JP5871880B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP5871880B2
JP5871880B2 JP2013214322A JP2013214322A JP5871880B2 JP 5871880 B2 JP5871880 B2 JP 5871880B2 JP 2013214322 A JP2013214322 A JP 2013214322A JP 2013214322 A JP2013214322 A JP 2013214322A JP 5871880 B2 JP5871880 B2 JP 5871880B2
Authority
JP
Japan
Prior art keywords
connection pipe
refrigerant
side unit
pipe
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013214322A
Other languages
Japanese (ja)
Other versions
JP2014032007A (en
JP2014032007A5 (en
Inventor
坪江 宏明
宏明 坪江
康孝 吉田
康孝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2013214322A priority Critical patent/JP5871880B2/en
Publication of JP2014032007A publication Critical patent/JP2014032007A/en
Publication of JP2014032007A5 publication Critical patent/JP2014032007A5/ja
Application granted granted Critical
Publication of JP5871880B2 publication Critical patent/JP5871880B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0413Refrigeration circuit bypassing means for the filter or drier

Landscapes

  • Lubricants (AREA)

Description

本発明は、冷凍機油の劣化により発生する酸を捕捉する必要のある冷凍サイクルを利用した空気調和機、冷凍機などの冷凍サイクル装置の関し、特に、CFC系又はHCFC系冷媒と、冷凍機油として鉱油を用いたものからHFC系冷媒と、HFC用冷凍機油を用いたものに交換するものに好適である。   The present invention relates to a refrigeration cycle apparatus such as an air conditioner or a refrigeration machine that uses a refrigeration cycle that needs to capture acid generated due to deterioration of refrigeration oil, and in particular, as a CFC or HCFC refrigerant and refrigeration oil. It is suitable for those that replace mineral oil with those that use HFC refrigerant and HFC refrigerating machine oil.

現地配管施工時に十分真空引きされない場合、冷凍サイクル内に空気、水分が混入することになる。この空気中の酸素により、冷凍機油は酸化劣化し酸が発生する。また、水分は、冷凍機油がエステル油である場合は、加水分解を起こして酸が発生し、その他の種類の冷凍機油であっても、添加剤としてエステル結合を有する物質が使用されていれば、添加剤が加水分解を起こし、酸が発生する。   If it is not sufficiently evacuated at the time of on-site piping construction, air and moisture will enter the refrigeration cycle. Due to the oxygen in the air, the refrigerating machine oil is oxidized and deteriorated to generate acid. In addition, when the refrigerating machine oil is an ester oil, water is hydrolyzed to generate an acid, and even if it is another type of refrigerating machine oil, if a substance having an ester bond is used as an additive, The additive undergoes hydrolysis and acid is generated.

更に、CFC系冷媒又はHCFC系冷媒及び冷凍機油として鉱油を使用した空気調和機(旧機)から、鉱油とは相溶性のないHFC系冷媒とHFC用冷凍機油を使用した空気調和機(新機)に交換する際に、室内機と室外機とを接続する接続配管を再利用すると、再利用される接続配管の内部には汚染物質(不純物)が残留する。この不純物は、旧機に封入された冷凍機油(鉱油、アルキルベンゼン等)、冷凍機油の酸化物(劣化物)等であり、新機に使用したHFC系冷媒とは不溶又は弱溶解成分である。   Furthermore, from air conditioners (old machines) that use mineral oil as CFC refrigerants or HCFC refrigerants and refrigeration oils, air conditioners that use HFC refrigerants and HFC refrigeration oils that are not compatible with mineral oil (new machines) When the connection pipe that connects the indoor unit and the outdoor unit is reused, the pollutant (impurities) remains in the reused connection pipe. This impurity is refrigeration oil (mineral oil, alkylbenzene, etc.) sealed in the old machine, oxide (degraded product) of the refrigeration oil, etc., and is insoluble or weakly soluble in the HFC refrigerant used in the new machine.

上記不純物に対して何も対策を施さず既設配管を利用すると、接続配管内に残留した不純物により新機内の冷凍機油が劣化し酸(不純物)が発生する場合があると共に、不純物そのものが劣化しており酸となっている虞がある。更に、冷媒に溶解しない成分が冷凍サイクル内の低温部分において析出し、冷凍サイクルが詰まって空気調和機の信頼性を著しく損なう可能性がある。   If no measures are taken against the above-mentioned impurities and existing piping is used, the refrigerating machine oil in the new machine may deteriorate due to impurities remaining in the connection piping, and acid (impurities) may be generated, and the impurities themselves will deteriorate. There is a risk of acid. In addition, components that do not dissolve in the refrigerant may precipitate at a low temperature portion in the refrigeration cycle, which may clog the refrigeration cycle and significantly impair the reliability of the air conditioner.

従来技術として、例えば特許文献1のものは、CFC系又はHCFC系冷媒と、冷凍機油として鉱油を使用したものから、鉱油とは相溶性のないHFC系冷媒と、HFC用冷凍機油を使用したものに交換する際に接続配管を再利用する冷凍サイクル装置において、鉱油を捕捉するフィルタをもつレシーバを設けている。   As a prior art, for example, Patent Document 1 uses a CFC or HCFC refrigerant and a mineral oil as a refrigerating machine oil, and uses a HFC refrigerant that is not compatible with mineral oil and a HFC refrigerating machine oil. In the refrigeration cycle apparatus that reuses the connection pipe when replacing the pipe, a receiver having a filter for capturing mineral oil is provided.

特許文献2のものは、酸及び水分を吸着する吸着剤を備えたドライヤを凝縮器と膨張装置の間に配置し、吸着材として結晶性ゼオライトを使用している。   The thing of patent document 2 arrange | positions the dryer provided with the adsorption agent which adsorb | sucks an acid and a water | moisture content between a condenser and an expansion apparatus, and uses crystalline zeolite as an adsorbent.

特許文献3のものは、既設配管内に残留する有機酸、無機酸の捕捉を目的とした活性アルミナ又はモレキュラシーブズの少なくとも一方を充填したドライヤフィルタを電子膨張弁と液配管の間に配置している。   In Patent Document 3, a dryer filter filled with at least one of activated alumina or molecular sieves for capturing organic acids and inorganic acids remaining in existing piping is disposed between an electronic expansion valve and a liquid piping. Yes.

特開2005−315435号公報JP 2005-315435 A 特開平6−288662号公報JP-A-6-288862 特開2005−249336号公報JP 2005-249336 A

しかし、特許文献1のものは、冷凍サイクル装置の稼動時に液冷媒の全てをフィルタに通して既設配管に残留した鉱油等の冷媒不溶成分を捕捉しているため、フィルタにより液冷媒の流通抵抗が増加し、冷凍サイクル装置の動作ポイントがリニューアルした新機の動作ポイントと合わず、調整に多大の手間を要する。因みに、新機の冷凍サイクル装置はフィルタのない状態での動作ポイントが設定されている。更に、運転中にフィルタの目詰まりにより流通抵抗が次第に増加し、冷凍サイクル装置の動作ポイントが変化するため、その調整にも多大の手間を要する。   However, since the thing of patent document 1 passes the whole liquid refrigerant through a filter at the time of operation of a refrigerating cycle device, and captures refrigerant insoluble components, such as mineral oil which remained in existing piping, the distribution resistance of liquid refrigerant is carried out with a filter. As the operating point of the refrigeration cycle device increases, it does not match the operating point of the new machine that has been renewed. Incidentally, the new refrigeration cycle apparatus has an operating point in the absence of a filter. Furthermore, during operation, the flow resistance gradually increases due to clogging of the filter, and the operating point of the refrigeration cycle apparatus changes.

特許文献2及び特許文献3においては、ドライヤにバイパス回路が併設されていないので、圧縮機摺動部にて発生する摩耗粉や銅配管ロー付け時に発生した酸化スケール、更には、既設配管に残留する古い鉱油等がドライヤ内のフィルタ部に蓄積し、新機の冷凍サイクルを閉塞する可能性がある。   In Patent Document 2 and Patent Document 3, since no bypass circuit is provided in the dryer, wear powder generated in the sliding part of the compressor, oxide scale generated when brazing the copper pipe, and further remaining in the existing pipe There is a possibility that old mineral oil or the like that accumulates in the filter section in the dryer and clogs the refrigeration cycle of the new machine.

さらに、既設配管を利用する際は、現地接続配管部の真空引きが不十分な場合、既設配管に残留した劣化した鉱油(不純物)により、新機の冷凍機油の酸化劣化が促進され、酸が発生する。   In addition, when using existing pipes, if the on-site connection pipes are not sufficiently evacuated, the deteriorated mineral oil (impurities) remaining in the existing pipes accelerates the oxidative deterioration of the new refrigeration machine oil, and the acid Occur.

一般に接続配管部の真空引きは、新機に設置した阻止弁のサービスポートに真空ポンプをホースを介して接続し実施する。何らかの原因により第2の膨張装置が閉止している場合、液側接続配管の真空引きは、液側阻止弁からのみ実施される。   In general, evacuation of the connecting piping section is performed by connecting a vacuum pump to the service port of the stop valve installed in the new machine via a hose. When the second expansion device is closed for some reason, the liquid side connection pipe is evacuated only from the liquid side blocking valve.

このとき、既設配管と新機の間に特許文献2及び特許文献3のドライヤを取付けると、ドライヤは内容物として合成ゼオライトやフィルタなどが集積されており、真空引きをする際に流路抵抗となり、必要な真空度まで到達するまで、多大な真空引き作業時間を要する可能性がある。   At this time, if the dryers of Patent Document 2 and Patent Document 3 are installed between the existing piping and the new machine, the dryer is integrated with synthetic zeolite, filters, etc. as contents, resulting in flow path resistance when evacuating. It may take a lot of time for vacuuming to reach the required degree of vacuum.

そこで、本発明では、内容物を積層した捕捉容器をバイパス回路によりバイパスすることにより流路抵抗が低減させ、真空引き時間を内容物を積層した容器を接続しない状態と同等に設定するようにしている。   Therefore, in the present invention, the flow resistance is reduced by bypassing the capture container in which the contents are stacked by a bypass circuit, and the evacuation time is set to be equivalent to a state in which the container in which the contents are stacked is not connected. Yes.

本発明の目的は、冷凍サイクル装置で発生した酸等の不純物等を効率良く回収することにより、既設配管に残留した鉱油による新機の冷凍サイクルの閉塞を回避して信頼性を向
上させ、かつ既設配管の真空引きの作業時間の短縮を図った、信頼性の高い冷凍サイクル装置を提供することにある。
The object of the present invention is to efficiently recover impurities such as acid generated in the refrigeration cycle apparatus, thereby avoiding blockage of the refrigeration cycle of the new machine due to mineral oil remaining in the existing piping, and improving reliability, and An object of the present invention is to provide a highly reliable refrigeration cycle apparatus that shortens the work time for evacuating existing piping.

上記課題を解決するために、本発明は、第1の冷媒および第1の冷凍機油を使用した第1の熱源側ユニットと第1の利用側ユニットを、第2の冷媒および第2の冷凍機油を使用した第2の熱源側ユニットと第2の利用側ユニットとに置き換える際に、既設の液接続配管とガス接続配管とを利用し、その際に前記既設の液接続配管及びガス接続配管の真空引きを要する冷凍サイクル装置において、前記第2の熱源側ユニットと、前記第2の利用側ユニットとを前記既設の液接続配管とガス接続配管で接続すると共に、前記液接続配管に、冷媒中の酸を捕捉する不純物捕捉材料を収納した捕捉容器と、前記捕捉容器をバイパスするバイパス配管とを備えた不純物捕捉装置を設置し、前記不純物捕捉装置は前記第2の熱源側ユニットの筐体内に収納され、前記捕捉容器は前記液接続配管よりも断面積が大きく、かつ、縦長の形状であるとともに前記第2の熱源側ユニットの筐体内に縦向きに設置され、前記バイパス配管は前記液接続配管と内周面がほぼ同一面になるように直列に設けられるとともに、前記捕捉容器は前記バイパス配管から分岐した流体導入出管によって前記バイパス配管と並列に設けられることにより、前記既設の液接続配管及びガス接続配管の真空引きを行う際に、水分又は空気が前記捕捉容器と前記バイパス配管のどちらにも流れることが可能に構成され、さらに、前記第2の熱源側ユニットおよび前記第2の利用側ユニットへの置き換え後、通常の冷凍サイクル運転時に、前記第2の冷媒および前記第2の冷凍機油が前記バイパス配管および前記捕捉容器に流れることを特徴とする。
In order to solve the above problems, the present invention provides a first heat source side unit and a first usage side unit using a first refrigerant and a first refrigerating machine oil, a second refrigerant and a second refrigerating machine oil. When replacing the second heat source side unit and the second usage side unit using the existing liquid connection pipe and the gas connection pipe, the existing liquid connection pipe and the gas connection pipe In the refrigeration cycle apparatus that requires evacuation, the second heat source side unit and the second usage side unit are connected by the existing liquid connection pipe and the gas connection pipe , and the liquid connection pipe includes a refrigerant. An impurity trapping device having a trapping container containing an impurity trapping material for trapping acid and a bypass pipe for bypassing the trapping container is installed, and the impurity trapping device is installed in a housing of the second heat source side unit. Storage The capture container has a larger cross-sectional area than the liquid connection pipe and has a vertically long shape, and is installed vertically in the casing of the second heat source side unit, and the bypass pipe is connected to the liquid connection pipe. And the inner peripheral surface are provided in series so that the inner peripheral surface is substantially the same surface, and the capture vessel is provided in parallel with the bypass pipe by a fluid introduction / extraction pipe branched from the bypass pipe. And when the gas connection pipe is evacuated, moisture or air can flow into both the capture container and the bypass pipe , and the second heat source side unit and the second use after replacement of the side unit during normal refrigeration cycle operation, the second refrigerant and the second refrigerant oil flows into the bypass pipe and the catch basins And wherein the door.

また、上記記載の冷凍サイクル装置において、前記不純物捕捉装置を横向きに設置した場合は、前記捕捉容器は前記バイパス配管の下側に設けられた分岐部から流体導入出管を介して接続されたことを特徴とする。   Further, in the refrigeration cycle apparatus described above, when the impurity trapping device is installed sideways, the trapping container is connected via a fluid inlet / outlet pipe from a branch portion provided on the lower side of the bypass pipe. It is characterized by.

また、上記記載の冷凍サイクル装置において、前記不純物捕捉装置を第2の熱源側ユニットの筐体内に収納したこと特徴とする。   In the refrigeration cycle apparatus described above, the impurity trapping device is housed in a housing of the second heat source side unit.

また、上記記載の冷凍サイクル装置において、前記不純物捕捉材料として活性アルミナ又は合成ゼオライトの少なくとも何れかを封入したことを特徴とする。   The refrigeration cycle apparatus described above is characterized in that at least one of activated alumina and synthetic zeolite is enclosed as the impurity capturing material.

本発明によれば、不純物捕捉装置として、活性アルミナ又は合成ゼオライトの少なくとも何れか捕捉容器に収納し、この捕捉容器をバイパスするバイパス配管を備えたことによって、不純物を回収すると共に、既設配管内に残留した鉱油により不純物捕捉装置が閉塞することを回避した、信頼性の高い冷凍サイクル装置を得ることができる。   According to the present invention, as an impurity trapping device, at least one of activated alumina or synthetic zeolite is housed in a trapping container and provided with a bypass pipe that bypasses the trapping container. A highly reliable refrigeration cycle apparatus that can prevent the impurity trapping device from being blocked by the remaining mineral oil can be obtained.

本発明の実施例1における冷凍サイクル装置の冷凍サイクル構成図。The refrigeration cycle block diagram of the refrigeration cycle apparatus in Example 1 of this invention. 本発明の実施例2における冷凍サイクル装置の冷凍サイクル構成図。The refrigeration cycle block diagram of the refrigeration cycle apparatus in Example 2 of this invention. 本発明の実施例2における不純物捕捉材料を熱源側ユニット筐体内に設置した場合の実装構成図。The mounting block diagram at the time of installing the impurity trap material in Example 2 of this invention in the heat-source side unit housing | casing. 本発明の実施例1及び2における不純物捕捉容器の断面図。Sectional drawing of the impurity capture | acquisition container in Example 1 and 2 of this invention. 本発明の実施例3の冷凍サイクル装置の冷凍サイクル構成図。The refrigeration cycle block diagram of the refrigeration cycle apparatus of Example 3 of this invention. 図5のB−B側断面図。BB side sectional drawing of FIG. HFC系冷媒とHFC用冷凍機油の鉱油共存下での鉱油分離特性図。Mineral oil separation characteristics diagram in the presence of mineral oil of HFC refrigerant and HFC refrigerating machine oil.

以下、本発明の実施例について図面を用いて説明する。なお、旧機に封入された冷凍機油としては鉱油として説明する。   Embodiments of the present invention will be described below with reference to the drawings. The refrigerating machine oil sealed in the old machine will be described as mineral oil.

(実施例1)
図1は本発明の実施例1における冷凍サイクル装置の冷凍サイクル構成図を示し、図4は捕捉容器の断面図を示し、図5はHFC系冷媒とHFC用冷凍機油と鉱油共存下での鉱油分離特性の特性図を示す。
Example 1
1 shows a refrigeration cycle configuration diagram of a refrigeration cycle apparatus in Example 1 of the present invention, FIG. 4 shows a cross-sectional view of a trapping container, and FIG. 5 shows mineral oil in the presence of HFC refrigerant, HFC refrigerator oil, and mineral oil. The characteristic figure of a separation characteristic is shown.

図1において、空調機などに用いられる冷凍サイクル装置は、室外に設置される室外ユニット30と、室内に設置される複数の室内ユニット40a、40bを備えて構成される。室外ユニット30は、冷媒を圧縮する圧縮機1と、冷房運転時には凝縮器として作用してガス冷媒の熱を大気に放熱させて冷媒を凝縮し、暖房運転時には蒸発器として作用して液冷媒の蒸発熱を大気に放熱する熱源側熱交換器3が配設されている。また、圧縮機の吸気側に設けられたアキュムレータ14と、主として暖房運転時に作用する減圧手段である第1の膨張装置4と、冷房運転と暖房運転を切替える四方弁2と、液接続配管7の冷媒量を調整するレシーバ5を備えている。なお、液接続配管7の阻止弁6、冷媒のガス接続配管12の阻止弁13が配設されている。   In FIG. 1, a refrigeration cycle apparatus used for an air conditioner or the like includes an outdoor unit 30 installed outdoors and a plurality of indoor units 40a and 40b installed indoors. The outdoor unit 30 acts as a condenser during the cooling operation, condenses the refrigerant by radiating the heat of the gas refrigerant to the atmosphere, and condenses the refrigerant during the heating operation. A heat source side heat exchanger 3 that dissipates heat of evaporation to the atmosphere is disposed. Further, an accumulator 14 provided on the intake side of the compressor, a first expansion device 4 that is a pressure reducing means mainly acting during heating operation, a four-way valve 2 that switches between cooling operation and heating operation, and a liquid connection pipe 7 A receiver 5 for adjusting the amount of refrigerant is provided. In addition, a blocking valve 6 for the liquid connection pipe 7 and a blocking valve 13 for the refrigerant gas connection pipe 12 are provided.

そして、第1の膨張装置4と第2の膨張装置9a、9b(後述)との間の液接続配管7に、不純物捕捉容器50とバイパス配管55からなる不純物捕捉装置60が配設されている。バイパス配管55は、液接続配管7の水平部とほぼ同一面に設けられている。不純物捕捉装置60は、バイパス配管55と並列でバイパス配管55の下側に位置するように、バイパス配管55(液接続配管7)の下側に設けられた分岐部52a、53aから下側に流体導入出管52、53を介して接続されている。   An impurity trapping device 60 including an impurity trapping container 50 and a bypass pipe 55 is disposed in the liquid connection pipe 7 between the first expansion device 4 and the second expansion devices 9a and 9b (described later). . The bypass pipe 55 is provided on substantially the same plane as the horizontal portion of the liquid connection pipe 7. The impurity capturing device 60 is fluidly flowed downward from the branch portions 52a and 53a provided on the lower side of the bypass pipe 55 (liquid connection pipe 7) so as to be positioned on the lower side of the bypass pipe 55 in parallel with the bypass pipe 55. The lead-out pipes 52 and 53 are connected to each other.

室内ユニット40a、40bは、冷房運転時には蒸発器として作用して液冷媒の蒸発熱を利用して室内供給用の空気を冷却し、暖房運転時には凝縮器として作用してガス冷媒の凝縮熱を利用して室内供給用の空気を暖める利用側熱交換器10a、10bと、主として冷房運転時に作用する減圧手段である第2の膨張装置9a、9bを備えている。そして、室内ユニット40a、40bが液接続配管7とガス接続配管12を介して室外ユニット30に接続することによって冷凍サイクルが形成される。   The indoor units 40a and 40b act as an evaporator during cooling operation to cool the air for indoor supply using the evaporation heat of the liquid refrigerant, and act as a condenser during heating operation to use the heat of condensation of the gas refrigerant. Thus, the use side heat exchangers 10a and 10b for warming the air for indoor supply and the second expansion devices 9a and 9b which are pressure reducing means mainly acting during the cooling operation are provided. The indoor units 40a and 40b are connected to the outdoor unit 30 via the liquid connection pipe 7 and the gas connection pipe 12 to form a refrigeration cycle.

図1、5を用いて、既設配管内に残留した不純物としての酸の捕捉及び液冷媒中の不溶成分、又は液冷媒に対して弱溶解成分を回収する方法について説明する。以下、既設(旧機)配管内に残留した冷媒不溶成分としては鉱油として説明する。なお、旧機となる第1の熱源側ユニットと第1の利用側ユニットは図示されてない。   A method for capturing an acid as an impurity remaining in an existing pipe and recovering an insoluble component in the liquid refrigerant or a weakly soluble component in the liquid refrigerant will be described with reference to FIGS. Hereinafter, the refrigerant insoluble component remaining in the existing (old machine) piping will be described as mineral oil. In addition, the 1st heat-source side unit and 1st utilization side unit used as an old machine are not illustrated.

CFCやHCFC冷媒(第1の冷媒)を使った空気調和装置が老朽化した場合、空気調和装置を交換する。予め、CFC又はHCFC冷媒を回収した旧機と、例えば図1に示すような構成の新しい室外機30(第2の熱源側ユニット)及び室内機40a、40b(第2の利用側ユニット)とを交換する。液接続配管7、8a、8b(既設の冷媒配管)とガス接続配管11a、11b、12(既設の冷媒配管)は、旧機のものを再利用する。   When an air conditioner using a CFC or HCFC refrigerant (first refrigerant) has deteriorated, the air conditioner is replaced. An old machine from which CFC or HCFC refrigerant has been collected in advance and a new outdoor unit 30 (second heat source side unit) and indoor units 40a and 40b (second usage side units) configured as shown in FIG. Exchange. The liquid connection pipes 7, 8a, 8b (existing refrigerant pipes) and the gas connection pipes 11a, 11b, 12 (existing refrigerant pipes) reuse those of the old machine.

このとき、新しい室外機30の阻止弁6と液接続配管7との間に、不純物捕捉装置60を設置する。なお、冷凍機油の酸分が上昇すると冷媒中の酸分も上昇することと、不純物捕捉装置60内の不純物捕捉容器50に封入した不純物捕捉材料54が流体力により摩耗することを防止するために、流速の遅い液接続配管7に接続することが有効である。   At this time, the impurity trapping device 60 is installed between the blocking valve 6 and the liquid connection pipe 7 of the new outdoor unit 30. In order to prevent the acid content in the refrigerant from increasing when the acid content of the refrigerating machine oil increases, and to prevent the impurity trapping material 54 enclosed in the impurity trapping container 50 in the impurity trapping device 60 from being worn by the fluid force. It is effective to connect to the liquid connection pipe 7 having a low flow rate.

次に、新しい室外機30には予めHFC(第2の冷媒)が充填されているので、阻止弁6、13を閉じたまま、室内機40a、40bと液接続配管7、8a、8bとガス接続配管11a、11b、12と接続した状態で真空引きをする。   Next, since the new outdoor unit 30 is prefilled with HFC (second refrigerant), the indoor units 40a and 40b, the liquid connection pipes 7, 8a and 8b, and the gas are kept with the blocking valves 6 and 13 closed. Vacuuming is performed while connected to the connecting pipes 11a, 11b, and 12.

このとき、液接続配管7に接続した不純物捕捉装置60には、不純物捕捉材料54を積層した不純物捕捉容器50が設置されているが、不純物捕捉容器50をバイパスするバイパス回路55により、不純物捕捉装置60での流路抵抗が低減し、真空引き時間を不純物捕捉装置60が接続されてない状態と同等の短い時間に設定することが可能である。   At this time, the impurity trapping device 60 connected to the liquid connection pipe 7 is provided with the impurity trapping container 50 in which the impurity trapping material 54 is laminated. The impurity trapping device 50 is bypassed by the bypass circuit 55 that bypasses the impurity trapping container 50. The flow path resistance at 60 is reduced, and the evacuation time can be set to a short time equivalent to a state in which the impurity trapping device 60 is not connected.

上記真空引きによる既設の配管内の空気、水分の除去後は、HFCの追加充填と阻止弁6、13の開弁とを実施し、通常の冷凍サイクルの運転が可能な状態となる。この後の新機による通常の冷凍サイクル運転では、不純物捕捉装置60によって冷媒及び冷凍機油の中の酸等の不純物が捕捉される。   After the air and moisture in the existing pipes are removed by the above evacuation, the HFC is additionally charged and the blocking valves 6 and 13 are opened, so that a normal refrigeration cycle can be operated. In the normal refrigeration cycle operation by the new machine thereafter, impurities such as acids in the refrigerant and the refrigeration oil are captured by the impurity capturing device 60.

冷房運転の場合、圧縮機1で圧縮された高温高圧のガス冷媒は、圧縮機1から吐出され、ガス冷媒が四方弁2を経て、熱源側熱交換器3へと流入し、ここで熱交換して凝縮液化する。凝縮液化した冷媒は全開とされた第1の膨張装置4を通り、阻止弁6を通り、室内機40a、40bへ送られる。送られた液冷媒は、第2の膨張装置9a、9bへ流入し、ここで低圧まで減圧されて低圧二相状態となり、利用側熱交換器10a、10bで空気等の利用側媒体と熱交換して蒸発・ガス化する。その後、ガス冷媒は阻止弁13、四方弁2を経て圧縮機1へ戻る。また、余剰冷媒はレシーバ5に貯留され、冷凍サイクルの運転圧力、温度が正常な状態に保たれる。   In the cooling operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1, and the gas refrigerant flows into the heat source side heat exchanger 3 through the four-way valve 2, where heat exchange is performed. To condense. The condensed and liquefied refrigerant passes through the fully expanded first expansion device 4, passes through the blocking valve 6, and is sent to the indoor units 40 a and 40 b. The sent liquid refrigerant flows into the second expansion devices 9a and 9b, where the liquid refrigerant is decompressed to a low pressure to be in a low-pressure two-phase state, and exchanges heat with the use-side medium such as air in the use-side heat exchangers 10a and 10b. Then evaporate and gasify. Thereafter, the gas refrigerant returns to the compressor 1 through the blocking valve 13 and the four-way valve 2. The surplus refrigerant is stored in the receiver 5, and the operating pressure and temperature of the refrigeration cycle are maintained in a normal state.

暖房運転の場合、圧縮機1で圧縮された高温高圧のガス冷媒は、HFC用冷凍機油と共に圧縮機1から吐出され、四方弁2、阻止弁13を経て利用側熱交換器10a、10bへ流入し、ここで空気等利用側媒体と熱交換して凝縮液化する。凝縮液化した冷媒は、阻止弁6、レシーバ5へ流入し、第1の膨張装置4で減圧され熱源側熱交換器3で空気・水等の熱源媒体と熱交換して蒸発・ガス化する。蒸発・ガス化した冷媒は四方弁2を経て圧縮機1へ戻る。   In the case of heating operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the refrigeration oil for HFC, and flows into the use side heat exchangers 10a and 10b through the four-way valve 2 and the blocking valve 13. Then, heat is exchanged with the use side medium such as air to condense and liquefy it. The condensed and liquefied refrigerant flows into the blocking valve 6 and the receiver 5, is decompressed by the first expansion device 4, and exchanges heat with a heat source medium such as air and water in the heat source side heat exchanger 3 to evaporate and gasify. The evaporated and gasified refrigerant returns to the compressor 1 through the four-way valve 2.

図5はHFC系冷媒とHFC用冷凍機油に対し、HFC系冷媒に不溶な成分である鉱油が約10%(=鉱油量/(HFC用冷凍機油量+鉱油量))混入した場合の鉱油の分離特性を示す。横軸は冷凍機油(HFC用冷凍機油+鉱油)への冷媒溶解度を示し、0%が冷凍機油(HFC用冷凍機油+鉱油)のみの場合を、100%が冷媒のみの場合を示す。縦軸は温度を示している。   Fig. 5 shows the mineral oil when about 10% (= mineral oil amount / (HFC refrigerating machine oil amount + mineral oil amount)) is mixed with HFC refrigerant and HFC refrigerating machine oil. The separation characteristics are shown. The horizontal axis indicates the solubility of the refrigerant in the refrigeration oil (HFC refrigeration oil + mineral oil), where 0% is only the refrigeration oil (HFC refrigeration oil + mineral oil) and 100% is the refrigerant only. The vertical axis represents temperature.

つまり、鉱油はHFC系冷媒にはほとんど溶解せず、HFC用冷凍機油には溶解する。そして、鉱油はHFC用冷凍機油が多く存在する圧縮機1内では分離せず、液冷媒が多く存在する熱源側熱交換器3から液阻止弁6までの液配管部及び液接続配管部7、8a、8b及びレシーバ5内で分離する。   That is, the mineral oil is hardly dissolved in the HFC refrigerant, but is dissolved in the refrigeration oil for HFC. And the mineral oil is not separated in the compressor 1 where there is a lot of refrigeration oil for HFC, and the liquid pipe section and the liquid connection pipe section 7 from the heat source side heat exchanger 3 to the liquid blocking valve 6 where a lot of liquid refrigerant is present, Separated within 8a, 8b and receiver 5.

そのため、内容物を積層した容器50を液接続配管部7、8a、8bに接続すると、分離した鉱油が内容物に捕捉されて、冷凍サイクルを閉塞する可能性がある。しかし、不純物捕捉装置60には、内容物を積層した容器である不純物捕捉容器50をバイパスしたバイパス回路55を有するため、不純物捕捉装置60が閉塞することによる冷凍サイクルの閉塞を回避することができる。   Therefore, when the container 50 in which the contents are stacked is connected to the liquid connection pipe portions 7, 8a, and 8b, the separated mineral oil may be captured by the contents and block the refrigeration cycle. However, since the impurity trapping device 60 includes the bypass circuit 55 that bypasses the impurity trapping vessel 50 that is a container in which contents are stacked, blockage of the refrigeration cycle due to blockage of the impurity trapping device 60 can be avoided. .

空気調和装置の交換後の室外機30中に封入された冷凍機油として、冷凍サイクル中に混入、あるいは空気調和機の運転中に発生した酸を捕捉するための添加剤として酸捕捉剤を添加している場合がある。酸捕捉剤が十分量添加されており、再利用した接続配管内に残留した鉱油中に多量の酸が存在していたとしても、冷凍機油中の酸捕捉剤により空気調和機の信頼性を確保可能な量まで酸を低減することができるなら、鉱油のみを捕捉することで冷凍サイクル内での詰まりを防ぐことができるので、空気調和機の信頼性を確保することができる。   As refrigerating machine oil sealed in the outdoor unit 30 after the replacement of the air conditioner, an acid scavenger is added as an additive for trapping acid mixed in the refrigerating cycle or generated during the operation of the air conditioner. There may be. A sufficient amount of acid scavenger is added, and even if there is a large amount of acid in the remaining mineral oil in the reused connection pipe, the acid scavenger in the refrigerating machine oil ensures the reliability of the air conditioner If the acid can be reduced to a possible amount, clogging in the refrigeration cycle can be prevented by capturing only the mineral oil, so that the reliability of the air conditioner can be ensured.

例えば、旧機の圧縮機が故障し、その原因が冷凍機油の劣化に起因していた場合は、旧機の冷凍機油である鉱油の著しい劣化により、酸が多量に発生している可能性がある。空気調和機の信頼性を確保可能な量となるまで、発生した酸を捕捉し低減することができる量の酸捕捉剤を新機の冷凍機油中に添加しているならば、新機の空気調和機の信頼性を確保することができる。   For example, if an old compressor failed and the cause was due to deterioration of refrigerating machine oil, a large amount of acid may be generated due to significant deterioration of mineral oil that is the old refrigerating machine oil. is there. If the amount of acid scavenger that can capture and reduce the acid generated is added to the new refrigeration oil until the amount is enough to ensure the reliability of the air conditioner, the new air The reliability of the harmony machine can be ensured.

あるいは、新機の冷凍機油中に添加した酸捕捉剤の添加量が、新規接続配管により接続することを前提としている場合や、旧機の圧縮機が故障しておらず鉱油中の酸の発生量が少ない場合は、冷凍機油の経年劣化により発生する酸を捕捉すればよく、酸捕捉剤の添加量が旧機の圧縮機が故障した場合よりも少なくても酸の発生を抑え、空気調和機の信頼性を確保できる可能性がある。   Alternatively, if the amount of acid scavenger added to the new machine refrigeration oil is based on the premise that it will be connected via a new connection pipe, or if the old machine compressor is not broken down and acid is generated in mineral oil If the amount is small, it is only necessary to capture the acid generated due to aging of the refrigeration oil, and even if the amount of acid scavenger is less than when the old compressor fails, the generation of acid is suppressed and air conditioning is reduced. There is a possibility that the reliability of the machine can be secured.

しかし、鉱油中に多量の酸が発生して圧縮機が故障しているにもかかわらず、接続配管を再利用する場合、新機が酸捕捉剤の入っていない冷凍機油を使用していたり、冷凍機油中に酸捕捉剤が入っていたとしても、その酸捕捉剤の添加量が新規接続配管により接続することを前提としたりすると、冷凍機油中の酸捕捉剤のみでは空気調和機の信頼性を確保するための十分な量を賄うことができない虞がある。   However, when the connection pipe is reused even though a large amount of acid is generated in the mineral oil and the compressor breaks down, the new machine uses refrigeration oil that does not contain an acid scavenger, Even if there is an acid scavenger in the refrigerating machine oil, assuming that the amount of the acid scavenger added is to be connected via a new connection pipe, the reliability of the air conditioner can be achieved with only the acid scavenger in the refrigerating machine oil. There is a risk that it will not be possible to cover a sufficient amount to ensure the above.

そのため、酸(不純物)捕捉材料54(図4参照)としてアルカリ性を示す合成ゼオライトを封入することにより、合成ゼオライト中のアルカリ成分と酸とが中和反応を起こし、酸をゼオライト部で捕捉し低減できるので、新機の空気調和機の信頼性を確保することができる。なお、本実施例では酸を吸着する材料として合成ゼオライトを用いているが、これに限られず、酸を吸着することができる活性アルミナであっても良い。   Therefore, by sealing the synthetic zeolite showing alkalinity as the acid (impurity) trapping material 54 (see FIG. 4), the alkali component in the synthetic zeolite and the acid cause a neutralization reaction, and the acid is trapped and reduced in the zeolite portion. Therefore, the reliability of the new air conditioner can be ensured. In this embodiment, synthetic zeolite is used as a material for adsorbing acid. However, the present invention is not limited to this, and activated alumina capable of adsorbing acid may be used.

不純物捕捉装置60を現地施工時に取付けることにより、リニューアル専用機を開発する必要が無く、リニューアル専用ではない熱源側ユニット30及び利用側ユニット40a、40b及び不純物捕捉装置60にて、既設配管を利用することができるので、現地施工時における自由度が高まると共に、機器の開発機種数の削減に寄与でき、開発工数を削減可能である。   By installing the impurity trapping device 60 at the time of on-site construction, there is no need to develop a dedicated renewal machine, and existing piping is used in the heat source side unit 30 and the use side units 40a and 40b and the impurity trapping device 60 that are not dedicated to the renewal. Therefore, the degree of freedom at the time of on-site construction is increased, the number of development models of equipment can be reduced, and the development man-hours can be reduced.

圧縮機起動時、冷凍サイクルの効率向上あるいは、冷凍サイクル中での必要冷媒量低減のために、冷房であれば第1の膨張装置4を、暖房であれば第2の膨張装置9a、9bを絞ることで、液接続配管7、8a、8bやバイパス配管55内の冷媒の流れが気液二相流となるような運転にする場合がある。液接続配管7内を流れる冷媒の状態が気液二相流で流れる場合、液接続配管7が水平状態にて設置されていると、配管内の冷媒の流動様式は層状流や波状流などの液層が管底部を、ガス層が管上部を流れる状態となる。   When the compressor is started, in order to improve the efficiency of the refrigeration cycle or reduce the amount of refrigerant required in the refrigeration cycle, the first expansion device 4 is used for cooling, and the second expansion devices 9a and 9b are used for heating. By narrowing down, the operation may be such that the refrigerant flow in the liquid connection pipes 7, 8 a, 8 b and the bypass pipe 55 becomes a gas-liquid two-phase flow. When the state of the refrigerant flowing in the liquid connection pipe 7 flows in a gas-liquid two-phase flow, if the liquid connection pipe 7 is installed in a horizontal state, the flow pattern of the refrigerant in the pipe is such as a laminar flow or a wave flow The liquid layer flows through the bottom of the tube and the gas layer flows through the top of the tube.

そのため、より多くの冷媒及び冷凍機油が不純物捕捉材料54(図4参照)に接するようにすべく、不純物捕捉材料54が収納された不純物捕捉容器50をバイパス配管55の下方に設置して、不純物捕捉材料54が冷媒の液層に没するようにすることが望ましい。
従って、前記不純物捕捉装置60を水平に設置する場合は、前記バイパス配管55が、前記捕捉容器の上部になるように接続するのが望ましい。図1では、バイパス配管55が、液接続配管7の水平部とほぼ同一面に設けられ、不純物捕捉装置60が、バイパス配管55と並列でバイパス配管55の下側に位置するように、液接続配管7の分岐部52a、53aから下側に流体導入出管52、53を介して接続されている。
Therefore, in order to make more refrigerant and refrigerating machine oil come into contact with the impurity trapping material 54 (see FIG. 4), the impurity trapping container 50 containing the impurity trapping material 54 is installed below the bypass pipe 55, It is desirable that the capture material 54 be submerged in the liquid layer of refrigerant.
Accordingly, when the impurity trapping device 60 is installed horizontally, it is desirable that the bypass pipe 55 be connected so as to be at the top of the trapping container. In FIG. 1, the liquid connection is made so that the bypass pipe 55 is provided on substantially the same plane as the horizontal portion of the liquid connection pipe 7, and the impurity trapping device 60 is positioned below the bypass pipe 55 in parallel with the bypass pipe 55. The pipe 7 is connected to the lower side from the branch parts 52a and 53a through the fluid introduction / exit pipes 52 and 53.

(実施例2)
図2は、本発明の実施例2における冷凍サイクル装置の冷凍サイクル構成図で、図3は、本発明の実施例2における不純物捕捉材料を熱源側ユニット筐体内に設置した実装構成図である。
(Example 2)
FIG. 2 is a refrigeration cycle configuration diagram of the refrigeration cycle apparatus according to the second embodiment of the present invention, and FIG. 3 is a mounting configuration diagram in which the impurity trapping material according to the second embodiment of the present invention is installed in the heat source side unit casing.

不純物捕捉装置60は、不純物捕捉容器50とその左右両端にバイパス配管55に並列に連通する流体導入出管52、53を備えたユニット構造となっている。流体導入出管52の接続された一方端を阻止弁6の配管に直接ロー付け接続できるように、拡管構造52bを有し、流体導入出管53を備えた他方端を配管7にロー付けできるように、未加工の端部53bを有し、一方、ロー付けする配管7には拡管部7aを設けている。   The impurity trapping device 60 has a unit structure including an impurity trapping container 50 and fluid introducing / extracting pipes 52 and 53 communicating in parallel with a bypass pipe 55 at both left and right ends thereof. In order to be able to directly braze and connect one end of the fluid introduction / exit pipe 52 to the pipe of the blocking valve 6, the pipe has the pipe expansion structure 52 b and the other end provided with the fluid introduction / extraction pipe 53 can be brazed to the pipe 7. As described above, the pipe 7 to be brazed is provided with the expanded pipe portion 7a.

熱源側ユニット30の近傍に不純物捕捉装置60を設置可能なスペースが確保できない場合もあり、不純物捕捉装置60を熱源側ユニット30の筐体内に配置できるように不純物捕捉装置60の接続口を上記のように設定することで、リニューアル工事の省作業化を実現すると共に、接続配管7、12の施工条件によらず不純物捕捉装置60を取付けることが可能である。   In some cases, a space in which the impurity capturing device 60 can be installed in the vicinity of the heat source side unit 30 cannot be secured. By setting as described above, it is possible to save the renewal work and to attach the impurity trapping device 60 regardless of the construction conditions of the connection pipes 7 and 12.

なお、図2では、不純物捕捉装置60をレシーバ5と第2の膨張装置9a、9bの間の接続配管に設けているが、これに限らず、第1膨張器4とレシーバ5との間の接続配管に設けても良い。この場合、工場出荷時に不純物捕捉装置60が熱源側ユニット30に内蔵されるので、熱源側ユニット30の外部配管との接続は阻止弁6からの配管となる。したがって新機の熱源側ユニット30の外部配管との接続に際しては、不純物捕捉装置60の接続作業は不要となり、接続が容易となる。   In FIG. 2, the impurity trapping device 60 is provided in the connection pipe between the receiver 5 and the second expansion devices 9 a and 9 b, but is not limited to this, and between the first expander 4 and the receiver 5. You may provide in connection piping. In this case, since the impurity capturing device 60 is built in the heat source side unit 30 at the time of factory shipment, the connection to the external pipe of the heat source side unit 30 is a pipe from the blocking valve 6. Therefore, when connecting to the external piping of the heat source side unit 30 of the new machine, the work of connecting the impurity trapping device 60 is not necessary, and the connection is facilitated.

次に図4を用いて不純物捕捉装置60を説明する。不純物捕捉容器50の左右両端にバイパス配管55に並列に連通する流体導入出管52、53が設けられる。不純物捕捉容器50内は、不純物捕捉材料54が一方のスクリーン56とパンチングメタル57で挟持され、パンチングメタル57が他方のスクリーン56との間に張設されたバネ58によって不純物捕捉材料54を押圧する。上記構成で液冷媒が矢印に示すように透過性のスクリーン56を通過して不純物が不純物捕捉材料54に捕捉される。前述したように不純物捕捉材料54は、酸を吸着する材料として合成ゼオライトや活性アルミナが用いられる。なお、スクリーン56はフィルタの役目も果たす。   Next, the impurity trapping device 60 will be described with reference to FIG. Fluid inlet / outlet pipes 52 and 53 communicating in parallel with the bypass pipe 55 are provided at the left and right ends of the impurity trapping container 50. In the impurity trapping container 50, the impurity trapping material 54 is sandwiched between one screen 56 and a punching metal 57, and the punching metal 57 presses the impurity trapping material 54 with a spring 58 stretched between the other screen 56. . In the above configuration, the liquid refrigerant passes through the permeable screen 56 as indicated by the arrow, and the impurities are captured by the impurity capturing material 54. As described above, the impurity trapping material 54 is made of synthetic zeolite or activated alumina as a material that adsorbs acid. The screen 56 also serves as a filter.

(実施例3)
図5は、本発明の実施例3における冷凍サイクル装置の冷凍サイクル構成図で、図6は図5のB−B側断面図である。本実施例では、不純物捕捉容器50をバイパス配管55より上方に配置しているが、バイパス配管55からの冷媒の取出し口である流体導入出管52、53との分岐部52a、53aを、バイパス配管55の下方に設置することで、バイパス配管55の下方の分岐部52a、53aから液冷媒の液層を流体導入出管52、53に流すことができる。従って、不純物捕捉材料54が冷媒の液層に没することができ、より多くの冷媒及び冷凍機油が不純物捕捉材料54に接して効率よく不純物を取除くことができる。
(Example 3)
FIG. 5 is a configuration diagram of the refrigeration cycle of the refrigeration cycle apparatus according to the third embodiment of the present invention, and FIG. 6 is a sectional view taken along the line BB in FIG. In the present embodiment, the impurity trapping container 50 is disposed above the bypass pipe 55, but the branch portions 52 a and 53 a with the fluid introduction and discharge pipes 52 and 53 that are refrigerant outlets from the bypass pipe 55 are bypassed. By installing it below the pipe 55, the liquid layer of the liquid refrigerant can flow from the branch parts 52 a and 53 a below the bypass pipe 55 to the fluid introduction / exit pipes 52 and 53. Therefore, the impurity trapping material 54 can be immersed in the liquid layer of the refrigerant, and more refrigerant and refrigerating machine oil can come into contact with the impurity trapping material 54 and efficiently remove impurities.

本実施例では、不純物捕捉材料54が縦長の不純物捕捉容器50のケース内に配置され、その下側で流体導入出管52、53の間に仕切板59が設置され、不純物捕捉材料54の下方の領域を少なくとも2つに分けることで、不純物捕捉材料54内に導入した流体(冷媒及び冷凍機油)が、図5、図6の点線矢印の方向に流れるので、冷媒及び冷凍機油の流体の全量を不純物捕捉材料54内を通すことができる。また、流体導入出管52、53を不純物捕捉容器50の下方の領域に連通するように下方から接続しているので、上方から接続するよりも、流体導入出管52、53の長さを短縮でき、流通抵抗の増加を抑えることができる。   In the present embodiment, the impurity trapping material 54 is disposed in the case of the vertically long impurity trapping container 50, and a partition plate 59 is installed between the fluid introduction / exit pipes 52, 53 below the impurity trapping material 54. Since the fluid (refrigerant and refrigerating machine oil) introduced into the impurity trapping material 54 flows in the direction of the dotted line arrows in FIGS. 5 and 6, the total amount of refrigerant and refrigerating machine oil fluids Can be passed through the impurity trapping material 54. In addition, since the fluid introduction pipes 52 and 53 are connected from below so as to communicate with the region below the impurity trapping container 50, the lengths of the fluid introduction pipes 52 and 53 are shortened compared to connecting from above. And increase in distribution resistance can be suppressed.

1…圧縮機、2…四方弁、3…熱源側熱交換器、4…第1の膨張装置、5…レシーバ、9a、9b…第2の膨張装置、7、8a、8b…液接続配管(既設の冷媒配管)、10a、10b…利用側熱交換器、11a、11b、12…ガス接続配管(既設の冷媒配管)、6、13…阻止弁、14…アキュムレータ、15、16…チャージポート、30…室外機(第2の熱源側ユニット)、40a、40b…室内機(第2の利用側ユニット)、50…不純物捕捉容器、52、53…流体導入出管、52a。53a…分岐部、54…不純物捕捉材料(フィルタ)、55…バイパス配管、56…スクリーン、57…パンチングメタル、58…バネ、60…不純物捕捉装置。   DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... Heat source side heat exchanger, 4 ... 1st expansion device, 5 ... Receiver, 9a, 9b ... 2nd expansion device, 7, 8a, 8b ... Liquid connection piping ( (Existing refrigerant piping), 10a, 10b ... use side heat exchanger, 11a, 11b, 12 ... gas connection piping (existing refrigerant piping), 6, 13 ... blocking valve, 14 ... accumulator, 15, 16 ... charge port, 30 ... outdoor unit (second heat source side unit), 40a, 40b ... indoor unit (second use side unit), 50 ... impurity trapping container, 52, 53 ... fluid introduction / exit pipe, 52a. 53a ... Branch part, 54 ... Impurity capture material (filter), 55 ... Bypass piping, 56 ... Screen, 57 ... Punching metal, 58 ... Spring, 60 ... Impurity capture device.

Claims (2)

第1の冷媒および第1の冷凍機油を使用した第1の熱源側ユニットと第1の利用側ユニットを、第2の冷媒および第2の冷凍機油を使用した第2の熱源側ユニットと第2の利用側ユニットとに置き換える際に、既設の液接続配管とガス接続配管とを利用し、その際に前記既設の液接続配管及びガス接続配管の真空引きを要する冷凍サイクル装置において、
前記第2の熱源側ユニットと、前記第2の利用側ユニットとを前記既設の液接続配管とガス接続配管で接続すると共に、
前記液接続配管に、冷媒中の酸を捕捉する不純物捕捉材料を収納した捕捉容器と、前記捕捉容器をバイパスするバイパス配管とを備えた不純物捕捉装置を設置し、
前記不純物捕捉装置は、前記第2の熱源側ユニットの筐体内に収納され、
前記捕捉容器は、前記液接続配管よりも断面積が大きく、かつ、縦長の形状であるとともに前記第2の熱源側ユニットの筐体内に縦向きに設置され、
前記バイパス配管は前記液接続配管と内周面がほぼ同一面になるように直列に設けられるとともに、前記捕捉容器は前記バイパス配管から分岐した流体導入出管によって前記バイパス配管と並列に設けられることにより、前記既設の液接続配管及びガス接続配管の真空引きを行う際に、水分又は空気が前記捕捉容器と前記バイパス配管のどちらにも流れることが可能に構成され
さらに、前記第2の熱源側ユニットおよび前記第2の利用側ユニットへの置き換え後、通常の冷凍サイクル運転時に、前記第2の冷媒および前記第2の冷凍機油が前記バイパス配管および前記捕捉容器に流れる
ことを特徴とする冷凍サイクル装置。
The first heat source side unit and the first usage side unit using the first refrigerant and the first refrigerating machine oil, the second heat source side unit using the second refrigerant and the second refrigerating machine oil, and the second In the refrigeration cycle apparatus that uses the existing liquid connection pipe and the gas connection pipe when replacing with the use side unit, and requires evacuation of the existing liquid connection pipe and the gas connection pipe at that time,
While connecting the second heat source side unit and the second usage side unit with the existing liquid connection pipe and gas connection pipe ,
In the liquid connection pipe, an impurity trapping device including a trapping container containing an impurity trapping material that traps an acid in the refrigerant and a bypass pipe bypassing the trapping container is installed.
The impurity trapping device is housed in a housing of the second heat source side unit,
The capture container has a larger cross-sectional area than the liquid connection pipe and is vertically long and is installed vertically in the housing of the second heat source side unit,
The bypass pipe is provided in series so that the inner peripheral surface of the liquid connection pipe is substantially flush with the liquid connection pipe, and the capture container is provided in parallel with the bypass pipe by a fluid inlet / outlet pipe branched from the bypass pipe. By this, when evacuating the existing liquid connection pipe and gas connection pipe, it is configured such that moisture or air can flow into both the capture container and the bypass pipe .
Further, after replacement with the second heat source side unit and the second usage side unit, the second refrigerant and the second refrigerating machine oil are supplied to the bypass pipe and the capture container during normal refrigeration cycle operation. A refrigeration cycle apparatus characterized by flowing .
請求項1に記載の冷凍サイクル装置において、前記不純物捕捉材料として活性アルミナ又は合成ゼオライトの少なくとも何れかを封入したことを特徴とする冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 1, wherein at least one of activated alumina and synthetic zeolite is enclosed as the impurity capturing material.
JP2013214322A 2008-12-01 2013-10-15 Refrigeration cycle equipment Active JP5871880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013214322A JP5871880B2 (en) 2008-12-01 2013-10-15 Refrigeration cycle equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008305839 2008-12-01
JP2008305839 2008-12-01
JP2013214322A JP5871880B2 (en) 2008-12-01 2013-10-15 Refrigeration cycle equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009214446A Division JP5715752B2 (en) 2008-12-01 2009-09-16 Refrigeration cycle equipment

Publications (3)

Publication Number Publication Date
JP2014032007A JP2014032007A (en) 2014-02-20
JP2014032007A5 JP2014032007A5 (en) 2014-05-08
JP5871880B2 true JP5871880B2 (en) 2016-03-01

Family

ID=42574569

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009214446A Active JP5715752B2 (en) 2008-12-01 2009-09-16 Refrigeration cycle equipment
JP2013214322A Active JP5871880B2 (en) 2008-12-01 2013-10-15 Refrigeration cycle equipment

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009214446A Active JP5715752B2 (en) 2008-12-01 2009-09-16 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (2) JP5715752B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5715752B2 (en) * 2008-12-01 2015-05-13 日立アプライアンス株式会社 Refrigeration cycle equipment
WO2016189717A1 (en) * 2015-05-28 2016-12-01 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー (ホンコン) リミテッド Refrigeration cycle device
WO2017195397A1 (en) * 2016-05-11 2017-11-16 三菱電機株式会社 Air conditioner
KR102020967B1 (en) * 2017-12-28 2019-09-11 대우조선해양 주식회사 Boil-Off Gas Reliquefaction System and Method of Discharging lubrication Oil in the Same
JP6906102B1 (en) * 2019-10-28 2021-07-21 日立ジョンソンコントロールズ空調株式会社 Air conditioner
WO2022264311A1 (en) * 2021-06-16 2022-12-22 三菱電機株式会社 Air conditioner cleaning system, foreign matter recovery unit, and air conditioner cleaning method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174340A (en) * 1992-12-01 1994-06-24 Hitachi Ltd Strainer for refrigerator
JPH074789A (en) * 1993-06-17 1995-01-10 Sanyo Electric Co Ltd Filter for removing impurity refrigerating cycle using refrigerant of hfc series
JPH10300286A (en) * 1996-11-25 1998-11-13 Mitsubishi Electric Corp Sludge capturing device, manufacture thereof and refrigerating air-conditioning apparatus equipped with sludge capturing device
JP2003279199A (en) * 2002-03-22 2003-10-02 Mitsubishi Electric Corp Refrigerating cycle, air-conditioner, freezer, working refrigerant changing method, and working refrigerant changing repair method
JP3835365B2 (en) * 2002-07-11 2006-10-18 ダイキン工業株式会社 Refrigeration apparatus and piping cleaning method for refrigeration apparatus
JP2004270974A (en) * 2003-03-06 2004-09-30 Mitsubishi Electric Corp Method for changing refrigerant in refrigerant circuit for freezing and refrigerating device
JP4140422B2 (en) * 2003-03-31 2008-08-27 三菱電機株式会社 Refrigerating apparatus update method and refrigeration apparatus
JP2005214542A (en) * 2004-01-30 2005-08-11 Hitachi Ltd Refrigeration device
JP2005249336A (en) * 2004-03-05 2005-09-15 Mitsubishi Electric Corp Air-conditioner
KR100710352B1 (en) * 2004-11-23 2007-04-23 엘지전자 주식회사 Bypassing strainer for refrigerant in air-conditioner ? controlling method for the same
JP5715752B2 (en) * 2008-12-01 2015-05-13 日立アプライアンス株式会社 Refrigeration cycle equipment

Also Published As

Publication number Publication date
JP5715752B2 (en) 2015-05-13
JP2014032007A (en) 2014-02-20
JP2010156534A (en) 2010-07-15

Similar Documents

Publication Publication Date Title
JP5871880B2 (en) Refrigeration cycle equipment
US11635239B2 (en) Refrigeration system with purge and acid filter
US20110079040A1 (en) Refrigerating cycle device and air conditioner
EP2667120B1 (en) Refrigeration cycle apparatus
KR100889025B1 (en) Air conditioner, heat source unit, and air conditioner update method
JP2005214542A (en) Refrigeration device
JP4694406B2 (en) Air conditioner and manufacturing method thereof
JP3956997B1 (en) Refrigerating machine oil recovery method
JP2013137124A (en) Refrigeration cycle device
JP2003021436A (en) Pipeline cleaning method, air conditioner and renewal method thereof
JP4221598B2 (en) Refrigeration cycle equipment
JP2006002986A (en) Refrigeration cycle device and receiver used in the same
JP4186764B2 (en) Refrigeration equipment
JP2008202909A (en) Refrigerating apparatus and method of removing foreign matter in the apparatus
JP4225239B2 (en) Refrigeration cycle equipment
JP5107652B2 (en) Refrigeration cycle equipment
JP2004308934A (en) Freezing apparatus and method of washing piping
JP2005061830A (en) Using method for existing refrigerant piping
JP2005351532A (en) Refrigerant recovery device
JP2010002136A (en) Air conditioning apparatus
JP2004294004A (en) Refrigerating apparatus
JP5119629B2 (en) Refrigeration equipment
JP4743906B2 (en) Refrigeration cycle equipment
JP2007127328A (en) Waste heat recovering unit communication path of engine drive type heat pump
JP2004132597A (en) Pipe cleaning device and pipe cleaning method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150820

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150902

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151118

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160112

R150 Certificate of patent or registration of utility model

Ref document number: 5871880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250