JP5871053B2 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP5871053B2
JP5871053B2 JP2014504559A JP2014504559A JP5871053B2 JP 5871053 B2 JP5871053 B2 JP 5871053B2 JP 2014504559 A JP2014504559 A JP 2014504559A JP 2014504559 A JP2014504559 A JP 2014504559A JP 5871053 B2 JP5871053 B2 JP 5871053B2
Authority
JP
Japan
Prior art keywords
porous body
cooling
supply pipe
electronic device
cooling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014504559A
Other languages
Japanese (ja)
Other versions
JPWO2013136474A1 (en
Inventor
▲高▼須 庸一
庸一 ▲高▼須
阿部 知行
知行 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2013136474A1 publication Critical patent/JPWO2013136474A1/en
Application granted granted Critical
Publication of JP5871053B2 publication Critical patent/JP5871053B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

本願の開示する技術は、冷却システムに関する。   The technology disclosed in the present application relates to a cooling system.

従来、電子機器と、電子機器に冷却流体を供給する供給配管と、電子機器から冷却流体を排出する排出配管を備え、結露を抑制するために、電子機器に供給する冷却流体の温度を電子機器が設置された環境の温度よりも高く保つようにした冷却装置が知られている。   Conventionally, an electronic device, a supply pipe for supplying a cooling fluid to the electronic device, and a discharge pipe for discharging the cooling fluid from the electronic device are provided, and the temperature of the cooling fluid to be supplied to the electronic device is controlled in order to suppress condensation. There is known a cooling device that keeps the temperature higher than the temperature of the environment in which is installed.

特開平7−218075号公報JP-A-7-218075

しかしながら、上述の冷却装置では、電子機器が設置された環境の湿度が考慮されていない。このため、この環境の温度より低温の冷却流体を電子機器に供給することができない。   However, the above-described cooling device does not consider the humidity of the environment in which the electronic device is installed. For this reason, a cooling fluid having a temperature lower than that of the environment cannot be supplied to the electronic device.

そこで、本願の開示する技術は、一つの側面として、電子機器が設置された環境の温度より低温の冷却流体を電子機器に供給することを目的とする。   Therefore, the technology disclosed in the present application is, as one aspect, intended to supply a cooling fluid having a temperature lower than the temperature of the environment in which the electronic device is installed to the electronic device.

上記目的を達成するために、本願の開示する技術によれば、電子機器と、供給配管と、排出配管と、熱交換部とを備えた冷却システムが提供される。供給配管は、電子機器に冷却流体を供給し、排出配管は、電子機器から冷却流体を排出する。熱交換部は、供給配管に設けられた第一の部材と、排出配管と第一の部材とを繋ぐ第二の部材とを有する。この熱交換部は、供給配管を流れる冷却流体の温度が電子機器の設置された環境の露点よりも低い場合に、供給配管に生じた結露水を第一の部材から第二の部材に移動させ、供給配管と排出配管との間で熱交換する。 In order to achieve the above object, according to the technology disclosed in the present application, a cooling system including an electronic device, a supply pipe, a discharge pipe, and a heat exchange unit is provided. The supply pipe supplies a cooling fluid to the electronic device, and the discharge pipe discharges the cooling fluid from the electronic device. The heat exchange unit includes a first member provided in the supply pipe and a second member that connects the discharge pipe and the first member. This heat exchanging section moves the condensed water generated in the supply pipe from the first member to the second member when the temperature of the cooling fluid flowing through the supply pipe is lower than the dew point of the environment where the electronic equipment is installed. Heat exchange is performed between the supply pipe and the discharge pipe.

本願の開示する技術によれば、電子機器が設置された環境の温度より低温の冷却流体を電子機器に供給することができる。   According to the technology disclosed in the present application, a cooling fluid having a temperature lower than the temperature of the environment in which the electronic device is installed can be supplied to the electronic device.

第一実施形態に係る冷却システムの平面図である。It is a top view of the cooling system concerning a first embodiment. 基板の断面図である。It is sectional drawing of a board | substrate. 熱交換部及びその周辺部の断面図である。It is sectional drawing of a heat exchange part and its peripheral part. 第二実施形態に係る冷却システムの平面図である。It is a top view of the cooling system which concerns on 2nd embodiment. 第三実施形態に係る冷却システムの平面図である。It is a top view of the cooling system which concerns on 3rd embodiment. 第三実施形態における温度検出器、湿度検出器、及び、制御部のブロック図である。It is a block diagram of a temperature detector, a humidity detector, and a control unit in the third embodiment. 熱交換部の変形例を示す断面図である。It is sectional drawing which shows the modification of a heat exchange part.

[第一実施形態]
はじめに、本願の開示する技術の第一実施形態を説明する。
[First embodiment]
First, a first embodiment of the technology disclosed in the present application will be described.

図1に示されるように、本願の開示する技術の第一実施形態に係る冷却システム10は、電子機器12と、供給配管14と、排出配管16と、熱交換部18を備えている。   As shown in FIG. 1, the cooling system 10 according to the first embodiment of the technology disclosed in the present application includes an electronic device 12, a supply pipe 14, a discharge pipe 16, and a heat exchange unit 18.

電子機器12は、送風部20と基板22を有している。送風部20は、例えば、ファンとされており、電子機器12の筐体24の内部に冷却風Wの流れを形成する。基板22は、筐体24の内部に収容されており、送風部20よりも冷却風Wの流れの下流側に配置されている。   The electronic device 12 has a blower 20 and a substrate 22. The air blower 20 is a fan, for example, and forms a flow of cooling air W inside the housing 24 of the electronic device 12. The substrate 22 is accommodated in the housing 24 and is disposed downstream of the air blowing unit 20 in the flow of the cooling air W.

この基板22は、複数の発熱体31,32,33,34と、冷却部40を有している。各発熱体31〜34は、例えば、基板22に実装された演算素子(CPU)や電子部品等とされており、電力を消費して発熱する。また、基板22には、発熱体31〜34の他に、例えば、メモリモジュール(DIMM)などのその他の発熱体35,36,37が実装されている。   The substrate 22 has a plurality of heating elements 31, 32, 33, 34 and a cooling unit 40. Each of the heating elements 31 to 34 is, for example, an arithmetic element (CPU) or an electronic component mounted on the substrate 22 and consumes power to generate heat. In addition to the heating elements 31 to 34, other heating elements 35, 36, and 37 such as a memory module (DIMM) are mounted on the substrate 22.

冷却部40は、複数の冷却部材41,42,43,44を有している。図2に示されるように、冷却部材41は、例えば、クーリングプレートとされており、中空状に形成されている。この冷却部材41の内壁面からは、複数のフィン46が立設されている。この冷却部材41は、発熱体31に重ね合わされている。その他の冷却部材42〜44も、冷却部材41と同様の構成とされており、発熱体32〜34にそれぞれ重ね合わされている。   The cooling unit 40 has a plurality of cooling members 41, 42, 43, 44. As shown in FIG. 2, the cooling member 41 is, for example, a cooling plate, and is formed in a hollow shape. A plurality of fins 46 are erected from the inner wall surface of the cooling member 41. The cooling member 41 is superimposed on the heating element 31. The other cooling members 42 to 44 have the same configuration as the cooling member 41, and are superimposed on the heating elements 32 to 34, respectively.

供給配管14は、図示しない冷却流体循環装置の出口と冷却部材41の入口(冷却部40の入口)とを接続しており、排出配管16は、冷却部材44の出口(冷却部40の出口)と上述の冷却流体循環装置の入口とを接続している。   The supply pipe 14 connects an outlet of a cooling fluid circulation device (not shown) and an inlet of the cooling member 41 (an inlet of the cooling unit 40), and an exhaust pipe 16 connects an outlet of the cooling member 44 (an outlet of the cooling unit 40). And the inlet of the cooling fluid circulation device described above.

また、冷却部材41の出口と冷却部材42の入口とは、接続管51により接続されており、冷却部材42の出口と冷却部材43の入口とは、接続管52により接続されている。また、冷却部材43の出口と冷却部材44の入口とは、接続管53により接続されている。   The outlet of the cooling member 41 and the inlet of the cooling member 42 are connected by a connecting pipe 51, and the outlet of the cooling member 42 and the inlet of the cooling member 43 are connected by a connecting pipe 52. The outlet of the cooling member 43 and the inlet of the cooling member 44 are connected by a connection pipe 53.

そして、図示しない冷却流体循環装置から冷却流体が送出されると、この冷却流体は、供給配管14を通じて電子機器12に供給され、電子機器12から排出配管16を通じて上述の冷却流体循環装置に戻る。   When a cooling fluid is sent from a cooling fluid circulation device (not shown), the cooling fluid is supplied to the electronic device 12 through the supply pipe 14 and returns from the electronic device 12 to the above-described cooling fluid circulation device through the discharge pipe 16.

つまり、より具体的には、供給配管14を流れる冷却流体は、冷却部材41、接続管51、冷却部材42、接続管52、冷却部材43、及び、接続管53を通って冷却部材44に至る。また、冷却部材41〜44に至った冷却流体は、排出配管16を通じて冷却流体循環装置に戻る。   That is, more specifically, the cooling fluid flowing through the supply pipe 14 reaches the cooling member 44 through the cooling member 41, the connecting pipe 51, the cooling member 42, the connecting pipe 52, the cooling member 43, and the connecting pipe 53. . The cooling fluid that has reached the cooling members 41 to 44 returns to the cooling fluid circulation device through the discharge pipe 16.

また、このときに、冷却流体が流れる冷却部材41〜44(冷却部40)と発熱体31〜34とがそれぞれ熱交換することで、発熱体31〜34が冷却される。この場合の冷却流体としては、例えば、水などが使用される。   Further, at this time, the heat generating elements 31 to 34 are cooled by the heat exchange between the cooling members 41 to 44 (cooling unit 40) through which the cooling fluid flows and the heat generating elements 31 to 34, respectively. As the cooling fluid in this case, for example, water is used.

また、上述の供給配管14及び排出配管16は、互いに並列に設けられた並列部14A,16Aを有している。そして、この並列部14A,16Aには、熱交換部18が設けられている。   The supply pipe 14 and the discharge pipe 16 described above have parallel portions 14A and 16A provided in parallel with each other. And the heat exchange part 18 is provided in these parallel parts 14A and 16A.

熱交換部18は、図3に示されるように、第一多孔質体62と第二多孔質体64を有している。この第一多孔質体62及び第二多孔質体64は、筐体24の内部に収容されている。   As shown in FIG. 3, the heat exchange unit 18 includes a first porous body 62 and a second porous body 64. The first porous body 62 and the second porous body 64 are accommodated in the housing 24.

第一多孔質体62は、断面円環状に形成されており、供給配管14の周囲に設けられている。一方、第二多孔質体64は、排出配管16と第一多孔質体62との間に設けられており、この排出配管16と第一多孔質体62とを繋いでいる。この第一多孔質体62及び第二多孔質体64は、例えば、ポリイミド系、又は、フッ素系の樹脂により形成されている。   The first porous body 62 is formed in an annular cross section and is provided around the supply pipe 14. On the other hand, the second porous body 64 is provided between the discharge pipe 16 and the first porous body 62, and connects the discharge pipe 16 and the first porous body 62. The first porous body 62 and the second porous body 64 are made of, for example, a polyimide-based or fluorine-based resin.

また、第一多孔質体62には、複数の孔の内周面を含む全体に撥水処理が施されている。この撥水処理には、例えば、フロン系、又は、シリコーン系の処理剤等が用いられる。一方、第二多孔質体64には、複数の孔の内周面を含む全体に親水処理が施されている。この親水処理には、例えば、アクリルアミド系の処理剤等が用いられる。この第一多孔質体62及び第二多孔質体64の下方には、断熱材で形成された受け皿66が設けられている。   Further, the first porous body 62 is subjected to water repellent treatment on the entire surface including the inner peripheral surfaces of the plurality of holes. For this water repellent treatment, for example, a fluorocarbon or silicone treatment agent is used. On the other hand, the second porous body 64 is subjected to a hydrophilic treatment on the entire surface including the inner peripheral surfaces of the plurality of holes. For this hydrophilic treatment, for example, an acrylamide type treatment agent or the like is used. Below the first porous body 62 and the second porous body 64, a tray 66 made of a heat insulating material is provided.

また、図1に示されるように、筐体24の内部には、上述の送風部20により、冷却風Wの流れが形成される。そして、このようにして、電子機器12の筐体24の内部に冷却風Wの流れが形成されることにより、第一多孔質体62及び第二多孔質体64には、電子機器12が設置された環境70の雰囲気が供給されている。   Further, as shown in FIG. 1, the flow of the cooling air W is formed inside the housing 24 by the air blowing unit 20 described above. In this way, the flow of the cooling air W is formed inside the casing 24 of the electronic device 12, so that the first porous body 62 and the second porous body 64 have the electronic device 12. An atmosphere of an environment 70 in which is installed is supplied.

次に、本願の開示する技術の第一実施形態の作用及び効果について説明する。   Next, operations and effects of the first embodiment of the technology disclosed in the present application will be described.

この冷却システム10では、図示しない冷却流体循環装置から冷却流体が送出されると、冷却流体が各冷却部材41〜44に供給される。そして、冷却流体が流れる冷却部材41〜44と発熱体31〜34とがそれぞれ熱交換することで、発熱体31〜34が冷却される。   In the cooling system 10, when a cooling fluid is sent from a cooling fluid circulation device (not shown), the cooling fluid is supplied to the cooling members 41 to 44. And the heat generating elements 31-34 are cooled by the heat exchange of the cooling members 41-44 and the heat generating elements 31-34 through which a cooling fluid flows, respectively.

このとき、例えば、環境70の雰囲気が十分に乾燥しており、この環境70の露点が冷却流体の温度よりも低ければ、供給配管14に結露は発生しない。一方、例えば作業者がコンピュータルームに入ったため、電子機器12の周辺の湿度が局所的に高くなり、環境70の露点が冷却流体の温度よりも高くなると熱交換部18による熱交換領域において供給配管14に結露が生じる。   At this time, for example, if the atmosphere of the environment 70 is sufficiently dry and the dew point of the environment 70 is lower than the temperature of the cooling fluid, no condensation occurs in the supply pipe 14. On the other hand, for example, when an operator enters the computer room, the humidity around the electronic device 12 is locally high, and when the dew point of the environment 70 is higher than the temperature of the cooling fluid, the supply pipe is provided in the heat exchange region by the heat exchange unit 18. Condensation occurs at 14.

ここで、上述のように、第一多孔質体62には、複数の孔の内周面を含む全体に撥水処理が施されており、第二多孔質体64には、複数の孔の内周面を含む全体に親水処理が施されている。従って、供給配管14に生じた結露水は、第一多孔質体62により吸収された後、第二多孔質体64に移動する。この結果、供給配管14と排出配管16との間の熱抵抗が下がり、排出配管16を流れる高温の冷却流体から供給配管14を流れる低温の冷却流体へ熱が移動し、供給配管14を流れる冷却流体の温度が上昇する。   Here, as described above, the first porous body 62 is subjected to water repellent treatment on the entire surface including the inner peripheral surfaces of the plurality of holes, and the second porous body 64 includes a plurality of water repellent treatments. The entire surface including the inner peripheral surface of the hole is subjected to hydrophilic treatment. Therefore, the condensed water generated in the supply pipe 14 is absorbed by the first porous body 62 and then moves to the second porous body 64. As a result, the thermal resistance between the supply pipe 14 and the discharge pipe 16 decreases, heat is transferred from the high-temperature cooling fluid flowing through the discharge pipe 16 to the low-temperature cooling fluid flowing through the supply pipe 14, and cooling flows through the supply pipe 14. The temperature of the fluid rises.

