is not particularly limited as long as the solvent evaporates, but it is preferable to perform the drying at 40 to 120 ° C. for 5 to 30 minutes from the viewpoint of adhesion between the lining and the resin. In addition, the temperature during drying may be constant within the above temperature range or may be changed such as a temperature rise, and if necessary, after application of the resin composition to both ends and after application to the entire surface, respectively. In addition, a drying process may be performed.

焼成工程についてはバインダー樹脂が硬化すれば特に方法に制限はないが、150〜400℃で30分〜60分の条件で行えばよい。なお焼成中の温度は上記範囲内で一定であっても昇温等変化させてもよい。   The method for baking is not particularly limited as long as the binder resin is cured, but may be performed at 150 to 400 ° C. for 30 to 60 minutes. Note that the temperature during firing may be constant within the above range, or may be changed by raising the temperature.

加圧はしゅう動部全面に対して行うことができれば方法は制限されない。
なお、加圧工程は密着性の観点から焼成工程の後に行うことが好ましいが、これに限らない。
The method is not limited as long as pressurization can be performed on the entire sliding portion.
In addition, it is preferable to perform a pressurization process after a baking process from an adhesive viewpoint, However, It is not restricted to this.

第二の形成方法を図3(a)〜図3(c)に示す。まず軸受合金層102の軸方向両端部面上にマスキング104を設置した状態で、軸受合金層102の軸方向中央部面上にのみ、バインダー樹脂及び固体潤滑剤を含む樹脂組成物をロール法により塗布する工程により、樹脂組成物層y1を形成する(図3(a))。その後両端部のマスキング104を除去すると共に軸方向中央部面上にマスキング104を設置して、両端部にバインダー樹脂及び固体潤滑剤を含む樹脂組成物をスプレー法により塗布する工程により、樹脂組成物層y2を形成する(図3(b))。その後、乾燥する工程、及び焼成する工程を経て、樹脂被覆層103を形成する(図3(c))。   A second forming method is shown in FIGS. 3 (a) to 3 (c). First, in a state where masking 104 is installed on both axial end surfaces of the bearing alloy layer 102, a resin composition containing a binder resin and a solid lubricant is applied only on the axial central portion surface of the bearing alloy layer 102 by a roll method. The resin composition layer y1 is formed by the applying process (FIG. 3A). Thereafter, the masking 104 at both ends is removed and the masking 104 is set on the axially central portion surface, and a resin composition containing a binder resin and a solid lubricant is applied to both ends by a spray method, thereby forming a resin composition. The layer y2 is formed (FIG. 3B). Then, the resin coating layer 103 is formed through the process of drying and the process of baking (FIG.3 (c)).

第二の方法では、樹脂被覆層の軸方向中央部における硬度が両端部より高くなるように、樹脂組成物の塗布方法を異ならせることにより、樹脂被覆層103の軸方向中央部Bの密度は軸方向両端部A,Aに比べて大きくなり、硬度も高くなる。   In the second method, the density of the central portion B in the axial direction of the resin coating layer 103 is changed by changing the coating method of the resin composition so that the hardness at the central portion in the axial direction of the resin coating layer is higher than both ends. It is larger than both axial ends A and A, and the hardness is also increased.

樹脂組成物の塗布方法は、ロール法、エアスプレー法、エアレススプレー法、パッド法、スクリーン印刷法、静電塗装、タンブリング等の方法から、複数を組み合わせて行うことができる。樹脂被覆層の軸方向中央部における密度が両端部の密度より高くさせやすいために、中央部にロール法、両端部にスプレー法を適用することが好ましい。また、塗布回数や厚みを変えてもよい。   The resin composition can be applied by combining a plurality of methods such as a roll method, an air spray method, an airless spray method, a pad method, a screen printing method, electrostatic coating, and tumbling. Since the density at the axially central portion of the resin coating layer is likely to be higher than the density at both end portions, it is preferable to apply the roll method to the central portion and the spray method to both end portions. Moreover, you may change the frequency | count of application and thickness.

乾燥工程、焼成工程及び圧力工程は、上記第一の方法と同様に行うことができる。   A drying process, a baking process, and a pressure process can be performed similarly to said 1st method.

第三の形成方法を図4(a)〜図4(c)に示す。まず軸受合金層102の軸方向両端部面上にマスキング104を設置した状態で、軸受合金層102の軸方向中央部面上にのみ、バインダー樹脂及び固体潤滑剤を含む樹脂組成物を塗布する工程により、樹脂組成物層z1を形成する(図4(a))。その後両端部のマスキング104を除去すると共に軸方向中央部面上にマスキング104を設置して、両端部に、バインダー樹脂、固体潤滑剤及び空孔形成剤を含む樹脂組成物を塗布する工程により、樹脂組成物層z2を形成する(図4(b))。その後、乾燥する工程、及び焼成する工程を経て、樹脂被覆層103を形成する(図4(c))。   A third forming method is shown in FIGS. 4 (a) to 4 (c). First, a process of applying a resin composition containing a binder resin and a solid lubricant only on the axial center part surface of the bearing alloy layer 102 in a state where the masking 104 is installed on both axial end surfaces of the bearing alloy layer 102. Thus, the resin composition layer z1 is formed (FIG. 4A). Thereafter, the masking 104 at both ends is removed and the masking 104 is installed on the axially central portion surface, and a resin composition containing a binder resin, a solid lubricant and a pore forming agent is applied to both ends, A resin composition layer z2 is formed (FIG. 4B). Then, the resin coating layer 103 is formed through the process of drying and the process of baking (FIG.4 (c)).

第三の方法では、樹脂被覆層103の軸方向両端部A,Aに空孔を形成することで密度を下げ、相対的に軸方向中央部Bの密度を高めることにより、樹脂被覆層103の軸方向中央部Bの硬度が軸方向両端部A,Aに比べて高くなる。   In the third method, the density of the resin coating layer 103 is reduced by forming holes in the axial end portions A, A of the resin coating layer 103 to lower the density and relatively increasing the density of the central portion B in the axial direction. The hardness of the central portion B in the axial direction is higher than that of the axial end portions A and A.

空孔形成剤としては、例えば、有機アゾジカルボンアミド等の有機熱分解型の発泡剤、無機炭酸塩等の無機系吸熱分解型の発泡剤を用いることができる。
空孔は発泡剤が発泡することで形成され、上記有機熱分解型及び無機系吸熱分解型の発泡剤の場合は、例えば、乾燥工程や焼成工程における熱により発砲し、空孔が形成される。
As the pore forming agent, for example, an organic thermal decomposition type foaming agent such as organic azodicarbonamide and an inorganic endothermic decomposition type foaming agent such as inorganic carbonate can be used.
The pores are formed by foaming of the foaming agent, and in the case of the organic thermal decomposition type and inorganic endothermic decomposition type foaming agents, for example, the pores are formed by firing with heat in the drying process or firing process. .

乾燥工程、焼成工程及び圧力工程は、上記第一の方法と同様に行うことができる。   A drying process, a baking process, and a pressure process can be performed similarly to said 1st method.

以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples. However, the present invention is not limited to these examples.

・すべり軸受(半割り軸受)の作製
裏金鋼にアルミニウム系軸受合金を圧接して軸受基材を製造した。軸受基材と樹脂被覆層との密着性を確保するため、サンドブラストで粗面化処理を行い、その後ブラスト粉を除去するために洗浄した。
バインダー樹脂、固体潤滑剤及び溶剤を混合した樹脂組成物の塗布液を調製した。
上記で得られた軸受基材を70℃雰囲気で予熱を行い、軸方向両端部をマスキングした状態で、軸受合金層上の軸方向中央部に3μmの膜厚でスプレー法にて上記塗布液を塗布した。その後120℃にて30分乾燥を行った。
続いて、マスキングのための治具を除去し、しゅう動面全面にスプレー法により6μmの膜厚で塗布液を塗布し、120℃にて30分乾燥を行った。
その後、200℃にて1時間焼成し、さらに、当該樹脂被覆面の全面を金属製のロールで加圧して、厚さ6μmの樹脂被覆層を形成し、実施例1〜4のすべり軸受を作製した。
・ Production of slide bearing (half bearing) A bearing base material was manufactured by press-contacting an aluminum bearing alloy to the back metal. In order to ensure the adhesion between the bearing substrate and the resin coating layer, the surface was roughened with sand blasting, and then washed to remove the blasting powder.
A coating solution of a resin composition in which a binder resin, a solid lubricant, and a solvent were mixed was prepared.
The bearing substrate obtained above is preheated in an atmosphere of 70 ° C., and both ends in the axial direction are masked, and the coating liquid is applied by a spray method with a film thickness of 3 μm at the center in the axial direction on the bearing alloy layer. Applied. Thereafter, drying was performed at 120 ° C. for 30 minutes.
Subsequently, the jig for masking was removed, and the coating solution was applied to the entire sliding surface with a film thickness of 6 μm by a spray method, followed by drying at 120 ° C. for 30 minutes.
Then, it baked at 200 degreeC for 1 hour, Furthermore, the whole surface of the said resin coating surface is pressurized with a metal roll, a 6-micrometer-thick resin coating layer is formed, and the plain bearing of Examples 1-4 is produced. did.

比較例1〜2では、樹脂組成物を全面に6μmの膜厚で塗布した以外は実施例と同様にしてすべり軸受を作製した。   In Comparative Examples 1 and 2, slide bearings were prepared in the same manner as in the Examples except that the resin composition was applied to the entire surface with a film thickness of 6 μm.

塗布液の組成は表1に示す通りである。溶剤にはN−メチル−2ピロリドン(NMP)を用いた。また、軸方向両端部の軸方向に占める幅寸法の割合は表1に示す値になるように、マスキングの治具の大きさを調節した。   The composition of the coating solution is as shown in Table 1. N-methyl-2pyrrolidone (NMP) was used as the solvent. In addition, the size of the masking jig was adjusted so that the ratio of the width dimension in the axial direction at both ends in the axial direction became the values shown in Table 1.

実施例1〜4及び比較例1、2として、各条件によって作製したすべり軸受における樹脂被覆層のナノインデータ硬さ、表面粗さを測定し、焼付面圧、摩耗量について試験を行った。
なお、ナノインデンター硬さ及び表面粗さは、軸方向中央部は軸受の軸方向中心の位置での測定値であり、軸方向両端部は軸受の軸方向端部から軸受の軸方向長さの10%分、軸受の軸方向中心側にあるそれぞれの位置での測定値の平均値である。比較例については、軸方向中心にて測定した。
焼付面圧及び摩耗量についてはそれぞれ焼付試験及び摩耗試験で計測した。
As Examples 1 to 4 and Comparative Examples 1 and 2, the nano-in data hardness and surface roughness of the resin coating layer in the slide bearing produced according to each condition were measured, and the seizure surface pressure and the wear amount were tested.
The nanoindenter hardness and surface roughness are measured values at the axial center of the bearing at the center of the bearing in the axial direction, and both axial ends are measured from the axial end of the bearing to the axial length of the bearing. 10% of the average value of the measured values at the respective positions on the axial center side of the bearing. About the comparative example, it measured in the axial direction center.
The seizure surface pressure and the wear amount were measured by a seizure test and a wear test, respectively.

(ナノインデンター硬さ試験)
樹脂被覆層のナノインデンター試験は超微小硬度計(株式会社エリオニクス製)を用いて以下の条件で行い、軸方向中央部と軸方向両端部におけるナノインデンター硬さを測定した。
測定温度:23℃
負荷荷重:1000mg
ステップインターバル:20msec
分割数:500
(Nanoindenter hardness test)
The nanoindenter test of the resin coating layer was performed under the following conditions using an ultra-micro hardness meter (manufactured by Elionix Co., Ltd.), and the nanoindenter hardness at the axial center and both axial ends was measured.
Measurement temperature: 23 ° C
Applied load: 1000mg
Step interval: 20 msec
Number of divisions: 500

(焼付試験)
焼付試験は軸受焼付試験機を用いて以下の条件で行った。
回転数:8000rpm
潤滑油:0W−20
給油温度:120℃
荷重:3分毎に3kNずつ荷重漸増
(Baking test)
The seizure test was performed under the following conditions using a bearing seizure tester.
Rotation speed: 8000rpm
Lubricating oil: 0W-20
Lubrication temperature: 120 ° C
Load: Gradually increase by 3 kN every 3 minutes

(表面粗さ試験)
樹脂被覆層の軸方向中央部と軸方向両端部における表面粗さは、JIS B 061:2001に準拠し、算術平均粗さRaを測定した。
(Surface roughness test)
The surface roughness at the axial center and both axial ends of the resin coating layer was measured in accordance with JIS B 061: 2001, and the arithmetic average roughness Ra was measured.

(摩耗試験)
摩耗試験は片当たり摩耗試験機を用いて以下の条件で行った。なお、測定箇所は軸方向中央部である。
回転数:0rpm(1分保持)→1200rpm(1分保持)→0rpm(1分保持)のサイクル試験
潤滑油:0W−20
給油温度:100℃
荷重:4.41kN
試験時間:100時間
(Abrasion test)
The wear test was performed using the wear tester per piece under the following conditions. In addition, a measurement location is an axial direction center part.
Rotational speed: 0 rpm (1 minute hold) → 1200 rpm (1 minute hold) → 0 rpm (1 minute hold) cycle test Lubricating oil: 0W-20
Lubrication temperature: 100 ° C
Load: 4.41kN
Test time: 100 hours

上記各試験の結果を表1に示す。   The results of the above tests are shown in Table 1.

Figure 0005878061
Figure 0005878061

表1より、軸方向中央部における樹脂被覆層の硬さを軸方向両端部と比べて高めた実施例のすべり軸受では、比較例に比べて耐焼付性及び耐摩耗性が向上した。また、実施例では中央部の表面粗さが小さくなり、低摩擦性も実現しうることが分かる。
このように本発明のすべり軸受けは、軸方向中央部と両端部とで樹脂被覆層の硬さを変えることにより、それぞれの部位に異なる特長を付与し、相補的な関係として両立させることで、すべり軸受全体の性能を向上させたものである。
From Table 1, in the slide bearing of the example in which the hardness of the resin coating layer in the axial central portion was higher than that of the axial end portions, the seizure resistance and the wear resistance were improved as compared with the comparative example. Moreover, in the Example, it turns out that the surface roughness of a center part becomes small and low friction property can also be implement | achieved.
Thus, the sliding bearing of the present invention, by changing the hardness of the resin coating layer at the axial center and both ends, to give different features to each part, to achieve both as a complementary relationship, It improves the performance of the entire plain bearing.

本発明は、すべり軸受における樹脂被覆層の軸方向中央部を軸方向両端部よりも硬くすることにより、中央部では耐摩耗性の向上と低摩擦性の実現を担い、両端部では耐焼付性すなわちなじみ性の向上を担った、優れたすべり軸受を提供するものである。
軸と軸受が接触する軸方向両端部における高いなじみ性と、軸方向中央部の硬い樹脂被覆層による耐摩耗性によって、起動停止エンジンなどの高性能な自動車やその他の産業機械用のエンジン用すべり軸受に採用される可能性は大きい。
In the present invention, the axial central portion of the resin coating layer in the slide bearing is harder than both axial end portions, thereby improving wear resistance and realizing low friction at the central portion, and seizure resistance at both end portions. That is, the present invention provides an excellent slide bearing that has improved the conformability.
Sliding for engines for high-performance automobiles such as start / stop engines and other industrial machines due to high conformability at both axial ends where the shaft and bearing contact, and wear resistance due to the hard resin coating layer at the axial center. The possibility of being used for bearings is great.

1 すべり軸受
101 裏金鋼
102 軸受合金層
103 樹脂被覆層
104 マスキング
A 軸方向端部
B 軸方向中央部
C 軸方向
D しゅう動方向(円周方向)
DESCRIPTION OF SYMBOLS 1 Sliding bearing 101 Back metal 102 Bearing alloy layer 103 Resin coating layer 104 Masking A Axial end part B Axial center part C Axial direction D Sliding direction (circumferential direction)

Claims (9)

裏金鋼と前記裏金鋼上に設けられた軸受合金層とを有するすべり軸受基材上の全面に、バインダー樹脂及び固体潤滑剤を含む樹脂被覆層が設けられたすべり軸受であって、前記樹脂被覆層は軸方向中央部の硬度が軸方向両端部の硬度よりも高い、すべり軸受。 A slide bearing having a resin coating layer containing a binder resin and a solid lubricant on the entire surface of a slide bearing substrate having a back metal and a bearing alloy layer provided on the back metal, the resin coating The layer is a plain bearing in which the hardness at the center in the axial direction is higher than the hardness at both ends in the axial direction. 前記樹脂被覆層の軸方向の幅寸法を1としたときに、前記軸方向両端部の幅寸法の比が0.3以上0.7以下である、請求項1に記載のすべり軸受。   2. The plain bearing according to claim 1, wherein a ratio of width dimensions at both ends in the axial direction is 0.3 or more and 0.7 or less, where an axial width dimension of the resin coating layer is 1. 3. 前記樹脂被覆層の軸方向中央部のナノインデンター硬さが軸方向両端部のナノインデンター硬さよりも0.1GPa以上高い、請求項1又は2に記載のすべり軸受。   3. The plain bearing according to claim 1, wherein a nanoindenter hardness at a central portion in the axial direction of the resin coating layer is 0.1 GPa or more higher than a nanoindenter hardness at both axial end portions. 前記樹脂被覆層の軸方向中央部の表面粗さが0.5μmRa以下である、請求項1〜3のいずれか1項に記載のすべり軸受。   The plain bearing of any one of Claims 1-3 whose surface roughness of the axial direction center part of the said resin coating layer is 0.5 micrometerRa or less. 前記樹脂被覆層の軸方向の一方の端部の幅寸法に対する他方の端部の幅寸法の比が0.8以上1.25以下である、請求項1〜4のいずれか1項に記載のすべり軸受。   The ratio of the width dimension of the other edge part with respect to the width dimension of the one edge part of the axial direction of the said resin coating layer is 0.8 or more and 1.25 or less, The any one of Claims 1-4. Slide bearing. 前記樹脂被覆層の軸方向の一方の端部のナノインデンター硬さに対する他方の端部のナノインデンター硬さの比が0.8以上1.25以下である、請求項1〜5のいずれか1項に記載のすべり軸受。   The ratio of the nano indenter hardness of the other end part with respect to the nano indenter hardness of the one end part of the axial direction of the said resin coating layer is 0.8 or more and 1.25 or less any one of Claims 1-5 2. A plain bearing according to item 1. 前記固体潤滑剤が二硫化モリブデン及びグラファイトのうち少なくとも一方を含み、樹脂被覆層における固体潤滑剤の含有量が総量で20〜60体積%である、請求項1〜6のいずれか1項に記載のすべり軸受。   The solid lubricant contains at least one of molybdenum disulfide and graphite, and the solid lubricant content in the resin coating layer is 20 to 60% by volume in total. Plain bearings. 前記樹脂被覆層に占める前記固体潤滑剤の含有量が、軸方向中央部に対し軸方向端部の方が大きい、請求項7に記載のすべり軸受。   The plain bearing according to claim 7, wherein a content of the solid lubricant in the resin coating layer is larger at an axial end portion than at an axial central portion. 裏金鋼と前記裏金鋼上に設けられた軸受合金層とを有するすべり軸受基材の、軸受合金層の軸方向中央部面に、バインダー樹脂及び固体潤滑剤を含む樹脂組成物をしゅう動方向の全面にわたって塗布する工程、前記軸受合金層の全面に、固体潤滑剤を含む樹脂組成物を塗布する工程、乾燥工程、焼成工程及び加圧工程を含む、すべり軸受の製造方法。 A sliding bearing base material having a backing metal and a bearing alloy layer provided on the backing steel, a resin composition containing a binder resin and a solid lubricant in the sliding direction is provided on the axially central portion surface of the bearing alloy layer . A method for manufacturing a sliding bearing, comprising: a step of applying over the entire surface; a step of applying a resin composition containing a solid lubricant to the entire surface of the bearing alloy layer; a drying step; a firing step;
JP2012078191A 2012-03-29 2012-03-29 Plain bearing Expired - Fee Related JP5878061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012078191A JP5878061B2 (en) 2012-03-29 2012-03-29 Plain bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012078191A JP5878061B2 (en) 2012-03-29 2012-03-29 Plain bearing

Publications (2)

Publication Number Publication Date
JP2013204807A JP2013204807A (en) 2013-10-07
JP5878061B2 true JP5878061B2 (en) 2016-03-08

Family

ID=49524102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012078191A Expired - Fee Related JP5878061B2 (en) 2012-03-29 2012-03-29 Plain bearing

Country Status (1)

Country Link
JP (1) JP5878061B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2521004B (en) * 2013-12-06 2020-03-25 Mahle Int Gmbh Bearing element and method for manufacturing a bearing element
JP2016223565A (en) * 2015-06-01 2016-12-28 大豊工業株式会社 Sliding member for internal combustion engine
EP3467328A4 (en) * 2016-06-01 2020-02-12 Toyo Seikan Group Holdings, Ltd. Sliding structure and method for producing same
CA3127964A1 (en) * 2019-02-07 2020-08-13 Cascade Corporation Slide bearing assemblies
KR20210045856A (en) * 2019-10-17 2021-04-27 현대자동차주식회사 Copper alloy for laser cladding valve sheet
JP7344093B2 (en) * 2019-11-07 2023-09-13 大同メタル工業株式会社 sliding member

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11182549A (en) * 1997-12-20 1999-07-06 Daido Metal Co Ltd Slide bearing
JP2001317549A (en) * 2000-05-02 2001-11-16 Daido Metal Co Ltd Method of forming surface layer of sliding member
JP2007263311A (en) * 2006-03-29 2007-10-11 Ntn Corp Dynamic pressure bearing device
JP4805804B2 (en) * 2006-12-21 2011-11-02 大同メタル工業株式会社 Coated bearing manufacturing method and manufacturing apparatus
JP2009097598A (en) * 2007-10-16 2009-05-07 Ntn Corp Sliding bearing and its manufacturing method

Also Published As

Publication number Publication date
JP2013204807A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
JP6122488B2 (en) Sliding member
JP5878061B2 (en) Plain bearing
JP6177392B2 (en) Half bearing
JP4650893B2 (en) Plain bearing
WO2013047800A1 (en) Sliding member and sliding material composition
WO2013039177A1 (en) Sliding member and sliding material composition
WO2004063584A1 (en) Sliding bearing
EP2264316A1 (en) Swash plate and method of manufacturing same
GB2345095A (en) Sliding bearing including a resin layer consisting of soft metal particles dispersed in a thermosetting resin
WO2008062987A1 (en) Bearing having improved consume resistivity and manufacturing method thereof
JP2009150518A (en) Sliding member for thrust bearing
JP2001343022A (en) Double sliding material
JP5878062B2 (en) Plain bearing
JP5897961B2 (en) Plain bearing
JP6333305B2 (en) Sliding member
EP1411109A1 (en) Solid lubricant on the basis of RBC powder
JP5816121B2 (en) Slide bearing and manufacturing method thereof
JP2018035838A (en) Thrust washer
EP3798459A1 (en) Sliding spline shaft device
WO2017094810A1 (en) Sliding member and swash plate type compressor
JP3513273B2 (en) Gas bearing unit
WO2020162491A1 (en) Sliding member
JP2007255312A (en) Sliding member and its manufacturing method
JP2015092089A (en) Slide member
JP2020125839A (en) Slide member

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140923

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160127

R150 Certificate of patent or registration of utility model

Ref document number: 5878061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees