JP5873345B2 - End mill - Google Patents

End mill Download PDF

Info

Publication number
JP5873345B2
JP5873345B2 JP2012021203A JP2012021203A JP5873345B2 JP 5873345 B2 JP5873345 B2 JP 5873345B2 JP 2012021203 A JP2012021203 A JP 2012021203A JP 2012021203 A JP2012021203 A JP 2012021203A JP 5873345 B2 JP5873345 B2 JP 5873345B2
Authority
JP
Japan
Prior art keywords
outer peripheral
blade
end mill
flat surface
tool body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012021203A
Other languages
Japanese (ja)
Other versions
JP2013158859A (en
Inventor
隆司 後藤
隆司 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NS Tool Co Ltd
Original Assignee
NS Tool Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NS Tool Co Ltd filed Critical NS Tool Co Ltd
Priority to JP2012021203A priority Critical patent/JP5873345B2/en
Publication of JP2013158859A publication Critical patent/JP2013158859A/en
Application granted granted Critical
Publication of JP5873345B2 publication Critical patent/JP5873345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Milling Processes (AREA)

Description

本発明は、超硬合金、セラミックス、ガラス等の硬脆性材料や高硬度鋼材等を切削加工するのに適するエンドミルに関する。   The present invention relates to an end mill suitable for cutting hard brittle materials such as cemented carbide, ceramics, glass, and high hardness steel materials.

近年、超精密機械加工分野において、横送り加工して高精度な金型および部品等を切削加工する際、被削材として超硬合金、セラミックス、ガラス等の硬脆材や高硬度鋼材を用いて、高い表面粗さで高精度の仕上げ切削加工を行うエンドミルが要望されている。
このような硬脆材等からなる被削材をエンドミルで切削加工する場合、粗仕上げ加工を行う際に深く切り込みが入らないので、薄い切り込みを行うことで加工していた。
In recent years, in the field of ultra-precision machining, when cutting high-precision dies and parts by cross-feeding, hard brittle materials such as cemented carbide, ceramics and glass, and high-hardness steel materials are used as work materials. Therefore, there is a demand for an end mill that performs high-precision finish cutting with high surface roughness.
When a work material made of such a hard and brittle material is cut with an end mill, a deep cut is not made when rough finishing is performed.

ところで、高硬度刃を有するエンドミルとして、従来、鋳鉄や硬化した鋼等を切削加工するための特許文献1に記載されたエンドミルが提案されている。このエンドミルは、略円柱状の工具本体の先端面に小径柱状のタングを形成し、このタングに略円筒形状でcBNまたはPCDの切れ刃を備えた刃部が嵌合されてろう付けされて構成されている。
この刃部はcBNまたはPCDの粉末を高温高圧の下で無垢の環状ボディーに焼結することで製造するか、或いは高温高圧の下でcBNまたはPCDの層を超硬合金である基板に結合してチップに切り出すことで製造している。
これによってろう付け接合部破断の危険を最小限にして低価格のエンドミルを製造できるとしている。
By the way, as an end mill having a high hardness blade, an end mill described in Patent Document 1 for cutting cast iron, hardened steel and the like has been proposed. This end mill is formed by forming a small-diameter columnar tongue on the tip surface of a substantially cylindrical tool body, and a braided portion having a substantially cylindrical shape and a cBN or PCD cutting edge is fitted to this tongue and brazed. Has been.
The blade is manufactured by sintering cBN or PCD powder into a solid annular body under high temperature and high pressure, or bonding the cBN or PCD layer to a substrate made of cemented carbide under high temperature and high pressure. It is manufactured by cutting into chips.
This makes it possible to manufacture a low-cost end mill with minimal risk of brazing joint breakage.

特表2002−504027号公報Special table 2002-504027 gazette

しかしながら、特許文献1に記載されたエンドミルでは、工具本体のタングにろう付けされた超硬合金製の円筒状をなす刃部の外周面に、cBNまたはPCDの粉末を焼結するか高温高圧下で結合することで略ドット状の刃部を形成している。このようなエンドミルを用いて、被削材として超硬合金、セラミックス、ガラス等の硬脆材や高硬度鋼材等を切り込み加工すると、被削材が硬いので、深い切り込みができない上に切刃の寿命が短いために、長期に亘って高精度な加工が困難であった。
しかも、エンドミルの切刃外径寸法が例えば2mm以下、或いは0.5mm以下等の極微細外径のエンドミルになると上述した円筒状や円柱状の刃部を形成しても切削抵抗が大きくなるために極微細加工が困難であり折損を生じ易いという欠点もあった。
However, in the end mill described in Patent Document 1, cBN or PCD powder is sintered on the outer peripheral surface of a cylindrical blade made of cemented carbide brazed to the tongue of the tool body, or under high temperature and high pressure. Are combined to form a substantially dot-shaped blade portion. Using such an end mill, when cutting a hard brittle material such as cemented carbide, ceramics, or glass as a work material or a high-hardness steel material, the work material is hard. Due to the short life, high-precision machining has been difficult for a long time.
In addition, if the end mill has an extremely fine outer diameter such as 2 mm or less, or 0.5 mm or less, the cutting resistance increases even if the above-described cylindrical or columnar blade portions are formed. However, there are also disadvantages that ultrafine processing is difficult and breakage tends to occur.

本発明は、このような実情に鑑みて、被削材が高硬度の硬脆材や高硬度鋼材等であっても高精度な加工を行えて長寿命なエンドミルを提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a long-life end mill that can perform high-precision processing even if the work material is a hard brittle material or a high hardness steel material. .

本発明によるエンドミルは、工具本体は軸直交断面が略六角形をなしていて先端部において対向する二側面が先端面に向けて縮径されたテーパ面と第一側面でそれぞれ形成されており、前記工具本体の先端部の角部に2枚の外周刃を対向して形成し、該外周刃の回転方向前方側に負角のすくい角を有するすくい面を形成し、前記外周刃の回転方向後方に正角の逃げ角を有する逃げ面を形成し、前記先端面に2枚の外周刃の頂点を含む略六角形状の平坦面を形成すると共に、前記平坦面を前記2枚の外周刃の頂点を結ぶ最大長さの対角線に交差する方向に分割すると共に前記工具本体の回転軸線を含む凹溝が形成され、前記2枚の外周刃間の最大外径寸法Dは0.5mm以下であり、分割された前記平坦面と工具本体の側面との交差稜線部に底刃を形成し、該底刃は前記外周刃の頂点から前記平坦面と前記外周刃のすくい面との交差稜線部をなす第一底刃と前記平坦面と前記第一側面との交差稜線部をなす第二底刃とを凸状に形成したことを特徴とする。
本発明によるエンドミルは、回転しながら横送りすることで2枚の外周刃で被削材の側壁を切削加工すると共に底刃で加工面を仕上げ加工するものであり、外周刃のすくい角は負角であるために薄く切り屑を切削加工し底刃で良好な仕上げ面が得られると共に、工具剛性が高く寿命が長い。外周刃で切削された切り屑は側面のすくい面を走行して基端側に送られる。また、底刃で被削材の加工面を仕上げ加工すると共にその逃げ面に形成された平坦面で加工面を擦ることで良好な仕上げ面が得られる。しかも、被削材の切削加工に際し、平坦面の回転軸線を含む領域に凹溝を形成したから切削抵抗を低減できる。
In the end mill according to the present invention, the tool body has a substantially hexagonal axial cross section, and two side surfaces facing each other at the tip are formed by a tapered surface and a first side each having a diameter reduced toward the tip surface, Two outer peripheral blades are formed facing the corner of the tip of the tool body, a rake face having a negative rake angle is formed on the front side in the rotational direction of the outer peripheral blade, and the rotational direction of the outer peripheral blade A clearance surface having a positive clearance angle is formed on the rear side , a substantially hexagonal flat surface including the apexes of the two outer peripheral blades is formed on the tip surface, and the flat surface is formed on the two outer peripheral blades. A groove is formed that is divided in a direction intersecting the diagonal of the maximum length connecting the apexes and includes the rotation axis of the tool body, and the maximum outer diameter D between the two outer peripheral blades is 0.5 mm or less. There, bottom intersecting ridgeline portions between the divided side of the flat surface and the tool body Forming a bottom blade of the intersection ridge line between the first bottom cutting edge and the flat surface and the first side surface forming the intersection ridge line between the rake face and the flat surface from the apex of the outer peripheral edge said peripheral cutting edge The second bottom blade is formed in a convex shape .
The end mill according to the present invention cuts the side wall of the work material with two outer peripheral blades by laterally feeding while rotating, and finishes the processed surface with the bottom blade, and the rake angle of the outer peripheral blade is negative. Since it is a corner, it is possible to cut a thin chip and obtain a good finished surface with a bottom blade, and has a high tool rigidity and a long life. The chips cut by the outer peripheral blade travel on the side rake face and are sent to the base end side. Also, a finished surface can be obtained by finishing the processed surface of the work material with the bottom blade and rubbing the processed surface with a flat surface formed on the flank. In addition, the cutting resistance can be reduced because the concave grooves are formed in the region including the rotation axis of the flat surface when cutting the work material.

しかも、2枚の外周刃間の最大外径寸法Dは0.5mm以下である。
本発明によるエンドミルは先端部に2枚の外周刃を対向させた平坦面を備えた刃先部を有した形状であるから、最大外径が0.5mm以下であるため極小径のエンドミルとして被削材の極微細加工を精度よく行うことができる。一方、最大外径が0.5mmより大きいと切削抵抗が大きく損傷する恐れが生じる。
Moreover, the maximum outer diameter dimension D between the two outer peripheral blades is 0.5 mm or less .
Since the end mill according to the present invention has a cutting edge portion having a flat surface with two outer peripheral blades facing each other at the tip portion, the maximum outer diameter is 0.5 mm or less, so that it can be cut as an extremely small end mill. It is possible to perform ultrafine processing of materials with high accuracy. On the other hand, if the maximum outer diameter is larger than 0.5 mm, the cutting resistance may be greatly damaged.

また、2枚の外周刃間の最大外径寸法をDとして、外周刃は外側に突出する角部に形成され、平坦面における1の外周刃の頂点と凹溝とを結ぶ長さLは0.1D〜0.45Dの範囲に設定されていることが好ましい。
長さLが0.1D〜0.45Dの範囲であれば、工具摩耗と切削抵抗と平坦面の欠損を抑制して工具寿命を確保でき、長さLが0.1Dより小さいと工具摩耗による工具寿命が著しく低下し平坦面の欠損を生じるおそれがあり、0.45Dより大きいと切削抵抗が増大して加工面の劣化を招くおそれがある。
The maximum outer diameter dimension between the two outer peripheral blades is D, the outer peripheral blades are formed at the corners protruding outward, and the length L connecting the apex of one outer peripheral blade and the groove on the flat surface is 0. It is preferably set in the range of 1D to 0.45D.
If the length L is in the range of 0.1D to 0.45D, tool wear, cutting resistance and chipping of the flat surface can be suppressed, and the tool life can be ensured. If the length L is less than 0.1D, the tool wears. There is a risk that the tool life will be remarkably reduced and a flat surface will be lost. If it is larger than 0.45D, the cutting resistance will increase and the processing surface may be deteriorated.

また、2枚の外周刃間の最大外径寸法をDとして、工具本体の先端部において、2枚の外周刃の頂点を結ぶ対角線に直交する方向における底刃の幅(平坦面の幅)eは1/4D〜1/2Dの範囲に設定されていることが好ましい。
底刃の幅eが1/4D未満であると工具剛性が著しく低下し欠損を生じるおそれがあり、1/2Dを越えると切削抵抗が増加して工具欠損と加工面の劣化を招く恐れがある。
Further, the maximum outer diameter dimension between the two outer peripheral blades is D, and the width of the bottom blade in the direction perpendicular to the diagonal line connecting the apexes of the two outer peripheral blades (the width of the flat surface) e at the tip of the tool body. Is preferably set in the range of 1 / 4D to 1 / 2D.
If the width e of the bottom blade is less than 1 / 4D, the tool rigidity may be significantly reduced and the chipping may occur. If the width e exceeds 1 / 2D, the cutting resistance may increase, leading to tool chipping and deterioration of the machined surface. .

また、2枚の外周刃間の最大外径寸法をDとして、工具本体の先端部において、2枚の外周刃の頂点を結ぶ対角線に直交する方向における底刃に続く回転軸線方向の側面の長さ(底刃深さ)dが0.05D〜0.5Dの範囲に設定されていることが好ましい。
底刃の長さdが0.05Dより小さいと切り屑ポケットが極端に小さくなり切り屑詰まりによる欠損を生じるおそれがあり、長さdが0.5Dより大きいと工具剛性が著しく低下して欠損を生じるおそれがある。
The maximum outer diameter dimension between the two outer peripheral blades is D, and the length of the side surface in the rotational axis direction following the bottom blade in the direction perpendicular to the diagonal line connecting the apexes of the two outer peripheral blades at the tip of the tool body It is preferable that the depth (bottom blade depth) d is set in a range of 0.05D to 0.5D.
If the length d of the bottom blade is smaller than 0.05D, the chip pocket may become extremely small and there is a risk of chipping due to chip clogging. If the length d is larger than 0.5D, the tool rigidity will be significantly reduced and chipping will occur. May occur.

また、2枚の外周刃間の最大外径寸法をDとして、回転軸線方向の凹溝の深さcが0.05D〜0.5Dの範囲に設定されていることが好ましい。
凹溝の深さcが0.05Dより小さいと凹溝による切り屑ポケットが極端に小さくなり切り屑詰まりによる欠損を生じるおそれがあり、深さcが0.5Dより大きいと工具剛性が著しく低下して欠損を生じるおそれがある。
Moreover, it is preferable that the maximum outer diameter dimension between the two outer peripheral blades is D, and the depth c of the concave groove in the rotation axis direction is set in a range of 0.05D to 0.5D.
If the depth c of the concave groove is smaller than 0.05D, the chip pocket due to the concave groove may become extremely small, and chipping may occur, and if the depth c is larger than 0.5D, the tool rigidity is significantly reduced. There is a risk of loss.

また、外周刃のすくい面のすくい角aは−30°〜−80°の範囲に設定されていることが好ましい。
すくい角aが−30°より負角が小さいと外周刃の剛性が低下して欠損を生じるおそれがあり、−80°より負角が大きいと切り屑ポケットが極端に小さくなって切り屑詰まりによる欠損を生じるおそれがある。
Further, the rake angle a of the rake face of the outer peripheral blade is preferably set in the range of −30 ° to −80 °.
If the rake angle a is smaller than -30 °, the rigidity of the outer peripheral blade may be reduced, and the chip may be damaged. If the rake angle a is larger than -80 °, the chip pocket becomes extremely small, resulting in chip clogging. May cause defects.

また、外周刃の逃げ面の逃げ角bは5°〜60°の範囲に設定されていることが好ましい。
逃げ角bが5°より小さいと逃げ量が極端に小さくなり切削面を擦過して劣化させ、逃げ角bが60°より大きいと切刃剛性が著しく低下し欠損を生じるおそれがある。
Moreover, it is preferable that the clearance angle b of the flank face of the outer peripheral blade is set in a range of 5 ° to 60 °.
If the clearance angle b is smaller than 5 °, the clearance amount becomes extremely small and the cutting surface is rubbed and deteriorated. If the clearance angle b is larger than 60 °, the rigidity of the cutting edge is remarkably lowered and there is a possibility of causing a defect.

また、外周刃には丸ランドまたは面取りされたフラット面が形成されていることが好ましい。
この場合、外周刃の切り込み切削性を確保できると共に工具剛性と切刃寿命を長く維持できる。しかも、丸ランドまたはフラット面の幅は0.002〜0.03mmの範囲に設定されていることが好ましく、これらの範囲であれば、上述した特性を確実に確保できる。
Moreover, it is preferable that the outer peripheral blade is formed with a round land or a chamfered flat surface.
In this case, the cutting ability of the outer peripheral blade can be ensured and the tool rigidity and the cutting blade life can be maintained long. Moreover, the width of the round land or the flat surface is preferably set in the range of 0.002 to 0.03 mm, and within these ranges, the above-described characteristics can be reliably ensured.

また、工具本体の先端部において、2枚の外周刃の頂点を結ぶ対角線に直交する方向の仮想線を基準として、凹溝が延びる角度fは0°〜30°の範囲に設定されていることが好ましい。
凹溝の角度fの範囲が上述した範囲であると、工具本体の回転方向に向けて凹溝が形成されることになるから底刃による切削抵抗が低減すると共に切り屑の排出性が良好である。
In addition, the angle f at which the groove extends is set in a range of 0 ° to 30 ° with reference to an imaginary line perpendicular to a diagonal line connecting the apexes of the two outer peripheral blades at the tip of the tool body. Is preferred.
When the range of the angle f of the groove is the above-described range, the groove is formed in the rotation direction of the tool body, so that the cutting resistance by the bottom blade is reduced and the chip discharging property is good. is there.

本発明によるエンドミルによれば、工具本体の先端部の平坦面角部に2枚の外周刃を対向して形成し、外周刃の回転方向前方側に負角のすくい角を有するすくい面を形成し、平坦面は工具本体の回転軸線を含む領域に凹溝で分割され、分割された平坦面と工具本体の側面との交差稜線部に底刃を形成したから、工具本体の外径が極微細径であっても対向する外周刃で外周切削すると共に底刃で加工面の仕上げ切削をでき、外周刃による被削材への切り込みは比較的浅く切り屑は側面のすくい面を通って基端側に逃げ、底刃による切削で高精度の仕上げ加工を行える。しかも、外周刃と底刃の剛性が大きく強度が高いので刃先の欠損や摩耗を防止して工具剛性が高く長寿命である。
また、工具本体の先端の平坦面を底刃の逃げ面としたから、底刃の刃先強度が大きく底刃による切削加工時に逃げ面をなす平坦面で加工面を擦過して仕上がり精度が高くなり、被削材が硬脆材や高硬度鋼材等であっても比較的浅い切り込み加工で高精度な仕上げ加工を行えて長寿命を得られる。
According to the end mill of the present invention, two outer peripheral blades are formed opposite to the flat surface corner of the tip of the tool body, and a rake face having a negative rake angle is formed on the front side in the rotational direction of the outer peripheral blade. The flat surface is divided into grooves including the rotation axis of the tool body, and a bottom blade is formed at the intersection ridge line between the divided flat surface and the side surface of the tool body. Even if it is a fine diameter, the outer peripheral cutting can be performed with the opposing outer peripheral blade and the machining surface can be finished with the bottom blade. The cutting with the outer peripheral blade is relatively shallow and the chips pass through the side rake face. Escape to the end and finish with high precision by cutting with the bottom blade. In addition, since the rigidity of the outer peripheral blade and the bottom blade is large and the strength is high, chipping and wear of the cutting edge are prevented, and the tool rigidity is high and the life is long.
In addition, since the flat surface at the tip of the tool body is used as the flank surface of the bottom blade, the cutting edge of the bottom blade is large, and the machining surface is rubbed with the flat surface that forms the flank surface when cutting with the bottom blade, resulting in higher finishing accuracy. Even if the work material is a hard brittle material or a high hardness steel material, a highly precise finishing process can be performed with a relatively shallow cutting process and a long life can be obtained.

本発明の実施形態によるエンドミルの底面図である。It is a bottom view of the end mill by the embodiment of the present invention. 図1に示すエンドミルの要部側面図である。It is a principal part side view of the end mill shown in FIG. 図2に示すエンドミルの側面に直交する方向の要部側面図である。It is a principal part side view of the direction orthogonal to the side surface of the end mill shown in FIG. 外周刃の第一変形例を示す角部の要部先端面図である。It is a principal part front end view of the corner | angular part which shows the 1st modification of an outer periphery blade. 刃先部の先端部の第二変形例を示す底面図である。It is a bottom view which shows the 2nd modification of the front-end | tip part of a blade edge | tip part.

以下、本発明の実施の形態について図1乃至図3に沿って詳述する。
図1及び図2において、本実施形態によるエンドミル1は、シャンク部材を有する工具本体2の軸直交断面が例えば略六角形、ここでは正六角形をなしていて、その先端側に刃部3が固着されている。刃部3は基端側より先端側に向けて断面六角形の形状で次第に縮径すると共に先端付近で一段拡径されてなる刃先部3aを有している。なお、刃部3は工具本体2に含まれる。また、工具本体2はその中心の回転軸線O回りに回転可能とされている。
この工具本体2は例えば超硬合金からなるものとし、そのシャンク部材の先端側に一体成形(同時焼結)によって刃部3を固着している。或いは、工具本体2はシャンク部材の先端側に刃部3をろう付けして形成してもよい。刃部3は、cBN焼結体やダイヤモンド焼結体(PCD)等を一体焼結したものであり、或いは超硬合金等の基材に一般硬質皮膜、ダイヤモンドコーティングまたはダイヤモンド電着を施したものを用いる。なお、刃部3を含めた工具本体2全体を上記いずれかの素材で一体形成してもよい。
本実施形態では、刃部3はダイヤモンド焼結体(PCD)からなるものである。
Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 3.
1 and 2, in the end mill 1 according to the present embodiment, the tool body 2 having a shank member has a cross section orthogonal to the axis, for example, a substantially hexagonal shape, here a regular hexagonal shape, and the blade portion 3 is fixed to the tip side thereof. Has been. The blade portion 3 has a blade edge portion 3a which is gradually reduced in diameter in a hexagonal cross section from the proximal end side toward the distal end side and is enlarged by one step near the distal end. The blade portion 3 is included in the tool body 2. Further, the tool body 2 is rotatable around the rotation axis O at the center.
The tool body 2 is made of, for example, a cemented carbide, and the blade portion 3 is fixed to the front end side of the shank member by integral molding (simultaneous sintering). Alternatively, the tool body 2 may be formed by brazing the blade portion 3 to the tip side of the shank member. The blade 3 is obtained by integrally sintering a cBN sintered body, a diamond sintered body (PCD), or the like, or a base material such as cemented carbide with a general hard film, diamond coating or diamond electrodeposition. Is used. In addition, you may integrally form the tool main body 2 whole including the blade part 3 with one of the said raw materials.
In this embodiment, the blade part 3 consists of a diamond sintered compact (PCD).

工具本体2の先端側に形成された刃部3は六面の側面10によって六角形柱状を形成しており、その軸直交断面形状が略正六角形である。刃部3の先端側は拡径された刃先部3aとされ、その外周面の対向する角部に2本の稜線が設けられ、これらは外周刃6とされている。外周刃6は図2に示すように回転軸線Oと平行な直線をなすストレート状またはバックテーパ状に形成されている。
そして、図1に示す刃先部3aの底面において、対向する2本の外周刃6の先端縁である頂点6aを結ぶ対角線Mを最大長さとしてその両側の幅が狭い変形略六角形状の平坦面7が形成されている。対向する2本の外周刃6の頂点6aを結ぶ対角線Mの距離をDとして、この距離Dが2つの外周刃6の回転軌跡で形成する刃先部3aの最大外径をなす。また、外周刃6の回転方向前方に設けられた側面10はすくい面14を構成する。
The blade portion 3 formed on the distal end side of the tool body 2 forms a hexagonal column shape by the six side surfaces 10, and its axial orthogonal cross-sectional shape is a substantially regular hexagon. The distal end side of the blade part 3 is an enlarged blade edge part 3 a, and two ridge lines are provided at opposite corners of the outer peripheral surface, which are the outer peripheral blades 6. As shown in FIG. 2, the outer peripheral blade 6 is formed in a straight shape or a back taper shape that forms a straight line parallel to the rotation axis O.
Then, on the bottom surface of the blade edge portion 3a shown in FIG. 1, a deformed substantially hexagonal flat surface having a diagonal line M connecting the apexes 6a, which are the tip edges of the two opposing outer peripheral blades 6, with the maximum length being narrow on both sides. 7 is formed. The distance D of the diagonal line M connecting the vertices 6a of the two opposing outer peripheral blades 6 is D, and this distance D forms the maximum outer diameter of the cutting edge portion 3a formed by the rotation trajectories of the two outer peripheral blades 6. Further, the side surface 10 provided in front of the outer peripheral blade 6 in the rotational direction constitutes a rake surface 14.

また、平坦面7の対角線Mを挟む両側は、図1及び図3に示すように正六角形断面の各側面10を有する刃先部3aの対向する二側面10を、回転軸線Oに沿って略同一幅で所定長さdだけ略平行に切除してなる第一側面8が形成され、更に第一側面8の基端側をテーパ状に幅広となるよう切除して略正六角形の側面10に接続したテーパ面9が形成されている。これら第一側面8及びテーパ面9に隣接する各二つの側面は前述した六角形柱状の側面10とされている。   Further, the two sides 10 across the diagonal M of the flat surface 7 are substantially the same along the rotation axis O with the two opposite side surfaces 10 of the blade edge portion 3a having the side surfaces 10 of a regular hexagonal cross section as shown in FIGS. A first side face 8 is formed by cutting a predetermined length d in parallel with a width, and further, the base end side of the first side face 8 is cut so as to be tapered and connected to a substantially regular hexagonal side face 10. A tapered surface 9 is formed. Each of the two side surfaces adjacent to the first side surface 8 and the tapered surface 9 is the hexagonal columnar side surface 10 described above.

次に、図1に示す刃先部3aの底面において、幅の狭い変形略六角形をなす平坦面7の長手方向中央には、回転軸線Oを含んで対角線Mに略直交する方向に切除された凹溝12が形成されている。刃先部3aの先端の平坦面7の回転軸線O付近は回転速度が低く切削抵抗が大きいので、この領域を切除して凹溝12を形成することで加工時の切削抵抗を抑制している。また、凹溝12内に外周刃6や後述する底刃13で切削して生成する切り屑が流入した場合には、凹溝12を通して切り屑を回転方向後方側へ逃がすことができる。そのため、凹溝12は切り屑ポケットとしての役割も果たす。   Next, in the bottom surface of the blade edge portion 3a shown in FIG. 1, the flat surface 7 having a narrow deformed substantially hexagonal shape was cut in the center in the longitudinal direction, including the rotation axis O, in a direction substantially orthogonal to the diagonal line M. A concave groove 12 is formed. Since the rotation speed is low and the cutting resistance is high in the vicinity of the rotation axis O of the flat surface 7 at the tip of the cutting edge portion 3a, the cutting resistance during processing is suppressed by cutting this region to form the concave groove 12. Further, when chips generated by cutting with the outer peripheral blade 6 or the bottom blade 13 described later flow into the concave groove 12, the chips can be released to the rear side in the rotational direction through the concave groove 12. Therefore, the groove 12 also serves as a chip pocket.

そして、外周刃6の頂点6aから刃部3の回転方向前方側の側面と平坦面7との交差稜線は平坦面7の二辺に形成された底刃13とされ、この底刃13は外周刃6の頂点6aから延びて平坦面7と側面10との交差稜線部の第一底刃13aと、平坦面7と第一側面8との交差稜線部の第二底刃13bとで凸状に形成されている。そのため、側面10及び第一側面8は底刃13のすくい面とされている。   The intersecting ridge line between the flat surface 7 and the side surface on the front side in the rotational direction of the blade portion 3 from the apex 6a of the outer peripheral blade 6 is a bottom blade 13 formed on two sides of the flat surface 7, and the bottom blade 13 is the outer periphery. Extending from the apex 6 a of the blade 6, the first bottom blade 13 a at the intersection ridge line portion between the flat surface 7 and the side surface 10 and the second bottom blade 13 b at the intersection ridge line portion between the flat surface 7 and the first side surface 8 are convex. Is formed. Therefore, the side surface 10 and the first side surface 8 are rake surfaces of the bottom blade 13.

外周刃6に対して刃部3の回転方向前方側における側面10はすくい面14であり、外周刃6のすくい角aは例えば−30°〜−80°の範囲の負角に設定されている。
ここで、すくい角aが−30°より負角が小さいと切刃剛性が著しく低下し欠損を生じる恐れがあり、−80°より負角が大きいとより大きな負角になるため切れ味が低下しすくい面14からなる切り屑ポケットが極端に小さくなって切り屑詰まりによる欠損を生じる恐れがある。なお、すくい角aは−45°〜−60°の範囲とするのがより好ましく、この範囲であれば最も良好な結果が得られる。
The side surface 10 on the front side in the rotation direction of the blade portion 3 with respect to the outer peripheral blade 6 is a rake face 14, and the rake angle a of the outer peripheral blade 6 is set to a negative angle in the range of, for example, -30 ° to -80 °. .
Here, if the rake angle a is smaller than −30 °, the rigidity of the cutting edge may be remarkably lowered, and there is a risk of chipping. If the negative angle is larger than −80 °, a larger negative angle results in a decrease in sharpness. There is a possibility that the chip pocket made of the rake face 14 becomes extremely small, resulting in chipping due to chip clogging. The rake angle a is more preferably in the range of −45 ° to −60 °, and the best result is obtained within this range.

また、外周刃6に対して刃部3の回転方向後方側における側面10は逃げ面15とされ、その逃げ角bは5°〜60°の範囲の正角に設定されている。ここで、逃げ角bが5°より小さいと逃げ量が極端に小さくなり切削面を擦過して劣化させることになり、また逃げ角bが60°より大きくなると切刃剛性が著しく低下し、欠損を生じさせるおそれがある。なお、逃げ角bは30°〜45°の範囲とするのがより好ましく、この範囲であれば最も良好な結果が得られる。   Further, the side surface 10 on the rear side in the rotational direction of the blade portion 3 with respect to the outer peripheral blade 6 is a flank 15 and the flank angle b is set to a positive angle in the range of 5 ° to 60 °. Here, if the clearance angle b is smaller than 5 °, the clearance amount becomes extremely small and the cutting surface is rubbed and deteriorated, and if the clearance angle b is larger than 60 °, the cutting edge rigidity is remarkably lowered and the chipping is lost. May be caused. The clearance angle b is more preferably in the range of 30 ° to 45 °, and the best result is obtained within this range.

また、図2に示す刃先部3aの側面視において、底刃13に対して第一側面8と側面10がすくい面を形成し、凹溝12で分割された平坦面7は底刃13の逃げ面を構成する。平坦面7は摩耗によるその面の後退と切削加工面の性状に大きく関係するものであり、側面視における頂点6aから凹溝12までの幅Lは0.1D〜0.45Dの範囲に設定されているから良好な加工面が得られる。幅Lがこの範囲であれば、刃先強度が大きく平坦面7の摩耗を抑制して良好な仕上げ面が得られる。
ここで、幅Lが0.1Dより小さいと刃先強度が小さすぎて折損し易く、0.45Dより大きいと切削抵抗が大きい欠点がある。
2, the first side surface 8 and the side surface 10 form a rake face with respect to the bottom blade 13, and the flat surface 7 divided by the concave groove 12 is a relief of the bottom blade 13. Configure the surface. The flat surface 7 is greatly related to the receding of the surface due to wear and the properties of the machined surface, and the width L from the apex 6a to the groove 12 in the side view is set in the range of 0.1D to 0.45D. Therefore, a good machined surface can be obtained. When the width L is within this range, the cutting edge strength is high and wear of the flat surface 7 is suppressed, and a good finished surface can be obtained.
Here, when the width L is smaller than 0.1D, the cutting edge strength is too small and easily breaks, and when it is larger than 0.45D, there is a disadvantage that the cutting resistance is large.

また、図2において、刃先部3aの先端部の平坦面7を分割して底刃13を仕切る凹溝12の回転軸線O方向の深さcは、0.05D〜0.5Dの範囲に設定されている。凹溝12の深さcが0.05Dより小さいと切り屑が詰まり易く切り屑詰まりによる工具本体2の欠損を生じるおそれがある。一方、深さcが0.5Dを越えると工具剛性が著しく低下して欠損を生じるおそれがある。   In FIG. 2, the depth c in the direction of the rotation axis O of the groove 12 that divides the flat surface 7 at the tip of the blade edge 3 a and partitions the bottom blade 13 is set in the range of 0.05D to 0.5D. Has been. If the depth c of the concave groove 12 is smaller than 0.05D, chips are likely to be clogged, and the tool body 2 may be lost due to clogging. On the other hand, if the depth c exceeds 0.5D, the tool rigidity is remarkably lowered, and there is a possibility of causing a defect.

また、図3において、平坦面7は回転軸線O方向に所定距離dだけほぼ同一幅となるように対向する第一側面8が略平行に形成されて柱状を形成している。この所定距離dを平坦面7における底刃13の深さdとする。この底刃13の深さdは0.05D〜0.5Dの範囲に設定されている。ここで、底刃13の深さdが0.05Dより小さいとすくい面14による切り屑ポケットが極端に小さくなり切り屑詰まりによる欠損を生じるおそれがあり、0.5Dより大きいと工具剛性が著しく低下し欠損を生じるおそれがある。   In FIG. 3, the flat surface 7 is formed in a columnar shape with the first side surfaces 8 facing each other so as to have substantially the same width by a predetermined distance d in the direction of the rotation axis O. This predetermined distance d is defined as the depth d of the bottom blade 13 on the flat surface 7. The depth d of the bottom blade 13 is set in the range of 0.05D to 0.5D. Here, if the depth d of the bottom blade 13 is smaller than 0.05D, the chip pocket due to the rake face 14 may become extremely small and a chipping may occur, and if it is larger than 0.5D, the tool rigidity is remarkably increased. There is a risk of lowering and loss.

また、図1において、平坦面7の幅である底刃13の幅eは1/4D〜1/2Dの範囲に設定されている。幅eが1/4Dより小さいと工具剛性が著しく低下し欠損を生じるおそれがあり、1/2Dより大きいと切削抵抗の増加から工具欠損を起こし切削加工面の劣化を招くおそれがある。   Moreover, in FIG. 1, the width e of the bottom blade 13 which is the width of the flat surface 7 is set in a range of 1 / 4D to 1 / 2D. If the width e is smaller than 1 / 4D, the rigidity of the tool is remarkably lowered and a chipping may occur. If the width e is larger than 1 / 2D, the cutting surface may be increased due to an increase in cutting resistance and the cutting surface may be deteriorated.

なお、本実施形態によるエンドミル1は、刃先部3aにおいて対向する2つの外周刃6の外径Dが0.5mm以下であることが好ましく、例えば50μm以上とされている。そのため、本実施形態によるエンドミル1は2枚刃による極微細径エンドミルであり、刃先部3aの底面が平坦面7に形成され且つその外周面にそれぞれ対向する一対の外周刃6と底刃13とを有する略直線状またはマイナスドライバーのような柱状を呈している。
このようなエンドミル1について外径Dが0.5mmを越える寸法形状に形成することも可能であるが、切削抵抗を抑えるためには外径Dが0.5mm以下であることが好ましい。
このエンドミル1において、外径Dが0.5mm〜50μmの範囲であれば極微細形状の加工を高精度に行うことができる。他方、略直線柱状をなす刃先部3aの形状から、エンドミル1の外径Dが0.5mmより大きいと切削加工時の抵抗が大きくなり、外径Dが50μmより小さいと刃先部3aを製作するのが困難になる。
In the end mill 1 according to the present embodiment, the outer diameter D of the two outer peripheral blades 6 facing each other at the cutting edge portion 3a is preferably 0.5 mm or less, for example, 50 μm or more. Therefore, the end mill 1 according to the present embodiment is an ultra-fine diameter end mill having two blades, and the bottom surface of the blade tip portion 3a is formed on the flat surface 7 and a pair of outer peripheral blades 6 and bottom blades 13 respectively facing the outer peripheral surface. It has a substantially straight line shape or a columnar shape like a flat-blade screwdriver.
Although it is possible to form such an end mill 1 in a shape having an outer diameter D exceeding 0.5 mm, the outer diameter D is preferably 0.5 mm or less in order to suppress cutting resistance.
In the end mill 1, if the outer diameter D is in the range of 0.5 mm to 50 μm, it is possible to process an extremely fine shape with high accuracy. On the other hand, if the outer diameter D of the end mill 1 is larger than 0.5 mm due to the shape of the cutting edge portion 3a having a substantially linear column shape, the resistance at the time of cutting increases, and if the outer diameter D is smaller than 50 μm, the cutting edge portion 3a is manufactured. It becomes difficult.

本実施形態によるエンドミル1は上述の構成を有しており、次にその作用を説明する。
本実施形態によるエンドミル1を用いて、超硬合金、セラミックス、ガラス等の硬脆材や高硬度鋼材からなる被削材に切り込んで横送り加工する。
切り込みに際して、被削材が例えば硬脆材であると、エンドミル1は刃先部3aに形成された一対の対向する外周刃6で例えば数ナノメーターまたはナノメーター単位の薄い切り込みをして回転軸線O回りに回転させつつ横送りする。すると、エンドミル1の外周刃6によって浅く切り込んで肩削り加工を行うことができる。対向する2枚の外周刃6によって主たる切削加工を行うと共に外周刃6の頂点6aで仕上げ加工を行う。
外周刃6で切削された薄層の切屑は、外周刃6の回転方向前方側の側面10からなるすくい面14に送られ、更に隣接する側面の第一側面8及びテーパ面9に送られて工具本体2の基端側に送り出される。また、一部の切り屑は第一側面8から凹溝12内に入り込み、反対側の第一側面8側から基端側に排出される。
The end mill 1 according to the present embodiment has the above-described configuration, and the operation thereof will be described next.
The end mill 1 according to the present embodiment is used to cut into a work material made of a hard brittle material such as cemented carbide, ceramics, or glass, or a high-hardness steel material, and perform transverse feed processing.
At the time of cutting, if the work material is, for example, a hard and brittle material, the end mill 1 makes a thin cut of, for example, several nanometers or nanometers with a pair of opposed outer peripheral blades 6 formed on the cutting edge portion 3a, and the rotation axis O Feeds horizontally while rotating around. Then, shoulder cutting can be performed by cutting shallowly with the outer peripheral edge 6 of the end mill 1. The main cutting process is performed by the two outer peripheral blades 6 facing each other, and the finishing process is performed at the apex 6 a of the outer peripheral blade 6.
The thin-layer chips cut by the outer peripheral blade 6 are sent to the rake face 14 formed by the side surface 10 on the front side in the rotational direction of the outer peripheral blade 6 and further sent to the first side surface 8 and the tapered surface 9 on the adjacent side surfaces. It is sent out to the base end side of the tool body 2. Further, some chips enter the concave groove 12 from the first side surface 8 and are discharged from the first side surface 8 side on the opposite side to the proximal end side.

そして、工具本体2を回転軸線O回りに回転させながら微少の横送りをすることで、刃先部3aの底面である平坦面7に形成した底刃13によって被削材の加工面を仕上げ加工する。底刃13の逃げ面である平坦面7はフラットであるため底刃13で加工面を薄く切削した後、平坦面7でこすって均し、高精度に仕上げ加工できる。
底刃13の第一底刃13aで切削された薄層の切り屑はすくい面である側面10からテーパ面9を介して基端側へ送り出され、工具本体2の基端側に排出される。また、第二底刃13bで切削された薄層の切り屑はすくい面である第一側面8からテーパ面9を介して基端側へ送り出されて排出される。
このとき、底刃13が例えば0.5〜1.0μm等の微細な粒径のダイヤモンドを焼結したダイヤモンド焼結体や上述した他の材質である場合、被削材が硬脆材や高硬度鋼材であっても、1nmまたは2nm程度のナノメータサイズの加工精度で仕上げ加工が行われる。
Then, by performing a slight lateral feed while rotating the tool body 2 around the rotation axis O, the machining surface of the work material is finished by the bottom blade 13 formed on the flat surface 7 which is the bottom surface of the blade edge portion 3a. . Since the flat surface 7 which is the flank of the bottom blade 13 is flat, the processed surface can be thinly cut with the bottom blade 13 and then rubbed and leveled with the flat surface 7 for finishing with high accuracy.
A thin layer of chips cut by the first bottom blade 13a of the bottom blade 13 is sent out from the side surface 10 which is a rake face to the base end side through the tapered surface 9, and is discharged to the base end side of the tool body 2. . Further, the thin layer of chips cut by the second bottom blade 13b is sent out from the first side surface 8 which is a rake face to the base end side through the tapered surface 9, and is discharged.
At this time, when the bottom blade 13 is a diamond sintered body obtained by sintering diamond having a fine particle diameter of, for example, 0.5 to 1.0 μm or other materials described above, the work material is a hard brittle material or a high Even a hard steel material is finished with a nanometer-size processing accuracy of about 1 nm or 2 nm.

上述のように、本実施形態によるエンドミル1は、略直線柱状の刃先部3aを有しており、対向する角部に形成した一対の外周刃6で肩削り加工すると共に凹溝12で分割された平坦部7の底刃13によって浅い切削加工をすると共に平坦部7で擦って仕上げ加工するものであるから、被削材が硬脆材や高硬度鋼材やガラス等であっても、工具本体2の軸線方向の切り込みが浅くて外周刃6による被削材の肩削りがスムーズであり、しかも横送り方向の被削材加工面をナノメータサイズの微細で高い加工精度で仕上げ加工できる。
また、底刃13が第一底刃13aと第二底刃13bで凸状に屈曲して形成されているために切削抵抗が小さく、この点からも横送り方向の加工面の面粗さが小さい。
As described above, the end mill 1 according to the present embodiment has the substantially straight columnar cutting edge portion 3a, and is shoulder-cut by the pair of outer peripheral blades 6 formed at the opposite corners and divided by the concave groove 12. In addition, the tool body is formed even if the work material is a hard brittle material, a high-hardness steel material, glass or the like because the bottom blade 13 of the flat portion 7 is used for shallow cutting and is finished by rubbing with the flat portion 7. The cutting in the axial direction of 2 is shallow, the shoulder of the work material by the outer peripheral edge 6 is smooth, and the work surface of the work material in the transverse feed direction can be finished with a fine and high processing accuracy of nanometer size.
In addition, since the bottom blade 13 is formed by being bent convexly by the first bottom blade 13a and the second bottom blade 13b, the cutting resistance is small, and also from this point, the surface roughness of the processed surface in the lateral feed direction is small. small.

また、本実施形態によるエンドミル1は、工具本体2の素材として例えばダイヤモンド焼結体(PCD)を用いれば、高強度であり、外周刃6は幅の狭い六角形状をなす平坦部7の角部に形成されるから剛性が高く、底刃13は逃げ面をなす平坦面7がフラットの負角であるから刃先角が大きいため高強度であり、刃先寿命が長く、被削材が硬脆材や高強度鋼材であってもナノメータサイズの微細で高精度の仕上げ加工を行える。   Further, the end mill 1 according to the present embodiment has high strength when, for example, a diamond sintered body (PCD) is used as the material of the tool body 2, and the outer peripheral edge 6 is a corner portion of the flat portion 7 having a narrow hexagonal shape. The bottom blade 13 has a high rigidity because the flat surface 7 that forms the flank is a flat negative angle, and therefore has a large blade edge angle, a long blade edge life, and the work material is a hard and brittle material. Even high-strength steel materials can be finely processed with a precision of nanometer size.

以上、本発明の実施形態によるエンドミル1を説明したが、本発明はこのような実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で種々の形態や態様を採用できることはいうまでもない。
例えば凹溝12について、断面形状は必ずしも略U字形状に限定されるものではなく、例えば略円弧状、略V字状や略長方形や台形等の矩形状等の断面形状であってもよい。
As mentioned above, although the end mill 1 by embodiment of this invention was demonstrated, this invention is not limited to such embodiment, It can say that a various form and aspect can be employ | adopted within the range which does not deviate from the meaning of this invention. Not too long.
For example, the cross-sectional shape of the concave groove 12 is not necessarily limited to a substantially U-shape, and may be a cross-sectional shape such as a substantially arc shape, a substantially V shape, a rectangular shape such as a substantially rectangular shape or a trapezoidal shape.

また、本実施形態によるエンドミル1において、刃先部3aの角部に形成された外周刃6の刃物角を側面10同士が交差する先鋭な角度に形成したが、これに代えて第一の変形例として、図4(a)に示すように外周刃6を丸ランド17に形成してもよい。或いは図4(b)に示すようにフラット面18に形成してもよい。外周刃6の先端角部に丸ランド17やフラット面18で刃を形成することで荒加工する際に欠損を防止できる。
これらの場合、丸ランド17やフラット面18の幅tは0.002〜0.03mmの範囲に設定されている。幅tをこの範囲に設定すれば外周刃6の切れ味を確保すると共に刃先強度を向上させることができる。
一方、幅tが0.002mmより小さいと顕著な効果を得られず、0.03mmより大きいと異常摩耗を生じるおそれがある。
Moreover, in the end mill 1 by this embodiment, although the blade angle | corner of the outer periphery blade 6 formed in the corner | angular part of the blade edge | tip part 3a was formed in the sharp angle which side surfaces 10 cross | intersect, it replaces with this and is a 1st modification. As shown in FIG. 4A, the outer peripheral edge 6 may be formed on the round land 17. Or you may form in the flat surface 18, as shown in FIG.4 (b). By forming the blade with the round land 17 or the flat surface 18 at the corner of the tip of the outer peripheral blade 6, it is possible to prevent the chipping when roughing.
In these cases, the width t of the round land 17 or the flat surface 18 is set in the range of 0.002 to 0.03 mm. If the width t is set within this range, the sharpness of the outer peripheral blade 6 can be secured and the strength of the blade edge can be improved.
On the other hand, if the width t is smaller than 0.002 mm, a remarkable effect cannot be obtained, and if it is larger than 0.03 mm, abnormal wear may occur.

また、本発明によるエンドミル1の刃先部3aの底面において、平坦面7を分割する凹溝12は、上述の実施形態では、外周刃6の頂点6aを結ぶ対角線Mに直交する方向に形成され、凹溝12の中心線は例えば対角線Mに直交して回転軸線Oを通る仮想線Nとなるように形成した。しかし、本発明の第二変形例では、凹溝12は仮想線Nに対して角度f=0°〜30°の範囲に設定されている。角度f=0°の場合が図1に示す実施形態に構成である。
この場合、凹溝12の中心線は回転軸線Oを通って角度f以下に設定されていることが好ましいが、回転軸線Oを外れていてもよい。
Moreover, the concave groove 12 which divides | segments the flat surface 7 in the bottom face of the blade edge | tip part 3a of the end mill 1 by this invention is formed in the direction orthogonal to the diagonal M which connects the vertex 6a of the outer periphery blade 6 in the above-mentioned embodiment, The center line of the concave groove 12 is formed so as to be a virtual line N that is orthogonal to the diagonal line M and passes through the rotation axis O, for example. However, in the second modification of the present invention, the concave groove 12 is set to an angle f = 0 ° to 30 ° with respect to the virtual line N. The case where the angle f = 0 ° is the configuration shown in FIG.
In this case, the center line of the concave groove 12 is preferably set at an angle f or less through the rotation axis O, but may be off the rotation axis O.

なお、凹溝12の角度fの範囲が上述した範囲であれば、刃先部3aの回転方向に向かって凹溝12が形成されることになるから底刃13による切削抵抗が低減すると共に切り屑の排出性が良好になる。
一方、凹溝12の角度fが0°より小さいと底刃13の第二底刃13bがより長くなり切削抵抗の低減と切り屑の排出性が著しく低下する。また、角度fが30°より大きいと第二底刃13bが極端に短くなり、工具剛性が低下する欠点がある。
また、図2に示す側面視における外周刃6の頂点6aから凹溝12までの幅Lは、頂点6aから対角線Mと凹溝12の交点までの長さをいうものとする。
If the range of the angle f of the concave groove 12 is the range described above, the concave groove 12 is formed in the rotational direction of the blade edge portion 3a. The discharge performance of the is improved.
On the other hand, when the angle f of the concave groove 12 is smaller than 0 °, the second bottom blade 13b of the bottom blade 13 becomes longer, and the cutting resistance is reduced and the chip discharging performance is remarkably lowered. Further, if the angle f is larger than 30 °, the second bottom blade 13b becomes extremely short, and there is a drawback that the tool rigidity is lowered.
Further, the width L from the apex 6 a of the outer peripheral edge 6 to the groove 12 in the side view shown in FIG. 2 refers to the length from the apex 6 a to the intersection of the diagonal M and the groove 12.

また、平坦面7において、外周刃6と底刃13とが交差するコーナー部にC面刃またはR刃を形成してもよく、この場合には荒加工用として、また欠損防止用として使用できる。
また、上述の実施形態では、エンドミル1において、刃先部3aの基端側の刃部3や工具本体2等のアンダーカット部は断面六角形に限定されることなく円柱状等、適宜の断面形状を採用できる。
また、刃先部3aの底刃13のすくい面をなす側面10や第一側面8は図3に示すようにストレート状、すなわち90°の負角に形成されているが、これに限定されることなく、例えば底刃13のすくい角が90°より大きな負角になるように傾斜させてもよい。或いは底刃13のすくい角が90°より小さな正角になるように傾斜させてもよい。
Further, on the flat surface 7, a C-face blade or an R-blade may be formed at a corner portion where the outer peripheral blade 6 and the bottom blade 13 intersect. In this case, it can be used for roughing and for preventing breakage. .
Further, in the above-described embodiment, in the end mill 1, the undercut portions such as the blade portion 3 on the base end side of the blade edge portion 3a and the tool body 2 are not limited to a hexagonal cross section, and may have an appropriate cross sectional shape such as a columnar shape. Can be adopted.
Further, the side surface 10 and the first side surface 8 forming the rake face of the bottom blade 13 of the blade edge portion 3a are formed in a straight shape, that is, a negative angle of 90 ° as shown in FIG. For example, the rake angle of the bottom blade 13 may be inclined so as to be a negative angle larger than 90 °. Or you may make it incline so that the rake angle of the bottom blade 13 may become a regular angle smaller than 90 degrees.

1 エンドミル
2 工具本体
3 刃部
3a 刃先部
6 外周刃
7 平坦面
8 第一側面
9 テーパ面
10 側面
12 凹溝
13 底刃
14 すくい面
15 逃げ面
17 丸ランド
18 フラット面
DESCRIPTION OF SYMBOLS 1 End mill 2 Tool main body 3 Blade part 3a Cutting edge part 6 Outer peripheral blade 7 Flat surface 8 First side surface 9 Tapered surface 10 Side surface 12 Groove 13 Bottom blade 14 Rake surface 15 Relief surface 17 Round land 18 Flat surface

Claims (8)

工具本体は軸直交断面が略六角形をなしていて先端部において対向する二側面が先端面に向けて縮径されたテーパ面と第一側面でそれぞれ形成されており、
前記工具本体の先端部の角部に2枚の外周刃を対向して形成し、
該外周刃の回転方向前方側に負角のすくい角を有するすくい面を形成し、前記外周刃の回転方向後方に正角の逃げ角を有する逃げ面を形成し、
前記先端面に2枚の外周刃の頂点を含む略六角形状の平坦面を形成すると共に、前記平坦面を前記2枚の外周刃の頂点を結ぶ最大長さの対角線に交差する方向に分割すると共に前記工具本体の回転軸線を含む凹溝が形成され、
前記2枚の外周刃間の最大外径寸法Dは0.5mm以下であり、
分割された前記平坦面と工具本体の側面との交差稜線部に底刃を形成し、該底刃は前記外周刃の頂点から前記平坦面と前記外周刃のすくい面との交差稜線部をなす第一底刃と前記平坦面と前記第一側面との交差稜線部をなす第二底刃とを凸状に形成したことを特徴とするエンドミル。
The tool body has a substantially hexagonal axial cross section, and two side surfaces facing each other at the tip are formed with a tapered surface and a first side each having a diameter reduced toward the tip surface,
Two outer peripheral blades are formed facing each other at the corner of the tip of the tool body,
Forming a rake face having a negative rake angle on the front side in the rotational direction of the outer peripheral blade, and forming a flank face having a positive flank angle on the rear side in the rotational direction of the outer peripheral blade;
A flat surface having a substantially hexagonal shape including the vertices of the two outer peripheral blades is formed on the tip surface, and the flat surface is divided in a direction intersecting with a diagonal of the maximum length connecting the apexes of the two outer peripheral blades. And a groove containing the rotation axis of the tool body is formed ,
The maximum outer diameter D between the two outer peripheral blades is 0.5 mm or less,
A bottom blade is formed at the intersecting ridge line portion between the divided flat surface and the side surface of the tool body, and the bottom blade forms an intersecting ridge line portion between the flat surface and the rake face of the outer peripheral blade from the apex of the outer peripheral blade. An end mill characterized in that a first bottom blade, a second bottom blade forming an intersecting ridge line portion between the flat surface and the first side surface are formed in a convex shape .
前記2枚の外周刃間の最大外径寸法をDとして、前記外周刃は外側に突出する角部に形成され、平坦面における1の前記外周刃の頂点と凹溝とを結ぶ長さLは0.1D〜0.45Dの範囲に設定されている請求項1に記載されたエンドミル。 The maximum outer diameter dimension between the two outer peripheral blades is D, the outer peripheral blade is formed at a corner protruding outward, and the length L connecting the apex of the one outer peripheral blade and the groove on the flat surface is The end mill according to claim 1 , wherein the end mill is set in a range of 0.1D to 0.45D. 前記2枚の外周刃間の最大外径寸法をDとして、前記工具本体の先端部において、前記2枚の外周刃の頂点を結ぶ対角線に直交する方向における前記底刃の幅eは1/4D〜1/2Dの範囲に設定されている請求項1または2に記載されたエンドミル。 The maximum outer diameter dimension between the two outer peripheral blades is D, and the width e of the bottom blade in the direction perpendicular to the diagonal line connecting the apexes of the two outer peripheral blades is 1 / 4D at the tip of the tool body. The end mill according to claim 1 or 2, which is set in a range of ~ 1 / 2D. 前記2枚の外周刃間の最大外径寸法をDとして、前記工具本体の先端部において、前記2枚の外周刃の頂点を結ぶ対角線に直交する方向における前記底刃に続く回転軸線方向の側面の長さdが0.05D〜0.5Dの範囲に設定されている請求項1乃至3のいずれか1項に記載されたエンドミル。 The maximum outer diameter dimension between the two outer peripheral blades is D, and at the tip of the tool body, the side surface in the rotational axis direction following the bottom blade in the direction perpendicular to the diagonal line connecting the apexes of the two outer peripheral blades The end mill described in any one of Claims 1 thru | or 3 by which the length d of is set to the range of 0.05D-0.5D. 前記2枚の外周刃間の最大外径寸法をDとして、回転軸線方向の凹溝の深さcが0.05D〜0.5Dの範囲に設定されている請求項1乃至4のいずれか1項に記載されたエンドミル。 Examples D to the maximum outer diameter dimension between the two peripheral cutting edge of any of claims 1 to 4 the depth c of the groove of the rotation axis direction is set in a range of 0.05D~0.5D 1 End mill described in the section. 前記外周刃のすくい面のすくい角aは−30°〜−80°の範囲に設定されている請求項1乃至5のいずれか1項に記載されたエンドミル。 6. The end mill according to claim 1, wherein a rake angle a of the rake face of the outer peripheral blade is set in a range of −30 ° to −80 °. 前記外周刃の逃げ面の逃げ角bは5°〜60°の範囲に設定されている請求項1乃至6のいずれか1項に記載されたエンドミル。 The end mill described in any one of Claims 1 thru | or 6 with which the clearance angle b of the flank of the said outer periphery blade is set to the range of 5 degrees-60 degrees. 前記工具本体の先端部において、前記2枚の外周刃の頂点を結ぶ対角線に直交する方向の仮想線を基準として、前記凹溝が延びる角度fは0°〜30°の範囲に設定されている請求項1乃至7のいずれか1項に記載されたエンドミル。 At the tip of the tool body, the angle f at which the groove extends is set in a range of 0 ° to 30 ° with reference to an imaginary line in a direction perpendicular to a diagonal line connecting the apexes of the two outer peripheral blades. The end mill according to any one of claims 1 to 7 .
JP2012021203A 2012-02-02 2012-02-02 End mill Active JP5873345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012021203A JP5873345B2 (en) 2012-02-02 2012-02-02 End mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012021203A JP5873345B2 (en) 2012-02-02 2012-02-02 End mill

Publications (2)

Publication Number Publication Date
JP2013158859A JP2013158859A (en) 2013-08-19
JP5873345B2 true JP5873345B2 (en) 2016-03-01

Family

ID=49171551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012021203A Active JP5873345B2 (en) 2012-02-02 2012-02-02 End mill

Country Status (1)

Country Link
JP (1) JP5873345B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314249Y2 (en) * 1985-12-03 1991-03-29
JPH0251021U (en) * 1988-10-04 1990-04-10
JPH084967B2 (en) * 1989-12-06 1996-01-24 株式会社日進工具製作所 End mill
JPH07204920A (en) * 1994-01-25 1995-08-08 Hitachi Ltd End mill
JP2001315019A (en) * 2000-05-09 2001-11-13 Mmc Kobelco Tool Kk Milling cutter
DE102010026784A1 (en) * 2010-07-09 2012-01-12 Kennametal Inc. Milling cutter, method for milling a workpiece and method for producing a milling cutter

Also Published As

Publication number Publication date
JP2013158859A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
JP5751401B1 (en) Replaceable cutting edge rotary cutting tool
JP5814611B2 (en) End mill
JP4653744B2 (en) CBN cutting tool for high quality and high efficiency machining
KR100812255B1 (en) Ball endmill
JP6910293B2 (en) Cutting inserts for turning tools and turning tools
JP6347258B2 (en) Radius end mill and cutting method
TWI436840B (en) Ball cutter
KR20020065390A (en) Throw-away tip
JP2003311524A (en) Cemented carbide ball end mill
JP2009241190A (en) Cbn radius end mill
JP6828824B2 (en) Manufacturing method of small diameter drill and small diameter drill
JP6191839B2 (en) Diamond sintered ball end mill and manufacturing method thereof
EP1559493A2 (en) Ballnose end mill
WO2011062245A1 (en) Cutting insert and cutting tool
JP2007296588A (en) High hardness end mill
WO2017138170A1 (en) Replaceable tool edge rotary cutting tool and insert
JP2010264592A (en) End mill for high-hardness materials
JP6179165B2 (en) Radius end mill
WO2018074542A1 (en) Cutting insert and cutting edge-interchangeable rotary cutting tool
JP2017080864A (en) Cutting edge exchange-type reamer and reamer insert
JP2010125594A (en) Minor diameter cbn end mill
JP5873345B2 (en) End mill
JP6413280B2 (en) Ball end mill
JP6212863B2 (en) Radius end mill
JP6086180B1 (en) Replaceable blade cutting tool and insert

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160115

R150 Certificate of patent or registration of utility model

Ref document number: 5873345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250