JP5870237B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP5870237B2
JP5870237B2 JP2011123110A JP2011123110A JP5870237B2 JP 5870237 B2 JP5870237 B2 JP 5870237B2 JP 2011123110 A JP2011123110 A JP 2011123110A JP 2011123110 A JP2011123110 A JP 2011123110A JP 5870237 B2 JP5870237 B2 JP 5870237B2
Authority
JP
Japan
Prior art keywords
evaporator
cycle
cooling
temperature
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011123110A
Other languages
Japanese (ja)
Other versions
JP2012251680A (en
Inventor
境 寿和
寿和 境
西村 晃一
晃一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2011123110A priority Critical patent/JP5870237B2/en
Priority to CN201280024057.4A priority patent/CN103547872B/en
Priority to EP12785019.6A priority patent/EP2711654A4/en
Priority to PCT/JP2012/003181 priority patent/WO2012157263A1/en
Publication of JP2012251680A publication Critical patent/JP2012251680A/en
Application granted granted Critical
Publication of JP5870237B2 publication Critical patent/JP5870237B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Defrosting Systems (AREA)

Description

本発明は、冷凍室と冷蔵室にそれぞれ冷気を遮断するダンパを有し、1個の蒸発器を用いて冷凍室と冷蔵室それぞれを単独で冷却することにより、冷凍サイクルの効率を高めた冷蔵庫に関するものである。   The present invention has a damper that has a damper for shutting off cold air in the freezer compartment and the refrigerator compartment, respectively, and uses a single evaporator to individually cool the refrigerator compartment and the refrigerator compartment, thereby improving the efficiency of the refrigerating cycle. It is about.

省エネルギーの観点から、家庭用冷蔵庫においては、1個の蒸発器を用いて冷凍室と冷蔵室それぞれを単独で冷却することにより、冷凍サイクルの効率を高めた冷蔵庫がある。これは、比較的空気温度の高い冷蔵室を冷却する際に冷凍室よりも高い蒸発温度で冷却することで、冷凍サイクルの効率を高めるものである。   From the viewpoint of energy saving, there are refrigerators for household use that have improved the efficiency of the refrigeration cycle by cooling each of the freezer compartment and the refrigerator compartment by using one evaporator. This enhances the efficiency of the refrigeration cycle by cooling the refrigerator compartment having a relatively high air temperature at an evaporation temperature higher than that of the freezer compartment.

さらに、冷凍室と冷蔵室それぞれに設けられた冷気を遮断するダンパを用いて、圧縮機停止中に冷蔵室内にある食品の熱量を利用して蒸発器を除霜することが提案されている(例えば、特許文献1参照)。これは、蒸発器に付着した霜を除去する際に、加温用ヒータの電力を削減しながら冷蔵室の冷却に必要な冷凍サイクルの能力を削減することにより省エネルギー化を図るものである。   Furthermore, it has been proposed to defrost the evaporator by using the amount of heat of food in the refrigerator compartment while the compressor is stopped, using dampers that block cold air provided in the freezer compartment and the refrigerator compartment respectively ( For example, see Patent Document 1). This is intended to save energy by reducing the capacity of the refrigeration cycle necessary for cooling the refrigerator compartment while reducing the electric power of the heating heater when removing frost attached to the evaporator.

以下、図面を参照しながら従来の冷蔵庫を説明する。   Hereinafter, a conventional refrigerator will be described with reference to the drawings.

図5は従来の冷蔵庫の縦断面図、図6は従来の冷蔵庫の冷凍サイクル構成図、図7は従来の冷蔵庫の温度センサおよび冷蔵室上部の温度挙動の模式図、図8は従来の冷蔵庫の除霜時の制御フローを示した図である。   FIG. 5 is a longitudinal sectional view of a conventional refrigerator, FIG. 6 is a configuration diagram of a refrigeration cycle of a conventional refrigerator, FIG. 7 is a schematic diagram of temperature behavior of a conventional refrigerator temperature sensor and a refrigerator, and FIG. 8 is a diagram of a conventional refrigerator. It is the figure which showed the control flow at the time of defrosting.

図5および図6において、冷蔵庫11は、筐体12、扉13、筐体12を支える脚14、筐体12の下部に設けられた下部機械室15、筐体12の上部に配置された冷蔵室17、筐体12の下部に配置された冷凍室18を有している。また、冷凍サイクルを構成する部品として、下部機械室15に納められた圧縮機56、冷凍室18の背面側に収められた蒸発器20、下部機械室15内に納められた主凝縮器21を有している。また、下部機械室15を仕切る隔壁22、隔壁22に取り付けられ主凝縮器21を空冷するファン23、圧縮機56の上部に設置された蒸発皿57、下部機械室15の底板25を有している。   5 and 6, the refrigerator 11 includes a housing 12, a door 13, a leg 14 that supports the housing 12, a lower machine room 15 provided in a lower portion of the housing 12, and a refrigeration disposed in an upper portion of the housing 12. It has the freezer compartment 18 arrange | positioned at the chamber 17 and the lower part of the housing | casing 12. FIG. In addition, as components constituting the refrigeration cycle, a compressor 56 housed in the lower machine chamber 15, an evaporator 20 housed on the back side of the freezer room 18, and a main condenser 21 housed in the lower machine room 15 are provided. Have. Further, it has a partition wall 22 that partitions the lower machine chamber 15, a fan 23 that is attached to the partition wall 22 to air-cool the main condenser 21, an evaporating dish 57 installed on the top of the compressor 56, and a bottom plate 25 of the lower machine chamber 15. Yes.

また、底板25に設けられた複数の吸気口26、下部機械室15の背面側に設けられた排出口27、下部機械室15の排出口27と筐体11の上部を繋ぐ連通風路28を有している。ここで、下部機械室15は隔壁22によって2室に分けられ、ファン23の風上側に主凝縮器21、風下側に圧縮機56と蒸発皿57を収めている。   Also, a plurality of air intakes 26 provided in the bottom plate 25, an exhaust port 27 provided on the back side of the lower machine room 15, and a communication air passage 28 connecting the exhaust port 27 of the lower machine room 15 and the upper part of the housing 11 are provided. Have. Here, the lower machine chamber 15 is divided into two chambers by the partition wall 22, and the main condenser 21 is housed on the windward side of the fan 23, and the compressor 56 and the evaporating dish 57 are housed on the leeward side.

また、冷凍サイクルを構成する部品として、主凝縮器21の下流側に位置し、冷凍室18の開口部周辺の筐体12の外表面と熱結合された防露パイプ37、防露パイプ37の下流側に位置し、循環する冷媒を乾燥するドライヤ38、ドライヤ38と蒸発器20を結合し、循環する冷媒を減圧する絞り39を有している。   Further, as components constituting the refrigeration cycle, a dew-proof pipe 37 and a dew-proof pipe 37 which are located on the downstream side of the main condenser 21 and are thermally coupled to the outer surface of the housing 12 around the opening of the freezer compartment 18. It is located downstream, and has a dryer 38 that dries the circulating refrigerant, a throttle 38 that combines the dryer 38 and the evaporator 20 and depressurizes the circulating refrigerant.

また、蒸発器20で発生する冷気を冷蔵室17と冷凍室18に供給する蒸発器ファン50、冷凍室18に供給される冷気を遮断する冷凍室ダンパ51、冷蔵室17に供給される冷気を遮断する冷蔵室ダンパ52、冷蔵室17に冷気を供給するダクト53、冷凍室18の温度を検知するFCC温度センサ54、冷蔵室17の温度を検知するPCC温度センサ55を有している。   Further, an evaporator fan 50 that supplies cold air generated in the evaporator 20 to the refrigerator compartment 17 and the freezer compartment 18, a freezer damper 51 that blocks the cold air supplied to the refrigerator compartment 18, and cold air supplied to the refrigerator compartment 17 It has a refrigerator compartment damper 52 that shuts off, a duct 53 that supplies cold air to the refrigerator compartment 17, an FCC temperature sensor 54 that detects the temperature of the freezer compartment 18, and a PCC temperature sensor 55 that detects the temperature of the refrigerator compartment 17.

以上のように構成された従来の冷蔵庫について以下にその動作を説明する。   The operation of the conventional refrigerator configured as described above will be described below.

PCC温度センサ55の検知する温度が所定値のON温度まで上昇すると、圧縮機56を停止した状態で冷凍室ダンパ51を閉とし、冷蔵室ダンパ52を開として蒸発器ファン50を駆動する。これによって、蒸発器20とこれに付着している霜の低温の顕熱と霜の融解潜熱を利用して冷蔵室17を冷却する(以下、この動作を「オフサイクル冷却」という)。   When the temperature detected by the PCC temperature sensor 55 rises to a predetermined ON temperature, the freezer damper 51 is closed while the compressor 56 is stopped, the refrigerator damper 52 is opened, and the evaporator fan 50 is driven. Thereby, the refrigerator compartment 17 is cooled using the evaporator 20 and the low-temperature sensible heat of the frost adhering to the evaporator 20 and the latent heat of fusion of the frost (hereinafter, this operation is referred to as “off-cycle cooling”).

オフサイクル冷却の開始から所定時間後に、冷凍室ダンパ51を閉とし、冷蔵室ダンパ52を開として、圧縮機56とファン23、蒸発器ファン50を駆動する。ファン23の駆動によって、隔壁22で仕切られた下部機械室15の主凝縮器21側が負圧となり複数の吸気口26から外部の空気を吸引し、圧縮機56と蒸発皿57側が正圧となり下部機械室15内の空気を複数の排出口27から外部へ排出する。   After a predetermined time from the start of off-cycle cooling, the freezer damper 51 is closed, the refrigerator compartment damper 52 is opened, and the compressor 56, the fan 23, and the evaporator fan 50 are driven. By driving the fan 23, the main condenser 21 side of the lower machine chamber 15 partitioned by the partition wall 22 becomes negative pressure, and external air is sucked from the plurality of intake ports 26, and the compressor 56 and the evaporating dish 57 side become positive pressure. The air in the machine room 15 is discharged to the outside through a plurality of discharge ports 27.

一方、圧縮機56から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、防露パイプ37へ供給される。防露パイプ37を通過した冷媒は冷凍室18の開口部を暖めながら、筐体12を介して外部に放熱して凝縮する。防露パイプ37を通過した液冷媒は、ドライヤ38で水分除去され、絞り39で減圧されて蒸発器20で蒸発しながら冷蔵室17の庫内空気と熱交換して冷蔵室17を冷却しながら、気体冷媒として圧縮機56に還流する(以下、この動作を「PC冷却」という)。このとき、冷蔵室17の庫内空気が冷凍室18よりも温度が高く、かつ、オフサイクル冷却によって蒸発器20の温度が上昇しているため、PC冷却時は高い蒸発温度に速やかに到達することができる。   On the other hand, the refrigerant discharged from the compressor 56 is condensed while leaving a part of the gas while exchanging heat with the outside air in the main condenser 21 and then supplied to the dewproof pipe 37. The refrigerant that has passed through the dew-proof pipe 37 radiates heat through the housing 12 and condenses while warming the opening of the freezer compartment 18. The liquid refrigerant that has passed through the dew-proof pipe 37 is dehydrated by the dryer 38, depressurized by the throttle 39, and is evaporated by the evaporator 20, while exchanging heat with the air in the refrigerator compartment 17 and cooling the refrigerator compartment 17. Then, it is returned to the compressor 56 as a gaseous refrigerant (hereinafter, this operation is referred to as “PC cooling”). At this time, since the temperature of the air in the refrigerator compartment 17 is higher than that of the freezer compartment 18 and the temperature of the evaporator 20 is increased by off-cycle cooling, it quickly reaches a high evaporation temperature during PC cooling. be able to.

次に、PCC温度センサ55の検知する温度が所定値のOFF温度まで下降するか、あるいはFCC温度センサ54の検知する温度が所定値のON温度まで上昇すると、冷凍室ダンパ51を開とし、冷蔵室ダンパ52を閉として、圧縮機56とファン23、蒸発器ファン50を駆動する。以下、PC冷却と同様に冷凍サイクルを稼動させることにより、冷凍室18の庫内空気と蒸発器20を熱交換して冷凍室18を冷却する(以下、この動作を「FC冷却」という)。   Next, when the temperature detected by the PCC temperature sensor 55 falls to a predetermined OFF temperature or when the temperature detected by the FCC temperature sensor 54 rises to a predetermined ON temperature, the freezer damper 51 is opened and refrigerated. The chamber damper 52 is closed, and the compressor 56, the fan 23, and the evaporator fan 50 are driven. Thereafter, by operating the refrigeration cycle in the same manner as PC cooling, the freezer compartment 18 is cooled by exchanging heat between the inside air of the freezer compartment 18 and the evaporator 20 (hereinafter, this operation is referred to as “FC cooling”).

図7において、区間eはオフサイクル冷却、区間fはPC冷却、区間gはFC冷却、区間hは冷却停止の動作に対応する。圧縮機56は区間fと区間gの間に駆動し、区間hと区間eの間に停止する。また、冷凍室18は区間gの間に冷却され、冷蔵室17は区間eと区間fの間に冷却される。ここで、冷蔵室17上部の温度変化が大きい理由は、その上部が温度の高い外気に隣接している一方、その下部が温度の低い冷凍室18に隣接しているため、非冷却期間中に上下の温度差が大きくなるとともに、冷却時に上部の風量を大きくして高温の上部を速やかに冷却するためである。   In FIG. 7, section e corresponds to off-cycle cooling, section f corresponds to PC cooling, section g corresponds to FC cooling, and section h corresponds to cooling stop operation. The compressor 56 is driven between the section f and the section g, and is stopped between the section h and the section e. Moreover, the freezer compartment 18 is cooled during the section g, and the refrigerator compartment 17 is cooled between the section e and the section f. Here, the reason why the temperature change in the upper part of the refrigerating chamber 17 is large is that the upper part is adjacent to the high temperature outside air, while the lower part is adjacent to the low temperature freezing room 18, so during the non-cooling period. This is because the temperature difference between the upper and lower sides becomes larger and the air volume at the upper part is increased during cooling to quickly cool the upper part at a high temperature.

次に、FCC温度センサ54の検知する温度が所定値のOFF温度まで下降すると、冷凍室ダンパ51と冷蔵室ダンパ52を閉として、圧縮機56とファン23、蒸発器ファン50を停止する(以下、この動作を「冷却停止」という)。そして、通常運転中は、オフサイクル冷却、PC冷却、FC冷却、冷却停止の一連の動作を順に繰り返す。   Next, when the temperature detected by the FCC temperature sensor 54 decreases to the predetermined OFF temperature, the freezer damper 51 and the refrigerator compartment damper 52 are closed, and the compressor 56, the fan 23, and the evaporator fan 50 are stopped (hereinafter referred to as the “freezer compartment damper 51”). This operation is called “cooling stop”). During normal operation, a series of operations of off-cycle cooling, PC cooling, FC cooling, and cooling stop are repeated in order.

そして、通常運転を所定時間継続した後、蒸発器20に付着した霜を除去するため、比較的長時間のオフサイクル冷却を実施する(以下、この動作を「オフサイクルデフ」という)。図8において、「除霜開始」から「除霜の終了判定」までがオフサイクルデフの制御フローである。   Then, after the normal operation is continued for a predetermined time, in order to remove frost attached to the evaporator 20, off-cycle cooling is performed for a relatively long time (hereinafter, this operation is referred to as “off-cycle differential”). In FIG. 8, the control flow of the off-cycle differential is from “defrost start” to “defrost end determination”.

まず、PC冷却を開始する直前に、通常運転が所定時間を越えていた場合に、「除霜開
始」すなわち、オフサイクルデフの開始と判定される。これは、冷蔵室17内の熱量を用いて、蒸発器20に付着した霜を融解除去するため、冷蔵室17内の温度が比較的高く、熱量が大きいタイミングを狙ったものである。そして、圧縮機56を停止した状態で冷凍室ダンパ51を閉とし、冷蔵室ダンパ52を開として蒸発器ファン50を駆動する、オフサイクル冷却と同じ一連の動作を行って、蒸発器20の除霜を実施する。
First, immediately before starting the PC cooling, when the normal operation exceeds a predetermined time, it is determined that “defrosting start”, that is, the start of off-cycle differential. This is aimed at the timing when the temperature in the refrigerator compartment 17 is relatively high and the amount of heat is large in order to melt and remove the frost attached to the evaporator 20 using the amount of heat in the refrigerator compartment 17. Then, with the compressor 56 stopped, the freezer damper 51 is closed, the refrigerating room damper 52 is opened, and the evaporator fan 50 is driven. Implement frost.

そして、蒸発器20の温度を検知するDEF温度センサ(図示せず)が0℃超を検知した際に、「除霜の終了判定」すなわち、蒸発器20に付着した霜が完全に除去できたと判定して、オフサイクルデフの動作を終了して、通常運転に復帰する。   And, when a DEF temperature sensor (not shown) for detecting the temperature of the evaporator 20 detects over 0 ° C., “defrosting completion determination”, that is, that the frost attached to the evaporator 20 has been completely removed. Determine, end the off-cycle differential operation, and return to normal operation.

このオフサイクルデフによって、蒸発器20の除霜時に通常使用される加温用ヒータの電力を削減することができ、同時に、冷蔵室17の冷却に必要な冷凍サイクルの能力を削減することにより省エネルギー化を図ることができる。   By this off-cycle differential, it is possible to reduce the power of the heating heater that is normally used when the evaporator 20 is defrosted, and at the same time save energy by reducing the capacity of the refrigeration cycle necessary for cooling the refrigerator compartment 17. Can be achieved.

特開平9−236369号公報Japanese Patent Laid-Open No. 9-236369

しかしながら、従来の冷蔵庫の構成では、冷蔵室17内の食品収納量の多少によってオフサイクルデフに要する時間が大きく変化する問題が発生する。これは、蒸発器20に付着した霜を融解する熱量を冷蔵室17内に収納された食品の熱量に依存しているためであり、食品収納量がほとんどない場合には蒸発器20に付着した霜が完全に融解せず、オフサイクルデフが終了しないことも懸念される。   However, the conventional refrigerator configuration has a problem in that the time required for off-cycle differential changes greatly depending on the amount of food stored in the refrigerator compartment 17. This is because the amount of heat for melting the frost adhering to the evaporator 20 depends on the amount of heat of the food stored in the refrigerator compartment 17. There is also concern that the frost will not melt completely and the off-cycle differential will not end.

また、従来の冷蔵庫の構成では、加熱用ヒータを追加して補助的な熱源とすることで、確実に蒸発器20に付着した霜を融解することはできるが、補助的に使用する加熱用ヒータの出力を適正に調整することが困難である。これは、冷蔵室17内の食品収納量に基づいて、蒸発器20に供給されるオフサイクルデフの熱量が不明であるとともに、付着した霜が融解中である蒸発器20はほとんど温度変化がなく、除霜の進行速度を精度よく判別することが難しいためである。この結果、加熱用ヒータを追加して補助的な熱源としても、オフサイクルデフに要する時間が異常に長い場合に緊急的に使用するか、あるいは初めから必要以上の出力を供給する可能性が高い。   Moreover, in the structure of the conventional refrigerator, by adding a heater for heating as an auxiliary heat source, the frost attached to the evaporator 20 can be reliably melted, but the heater for auxiliary use It is difficult to properly adjust the output. This is because, based on the amount of food stored in the refrigerator compartment 17, the amount of heat of the off-cycle differential supplied to the evaporator 20 is unknown, and the evaporator 20 in which the attached frost is melting has almost no temperature change. This is because it is difficult to accurately determine the defrosting speed. As a result, even if a heater for heating is added and used as an auxiliary heat source, there is a high possibility that it will be used urgently when the time required for off-cycle differential is abnormally long, or supply more output than necessary from the beginning. .

本発明は、従来の課題を解決するもので、蒸発器20に供給されるオフサイクルデフの熱量を事前に判別して、補助的に使用する加熱用ヒータの出力を適正に調整することでオフサイクルデフに要する時間を適正に制御することを目的とする。   The present invention solves the conventional problem, and determines the amount of heat of the off-cycle differential supplied to the evaporator 20 in advance and appropriately adjusts the output of the auxiliary heater to be turned off. The purpose is to properly control the time required for cycle differential.

従来の課題を解決するために、本発明の冷蔵庫は、オフサイクルデフの実施前に冷蔵室内の食品収納量を検知して、補助的に使用する加熱用ヒータの出力を選択した後、オフサイクルデフを実施することを特徴とするものである。これによって、加熱用ヒータの出力を抑制しながら、オフサイクルデフに要する時間を適正に制御することができる。   In order to solve the conventional problems, the refrigerator of the present invention detects the amount of food stored in the refrigerator before the off-cycle differential, selects the output of the heater for auxiliary use, and then turns off the cycle. It is characterized by performing a differential. This makes it possible to appropriately control the time required for off-cycle differential while suppressing the output of the heater for heating.

本発明の冷蔵庫は、補助的に使用する加熱用ヒータの出力を適正に選択した後、オフサイクルデフを実施することにより、加熱用ヒータの出力を抑制しながら、オフサイクルデフに要する時間を適正に制御することができ、オフサイクルデフを実施中に冷蔵室や冷凍室が温度上昇することを抑制するとともに、除霜に必要な加熱用ヒータの電力量を削減し
て冷蔵庫の省エネルギー化を図ることができる。
In the refrigerator of the present invention, after appropriately selecting the output of the heater for auxiliary use, the time required for the off-cycle differential is suppressed while performing the off-cycle differential to suppress the output of the heater for heating. It is possible to control the temperature of the refrigerator compartment and the freezer compartment during off-cycle differential, and to reduce energy consumption of the refrigerator by reducing the amount of heating heater power necessary for defrosting. be able to.

本発明の実施の形態1における冷蔵庫の縦断面図The longitudinal cross-sectional view of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における冷蔵庫のサイクル構成図Cycle configuration diagram of refrigerator in Embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫の温度センサ挙動の模式図Schematic diagram of temperature sensor behavior of refrigerator in embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫の除霜時の制御フローを示した図The figure which showed the control flow at the time of defrosting of the refrigerator in Embodiment 1 of this invention 従来の冷蔵庫の縦断面図Vertical section of a conventional refrigerator 従来の冷蔵庫のサイクル構成図Cycle configuration diagram of a conventional refrigerator 従来の冷蔵庫の温度センサおよび冷蔵室上部の温度挙動の模式図Schematic diagram of temperature behavior of conventional refrigerator temperature sensor and refrigerated room 従来の冷蔵庫の除霜時の制御フローを示した図The figure which showed the control flow at the time of defrosting of the conventional refrigerator

第1の発明は、冷蔵室と、冷凍室と、冷凍サイクルと、前記冷凍サイクルの構成要素である蒸発器と、前記蒸発器で発生した冷気を前記冷蔵室および前記冷凍室へ供給する蒸発器ファンと、前記蒸発器を除霜するための加熱用ヒータと、前記蒸発器から前記冷蔵室へ供給される冷気を遮断する冷蔵室ダンパと、前記蒸発器から前記冷凍室へ供給される冷気を遮断する冷凍室ダンパとを有する冷蔵庫において、前記冷凍室ダンパを開放し、前記冷蔵室ダンパを閉塞して、前記冷凍サイクルを稼動しながら前記蒸発器で発生した冷気を供給して前記冷凍室を冷却するFC冷却モードと、前記冷凍室ダンパを閉塞し、前記冷蔵室ダンパを開放して、前記冷凍サイクルを稼動しながら前記蒸発器で発生した冷気を供給して前記冷蔵室を冷却するPC冷却モードと、前記冷凍室ダンパを閉塞し、前記冷蔵室ダンパを開放して、前記冷凍サイクルを停止しながら前記蒸発器ファンを運転することで、前記蒸発器と前記冷蔵室内の空気を熱交換するオフサイクル冷却モードと、前記加熱用ヒータに通電しながら、前記冷凍室ダンパを閉塞し、前記冷蔵室ダンパを開放して、前記冷凍サイクルを停止しながら前記蒸発器ファンを運転することで、前記蒸発器に付着した霜を融解除去するオフサイクルデフモードを有し、さらに、前記冷蔵室の温度を検知するPCC温度センサと、前記PCC温度センサより上部に設置され、前記冷蔵室の上部の温度を検知するDFP温度センサとを有し、PC冷却モードあるいはオフサイクル冷却モードにおけるPCC温度センサとDFP温度センサとの温度変化に基づいて、冷蔵室内に収納されている食品量を検知し、前記食品量に基づいて前記加熱用ヒータの出力を選択した後、前記オフサイクルデフモードを実施するもので、前記PC冷却モード中の前記DFP温度センサの検知温度の最低値が、同時刻の前記PCC温度センサの検知温度よりも所定値以上低くなった場合に、前記冷蔵室内に収納された食品量が多いと判定し、前記加熱用ヒータに通電せず前記オフサイクルデフモードを実施するものであり、オフサイクルデフに要する時間を適正に制御することができ、オフサイクルデフを実施中に冷蔵室や冷凍室が温度上昇することを抑制するとともに、除霜に必要な加熱用ヒータの電力量を削減して冷蔵庫の省エネルギー化を図ることができる。 The first invention includes a refrigerator compartment, a freezer compartment, a refrigeration cycle, an evaporator that is a component of the refrigeration cycle, and an evaporator that supplies cold air generated in the evaporator to the refrigerator compartment and the freezer compartment. A fan, a heater for defrosting the evaporator, a refrigerator damper for blocking cold air supplied from the evaporator to the refrigerator compartment, and cold air supplied from the evaporator to the refrigerator compartment In the refrigerator having a freezer damper to be shut off, the freezer damper is opened, the refrigerator compartment damper is closed, and cold air generated in the evaporator is supplied while the refrigeration cycle is operated to supply the freezer FC cooling mode for cooling, PC cooling for closing the freezer compartment damper, opening the refrigerating compartment damper, supplying cold air generated by the evaporator while operating the refrigerating cycle, and cooling the refrigerating compartment Mode, the freezer compartment damper is closed, the refrigerator compartment damper is opened, and the evaporator fan is operated while the refrigeration cycle is stopped, thereby exchanging heat between the evaporator and the air in the refrigerator compartment. The off-cycle cooling mode, while energizing the heater for heating, closing the freezer compartment damper, opening the refrigerating compartment damper, and operating the evaporator fan while stopping the freezing cycle, It has an off-cycle differential mode that melts and removes frost adhering to the evaporator, and further includes a PCC temperature sensor that detects the temperature of the refrigerator compartment, and a temperature above the PCC temperature sensor. A DFP temperature sensor for detecting the temperature of the PCC temperature sensor and the DFP temperature sensor in the PC cooling mode or the off-cycle cooling mode. Zui and detects the food weight which is housed in the refrigeration compartment, after selecting the output of said heater on the basis of the food weight, intended to implement the off cycle defroster mode, in the PC cooling mode When the minimum value of the detected temperature of the DFP temperature sensor is lower than the detected value of the PCC temperature sensor at the same time by a predetermined value or more, it is determined that the amount of food stored in the refrigerator compartment is large, and the heating The off-cycle differential mode is performed without energizing the heater, and the time required for the off-cycle differential can be appropriately controlled, and the temperature of the refrigerator compartment or freezer compartment increases during the off-cycle differential. In addition, it is possible to save energy in the refrigerator by reducing the amount of electric power of the heating heater necessary for defrosting.

第2の発明は、PC冷却モードの開始直前に、オフサイクルデフモードの実施の可否を判定することを特徴とする冷蔵庫であるので、冷蔵室を冷却する直前の比較的温度が高いタイミングでオフサイクルデフモードを実施することができ、蒸発器に供給されるオフサイクルデフの熱量を高めて、除霜に必要な加熱用ヒータの電力量をさらに削減することができるものである。   Since the second invention is a refrigerator characterized by determining whether or not the off-cycle differential mode can be performed immediately before the start of the PC cooling mode, the refrigerator is turned off at a relatively high temperature immediately before the refrigerator compartment is cooled. The cycle differential mode can be implemented, and the amount of heat of the off-cycle differential supplied to the evaporator can be increased to further reduce the amount of electric power of the heating heater necessary for defrosting.

以下、本発明の実施の形態について、図面を参照しながら説明するが、従来例と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the same reference numerals are given to the same components as those of the conventional example, and detailed description thereof will be omitted. The present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1における冷蔵庫の縦断面図、図2は本発明の実施の形態1における冷蔵庫のサイクル構成図、図3は本発明の実施の形態1における冷蔵庫の温度センサ挙動の模式図、図4は本発明の実施の形態1における冷蔵庫の除霜時の制御フローを示した図である。
(Embodiment 1)
1 is a longitudinal sectional view of a refrigerator according to Embodiment 1 of the present invention, FIG. 2 is a cycle configuration diagram of the refrigerator according to Embodiment 1 of the present invention, and FIG. 3 is a temperature sensor behavior of the refrigerator according to Embodiment 1 of the present invention. FIG. 4 is a diagram showing a control flow during defrosting of the refrigerator in the first embodiment of the present invention.

図1および図2において、冷蔵庫11は、筐体12、扉13、筐体12を支える脚14、筐体12の下部に設けられた下部機械室15、筐体12の上部に設けられた上部機械室16、筐体12の上部に配置された冷蔵室17、筐体12の下部に配置された冷凍室18を有する。また、冷凍サイクルを構成する部品として、上部機械室16に納められた圧縮機19、冷凍室18の背面側に収められた蒸発器20、下部機械室15内に納められた主凝縮器21を有している。また、下部機械室15を仕切る隔壁22、隔壁22に取り付けられ主凝縮器21を空冷するファン23、隔壁22の風下側に設置された蒸発皿24、下部機械室15の底板25を有している。   In FIG. 1 and FIG. 2, the refrigerator 11 includes a housing 12, a door 13, legs 14 that support the housing 12, a lower machine room 15 provided in the lower portion of the housing 12, and an upper portion provided in the upper portion of the housing 12. It has a machine room 16, a refrigeration room 17 disposed at the upper part of the casing 12, and a freezing room 18 disposed at the lower part of the casing 12. In addition, as components constituting the refrigeration cycle, a compressor 19 housed in the upper machine room 16, an evaporator 20 housed in the back side of the freezer room 18, and a main condenser 21 housed in the lower machine room 15 are provided. Have. In addition, it has a partition wall 22 that partitions the lower machine chamber 15, a fan 23 that is attached to the partition wall 22 and cools the main condenser 21, an evaporating dish 24 installed on the leeward side of the partition wall 22, and a bottom plate 25 of the lower machine chamber 15. Yes.

また、底板25に設けられた複数の吸気口26、下部機械室15の背面側に設けられた排出口27、下部機械室15の排出口27と上部機械室16を繋ぐ連通風路28を有している。ここで、下部機械室15は隔壁22によって2室に分けられ、ファン23の風上側に主凝縮器21、風下側に蒸発皿24を収めている。   In addition, a plurality of air intakes 26 provided in the bottom plate 25, an exhaust port 27 provided on the back side of the lower machine room 15, and a communication air passage 28 connecting the exhaust port 27 of the lower machine room 15 and the upper machine room 16 are provided. doing. Here, the lower machine chamber 15 is divided into two chambers by a partition wall 22, and a main condenser 21 is housed on the windward side of the fan 23 and an evaporating dish 24 is housed on the leeward side.

また、冷凍サイクルを構成する部品として、主凝縮器21の下流側に位置し、冷凍室18の開口部周辺の筐体12の外表面と熱結合された防露パイプ41、防露パイプ41の下流側に位置し、循環する冷媒を乾燥するドライヤ42、ドライヤ42と蒸発器20を結合し、循環する冷媒を減圧する絞り43を有している。   Further, as the components constituting the refrigeration cycle, the dew-proof pipe 41 and the dew-proof pipe 41 which are located on the downstream side of the main condenser 21 and are thermally coupled to the outer surface of the housing 12 around the opening of the freezer compartment 18 are provided. It is located downstream, and has a dryer 42 that dries the circulating refrigerant, a throttle 42 that combines the dryer 42 and the evaporator 20 and depressurizes the circulating refrigerant.

また、蒸発器20で発生する冷気を冷蔵室17と冷凍室18に供給する蒸発器ファン30、冷凍室18に供給される冷気を遮断する冷凍室ダンパ31、冷蔵室17に供給される冷気を遮断する冷蔵室ダンパ32、冷蔵室17に冷気を供給するダクト33、冷凍室18の温度を検知するFCC温度センサ34、冷蔵室17の温度を検知するPCC温度センサ35、冷蔵室17の上部に位置し、特にPCC温度センサ35よりも上部の冷蔵室17の温度を検知するDFP温度センサ36、蒸発器20の下部に設置され除霜時の補助熱源となる加温用ヒータ44を有している。ここで、ダクト33は冷蔵室17と上部機械室16が隣接する壁面に沿って形成され、ダクト33を通過する冷気の一部を冷蔵室の中央付近から排出するとともに、冷気の多くは上部機械室16が隣接する壁面を冷却しながら通過した後に冷蔵室17の上部から排出する。   In addition, an evaporator fan 30 that supplies cold air generated in the evaporator 20 to the refrigerator compartment 17 and the freezer compartment 18, a freezer damper 31 that blocks cold air supplied to the freezer compartment 18, and cold air supplied to the refrigerator compartment 17 The refrigerator compartment damper 32 to be shut off, the duct 33 for supplying cold air to the refrigerator compartment 17, the FCC temperature sensor 34 for detecting the temperature of the freezer compartment 18, the PCC temperature sensor 35 for detecting the temperature of the refrigerator compartment 17, and the upper part of the refrigerator compartment 17 In particular, a DFP temperature sensor 36 that detects the temperature of the refrigerator compartment 17 above the PCC temperature sensor 35, and a heater 44 that is installed at the bottom of the evaporator 20 and serves as an auxiliary heat source during defrosting. Yes. Here, the duct 33 is formed along a wall surface where the refrigerator compartment 17 and the upper machine room 16 are adjacent to each other, and a part of the cold air passing through the duct 33 is discharged from the vicinity of the center of the refrigerator compartment, and most of the cold air is in the upper machine. After passing through the wall 16 while cooling the adjacent wall surface, it is discharged from the upper part of the refrigerator compartment 17.

以上のように構成された本発明の実施の形態1における冷蔵庫について、以下その動作を説明する。   About the refrigerator in Embodiment 1 of this invention comprised as mentioned above, the operation | movement is demonstrated below.

DFP温度センサ36の検知する温度が所定値のON温度まで上昇すると、圧縮機19を停止した状態で冷凍室ダンパ31を閉とし、冷蔵室ダンパ32を開として蒸発器ファン30を駆動する。これによって、蒸発器20とこれに付着している霜の低温の顕熱と霜の融解潜熱を利用して冷蔵室17を冷却する(以下、この動作を「オフサイクル冷却」という)。そして、DFP温度センサ36の検知する温度が所定値のOFF温度まで下降すると、冷凍室ダンパ31を閉とし、冷蔵室ダンパ32を閉として蒸発器ファン30を停止する(以下、この動作を「冷却停止」という)。   When the temperature detected by the DFP temperature sensor 36 rises to a predetermined ON temperature, the freezer damper 31 is closed with the compressor 19 stopped, the refrigerator compartment damper 32 is opened, and the evaporator fan 30 is driven. Thereby, the refrigerator compartment 17 is cooled using the evaporator 20 and the low-temperature sensible heat of the frost adhering to the evaporator 20 and the latent heat of fusion of the frost (hereinafter, this operation is referred to as “off-cycle cooling”). When the temperature detected by the DFP temperature sensor 36 falls to a predetermined OFF temperature, the freezer damper 31 is closed, the refrigerator compartment damper 32 is closed, and the evaporator fan 30 is stopped (hereinafter, this operation is referred to as “cooling”). Stopped)).

オフサイクル冷却あるいは冷却停止中にPCC温度センサ35の検知する温度が所定値のON温度まで上昇すると、冷凍室ダンパ31を閉とし、冷蔵室ダンパ32を開として、
圧縮機19とファン23、蒸発器ファン30を駆動する。ファン23の駆動によって、隔壁22で仕切られた下部機械室15の主凝縮器21側が負圧となり複数の吸気口26から外部の空気を吸引し、蒸発皿24側が正圧となり下部機械室15内の空気を複数の排出口27から外部へ排出する。そして、下部機械室15から排出された空気は連通風路28を介して、上部機械室16へ送られて圧縮機19を冷却する。
When the temperature detected by the PCC temperature sensor 35 rises to a predetermined ON temperature during off-cycle cooling or cooling stop, the freezer damper 31 is closed and the refrigerator compartment damper 32 is opened.
The compressor 19, the fan 23, and the evaporator fan 30 are driven. By driving the fan 23, the main condenser 21 side of the lower machine chamber 15 partitioned by the partition wall 22 has a negative pressure, and external air is sucked from the plurality of intake ports 26, and the evaporating dish 24 side has a positive pressure. The air is discharged from the plurality of discharge ports 27 to the outside. The air discharged from the lower machine room 15 is sent to the upper machine room 16 via the communication air passage 28 to cool the compressor 19.

一方、圧縮機19から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、防露パイプ41へ供給される。防露パイプ41を通過した冷媒は冷凍室18の開口部を暖めながら、筐体12を介して外部に放熱して凝縮する。防露パイプ41を通過した液冷媒は、ドライヤ42で水分除去され、絞り43で減圧されて蒸発器20で蒸発しながら冷蔵室17の庫内空気と熱交換して冷蔵室17を冷却しながら、気体冷媒として圧縮機19に還流する(以下、この動作を「PC冷却」という)。   On the other hand, the refrigerant discharged from the compressor 19 is condensed while leaving a part of the gas while exchanging heat with the outside air in the main condenser 21 and then supplied to the dewproof pipe 41. The refrigerant that has passed through the dewproof pipe 41 dissipates heat through the housing 12 and condenses while warming the opening of the freezer compartment 18. The liquid refrigerant that has passed through the dew-proof pipe 41 is moisture-removed by the dryer 42, depressurized by the throttle 43, and evaporated by the evaporator 20, while exchanging heat with the air in the refrigerator compartment 17 and cooling the refrigerator compartment 17. Then, it returns to the compressor 19 as a gaseous refrigerant (hereinafter, this operation is referred to as “PC cooling”).

次に、PCC温度センサ35の検知する温度が所定値のOFF温度まで下降するか、あるいはFCC温度センサ34の検知する温度が所定値のON温度まで上昇すると、冷凍室ダンパ31を開とし、冷蔵室ダンパ32を閉として、圧縮機19とファン23、蒸発器ファン30を駆動する。以下、PC冷却と同様に冷凍サイクルを稼動させることにより、冷凍室18の庫内空気と蒸発器20を熱交換して冷凍室18を冷却する(以下、この動作を「FC冷却」という)。次に、FCC温度センサ34の検知する温度が所定値のOFF温度まで下降すると、冷却停止の動作を行う。   Next, when the temperature detected by the PCC temperature sensor 35 falls to a predetermined OFF temperature or when the temperature detected by the FCC temperature sensor 34 rises to a predetermined ON temperature, the freezer damper 31 is opened and refrigerated. The chamber damper 32 is closed, and the compressor 19, the fan 23, and the evaporator fan 30 are driven. Thereafter, by operating the refrigeration cycle in the same manner as PC cooling, the freezer compartment 18 is cooled by exchanging heat between the inside air of the freezer compartment 18 and the evaporator 20 (hereinafter, this operation is referred to as “FC cooling”). Next, when the temperature detected by the FCC temperature sensor 34 falls to a predetermined OFF temperature, the cooling stop operation is performed.

なお、オフサイクル冷却は冷却停止中に冷却停止に対して優先して動作し、PC冷却中およびFC冷却中は動作しない。また、オフサイクル冷却に対してPC冷却およびFC冷却を優先して動作させる。また、オフサイクル冷却を停止するOFF温度を、PC冷却を開始するON温度よりも高く設定している。この結果、通常運転中は、PC冷却、FC冷却、冷却停止の一連の動作を順に繰り返すことを基本動作とし、PC冷却およびFC冷却の動作を行わない間に、冷却停止とオフサイクル冷却を数回繰り返して行う。   Note that off-cycle cooling operates in preference to cooling stop during cooling stop, and does not operate during PC cooling and FC cooling. In addition, PC cooling and FC cooling are operated with priority over off-cycle cooling. Further, the OFF temperature at which the off-cycle cooling is stopped is set higher than the ON temperature at which the PC cooling is started. As a result, during normal operation, the basic operation is to repeat a series of operations of PC cooling, FC cooling, and cooling stop in order, and while the PC cooling and FC cooling operations are not performed, the cooling stop and off-cycle cooling are performed several times. Repeat repeatedly.

図3において、区間aはPC冷却、区間bはFC冷却、区間cはオフサイクル冷却、区間dは冷却停止の動作に対応する。この一連の動作によって、PC冷却時の蒸発器20の温度をFC冷却時よりも高く保つことで、冷凍サイクルの効率を高めることができるとともに、オフサイクル冷却によって蒸発器20に付着した霜の融解潜熱を再利用することで、除霜時のヒータ電力(図示せず)を削減しながら冷蔵室17の冷却に必要な冷凍サイクルの能力を削減することにより省エネルギー化を図ることができる。   In FIG. 3, section a corresponds to PC cooling, section b corresponds to FC cooling, section c corresponds to off-cycle cooling, and section d corresponds to cooling stop operation. By this series of operations, the efficiency of the refrigeration cycle can be increased by keeping the temperature of the evaporator 20 at the time of PC cooling higher than that at the time of FC cooling, and the frost adhering to the evaporator 20 is melted by off-cycle cooling. By reusing latent heat, energy can be saved by reducing the capacity of the refrigeration cycle necessary for cooling the refrigerator compartment 17 while reducing heater power (not shown) during defrosting.

また、比較的温度変化の大きい冷蔵室17の上部に設けたDFP温度センサ36に基づいて、PC冷却およびFC冷却の動作を行わない間に、数回のオフサイクル冷却を行うことにより、冷蔵室17を冷却するオフサイクル冷却とPC冷却の割合を精度よく調整することができるので、PC冷却の運転時間を適正に確保することができる。   Further, based on the DFP temperature sensor 36 provided in the upper part of the refrigerating chamber 17 having a relatively large temperature change, the off-cooling is performed several times while the PC cooling operation and the FC cooling operation are not performed. Since the ratio between the off-cycle cooling and the PC cooling for cooling 17 can be accurately adjusted, the PC cooling operation time can be appropriately ensured.

また、PCC温度センサ35あるいはFCC温度センサ34の検知温度の上昇に伴い、オフサイクル冷却であってもこれを中止して、優先してPC冷却あるいはFC冷却に切り換えることでPC冷却およびFC冷却の運転時間を適正に確保することができ、冷蔵室17および冷凍室18の温度変化を抑制することができる。   In addition, as the detection temperature of the PCC temperature sensor 35 or the FCC temperature sensor 34 increases, even in the case of off-cycle cooling, this is stopped, and PC cooling or FC cooling is preferentially switched to PC cooling or FC cooling. An operation time can be ensured appropriately, and temperature changes in the refrigerator compartment 17 and the freezer compartment 18 can be suppressed.

また、オフサイクル冷却を停止するOFF温度を、PC冷却を開始するON温度よりも高く設定することにより、比較的温度の高い冷蔵室17の上部に設けたDFP温度センサ36の温度をPCC温度センサより比較的高く保ちながらオフサイクル冷却の制御を行うことにより、冷蔵室17の上部の温度変化を抑制することができる。なお、本実施の形態1においては、オフサイクル冷却を停止するOFF温度を、PC冷却を開始するON温度
よりも高く設定したが、オフサイクル冷却を停止するOFF温度を、PC冷却を停止するOFF温度よりも高く設定しても同様の効果を得ることができる。
Further, by setting the OFF temperature at which the off-cycle cooling is stopped higher than the ON temperature at which the PC cooling is started, the temperature of the DFP temperature sensor 36 provided in the upper part of the refrigerating chamber 17 having a relatively high temperature is set as the PCC temperature sensor By controlling the off-cycle cooling while keeping it relatively high, the temperature change in the upper part of the refrigerator compartment 17 can be suppressed. In the first embodiment, the OFF temperature for stopping off-cycle cooling is set higher than the ON temperature for starting PC cooling. However, the OFF temperature for stopping off-cycle cooling is set to OFF for stopping PC cooling. The same effect can be obtained even if the temperature is set higher than the temperature.

また、外気よりも高温となる上部機械室16に隣接する冷蔵室17の壁面にダクト33を形成することにより、オフサイクル冷却およびPC冷却の際に冷蔵室17を冷却する冷気、特に冷蔵室17の上部を冷却する冷気の温度を上昇させることで、冷蔵室17の上部の過冷を回避して冷蔵室17の上部の温度変動をさらに抑制することができるとともに、冷蔵室17の上部の過冷が回避できるので、PC冷却の際に冷蔵室17を冷却する冷気の風量を増やすことができ、蒸発器20の熱交換効率を向上してPC冷却時にさらに高い冷凍サイクルの効率を得ることができる。   Further, the duct 33 is formed on the wall surface of the refrigerating room 17 adjacent to the upper machine room 16 that is hotter than the outside air, thereby cooling the refrigerating room 17 during off-cycle cooling and PC cooling, particularly the refrigerating room 17. By raising the temperature of the cool air that cools the upper part of the refrigerator, it is possible to avoid overcooling of the upper part of the refrigerator compartment 17 and further suppress temperature fluctuations of the upper part of the refrigerator compartment 17, and Since cooling can be avoided, the amount of cool air that cools the refrigerator compartment 17 during PC cooling can be increased, and the efficiency of the heat exchange of the evaporator 20 can be improved to obtain higher refrigeration cycle efficiency during PC cooling. it can.

そして、PC冷却、FC冷却、オフサイクル冷却、冷却停止の一連の動作からなる通常運転を所定時間継続した後、蒸発器20に付着した霜を除去するため、必要に応じて加温用ヒータ44を利用しながら、比較的長時間のオフサイクル冷却を実施する(以下、この動作を「オフサイクルデフ」という)。図4において、「冷凍室ダンパ閉」から「除霜終了の判定」までがオフサイクルデフの制御フローである。   Then, after a normal operation consisting of a series of operations of PC cooling, FC cooling, off-cycle cooling, and cooling stop is continued for a predetermined time, the heater 44 for heating is used as necessary to remove frost attached to the evaporator 20. A relatively long period of off-cycle cooling is performed using this (this operation is hereinafter referred to as “off-cycle differential”). In FIG. 4, the control flow of the off-cycle differential is from “freezer compartment damper close” to “defrost completion determination”.

まず、PC冷却を開始する直前に、通常運転が所定時間を越えていた場合に、「除霜開始」と判定される。これは、冷蔵室17内の熱量を用いて、蒸発器20に付着した霜を融解除去するため、冷蔵室17内の温度が比較的高く、熱量が大きいタイミングを狙ったものである。   First, immediately before starting the PC cooling, when the normal operation exceeds a predetermined time, it is determined that “defrosting has started”. This is aimed at the timing when the temperature in the refrigerator compartment 17 is relatively high and the amount of heat is large in order to melt and remove the frost attached to the evaporator 20 using the amount of heat in the refrigerator compartment 17.

そして、冷蔵室17内に収納された食品量の多少を判定し、食品量が多い場合は加温用ヒータ44に通電せず、食品量が少ない場合は加温用ヒータ44に通電する。その後、オフサイクルデフの一連の動作として、圧縮機19を停止した状態で冷凍室ダンパ31を閉とし、冷蔵室ダンパ32を開として蒸発器ファン30を駆動することで、蒸発器20の除霜を実施する。   Then, the amount of the food stored in the refrigerator compartment 17 is determined. When the amount of food is large, the heating heater 44 is not energized, and when the amount of food is small, the heating heater 44 is energized. Thereafter, as a series of operations of the off-cycle differential, the freezer compartment damper 31 is closed with the compressor 19 stopped, the refrigerator compartment damper 32 is opened, and the evaporator fan 30 is driven to defrost the evaporator 20. To implement.

ここで、冷蔵室17内に収納された食品量を推定する方法について説明する。冷蔵室17を主として冷却するPC冷却はPCC温度センサ35に基づいて制御されるため、PCC温度センサ35が検知する温度の平均値は、冷蔵室17内に収納された食品の温度とよい相関がある。一方、図3に示したように、冷蔵室17の上部の温度を検知するDFP温度センサ36は、PC冷却以外のモード(b、c、d)ではPCC温度センサ35よりも比較的高く、PC冷却(a)ではPCC温度センサ35に近づく傾向がある。これは、ダクト33を介して冷蔵室17の上部から主として冷気が供給されるためである。   Here, a method for estimating the amount of food stored in the refrigerator compartment 17 will be described. Since the PC cooling for mainly cooling the refrigerator compartment 17 is controlled based on the PCC temperature sensor 35, the average value of the temperature detected by the PCC temperature sensor 35 has a good correlation with the temperature of the food stored in the refrigerator compartment 17. is there. On the other hand, as shown in FIG. 3, the DFP temperature sensor 36 that detects the temperature of the upper part of the refrigerator compartment 17 is relatively higher than the PCC temperature sensor 35 in the modes (b, c, d) other than the PC cooling. Cooling (a) tends to approach the PCC temperature sensor 35. This is because cold air is mainly supplied from the upper part of the refrigerator compartment 17 through the duct 33.

この結果、冷蔵室17内に収納された食品量が比較的多く、冷蔵室17内の熱容量が大きい場合は、冷蔵室17の上部から供給される冷気の総量が大きくなり、DFP温度センサ36が検知する温度がPCC温度センサ35と同程度か、あるいはPCC温度センサ35よりもさらに低い温度まで低下する。一方、冷蔵室17内に収納された食品量が比較的少なく、冷蔵室17内の熱容量が小さい場合は、DFP温度センサ36が検知する温度はPCC温度センサ35よりも比較的高い温度までしか低下しない。   As a result, when the amount of food stored in the refrigerator compartment 17 is relatively large and the heat capacity in the refrigerator compartment 17 is large, the total amount of cold air supplied from the upper part of the refrigerator compartment 17 becomes large, and the DFP temperature sensor 36 The temperature to be detected decreases to a temperature that is about the same as or lower than that of the PCC temperature sensor 35. On the other hand, when the amount of food stored in the refrigerator compartment 17 is relatively small and the heat capacity in the refrigerator compartment 17 is small, the temperature detected by the DFP temperature sensor 36 is lowered only to a temperature relatively higher than the PCC temperature sensor 35. do not do.

従って、例えば、PC冷却中のDFP温度センサ36の検知温度の最低値が、同時刻のPCC温度センサ35の検知温度よりも所定値以上低くなった場合に、冷蔵室17内に収納された食品量が多いと判定することができる。同様に、オフサイクル冷却時の温度挙動の違いから冷蔵室17内に収納された食品量を判定することもできるが、PC冷却時の温度変化の方がより大きいので検知精度に優れる。   Therefore, for example, when the minimum value of the detected temperature of the DFP temperature sensor 36 during PC cooling is lower than the detected temperature of the PCC temperature sensor 35 at the same time by a predetermined value or more, the food stored in the refrigerator compartment 17 It can be determined that the amount is large. Similarly, the amount of food stored in the refrigerator compartment 17 can be determined from the difference in temperature behavior during off-cycle cooling, but the detection accuracy is excellent because the temperature change during PC cooling is greater.

なお、本発明の実施の形態1の冷蔵庫においては、DFP温度センサ36とPCC温度
センサ35のPC冷却中の温度挙動の違いに基づいて、冷蔵室17内に収納された食品量を推定したため、冷蔵室17内に収納されている食品の持つ熱量を直接推定することができ、加温用ヒータ44の出力を精度よく調整することができる。
In the refrigerator according to the first embodiment of the present invention, the amount of food stored in the refrigerator compartment 17 is estimated based on the difference in temperature behavior during PC cooling between the DFP temperature sensor 36 and the PCC temperature sensor 35. The amount of heat of the food stored in the refrigerator compartment 17 can be directly estimated, and the output of the heating heater 44 can be accurately adjusted.

そして、蒸発器20の温度を検知するDEF温度センサ(図示せず)が0℃超を検知した際に、「除霜の終了判定」すなわち、蒸発器20に付着した霜が完全に除去できたと判定して、オフサイクルデフの動作を終了するとともに、加温用ヒータ44の通電を停止した後、通常運転に復帰する。   And, when a DEF temperature sensor (not shown) for detecting the temperature of the evaporator 20 detects over 0 ° C., “defrosting completion determination”, that is, that the frost attached to the evaporator 20 has been completely removed. After the determination, the off-cycle differential operation is terminated, and the energization of the heating heater 44 is stopped, and then the normal operation is resumed.

このオフサイクルデフによって、特に、冷蔵室17に収納された食品量が多い場合は、加温用ヒータ44を使用せず、同時に、冷蔵室17の冷却に必要な冷凍サイクルの能力を削減することにより省エネルギー化を図ることができる。このとき、冷蔵室17に収納された食品量が多く、蒸発器20を除霜するために必要な熱量を確保できるので、適正な時間でオフサイクルデフを終了することができる。   With this off-cycle differential, especially when the amount of food stored in the refrigerator compartment 17 is large, the heating heater 44 is not used, and at the same time, the capacity of the refrigerating cycle necessary for cooling the refrigerator compartment 17 is reduced. Can save energy. At this time, since the amount of food stored in the refrigerator compartment 17 is large and the amount of heat necessary for defrosting the evaporator 20 can be ensured, the off-cycle differential can be completed in an appropriate time.

また、このオフサイクルデフによって、冷蔵室17に収納された食品量が少ない場合は、加温用ヒータ44を使用し、冷蔵室17に収納された食品量と加温用ヒータ44が出力する電力量の両方を熱源とすることで、加温用ヒータ44の電力量を削減するとともに、冷蔵室17の冷却に必要な冷凍サイクルの能力を削減することにより省エネルギー化を図ることができる。このとき、冷蔵室17に収納された食品の熱量を加温用ヒータ44が出力する電力量で補うことで、蒸発器20を除霜するために必要な熱量を確保できるので、適正な時間でオフサイクルデフを終了することができる。   When the amount of food stored in the refrigerator compartment 17 is small due to the off-cycle differential, the heater 44 is used for heating, and the amount of food stored in the refrigerator compartment 17 and the power output from the heater 44 for heating are used. By using both of the quantities as heat sources, it is possible to reduce energy consumption by reducing the amount of power of the heater 44 for heating and reducing the capacity of the refrigeration cycle necessary for cooling the refrigerator compartment 17. At this time, it is possible to secure the amount of heat necessary for defrosting the evaporator 20 by supplementing the amount of heat of the food stored in the refrigerator compartment 17 with the amount of electric power output from the heater 44 for heating. The off-cycle differential can be terminated.

なお、本発明の実施の形態1の冷蔵庫においては、加温用ヒータ44のON/OFFを切り換えてオフサイクルデフの熱源を調整したが、冷蔵室17に収納された食品量が多い場合は出力を大とし、冷蔵室17に収納された食品量が少ない場合は出力を小として、加温用ヒータ44の出力を選択しても同様の効果が期待できる。   In the refrigerator according to the first embodiment of the present invention, the heat source for the off-cycle differential is adjusted by switching the heating heater 44 on / off, but the output is output when the amount of food stored in the refrigerator compartment 17 is large. If the amount of food stored in the refrigerator compartment 17 is small, the same effect can be expected even if the output is reduced and the output of the heating heater 44 is selected.

以上のように、本発明の冷蔵庫は、冷凍サイクル停止中に冷蔵室17を冷却しながら、蒸発器20の除霜を行うオフサイクルデフモードを有する冷蔵庫において、本発明の冷蔵庫は、オフサイクルデフの実施前に冷蔵室内の食品収納量を検知して、補助的に使用する加熱用ヒータの出力を選択した後、オフサイクルデフを実施することにより、オフサイクルデフに要する時間を適正に制御することができ、オフサイクルデフを実施中に冷蔵室や冷凍室が温度上昇することを抑制するとともに、除霜に必要な加熱用ヒータの電力量を削減して冷蔵庫の省エネルギー化を図ることができる。   As described above, the refrigerator of the present invention has an off-cycle differential mode in which the evaporator 20 is defrosted while cooling the refrigerator compartment 17 while the refrigeration cycle is stopped. After detecting the amount of food stored in the refrigeration room and selecting the output of the heater to be used as an auxiliary, the off cycle def is executed to properly control the time required for the off cycle def. It is possible to suppress the rise in temperature of the refrigerator compartment and the freezer compartment during the off-cycle def, and to reduce the amount of electric power of the heater required for defrosting and to save energy in the refrigerator .

以上のように、本発明にかかる冷蔵庫は、FC冷却モードおよびPC冷却モードに加えて、冷凍サイクル停止中に冷蔵室を冷却するオフサイクル冷却モードおよびオフサイクルデフモードを有する冷蔵庫において、冷蔵室に収納された食品量の多少に基づいて加熱用ヒータの出力調整することにより、オフサイクルデフの時間を適正に調整することができるので、業務用冷蔵庫など他の冷凍冷蔵応用商品にも適用できる。   As described above, the refrigerator according to the present invention is a refrigerator having an off-cycle cooling mode and an off-cycle differential mode in which the refrigerator compartment is cooled while the refrigeration cycle is stopped in addition to the FC cooling mode and the PC cooling mode. By adjusting the output of the heater for heating based on the amount of stored food, the off-cycle differential time can be adjusted appropriately, so that it can also be applied to other refrigerated products such as commercial refrigerators.

11 冷蔵庫
12 筐体
15 下部機械室
16 上部機械室
19 圧縮機
20 蒸発器
30 蒸発器ファン
31 冷凍室ダンパ
32 冷蔵室ダンパ
33 ダクト
34 FCC温度センサ
35 PCC温度センサ
36 DFP温度センサ
44 加温用ヒータ
DESCRIPTION OF SYMBOLS 11 Refrigerator 12 Housing | casing 15 Lower machine room 16 Upper machine room 19 Compressor 20 Evaporator 30 Evaporator fan 31 Freezer compartment damper 32 Refrigeration room damper 33 Duct 34 FCC temperature sensor 35 PCC temperature sensor 36 DFP temperature sensor 44 Heating heater

Claims (2)

冷蔵室と、冷凍室と、冷凍サイクルと、前記冷凍サイクルの構成要素である蒸発器と、前記蒸発器で発生した冷気を前記冷蔵室および前記冷凍室へ供給する蒸発器ファンと、前記蒸発器を除霜するための加熱用ヒータと、前記蒸発器から前記冷蔵室へ供給される冷気を遮断する冷蔵室ダンパと、前記蒸発器から前記冷凍室へ供給される冷気を遮断する冷凍室ダンパとを有する冷蔵庫において、前記冷凍室ダンパを開放し、前記冷蔵室ダンパを閉塞して、前記冷凍サイクルを稼動しながら前記蒸発器で発生した冷気を供給して前記冷凍室を冷却するFC冷却モードと、前記冷凍室ダンパを閉塞し、前記冷蔵室ダンパを開放して、前記冷凍サイクルを稼動しながら前記蒸発器で発生した冷気を供給して前記冷蔵室を冷却するPC冷却モードと、前記冷凍室ダンパを閉塞し、前記冷蔵室ダンパを開放して、前記冷凍サイクルを停止しながら前記蒸発器ファンを運転することで、前記蒸発器と前記冷蔵室内の空気を熱交換するオフサイクル冷却モードと、前記加熱用ヒータに通電しながら、前記冷凍室ダンパを閉塞し、前記冷蔵室ダンパを開放して、前記冷凍サイクルを停止しながら前記蒸発器ファンを運転することで、前記蒸発器に付着した霜を融解除去するオフサイクルデフモードを有し、さらに、前記冷蔵室の温度を検知するPCC温度センサと、前記PCC温度センサより上部に設置され、前記冷蔵室の上部の温度を検知するDFP温度センサとを有し、PC冷却モードあるいはオフサイクル冷却モードにおけるPCC温度センサとDFP温度センサとの温度変化に基づいて、冷蔵室内に収納されている食品量を検知し、前記食品量に基づいて前記加熱用ヒータの出力を選択した後、前記オフサイクルデフモードを実施するもので、前記PC冷却モード中の前記DFP温度センサの検知温度の最低値が、同時刻の前記PCC温度センサの検知温度よりも所定値以上低くなった場合に、前記冷蔵室内に収納された食品量が多いと判定し、前記加熱用ヒータに通電せず前記オフサイクルデフモードを実施する冷蔵庫。 Refrigeration room, freezing room, refrigeration cycle, evaporator as a component of the refrigeration cycle, evaporator fan for supplying cold air generated in the evaporator to the refrigeration room and the freezing room, and the evaporator A heater for defrosting, a refrigerating room damper for shutting off cool air supplied from the evaporator to the refrigerating room, and a freezer compartment damper for shutting off cool air supplied from the evaporator to the freezing room An FC cooling mode in which the freezer compartment damper is opened, the refrigerator compartment damper is closed, and cold air generated in the evaporator is supplied to cool the freezer compartment while operating the refrigerating cycle. A PC cooling mode for closing the freezer damper, opening the refrigerating chamber damper, supplying cold air generated in the evaporator while operating the refrigerating cycle, and cooling the refrigerating chamber; An off-cycle cooling mode in which heat is exchanged between the evaporator and air in the refrigerator compartment by closing the freezer damper, opening the refrigerator compartment damper, and operating the evaporator fan while stopping the refrigeration cycle And by adhering to the evaporator by closing the freezer damper, opening the refrigerator compartment damper and operating the evaporator fan while stopping the refrigeration cycle while energizing the heater. A PCC temperature sensor for detecting the temperature of the refrigeration room, and a DFP for detecting the temperature of the upper part of the refrigeration room. Refrigeration based on the temperature change between the PCC temperature sensor and the DFP temperature sensor in the PC cooling mode or the off-cycle cooling mode. Detecting the food weight housed within, after selecting the output of said heater on the basis of the food weight, intended to implement the off cycle defroster mode, the DFP temperature sensor in the PC cooling mode When the minimum detected temperature is lower than the detected temperature of the PCC temperature sensor at the same time by a predetermined value or more, it is determined that the amount of food stored in the refrigerator compartment is large, and the heating heater is energized. A refrigerator that performs the off-cycle differential mode without . 前記PC冷却モードの開始直前に、前記オフサイクルデフモードの実施の可否を判定することを特徴とする請求項1記載の冷蔵庫。 2. The refrigerator according to claim 1, wherein whether or not the off-cycle differential mode can be performed is determined immediately before the start of the PC cooling mode.
JP2011123110A 2011-05-18 2011-06-01 refrigerator Active JP5870237B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011123110A JP5870237B2 (en) 2011-06-01 2011-06-01 refrigerator
CN201280024057.4A CN103547872B (en) 2011-05-18 2012-05-16 Freezer
EP12785019.6A EP2711654A4 (en) 2011-05-18 2012-05-16 Refrigerator
PCT/JP2012/003181 WO2012157263A1 (en) 2011-05-18 2012-05-16 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011123110A JP5870237B2 (en) 2011-06-01 2011-06-01 refrigerator

Publications (2)

Publication Number Publication Date
JP2012251680A JP2012251680A (en) 2012-12-20
JP5870237B2 true JP5870237B2 (en) 2016-02-24

Family

ID=47524660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011123110A Active JP5870237B2 (en) 2011-05-18 2011-06-01 refrigerator

Country Status (1)

Country Link
JP (1) JP5870237B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5927409B2 (en) * 2011-09-08 2016-06-01 パナソニックIpマネジメント株式会社 refrigerator
CN105605839A (en) * 2015-12-30 2016-05-25 青岛海尔股份有限公司 Refrigerator and defrosting system thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3026319B2 (en) * 1991-12-10 2000-03-27 松下冷機株式会社 Refrigerator refrigerator control device
JP4310947B2 (en) * 2001-09-06 2009-08-12 三菱電機株式会社 Control device for refrigerator
JP2006078094A (en) * 2004-09-10 2006-03-23 Hitachi Home & Life Solutions Inc Refrigerator
JP2007127385A (en) * 2005-11-07 2007-05-24 Toshiba Corp Refrigerator
JP5308241B2 (en) * 2009-06-09 2013-10-09 ホシザキ電機株式会社 Cooling storage
JP2011038715A (en) * 2009-08-12 2011-02-24 Hitachi Appliances Inc Refrigerator
JP2011058693A (en) * 2009-09-09 2011-03-24 Hitachi Appliances Inc Refrigerator

Also Published As

Publication number Publication date
JP2012251680A (en) 2012-12-20

Similar Documents

Publication Publication Date Title
WO2012157263A1 (en) Refrigerator
US20220042739A1 (en) Refrigerator control method
JP6074596B2 (en) refrigerator
CN102313424B (en) Refrigerator
JP6019386B2 (en) refrigerator
US20220236000A1 (en) Method for controlling refrigerator
JP4364098B2 (en) refrigerator
KR101770467B1 (en) Refrigerator and colntrol method for refrigerator
JP6872689B2 (en) refrigerator
JP6448991B2 (en) refrigerator
JP2009014313A (en) Refrigerator
JP2014044025A (en) Refrigerator
JP5870237B2 (en) refrigerator
KR20110086345A (en) A method for controlling a refrigerator with two evaporators
JP5877301B2 (en) refrigerator
CN100552340C (en) The defroster of refrigerator and control method thereof
JP2013068388A (en) Refrigerator
JP5927409B2 (en) refrigerator
JP5743867B2 (en) Cooling storage
US20220235977A1 (en) Method for controlling refrigerator
JP2007292427A (en) Refrigerator
KR20080068233A (en) Method and apparatus for prevention supercooling of refrigerator
JP2013053801A (en) Refrigerator
JP6846599B2 (en) refrigerator
JP2020091045A (en) refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140515

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140612

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150803

R151 Written notification of patent or utility model registration

Ref document number: 5870237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151