このように、この冷却システム10によれば、供給配管14を流れる冷却流体の温度が電子機器12の設置された環境70の露点よりも低い場合には、熱交換部18により供給配管14と排出配管16との間で熱交換される。よって、電子機器12が設置された環境70の湿度が局所的に上昇した場合でも、基板22上での結露を抑制することができる。従って、過剰なマージンを設けることなく、環境70の温度よりも低温の冷却流体を電子機器12に供給することができる。   As described above, according to the cooling system 10, when the temperature of the cooling fluid flowing through the supply pipe 14 is lower than the dew point of the environment 70 in which the electronic device 12 is installed, the heat exchange unit 18 discharges the supply pipe 14. Heat is exchanged with the pipe 16. Therefore, even when the humidity of the environment 70 in which the electronic device 12 is installed rises locally, dew condensation on the substrate 22 can be suppressed. Therefore, a cooling fluid having a temperature lower than that of the environment 70 can be supplied to the electronic device 12 without providing an excessive margin.

しかも、熱交換部18に第一多孔質体62及び第二多孔質体64を用いているので、簡単な構造により熱交換することができる。   And since the 1st porous body 62 and the 2nd porous body 64 are used for the heat exchange part 18, heat exchange can be carried out with a simple structure.

また、第一多孔質体62には、撥水処理が施され、第二多孔質体64には、親水処理が施されているので、結露水の移動を円滑に行うことができる。これにより、供給配管14と排出配管16との間の熱交換を迅速に行うことができる。   Further, since the first porous body 62 is subjected to water repellent treatment and the second porous body 64 is subjected to hydrophilic treatment, the dew condensation water can be moved smoothly. Thereby, heat exchange between the supply pipe 14 and the discharge pipe 16 can be performed quickly.

また、第一多孔質体62及び第二多孔質体64には、電子機器12が設置された環境70の雰囲気が供給されているので、この環境70の雰囲気に対応した迅速な熱交換を行うことができる。   Further, since the atmosphere of the environment 70 in which the electronic device 12 is installed is supplied to the first porous body 62 and the second porous body 64, rapid heat exchange corresponding to the atmosphere of the environment 70 is performed. It can be performed.

また、第一多孔質体62及び第二多孔質体64は、電子機器12の筐体24の内部に収容されている。従って、送風部20により電子機器12が設置された環境70の雰囲気を第一多孔質体62及び第二多孔質体64に供給しつつ、この筐体24により第一多孔質体62及び第二多孔質体64を保護することができる。   Further, the first porous body 62 and the second porous body 64 are accommodated in the housing 24 of the electronic device 12. Therefore, the first porous body 62 is supplied by the casing 24 while supplying the atmosphere of the environment 70 in which the electronic device 12 is installed to the first porous body 62 and the second porous body 64 by the blower unit 20. And the 2nd porous body 64 can be protected.

[第二実施形態]
次に、本願の開示する技術の第二実施形態を説明する。
[Second Embodiment]
Next, a second embodiment of the technology disclosed in the present application will be described.

図4に示される本願の開示する技術の第二実施形態に係る冷却システム80は、上述の第一実施形態に係る冷却システム10に対し、次の如く構成が変更されている。   The cooling system 80 according to the second embodiment of the technology disclosed in the present application shown in FIG. 4 is configured as follows with respect to the cooling system 10 according to the first embodiment described above.

つまり、供給配管14における熱交換部18による熱交換領域(並列部14A)よりも上流側の部位には、平面視にて略U字状に折り曲げられた折曲部14Bが形成されている。この折曲部14Bには、ラジエータ82が設けられている。この折曲部14B及びラジエータ82は、基板22よりも冷却風Wの流れの下流側に配置されている。   That is, a bent portion 14B that is bent in a substantially U shape in plan view is formed at a portion upstream of the heat exchange region (parallel portion 14A) by the heat exchange portion 18 in the supply pipe 14. A radiator 82 is provided in the bent portion 14B. The bent portion 14 </ b> B and the radiator 82 are disposed on the downstream side of the flow of the cooling air W from the substrate 22.

従って、この冷却システム10によれば、基板22に実装された発熱体31〜34や、その他の発熱体35〜37により冷却風の温度が上昇しても、この冷却風をラジエータ82により冷却することができる。これにより、電子機器12が設置された環境70の温度の上昇を抑制することができる。   Therefore, according to the cooling system 10, even if the temperature of the cooling air rises due to the heating elements 31 to 34 mounted on the substrate 22 and the other heating elements 35 to 37, the cooling air is cooled by the radiator 82. be able to. Thereby, the temperature rise of the environment 70 in which the electronic device 12 is installed can be suppressed.

[第三実施形態]
次に、本願の開示する技術の第三実施形態を説明する。
[Third embodiment]
Next, a third embodiment of the technology disclosed in the present application will be described.

図5に示される本願の開示する技術の第三実施形態に係る冷却システム90は、上述の第二実施形態に係る冷却システム80に対し、次の如く構成が変更されている。   The cooling system 90 according to the third embodiment of the technology disclosed in the present application shown in FIG. 5 is configured as follows with respect to the cooling system 80 according to the second embodiment described above.

つまり、この冷却システム90には、バイパス管92が追加されている。このバイパス管92は、供給配管14における熱交換部18による熱交換領域(並列部14A)よりも上流側の部位と、排出配管16における熱交換部18による熱交換領域(並列部16A)よりも下流側の部位とをバイパスしている。   That is, a bypass pipe 92 is added to the cooling system 90. The bypass pipe 92 is located upstream of the heat exchange region (parallel portion 14A) by the heat exchange unit 18 in the supply pipe 14 and from the heat exchange region (parallel portion 16A) by the heat exchange unit 18 in the discharge pipe 16. It bypasses the downstream part.

また、このバイパス管92と並列部14Aとの分岐部には、例えば、流量調整バルブ等の流量調整部94が設けられている。この流量調整部94は、供給配管14を流れる冷却流体の流量と、バイパス管92を流れる冷却流体の流量との割合を調整する。   Further, a flow rate adjusting portion 94 such as a flow rate adjusting valve is provided at a branch portion between the bypass pipe 92 and the parallel portion 14A. The flow rate adjusting unit 94 adjusts the ratio between the flow rate of the cooling fluid flowing through the supply pipe 14 and the flow rate of the cooling fluid flowing through the bypass pipe 92.

さらに、この冷却システム90は、図6に示されるように、温度検出器96、湿度検出器98、及び、制御部100を備えている。   Furthermore, the cooling system 90 includes a temperature detector 96, a humidity detector 98, and a control unit 100, as shown in FIG.

温度検出器96は、冷却部40の入口付近に設けられており、冷却部40に供給される冷却流体の温度を検出する。湿度検出器98は、環境70に設置されており、この環境70の湿度(相対湿度)を検出する。制御部100は、例えば、演算素子(CPU)や記憶装置を有する電子回路等とされている。   The temperature detector 96 is provided near the inlet of the cooling unit 40 and detects the temperature of the cooling fluid supplied to the cooling unit 40. The humidity detector 98 is installed in the environment 70 and detects the humidity (relative humidity) of the environment 70. The control unit 100 is, for example, an electronic circuit having an arithmetic element (CPU) or a storage device.

そして、この冷却システム90では、冷却部40に供給される冷却流体の温度が環境70の露点よりも高くなるように、温度検出器96及び湿度検出器98の検出結果に基づいて流量調整部94が制御部100により制御される。   In the cooling system 90, the flow rate adjusting unit 94 is based on the detection results of the temperature detector 96 and the humidity detector 98 so that the temperature of the cooling fluid supplied to the cooling unit 40 is higher than the dew point of the environment 70. Is controlled by the control unit 100.

従って、例えば、冷却部40に供給される冷却流体の温度が環境70の露点以下となるような場合には、冷却部40に供給される冷却流体の流量が少なくなるように、流量調整部94が制御される。これにより、排出配管16を流れる冷却流体の温度が上昇するため、供給配管14を流れる冷却流体の温度も上昇する。この結果、基板22上での結露を抑制することができる。   Therefore, for example, when the temperature of the cooling fluid supplied to the cooling unit 40 is equal to or lower than the dew point of the environment 70, the flow rate adjusting unit 94 is set so that the flow rate of the cooling fluid supplied to the cooling unit 40 decreases. Is controlled. Thereby, since the temperature of the cooling fluid flowing through the discharge pipe 16 is increased, the temperature of the cooling fluid flowing through the supply pipe 14 is also increased. As a result, condensation on the substrate 22 can be suppressed.

また、例えば、冷却部40に供給される冷却流体の温度が環境70の露点よりも十分に高い場合には、冷却部40に供給される冷却流体の流量が多くなるように、流量調整部94が制御される。すなわち、制御部100は、冷却部40に供給される冷却流体の温度が環境70の露点よりも高い一定の温度範囲に収まるように、温度検出器96及び湿度検出器98の検出結果に基づいて流量調整部94を制御する。この一定の温度範囲は、環境70の露点よりも高く、且つ、発熱体31〜34を適切に冷却できる温度に設定される。   For example, when the temperature of the cooling fluid supplied to the cooling unit 40 is sufficiently higher than the dew point of the environment 70, the flow rate adjusting unit 94 is set so that the flow rate of the cooling fluid supplied to the cooling unit 40 increases. Is controlled. That is, the control unit 100 is based on the detection results of the temperature detector 96 and the humidity detector 98 so that the temperature of the cooling fluid supplied to the cooling unit 40 falls within a certain temperature range higher than the dew point of the environment 70. The flow rate adjusting unit 94 is controlled. This constant temperature range is set to a temperature that is higher than the dew point of the environment 70 and that can appropriately cool the heating elements 31 to 34.

従って、冷却部40に供給される冷却流体の温度を、環境70の露点よりも高く維持しつつ、発熱体31〜34の冷却に必要な適切な値に保つことができる。これにより、発熱体31〜34を適切に冷却することができる。   Therefore, the temperature of the cooling fluid supplied to the cooling unit 40 can be maintained at an appropriate value necessary for cooling the heating elements 31 to 34 while maintaining the temperature higher than the dew point of the environment 70. Thereby, the heat generating bodies 31-34 can be cooled appropriately.

次に、上記各実施形態の変形例について説明する。   Next, modified examples of the above embodiments will be described.

上記各実施形態では、第一多孔質体62に撥水処理が施され、第二多孔質体64に親水処理が施されることにより、第一多孔質体62から第二多孔質体64へ結露水が移動されていた。ところが、その他にも、例えば、第一多孔質体62における各孔の孔径が、第二多孔質体64における各孔の孔径よりも大きく設定されても良い。そして、この孔径の違いによる毛細管現象を利用することにより、第一多孔質体62から第二多孔質体64へ結露水が移動されても良い。なお、この場合の孔径とは、複数の孔の平均孔径のことである。   In each of the above embodiments, the first porous body 62 is subjected to water repellent treatment, and the second porous body 64 is subjected to hydrophilic treatment, whereby the first porous body 62 is changed to the second porous body 62. Condensed water was moved to the mass 64. However, for example, the hole diameter of each hole in the first porous body 62 may be set larger than the hole diameter of each hole in the second porous body 64. And dew condensation water may be moved from the 1st porous body 62 to the 2nd porous body 64 by utilizing the capillary phenomenon by the difference in this hole diameter. In addition, the hole diameter in this case is an average hole diameter of a plurality of holes.

このように構成されていても、供給配管14に生じた結露水の移動を第一多孔質体62から第二多孔質体64へ円滑に行うことができる。これにより、供給配管14と排出配管16との間の熱抵抗が下がるので、この結果、上記実施形態と同様に、供給配管14と排出配管16との間の熱交換を迅速に行うことができる。   Even in such a configuration, the dew condensation water generated in the supply pipe 14 can be smoothly moved from the first porous body 62 to the second porous body 64. As a result, the thermal resistance between the supply pipe 14 and the discharge pipe 16 is lowered. As a result, the heat exchange between the supply pipe 14 and the discharge pipe 16 can be quickly performed as in the above-described embodiment. .

また、第一多孔質体62に撥水処理が施され、第二多孔質体64に親水処理が施された上で、第一多孔質体62における各孔の孔径が、第二多孔質体64における各孔の孔径よりも大きく設定されても良い。   Further, after the water repellent treatment is performed on the first porous body 62 and the hydrophilic treatment is performed on the second porous body 64, the pore diameter of each hole in the first porous body 62 is the second It may be set larger than the hole diameter of each hole in the porous body 64.

また、上記各実施形態において、第一多孔質体62及び第二多孔質体64は、電子機器12の筐体24の内部に収容されていた。ところが、第一多孔質体62及び第二多孔質体64は、電子機器12の筐体24の外部に設けられていても良い。そして、これにより、電子機器12が設置された環境70の雰囲気が第一多孔質体62及び第二多孔質体64に供給されても良い。   In each of the above embodiments, the first porous body 62 and the second porous body 64 are accommodated in the housing 24 of the electronic device 12. However, the first porous body 62 and the second porous body 64 may be provided outside the housing 24 of the electronic device 12. Thereby, the atmosphere of the environment 70 in which the electronic device 12 is installed may be supplied to the first porous body 62 and the second porous body 64.

また、上記各実施形態において、熱交換部18は、第一多孔質体62と第二多孔質体64を有していたが、図7に示されるように、撥水部材102と親水部材104を有していても良い。   Further, in each of the above embodiments, the heat exchanging portion 18 has the first porous body 62 and the second porous body 64. However, as shown in FIG. The member 104 may be included.

撥水部材102は、断面円環状に形成されており、供給配管14の周囲に設けられている。この撥水部材102は、例えば、樹脂部材の表面に撥水処理を施す等により撥水性を有している。一方、親水部材104は、排出配管16と撥水部材102との間に設けられており、この排出配管16と撥水部材102とを繋いでいる。この親水部材104は、例えば、樹脂部材の表面に親水処理等を施す等により親水性を有している。   The water repellent member 102 has an annular cross section and is provided around the supply pipe 14. The water repellent member 102 has water repellency, for example, by performing water repellent treatment on the surface of the resin member. On the other hand, the hydrophilic member 104 is provided between the discharge pipe 16 and the water repellent member 102, and connects the discharge pipe 16 and the water repellent member 102. The hydrophilic member 104 has hydrophilicity by, for example, applying a hydrophilic treatment to the surface of the resin member.

このように構成されていても、供給配管14に生じた結露水の移動を撥水部材102から親水部材104へ円滑に行うことができる。これにより、供給配管14と排出配管16との間の熱抵抗が下がるので、この結果、上記実施形態と同様に、供給配管14と排出配管16との間の熱交換を迅速に行うことができる。   Even in such a configuration, the dew condensation water generated in the supply pipe 14 can be smoothly moved from the water repellent member 102 to the hydrophilic member 104. As a result, the thermal resistance between the supply pipe 14 and the discharge pipe 16 is lowered. As a result, the heat exchange between the supply pipe 14 and the discharge pipe 16 can be quickly performed as in the above-described embodiment. .

以上、本願の開示する技術の一態様について説明したが、本願の開示する技術は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。   Although one aspect of the technology disclosed in the present application has been described above, the technology disclosed in the present application is not limited to the above, and various modifications can be made without departing from the gist of the present invention. Of course.

Claims (11)

電子機器と、
前記電子機器に冷却流体を供給する供給配管と、
前記電子機器から前記冷却流体を排出する排出配管と、
前記供給配管に設けられた第一の部材と、前記排出配管と前記第一の部材とを繋ぐ第二の部材とを有し、前記供給配管を流れる前記冷却流体の温度が前記電子機器の設置された環境の露点よりも低い場合に、前記供給配管に生じた結露水を前記第一の部材から前記第二の部材に移動させ、前記供給配管と前記排出配管との間で熱交換する熱交換部と、
を備えた冷却システム。
Electronic equipment,
A supply pipe for supplying a cooling fluid to the electronic device;
A discharge pipe for discharging the cooling fluid from the electronic device;
A first member provided in the supply pipe, and a second member that connects the discharge pipe and the first member, and the temperature of the cooling fluid flowing through the supply pipe is set in the electronic device. When the dew point of the environment is lower, the condensed water generated in the supply pipe is moved from the first member to the second member, and heat is exchanged between the supply pipe and the discharge pipe. An exchange,
With cooling system.
前記第一の部材は、前記供給配管に設けられた第一多孔質体であり、
前記第二の部材は、前記排出配管と前記第一多孔質体とを繋ぐ第二多孔質体である、
請求項1に記載の冷却システム。
The first member is a first porous body provided in the supply pipe ,
The second member is a second porous body that connects the discharge pipe and the first porous body ,
The cooling system according to claim 1.
前記第一多孔質体には、撥水処理が施され、
前記第二多孔質体には、親水処理が施されている、
請求項2に記載の冷却システム。
The first porous body is subjected to a water repellent treatment,
The second porous body has been subjected to a hydrophilic treatment,
The cooling system according to claim 2.
前記第一多孔質体の孔径は、前記第二多孔質体の孔径よりも大きく設定されている、
請求項2又は請求項3に記載の冷却システム。
The pore diameter of the first porous body is set larger than the pore diameter of the second porous body,
The cooling system according to claim 2 or claim 3.
前記第一多孔質体及び前記第二多孔質体には、前記環境の雰囲気が供給されている、
請求項2〜請求項4のいずれか一項に記載の冷却システム。
The environment of the environment is supplied to the first porous body and the second porous body,
The cooling system according to any one of claims 2 to 4.
前記第一多孔質体及び前記第二多孔質体は、前記電子機器の筐体の内部に収容され、
前記第一多孔質体及び前記第二多孔質体には、送風部によって前記筐体の内部に冷却風の流れが形成されることにより、前記環境の雰囲気が供給されている、
請求項5に記載の冷却システム。
The first porous body and the second porous body are housed inside a housing of the electronic device,
The atmosphere of the environment is supplied to the first porous body and the second porous body by forming a flow of cooling air inside the casing by the blower unit.
The cooling system according to claim 5.
前記第一の部材は、前記供給配管に設けられた撥水部材であり、
前記第二の部材は、前記排出配管と前記撥水部材とを繋ぐ親水部材である、
請求項1に記載の冷却システム。
The first member is a water repellent member provided in the supply pipe ,
The second member is a hydrophilic member that connects the discharge pipe and the water repellent member .
The cooling system according to claim 1.
前記電子機器の筐体の内部に冷却風の流れを形成する送風部と、
前記筐体の内部に収容され発熱体が実装された基板よりも前記冷却風の流れの下流側に配置されると共に、前記供給配管に設けられたラジエータと、
を備えた請求項1〜請求項7のいずれか一項に記載の冷却システム。
An air blower that forms a flow of cooling air inside the housing of the electronic device;
A radiator disposed in the supply pipe and disposed on the downstream side of the flow of the cooling air rather than a substrate housed in the housing and mounted with a heating element;
The cooling system according to any one of claims 1 to 7, further comprising:
前記供給配管における前記熱交換部による熱交換領域よりも上流側の部位と、前記排出配管における前記熱交換部による熱交換領域よりも下流側の部位とをバイパスするバイパス管と、
前記供給配管を流れる前記冷却流体の流量と前記バイパス管を流れる前記冷却流体の流量との割合を調整する流量調整部と、
を備えた請求項1〜請求項8のいずれか一項に記載の冷却システム。
A bypass pipe that bypasses a site upstream of the heat exchange region by the heat exchange unit in the supply pipe and a site downstream of the heat exchange region by the heat exchange unit in the discharge pipe;
A flow rate adjusting unit for adjusting a ratio between a flow rate of the cooling fluid flowing through the supply pipe and a flow rate of the cooling fluid flowing through the bypass pipe;
The cooling system as described in any one of Claims 1-8 provided with these.
前記電子機器に供給される前記冷却流体の温度を検出する温度検出器と、
前記環境の湿度を検出する湿度検出器と、
前記電子機器に供給される前記冷却流体の温度が前記環境の露点よりも高くなるように、前記温度検出器及び前記湿度検出器の検出結果に基づいて前記流量調整部を制御する制御部と、
を備えた請求項9に記載の冷却システム。
A temperature detector for detecting a temperature of the cooling fluid supplied to the electronic device;
A humidity detector for detecting the humidity of the environment;
A control unit that controls the flow rate adjusting unit based on the detection results of the temperature detector and the humidity detector so that the temperature of the cooling fluid supplied to the electronic device is higher than the dew point of the environment;
The cooling system according to claim 9, comprising:
前記制御部は、前記電子機器に供給される前記冷却流体の温度が前記環境の露点よりも高い一定の温度範囲に収まるように、前記温度検出器及び前記湿度検出器の検出結果に基づいて前記流量調整部を制御する、
請求項10に記載の冷却システム。
The controller is configured based on the detection results of the temperature detector and the humidity detector so that the temperature of the cooling fluid supplied to the electronic device falls within a certain temperature range higher than the dew point of the environment. Control the flow control unit,
The cooling system according to claim 10.
JP2014504559A 2012-03-14 2012-03-14 Cooling system Expired - Fee Related JP5871053B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056592 WO2013136474A1 (en) 2012-03-14 2012-03-14 Cooling system

Publications (2)

Publication Number Publication Date
JPWO2013136474A1 JPWO2013136474A1 (en) 2015-08-03
JP5871053B2 true JP5871053B2 (en) 2016-03-01

Family

ID=49160442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014504559A Expired - Fee Related JP5871053B2 (en) 2012-03-14 2012-03-14 Cooling system

Country Status (3)

Country Link
US (1) US20140367081A1 (en)
JP (1) JP5871053B2 (en)
WO (1) WO2013136474A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019016709A (en) * 2017-07-07 2019-01-31 富士通株式会社 Cooling device, exhaust purifier, and motor vehicle

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4526011A (en) * 1983-03-03 1985-07-02 Control Data Corporation Dew point sensitive computer cooling system
US4576009A (en) * 1984-01-31 1986-03-18 Mitsubishi Denki Kabushiki Kaisha Heat transmission device
US5181558A (en) * 1990-11-13 1993-01-26 Matsushita Refrigeration Company Heat exchanger
JPH04320399A (en) * 1991-04-19 1992-11-11 Fujitsu Ltd Cooling device for electronic apparatus
US5847927A (en) * 1997-01-27 1998-12-08 Raytheon Company Electronic assembly with porous heat exchanger and orifice plate
US6401807B1 (en) * 1997-04-03 2002-06-11 Silent Systems, Inc. Folded fin heat sink and fan attachment
JP2004060986A (en) * 2002-07-29 2004-02-26 Ube Ind Ltd Flexible heat exchanger and manufacturing method for the same
TWM249438U (en) * 2003-12-15 2004-11-01 Dong-Mau Want A radiator with seamless heat conductor
KR100698462B1 (en) * 2005-01-06 2007-03-23 (주)셀시아테크놀러지스한국 Flat panel type heat transfer device using hydrophilic wick, manufacturing method thereof and chip set comprising the same
WO2007035295A1 (en) * 2005-09-16 2007-03-29 University Of Cincinnati Silicon mems based two-phase heat transfer device
US7662723B2 (en) * 2005-12-13 2010-02-16 Lam Research Corporation Methods and apparatus for in-situ substrate processing
NZ579617A (en) * 2007-03-28 2011-09-30 Mitsubishi Electric Corp Heat exchanger having fins with fine pores for adsorbing water by capillary action
US8069912B2 (en) * 2007-09-28 2011-12-06 Caterpillar Inc. Heat exchanger with conduit surrounded by metal foam
US8322406B2 (en) * 2008-07-14 2012-12-04 University Of Central Florida Research Foundation, Inc. Thermally conductive porous element-based recuperators
US20110259573A1 (en) * 2010-04-26 2011-10-27 Gac Corporation Cooling system
TWM394500U (en) * 2010-07-20 2010-12-11 yong-xuan Chen Information equipment machine cabinet containing cooling system

Also Published As

Publication number Publication date
JPWO2013136474A1 (en) 2015-08-03
US20140367081A1 (en) 2014-12-18
WO2013136474A1 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
Heidarinejad et al. Novel modeling of an indirect evaporative cooling system with cross-flow configuration
US10297339B2 (en) Integrated cooling system for electronics testing apparatus
Kabeel et al. Numerical and experimental investigation of a novel configuration of indirect evaporative cooler with internal baffles
JP5842936B2 (en) Air conditioning system
JP2023099590A (en) System, method, and apparatus for passive cooling of uav
Kandasamy et al. Two-phase spray cooling for high ambient temperature data centers: Evaluation of system performance
TWI361265B (en)
CN102573414A (en) Electronic apparatus rack and data center
JP2015517166A (en) Oil cooling system for server and driving method thereof
JP6565611B2 (en) Information processing device
JP2011187762A (en) Cooling device and electronic device
JP2009216295A (en) Cooling system of electronic device and its operating method
JP6401291B2 (en) Fluid processing apparatus and method for cooling an air flow by fluid processing apparatus
Zimbeck et al. Loop heat pipe technology for cooling computer servers
JPWO2010044392A1 (en) Painting equipment
JP2008311501A (en) Cooling device for electronic equipment
KR101507524B1 (en) Movable Dehumidification Apparatus for Aircraft
JP5871053B2 (en) Cooling system
US9345175B2 (en) Electronic apparatus and cooling method
JP2010025377A (en) Server device
JP6569522B2 (en) Heat exchanger
US9247659B1 (en) Slab-based cooling
JP2010027700A (en) Server device
JP2015001359A5 (en)
JP2008304115A (en) Heat pump unit and heat pump type water heater

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151228

R150 Certificate of patent or registration of utility model

Ref document number: 5871053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees