JP5872370B2 - Film formation method - Google Patents

Film formation method Download PDF

Info

Publication number
JP5872370B2
JP5872370B2 JP2012098584A JP2012098584A JP5872370B2 JP 5872370 B2 JP5872370 B2 JP 5872370B2 JP 2012098584 A JP2012098584 A JP 2012098584A JP 2012098584 A JP2012098584 A JP 2012098584A JP 5872370 B2 JP5872370 B2 JP 5872370B2
Authority
JP
Japan
Prior art keywords
laser
film
fine particles
coating
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012098584A
Other languages
Japanese (ja)
Other versions
JP2013227599A (en
Inventor
公介 川原
公介 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Machinery Inc
Original Assignee
Canon Machinery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Machinery Inc filed Critical Canon Machinery Inc
Priority to JP2012098584A priority Critical patent/JP5872370B2/en
Publication of JP2013227599A publication Critical patent/JP2013227599A/en
Application granted granted Critical
Publication of JP5872370B2 publication Critical patent/JP5872370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、皮膜形成方法に関するものである。   The present invention relates to a film forming method.

材料表面に機能性皮膜を形成することで、母材とは異なる性質をその表面に付与することが可能である。例えば、導電性材料表面に絶縁性皮膜を形成したり、絶縁性材料表面に導電性皮膜を形成することが可能である。あるいは、平滑な表面に粗い粒子を固着させ粗面としたり、粗い表面に微粒子を固着させ平滑な表面を形成すること等が可能である。その方法として、スピンコート法(特許文献1)やパルスレーザー堆積法(特許文献2)などの皮膜形成方法がある。   By forming a functional film on the surface of the material, it is possible to impart a property different from that of the base material to the surface. For example, an insulating film can be formed on the surface of the conductive material, or a conductive film can be formed on the surface of the insulating material. Alternatively, rough particles can be fixed to a smooth surface to form a rough surface, or fine particles can be fixed to a rough surface to form a smooth surface. As the method, there are film forming methods such as a spin coating method (Patent Document 1) and a pulse laser deposition method (Patent Document 2).

特開2010−172791号公報JP 2010-172791 A 特開2006−265679号公報JP 2006-265679 A

前記した方法は皮膜を被覆したい対象物の外部に皮膜用材料を準備し、その皮膜用材料を基板表面に塗布あるいは溶射する方法であるため、皮膜用材料を被覆対象物とは別に用意することが必要となる。さらには、その皮膜用材料を対象物表面に被覆させる装置が必要となるため、皮膜形成のための手順が煩雑となるうえ、装置が大型化するとともに、コスト高となる。また、これらの方法では、皮膜の被覆領域を限定するために被覆対象物表面にマスク処理が必要となるため、皮膜形成のための手順が煩雑となるうえ、多くの装置を必要とする。   Since the above-described method is a method in which a coating material is prepared outside the object to be coated, and the coating material is applied or sprayed on the substrate surface, the coating material is prepared separately from the coating target. Is required. Furthermore, since an apparatus for coating the surface of the object with the film material is required, the procedure for forming the film becomes complicated, and the apparatus becomes larger and the cost increases. In these methods, masking is required on the surface of the object to be coated in order to limit the coating area of the coating, so that the procedure for forming the coating becomes complicated and many apparatuses are required.

本発明は、これらの従来技術の問題を解決し、皮膜用材料を被覆対象物の外部に用意する必要の無く、また皮膜の被覆領域を被覆対象物へのマスク処理なしに限定できる、皮膜形成方法を提供することを目的とする。   The present invention solves these problems of the prior art, and it is not necessary to prepare a coating material outside the coating object, and the coating area of the coating can be limited without masking the coating object. It aims to provide a method.

本発明は、前記目的を達成するため、レーザ照射にてそのレーザ照射領域において飛散微粒子が蒸散する材料を用い、この材料表面にレーザを集光し、レーザ照射領域の蒸散により発生した飛散微粒子を当該材料表面に堆積させ、当該材料表面に堆積した飛散微粒子からなる皮膜に、飛散微粒子が分散してその分散した飛散微粒子が凝集する液体を、滴下又は噴霧した後、熱処理を施すことによって密着強度の高い皮膜を形成するものである。 In order to achieve the above object, the present invention uses a material in which scattered fine particles evaporate in a laser irradiation region by laser irradiation , condenses the laser on the surface of the material, and generates scattered fine particles generated by the evaporation in the laser irradiation region. Adhesion strength is obtained by depositing on the surface of the material , dropping or spraying a liquid in which the scattered fine particles are dispersed and agglomerating the dispersed scattered fine particles into a film made of the scattered fine particles deposited on the surface of the material , followed by heat treatment. It forms a high film.

本発明によれば、被覆対象物表面へのレーザ照射によってその表面を高温状態とし、その結果、該被覆対象物表面から蒸散する飛散微粒子を用いて皮膜を形成でき、被覆対象物の外部に皮膜用材料を用意する必要がない皮膜形成方法を提供することができる。また、該レーザを被覆対象物表面に照射のみすればよいため、塗布あるいは溶射装置など複雑な機構を必要としない。さらには、該被覆対象物表面から蒸散する飛散微粒子はレーザ照射した領域とそのごく近傍の周辺部のみに堆積するため、皮膜を形成する領域を高い精度で限定することができる。その飛散微粒子が堆積した被覆対象物表面に液体を作用させ熱処理を施すことによって密着強度の高い皮膜を被覆対象物へ形成することができる。   According to the present invention, the surface of the object to be coated is brought into a high-temperature state by laser irradiation, and as a result, a film can be formed using scattered fine particles that evaporate from the surface of the object to be coated. It is possible to provide a film forming method that does not require the preparation of a material for use. Further, since it is only necessary to irradiate the surface of the object to be coated with the laser, a complicated mechanism such as a coating or spraying device is not required. Furthermore, since the scattered fine particles evaporating from the surface of the object to be coated are deposited only in the laser irradiated region and the peripheral portion in the immediate vicinity thereof, the region where the film is formed can be limited with high accuracy. A film having high adhesion strength can be formed on the coating object by applying a heat treatment to the surface of the object to be coated on which the scattered fine particles are deposited and applying heat treatment.

このように、本発明によれば、材料表面に種々の皮膜を形成する場合において、従来方法よりも手順および構造が簡便となり、装置の小型化が図れ、製品製造において高コスト化を回避し、また、被覆対象物上での自由な皮膜の配置を可能とする。   Thus, according to the present invention, when various coatings are formed on the material surface, the procedure and structure are simpler than the conventional method, the apparatus can be miniaturized, and the cost increase in product production is avoided. Moreover, the arrangement | positioning of the free membrane | film | coat on a coating target object is enabled.

本発明の実施例において使用するレーザ表面加工装置の簡略図である。1 is a simplified diagram of a laser surface processing apparatus used in an embodiment of the present invention. 本発明の実施形態を示すレーザ照射の簡略図である。It is a simplified diagram of laser irradiation showing an embodiment of the present invention. 本発明の実施形態を示すレーザ照射時の材料表面からの微粒子の飛散と堆積を示す簡略図である。It is a simplified diagram showing scattering and deposition of fine particles from the material surface at the time of laser irradiation showing an embodiment of the present invention. 本発明の実施例で用いたチタン基板表面の電子顕微鏡写真である。It is an electron micrograph of the titanium substrate surface used in the Example of this invention. 本発明の実施例で用いたチタン基板表面のX線回折強度を示すグラフである。It is a graph which shows the X-ray diffraction intensity of the titanium substrate surface used in the Example of this invention. 本発明の実施例において得られた、被覆対象物上に堆積した飛散微粒子の電子顕微鏡写真である。It is an electron micrograph of the scattering fine particles deposited on the coating target obtained in the example of the present invention. 本発明の実施例において得られた、被覆対象物上に堆積した飛散微粒子のX線回折強度を示すグラフである。It is a graph which shows the X-ray-diffraction intensity of the scattering fine particles deposited on the coating target object obtained in the Example of this invention. 本発明の実施例において得られた、飛散微粒子が堆積した被覆対象物を超音波洗浄した後の基板表面のX線回折強度を示すグラフである。It is a graph which shows the X-ray-diffraction intensity of the board | substrate surface after ultrasonically cleaning the coating target object in which the scattering fine particle deposited obtained in the Example of this invention. 本発明の実施例において得られた、飛散微粒子が堆積した被覆対象物を熱処理し超音波洗浄した後の基板表面のX線回折強度を示すグラフである。It is a graph which shows the X-ray-diffraction intensity of the board | substrate surface after heat-processing and ultrasonically cleaning the coating target object in which the scattering fine particle deposited obtained in the Example of this invention. 本発明の実施例において得られた、飛散微粒子が堆積した被覆対象物にエタノールを滴下後熱処理した後の基板表面の電子顕微鏡写真である。It is the electron micrograph of the board | substrate surface after heat-processing after dripping ethanol to the coating target object in which the scattering fine particle deposited obtained in the Example of this invention. 本発明の実施例において得られた、飛散微粒子が堆積した被覆対象物にエタノールを滴下後熱処理し、超音波洗浄した後の基板表面のX線回折強度を示すグラフである。It is a graph which shows the X-ray-diffraction intensity of the board | substrate surface after carrying out the heat processing after dripping ethanol to the coating target object in which the scattering fine particles were deposited obtained in the Example of this invention, and ultrasonically cleaning. 本発明の実施例において得られた、飛散微粒子が堆積した被覆対象物に過酸化水素水を滴下後熱処理した後の基板表面の電子顕微鏡写真である。It is the electron micrograph of the board | substrate surface after heat-processing after dripping hydrogen peroxide water to the coating target object in which the scattering fine particles were deposited obtained in the Example of this invention. 本発明の実施例において得られた、飛散微粒子が堆積した被覆対象物に過酸化水素水を滴下後熱処理し、超音波洗浄した後の基板表面のX線回折強度を示すグラフである。It is a graph which shows the X-ray-diffraction intensity of the board | substrate surface after carrying out heat processing after dripping hydrogen peroxide water to the coating target object in which the scattering fine particle was deposited obtained in the Example of this invention, and ultrasonically cleaning.

以下、本発明の実施形態について説明する。本発明に係る皮膜形成方法においては、被覆対象物の材料組成やその結合状態は自由に選択することができるが、本実施形態では、本発明の一実施形態であり、被覆対象物の材料をチタンとし、光触媒や生体材料として知られる二酸化チタンを皮膜として形成する場合を示している。   Hereinafter, embodiments of the present invention will be described. In the method for forming a film according to the present invention, the material composition of the coating object and its bonding state can be freely selected, but in this embodiment, the material of the coating object is an embodiment of the present invention. A case is shown in which titanium is used and a titanium dioxide known as a photocatalyst or a biomaterial is formed as a film.

被覆対象物の材料として、チタン基板を用いる。   A titanium substrate is used as the material of the covering object.

照射するレーザとしては、例えばフェムト秒レーザを使用する。なお、フェムト秒レーザは、そのパルスの半値全幅がフェムト秒(「フェムト」は「10のマイナス15乗」の意)台であるレーザのことを示す。また、照射するレーザとしては、ピコ秒レーザであってもよい。「ピコ」は「10のマイナス12乗」の意である。 For example, a femtosecond laser is used as the laser for irradiation. The femtosecond laser indicates a laser whose full width at half maximum of the pulse is in the femtosecond range ("Femto" means "10 to the 15th power"). Further, the laser to be irradiated may be a picosecond laser. “Pico” means “10 minus 12”.

このチタンからなる被覆対象物Wに例えば図1に示すフェムト秒レーザ表面加工装置を用いて図2に示すようにレーザLを集光照射する。このため、被覆対象物表面のレーザ照射された領域は高温となり飛散微粒子として蒸散する。   The coated object W made of titanium is focused and irradiated with a laser L as shown in FIG. 2 using, for example, a femtosecond laser surface processing apparatus shown in FIG. For this reason, the region irradiated with the laser on the surface of the coating object becomes high temperature and evaporates as scattered fine particles.

図3に示すように、この蒸散する飛散微粒子Pは、いったん被覆対象物から遠ざかる方向に飛び出すが、蒸散過程によって生じる蒸散部位から噴き出して被覆対象物に戻る対流などにより、再び被覆対象物表面方向に戻らせ、飛散微粒子を最終的に被覆対象物に衝突・付着させ堆積させることができる。   As shown in FIG. 3, the transpirational fine particles P once fly away in the direction away from the object to be coated, but once again the direction of the surface of the object to be coated by convection which is ejected from the transpiration site caused by the transpiration process and returns to the object The scattered fine particles can finally collide and adhere to the object to be coated and deposited.

このように被覆対象物に堆積した飛散微粒子からなる皮膜に液体を作用させ、その液体に分散した該微粒子がその後凝集することで、皮膜中の該微粒子の空間的な配置密度が向上し、該微粒子と該被覆対象物、および該微粒子同士の接触点の数が増加する。その状態において熱処理を施すことによって、該微粒子と該被覆対象物、および該微粒子同士は接触点が増加した状態で互いに結合するため、該被覆対象物への密着強度の高い皮膜となる。   In this way, the liquid is allowed to act on the coating composed of scattered fine particles deposited on the coating target, and the fine particles dispersed in the liquid are then aggregated, thereby improving the spatial arrangement density of the fine particles in the coating, The number of fine particles, the object to be coated, and the contact points between the fine particles increase. By performing heat treatment in this state, the fine particles, the coating object, and the fine particles are bonded to each other with an increased number of contact points, so that a film having high adhesion strength to the coating object is obtained.

またこの皮膜を構成する微粒子は、チタン基板表面がレーザ照射により加熱され蒸散したものであり、このとき高温の状態で大気中の酸素と反応したため酸化されており、二酸化チタンとなっている。   The fine particles composing the film are those obtained by evaporation of the surface of the titanium substrate heated by laser irradiation. At this time, the fine particles react with oxygen in the atmosphere at a high temperature and are oxidized to titanium dioxide.

以下に、本発明の実施例を説明する。この実施例はフェムト秒レーザ照射と液体の滴下および熱処理により、チタン基板表面へ密着強度の高い二酸化チタン皮膜の形成を目的としたものである。   Examples of the present invention will be described below. This embodiment is intended to form a titanium dioxide film having high adhesion strength on the surface of a titanium substrate by femtosecond laser irradiation, liquid dropping and heat treatment.

被覆対象物にはチタン基板(純度99.5%)を用いた。この基板表面の電子顕微鏡写真を図4に示す。また、その基板表面をX線回折により分析した結果が図5である。二酸化チタンの存在は確認されないことから基板表面は主にチタンである。この基板に、図1に示すフェムト秒レーザ表面加工装置を用いて、加工閾値近傍の照射エネルギ密度のフェムト秒レーザ(波長800nm、パルス幅120fs)を大気中で集光し、照射領域がオーバラップするように走査照射した。   A titanium substrate (purity 99.5%) was used as the object to be coated. An electron micrograph of the substrate surface is shown in FIG. FIG. 5 shows the result of analyzing the substrate surface by X-ray diffraction. Since the presence of titanium dioxide is not confirmed, the substrate surface is mainly titanium. Using this femtosecond laser surface processing apparatus shown in FIG. 1, a femtosecond laser (wavelength 800 nm, pulse width 120 fs) having an irradiation energy density near the processing threshold is condensed in the atmosphere, and the irradiation areas overlap. Scanning irradiation was performed as follows.

前記フェムト秒レーザを照射した基板表面の電子顕微鏡像を図6に示す。レーザ照射領域の蒸散により発生した飛散微粒子が基板表面に堆積した。また、その基板表面をX線回折により分析した結果が図7である。このことから、基板表面に堆積した微粒子は二酸化チタンであることが確認された。   An electron microscope image of the substrate surface irradiated with the femtosecond laser is shown in FIG. Scattered fine particles generated by transpiration in the laser irradiation area were deposited on the substrate surface. FIG. 7 shows the result of analyzing the substrate surface by X-ray diffraction. From this, it was confirmed that the fine particles deposited on the substrate surface were titanium dioxide.

上記の照射条件で作製した基板を超音波洗浄器を用いてアルコール中で洗浄することで皮膜に外力を与え、皮膜の密着性を評価した。洗浄後の基板表面をX線回折により分析した結果が図8である。二酸化チタンの存在を示す信号が見られなくなった。このことは二酸化チタンの皮膜がチタン基板から脱落したことを示している。   An external force was applied to the film by cleaning the substrate prepared under the above irradiation conditions in alcohol using an ultrasonic cleaner, and the adhesion of the film was evaluated. FIG. 8 shows the result of analyzing the cleaned substrate surface by X-ray diffraction. The signal indicating the presence of titanium dioxide was lost. This indicates that the titanium dioxide film has fallen off the titanium substrate.

他方、前記の照射条件で作製した基板を電気炉中で大気雰囲気下において575℃で30分間熱処理を施した。その後、超音波洗浄器を用いてアルコール中で洗浄することで皮膜に外力を与え、皮膜の密着性を評価した。洗浄後の基板表面をX線回折により分析した結果が図9である。二酸化チタンの存在を示す信号強度が著しく減少しており、これは、大部分の皮膜がチタン基板から脱落したことを示している。   On the other hand, the substrate manufactured under the above irradiation conditions was heat-treated at 575 ° C. for 30 minutes in an electric furnace in an air atmosphere. Then, the external force was given to the membrane | film | coat by wash | cleaning in alcohol using an ultrasonic cleaner, and the adhesiveness of the membrane | film | coat was evaluated. FIG. 9 shows the result of analyzing the cleaned substrate surface by X-ray diffraction. The signal intensity indicating the presence of titanium dioxide has been significantly reduced, indicating that most of the coating has fallen from the titanium substrate.

他方、前記の照射条件で作製した基板に、エタノール(濃度99.5vol%)を滴下した。エタノールを蒸発させた後、電気炉中で大気雰囲気下において575℃で30分間熱処理を施した。この基板表面の電子顕微鏡像を図10に示す。その基板を超音波洗浄器を用いてアルコール中で洗浄することで皮膜に外力を与え、皮膜の密着性を評価した。洗浄後の基板表面をX線回折により分析した結果が図11である。   On the other hand, ethanol (concentration 99.5 vol%) was dropped onto a substrate manufactured under the above irradiation conditions. After evaporating ethanol, heat treatment was performed in an electric furnace at 575 ° C. for 30 minutes in an air atmosphere. An electron microscope image of the substrate surface is shown in FIG. The substrate was cleaned in alcohol using an ultrasonic cleaner to apply an external force to the coating, and the adhesion of the coating was evaluated. FIG. 11 shows the result of analyzing the cleaned substrate surface by X-ray diffraction.

他方、前記の照射条件で作製した基板に滴下する液体を過酸化水素水(濃度2.5〜3.5w/v%)とし、電気炉中で大気雰囲気下において575℃で30分間熱処理を施した。この基板表面の電子顕微鏡像を図12に示す。その基板を超音波洗浄器を用いてアルコール中で洗浄することで皮膜に外力を与え、皮膜の密着性を評価した。洗浄後の基板表面をX線回折により分析した結果が図13である。   On the other hand, the liquid dropped on the substrate manufactured under the above irradiation conditions was hydrogen peroxide (concentration 2.5 to 3.5 w / v%), and heat treatment was performed in an electric furnace at 575 ° C. for 30 minutes in an air atmosphere. An electron microscope image of the substrate surface is shown in FIG. The substrate was cleaned in alcohol using an ultrasonic cleaner to apply an external force to the coating, and the adhesion of the coating was evaluated. FIG. 13 shows the result of analyzing the cleaned substrate surface by X-ray diffraction.

このように、前記熱処理を施さなかった基板およびエタノールあるいは過酸化水素水を滴下せずに熱処理した基板表面と比較して、エタノールあるいは過酸化水素水といった液体を皮膜に滴下した後に熱処理を施したチタン基板表面の超音波洗浄後のX線回折による二酸化チタンの存在を示す信号強度は大きく、二酸化チタン皮膜の残存が示された。このことから、液体を滴下後に熱処理した基板表面の二酸化チタン皮膜のほうが密着強度が高いことが確認された。   Thus, compared with the substrate that was not subjected to the heat treatment and the surface of the substrate that was heat-treated without dropping ethanol or hydrogen peroxide solution, a heat treatment was performed after a liquid such as ethanol or hydrogen peroxide solution was dropped onto the film. The signal intensity indicating the presence of titanium dioxide by X-ray diffraction after ultrasonic cleaning of the titanium substrate surface was large, indicating that the titanium dioxide film remained. From this, it was confirmed that the titanium dioxide film on the substrate surface heat-treated after dropping the liquid has higher adhesion strength.

以上のことから、本実施例において、フェムト秒レーザ照射と液体の滴下および熱処理により、前記の被覆対象物の外部に皮膜材料を準備することがなく、また、レーザ照射領域近傍に皮膜形成領域を限定できる皮膜形成方法において、チタン基板表面への密着強度の高い二酸化チタン皮膜の形成を実証した。   From the above, in this embodiment, the femtosecond laser irradiation, liquid dripping and heat treatment do not prepare a coating material outside the coating object, and a film forming region is provided in the vicinity of the laser irradiation region. In a film formation method that can be limited, the formation of a titanium dioxide film having high adhesion strength to the titanium substrate surface was demonstrated.

他の実施形態について
上記実施例では、本発明の一実施形態である、被覆対象物の材料をチタンとし、その表面に二酸化チタンの皮膜を形成する方法について説明したが、本発明はこれに限らず、以下に説明する種々の形態を含むものである。
Other Embodiments In the above-described example, a method of forming a titanium dioxide film on the surface of a material to be coated, which is an embodiment of the present invention, is described. However, the present invention is not limited to this. It includes various forms described below.

上記実施例では、被覆対象物にチタンを用いたが、被覆対象物や皮膜は他の材料でもよく、例えば、金属、半導体、絶縁物、無機材料、有機材料を問わず、種々の選択が可能である。また、それらの混合物あるいは積層物とすることもできる。   In the above embodiment, titanium is used for the covering object, but the covering object and film may be other materials, for example, various selections are possible regardless of metal, semiconductor, insulator, inorganic material, or organic material. It is. Moreover, it can also be set as the mixture or laminated body of those.

照射するレーザは、フェムト秒レーザに限らず、レーザ照射によって照射領域が蒸散するに十分な高温状態に達することで被覆対象物表面から飛散微粒子を発生させることが可能なレーザであればよく、例えば、ピコ秒レーザといった短パルスレーザでもよい。また、その波長も種々選択可能である。   The laser to be irradiated is not limited to the femtosecond laser, and any laser that can generate scattered fine particles from the surface of the object to be coated by reaching a high temperature state sufficient to evaporate the irradiation region by laser irradiation, for example, Alternatively, a short pulse laser such as a picosecond laser may be used. Various wavelengths can be selected.

また、レーザの集光にはレンズあるいは集光鏡を用いることができる。走査照射する場合は、被覆対象物に対してレーザを走査してもよいし、被覆対象物を移動させてもよいし、その両方でもよい。また、レーザを走査する場合には、ガルバノスキャナやポリゴンミラーを使用してもよい。   A lens or a condensing mirror can be used for condensing the laser. In the case of scanning irradiation, the covering object may be scanned with a laser, the covering object may be moved, or both. Further, when scanning with a laser, a galvano scanner or a polygon mirror may be used.

飛散微粒子の堆積を促進するため、被覆対象物に向かってガスブローを施してもよい。また、電界や磁界により、飛散微粒子の堆積を促してもよい。さらには、加工雰囲気の気圧を大気圧以上にしてもよい。   In order to promote the accumulation of scattered fine particles, gas blowing may be performed toward the object to be coated. Further, the accumulation of scattered fine particles may be promoted by an electric field or a magnetic field. Furthermore, the atmospheric pressure of the processing atmosphere may be set to atmospheric pressure or higher.

上記実施例では飛散微粒子の酸化を促すために大気中でレーザ照射したが、加工雰囲気はその目的に応じて種々の気体を選択することができる。また、それらの混合気体でもよい。さらには、気体の圧力も種々選択可能である。   In the above embodiment, the laser irradiation is performed in the air to promote the oxidation of the scattered fine particles, but various gases can be selected as the processing atmosphere depending on the purpose. Moreover, those mixed gas may be sufficient. Further, various gas pressures can be selected.

皮膜の密着強度を向上させるためにメタノールや過酸化水素水を用いたが、他の液体、水あるいはそれらの混合物でもよい。また、液体は、中性、酸性あるいはアルカリ性液体でもよい。さらには、それらの温度、濃度、粘度も種々選択可能である。   In order to improve the adhesion strength of the film, methanol or hydrogen peroxide was used, but other liquids, water, or a mixture thereof may be used. The liquid may be a neutral, acidic or alkaline liquid. Furthermore, various temperatures, concentrations, and viscosities can be selected.

皮膜に液体を付与する方法として、飛散微粒子の堆積した被覆対象物に液体を滴下する方法としたが、液体を噴霧してもよいし、その液体成分が高濃度に存在する気体に皮膜を曝露してもよい。また、結露現象を利用してもよい。   As a method for applying a liquid to the film, the liquid is dropped onto a coating object on which scattered fine particles are deposited. However, the liquid may be sprayed or the film is exposed to a gas having a high concentration of the liquid component. May be. Moreover, you may utilize a dew condensation phenomenon.

本実施形態では、皮膜の密着強度を高くするために、電気炉を用い酸化性である大気雰囲気中で熱処理を施したが、熱処理に用いる機器は種々設定可能である。また、設定温度や時間も目的とする皮膜性能に応じて選択可能である。また、加熱時の雰囲気は、大気のみならず、酸化性雰囲気や還元性雰囲気、不活性雰囲気中で熱処理することができる。また、それらの圧力は種々に設定可能であり、熱処理は真空中でもよい。   In this embodiment, in order to increase the adhesion strength of the film, heat treatment is performed in an oxidizing atmosphere using an electric furnace, but various devices can be set for the heat treatment. The set temperature and time can also be selected according to the target film performance. The atmosphere during heating can be heat-treated not only in the air but also in an oxidizing atmosphere, a reducing atmosphere, or an inert atmosphere. Moreover, those pressures can be set in various ways, and the heat treatment may be performed in a vacuum.

熱処理の前に液体が完全に乾燥していなくてもよい。   The liquid may not be completely dried before the heat treatment.

L レーザ
P 飛散微粒子
W 材料
L Laser P Scattered fine particles W Material

Claims (6)

レーザ照射にてそのレーザ照射領域において飛散微粒子が蒸散する材料を用い、この材料表面にレーザを集光し、レーザ照射領域の蒸散により発生した飛散微粒子を当該材料表面に堆積させ、当該材料表面に堆積した飛散微粒子からなる皮膜に、飛散微粒子が分散してその分散した飛散微粒子が凝集する液体を、滴下又は噴霧した後、熱処理を施すことによって密着強度の高い皮膜を形成することを特徴とする皮膜形成方法。 Using a material in which scattered fine particles evaporate in the laser irradiation area by laser irradiation , the laser is condensed on the surface of the material , and the scattered fine particles generated by the evaporation in the laser irradiation area are deposited on the material surface . the film comprising deposited scattered particles, a liquid in which the dispersed scattered particles to agglomerate scattering particles dispersed, after dropping or spraying, and forming a high film adherence strength by heat treatment Film formation method. 前記レーザがフェムト秒レーザであることを特徴とする請求項1に記載の皮膜形成方法。   The film forming method according to claim 1, wherein the laser is a femtosecond laser. 前記レーザがピコ秒レーザであることを特徴とする請求項1に記載の皮膜形成方法。   The film forming method according to claim 1, wherein the laser is a picosecond laser. 前記材料がチタンまたはチタンを主とする材料であることを特徴とする請求項1〜請求項3のいずれか1項に記載の皮膜形成方法。   The film forming method according to any one of claims 1 to 3, wherein the material is titanium or a material mainly composed of titanium. 前記液体がエタノールであることを特徴とする請求項1〜請求項4のいずれか1項に記載の皮膜形成方法。   The film formation method according to claim 1, wherein the liquid is ethanol. 前記液体が過酸化水素水であることを特徴とする請求項1〜請求項4のいずれか1項に記載の皮膜形成方法。   The film forming method according to claim 1, wherein the liquid is a hydrogen peroxide solution.
JP2012098584A 2012-04-24 2012-04-24 Film formation method Active JP5872370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012098584A JP5872370B2 (en) 2012-04-24 2012-04-24 Film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012098584A JP5872370B2 (en) 2012-04-24 2012-04-24 Film formation method

Publications (2)

Publication Number Publication Date
JP2013227599A JP2013227599A (en) 2013-11-07
JP5872370B2 true JP5872370B2 (en) 2016-03-01

Family

ID=49675521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012098584A Active JP5872370B2 (en) 2012-04-24 2012-04-24 Film formation method

Country Status (1)

Country Link
JP (1) JP5872370B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3604605B1 (en) * 2017-11-16 2023-06-07 Mutsuki Electric Co., Ltd. Method for producing metal member, and method for producing metal-resin joined body
JP2021004377A (en) * 2019-06-25 2021-01-14 本田技研工業株式会社 Manufacturing method of aluminum member and aluminum member
WO2021133757A1 (en) * 2019-12-24 2021-07-01 Battelle Energy Alliance, Llc Laser ablation methods and systems for producing feedstock powder suitable for laser-based additive manufacturing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282966A (en) * 1988-09-20 1990-03-23 Oonitsuku Kk Treatment of dental material
JPH0441662A (en) * 1990-06-07 1992-02-12 Hakko:Kk Formation of titanium nitride film on pure titanium using laser irradiating method
JP3218845B2 (en) * 1994-03-31 2001-10-15 日立化成工業株式会社 Method for manufacturing three-dimensional copper network structure
JP2004277832A (en) * 2003-03-17 2004-10-07 Seiko Epson Corp Film deposition method, and film deposition system

Also Published As

Publication number Publication date
JP2013227599A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
Enachi et al. Light‐Induced Motion of Microengines Based on Microarrays of TiO2 Nanotubes
Shinonaga et al. Formation of periodic nanostructures using a femtosecond laser to control cell spreading on titanium
JP6688225B2 (en) Method for manufacturing graphene layer
JP5872370B2 (en) Film formation method
KR20120007381A (en) Method of fabricating pattern
Zhou et al. The laser writing of highly conductive and anti-oxidative copper structures in liquid
JP4913269B1 (en) Semiconductor device manufacturing method and rinse liquid
JP2011073912A (en) Method for forming nanostructure
JP2011252202A (en) Film formation method of nanoparticle sintered film
JP2012030172A (en) Method of manufacturing visible light responsive photocatalyst and visible light responsive photocatalyst
JP2008041648A (en) Substrate for mass spectrometric analysis, and method of manufacturing substrate for mass spectrometric analysis
JP2008024578A (en) Method for producing thin film having photocatalytic activity in visible light range
Barberio et al. Fabrication of nanostructured targets for improved laser-driven proton acceleration
RU2436727C2 (en) Method to produce nanocrystalline films of rutile
KR101449187B1 (en) Method for reducing graphene using light
TW201226319A (en) Method of preparing nano-zeolite thin film with low dielectric constant
JP2003306319A (en) Method for manufacturing nanoparticle of metal oxide
JP2011231356A (en) Insulation coating method of metal base, insulation coated metal base, and apparatus for producing semiconductor using the same
WO2014170972A1 (en) Film forming method
WO2005092516A1 (en) Patterning methods and products
Wesang et al. Functional coatings of sol-gel on glass substrate using CO2 laser irradiation
Heidari et al. Hydrogen irradiation on TiO 2 nano-thin films
Gerlein et al. Photonic post-processing of a multi-material transparent conductive electrode architecture for optoelectronic device integration
CN106835062A (en) A kind of method that utilization laser quickly prepares Transition-metal dichalcogenide
JP6656555B2 (en) Manufacturing method of metal film-formed product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160113

R150 Certificate of patent or registration of utility model

Ref document number: 5872370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250