JP5866196B2 - バルク材冷却装置及びバルク材冷却方法 - Google Patents

バルク材冷却装置及びバルク材冷却方法 Download PDF

Info

Publication number
JP5866196B2
JP5866196B2 JP2011282986A JP2011282986A JP5866196B2 JP 5866196 B2 JP5866196 B2 JP 5866196B2 JP 2011282986 A JP2011282986 A JP 2011282986A JP 2011282986 A JP2011282986 A JP 2011282986A JP 5866196 B2 JP5866196 B2 JP 5866196B2
Authority
JP
Japan
Prior art keywords
bulk material
cooling
cooling air
layer
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011282986A
Other languages
English (en)
Other versions
JP2013133953A (ja
Inventor
宏 板東
宏 板東
昇 市谷
昇 市谷
林 功
功 林
耕一 出井
耕一 出井
弘明 大澤
弘明 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48696728&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5866196(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2011282986A priority Critical patent/JP5866196B2/ja
Priority to EP12863238.7A priority patent/EP2799801B2/en
Priority to DK12863238.7T priority patent/DK2799801T4/da
Priority to PCT/JP2012/008197 priority patent/WO2013099186A1/ja
Priority to CN201280062958.2A priority patent/CN104011492B/zh
Priority to MYPI2014701739A priority patent/MY167643A/en
Priority to TW101149413A priority patent/TWI495550B/zh
Publication of JP2013133953A publication Critical patent/JP2013133953A/ja
Publication of JP5866196B2 publication Critical patent/JP5866196B2/ja
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B4/00Separating solids from solids by subjecting their mixture to gas currents
    • B07B4/08Separating solids from solids by subjecting their mixture to gas currents while the mixtures are supported by sieves, screens, or like mechanical elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • C04B7/47Cooling ; Waste heat management
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • F27D15/0206Cooling with means to convey the charge
    • F27D15/0213Cooling with means to convey the charge comprising a cooling grate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • F27D15/0206Cooling with means to convey the charge
    • F27D15/0213Cooling with means to convey the charge comprising a cooling grate
    • F27D15/022Cooling with means to convey the charge comprising a cooling grate grate plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • F27D15/0206Cooling with means to convey the charge
    • F27D15/0213Cooling with means to convey the charge comprising a cooling grate
    • F27D15/022Cooling with means to convey the charge comprising a cooling grate grate plates
    • F27D2015/0233Cooling with means to convey the charge comprising a cooling grate grate plates with gas, e.g. air, supply to the grate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • F27D15/0206Cooling with means to convey the charge
    • F27D15/0213Cooling with means to convey the charge comprising a cooling grate
    • F27D2015/026Means to discharge the fines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • Y02P40/121Energy efficiency measures, e.g. improving or optimising the production methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Furnace Details (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

本発明は、例えばセメントクリンカ等のバルク材の層を搬送しながら冷却するための装置及び方法に関する。
バルク材の層を搬送しながら冷却するバルク材冷却装置として、セメントプラントに備わるクリンカ冷却装置が知られている(例えば、特許文献1及び2参照)。特許文献1及び2に開示された冷却装置は、セメント原料を焼成するためのキルンの後段に設けられており、セメント原料を焼成することによって生成された中間製品(セメントクリンカ)に冷却エアを供給して当該中間製品を急冷する。
セメントクリンカは、1〜25mm程度の粒径を有した粒体又は塊体である。クリンカ冷却装置は、キルンから順次に供給されるセメントクリンカを層状にして搬送しながら、セメントクリンカ層に向けて下方から冷却エアを供給し続ける。これにより、セメントクリンカ層は搬送の過程で冷却される。一方、冷却エアは、セメントクリンカとの熱交換によって加熱される。従来、セメントプラントの燃費を改善するため、加熱されたエアをキルンと仮焼炉の燃焼用空気として用いることで、当該エアの熱を回収する技術が活用されている。
特表2006−526750号公報 特表2007−515365号公報
前述の熱回収技術をクリンカ冷却装置に適用する場合には、単位時間当たりの熱回収量を大きくするために、セメントクリンカの層高を大きくする傾向にある。しかし、冷却エアが高層のセメントクリンカ層を通過してセメントクリンカ層を十分に冷却するためには、冷却エアの圧力も高くする必要がある。よって逆説的に、冷却エアを供給する送風機の使用電力が大きくなってきている。
そこで本発明は、バルク材の層を搬送しながら冷却するにあたり、エネルギー効率を改善することを目的としている。
本件発明者は、上記の目的を達成すべくバルク材の層を冷却するための装置及び方法を開発する過程で、バルク材、特に粒径のバラツキが大きいバルク材が無作為に積み重なると、粒径の大きいバルク材同士の間に粒径の小さいバルク材が入り込み、それにより充填率が高くなって冷却エアが通過するときの圧力損失が高くなる可能性があるとの知見を得た。また、粒径の大きいバルク材が粒径の小さいバルク材と接触しているために冷却エアとの熱交換が効率よく行われず、結果としてバルク材冷却装置の冷却性能及び熱回収性能が悪化している可能性があるとの知見を得た。本件発明者は、このような知見の下、バルク材の層の充填率が低下すれば、圧力損失が低下したり、粒径の大きいバルク材と冷却エアとの接触機会が増えたりする可能性があるとの着想を得た。本発明は、上記の目的を達成すべく、このような知見及び着想の下で、なされたものである。
すなわち、本発明に係るバルク材冷却装置は、バルク材の層を搬送しながら冷却するバルク材冷却装置であって、上方に向かう冷却エアをバルク材の層に供給しながら当該冷却エアによってバルク材の層の中から細粒を上層側に選択的に分離する細粒分離部と、前記細粒分離部の下流側に設けられ、前記細粒分離部における冷却エアよりも単位面積当たりの流量が小さい冷却エアをバルク材の層に供給する後段冷却部と、を備える。
前記構成によれば、バルク材の層の中から細粒が上層側に選択的に分離される。これにより、粒径が大きいバルク材は下層側に残留したままになるが、粒径が大きいバルク材の間に入り込んでいた細粒が上層側に分離される。すると、後段冷却部においては、バルク材の下層側で充填率が低下しており、粒径が大きいバルク材の表面のうち空隙に臨む部分が増える。よって、冷却エアが上方に向かってバルク材の層を通過するときの冷却エアの圧力損失が小さくなり、小さい圧力でもバルク材を効率的に冷却することができるようになる。また、粒径が大きいバルク材が冷却エアと接触する機会が増えるので、冷却エアと活発に熱交換する。よって、単位面積当たりの流量を小さくしてもバルク材を効率よく冷却することができるようになり、バルク材冷却装置の冷却性能及び熱回収性能が向上する。また、細粒の分離に冷却エアを活用しているので、分離のために専用のデバイスを別途付加する必要がない。以上のようにして、バルク材冷却装置のエネルギー効率を改善することが可能になる。
前記細粒分離部の上流側にバルク材を受け入れる受入れ部を備え、前記受入れ部が、上方に向かう冷却エアをバルク材に供給する前段冷却部を構成していてもよい。前記構成によれば、バルク材をなるべく速くに冷却することができる。また、前段冷却部で冷却エアを供給することにより、粒径が異なるバルク材が混合される状態になったとしても、その下流側に設けた細粒分離部により充填率を低下させることができる。よって、前段冷却部では、冷却に特化して冷却エアの仕様を決めることができる。
前記細粒分離部が、前記受入れ部の直後に連続して設けられていてもよい。前記構成によれば、受入れ部でバルク材が層状になって直ぐに、細粒を分離することができる。このように、なるべく早くに細粒を分離して充填率の低下を図るので、後段冷却部の担当領域が拡大し、エネルギー効率が良好に改善される。
前記細粒分離部は、前記冷却エアの供給により、細粒の流動化が開始する直前の状態にしてもよい。前記構成によれば、細粒のみを上層側に効率よく分離することができ、且つ、流動化が進んで無用な圧力損失が大きくなったり熱交換性能が低下したりするのを避けることができる。
前記バルク材がセメントクリンカであり、前記受入れ部が、セメント原料を焼成するためのキルンからセメントクリンカを受け入れてもよい。セメントクリンカは、粒径のバラツキが比較的大きい。また、キルンでの焼成により1400℃程度の高温を有した状態で受入れ部に供給されるので、回収可能な熱量も膨大である。よって、細粒を分離することで得られる作用効果が顕著となる。
本発明に係るバルク材冷却方法は、バルク材の層を搬送しながら当該バルク材を冷却するバルク材冷却方法であって、上方に向かう冷却エアをバルク材の層に供給しながら当該冷却エアによってバルク材の層の中から細粒を上層側に選択的に分離する細粒分離工程と、前記細粒分離工程の後に、前記細粒分離工程での冷却エアよりも単位面積当たりの流量が小さい冷却エアをバルク材の層に供給する後段冷却工程と、を有する。
前記方法によれば、前記装置と同様にして、細粒分離工程において、粒径が大きいバルク材の間に入り込んでいた細粒を分離することができる。よって、後段冷却工程において、小さい圧力及び流量でもバルク材を効率的に冷却することができるようになる。
以上の説明から明らかなように、本発明によれば、バルク材の層を搬送しながら冷却するにあたり、エネルギー効率を改善することができる。本発明に係る上記及び他の目的、特徴及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
本発明の実施形態に係るクリンカ冷却装置を備えたセメントプラントの焼成設備を示す概念図である。 図1に示すクリンカ冷却装置の斜視図である。 図2に示す受入れ部の一部及び細粒分離部の一部を示す側断面図である。 図4(a)は、細粒分離前のセメントクリンカの状態を示す模式図、図4(b)は、細粒分離後のセメントクリンカの状態を示す模式図である。 セメントクリンカの粒度分布の一例を示すグラフである。
以下、本発明に係るバルク材冷却装置をクリンカ冷却装置に適用した場合を例にして、本発明の実施形態について図面を参照しながら説明する。なお、全ての図を通じて同一又は対応する要素には同一の符号を付して重複する説明を省略する。
[セメントプラント]
図1は、本発明の実施形態に係るクリンカ冷却装置5を備えたセメントプラントの焼成設備1を示す概念図である。セメントプラントでは、セメントを生産するため、原料粉砕工程、焼成工程及び仕上工程が順次に行われる。原料粉砕工程では、セメント原料が粉砕される。焼成工程では、粉砕されたセメント原料が焼成及び急冷され、それにより粒状又は塊状のセメントクリンカが生成される。仕上工程では、セメントクリンカが破砕され、それにより製品としてのセメントが生成される。
図1は、セメントプラント内で焼成工程を行うための焼成設備1を模式的に示しており、実線矢印でセメント原料又はセメントクリンカの流れ、点線矢印でガスの流れをそれぞれ示している。図1に示すように、焼成設備1は、予熱器2、仮焼炉3、ロータリーキルン4及びクリンカ冷却装置5を備えており、これら装置2〜5がこの順に接続されている。予熱器2は、上下に並ぶ複数段のサイクロン6を有しており、下から2段目のサイクロン6が、仮焼炉3の入口に接続されている。ロータリーキルン4は、円筒状に形成され、軸方向両端部に入口及び出口を有している。また、ロータリーキルン4は、入口から出口に向かって下傾するようにして配置され、軸心周りに回転可能である。ロータリーキルン4の出口には燃焼装置8が設けられており、燃焼装置8は、ロータリーキルン4の入口側に向かう高温の火炎及び燃焼ガスを発生させる。ロータリーキルン4の入口は、仮焼炉3の出口及び最下段のサイクロン6に接続され、ロータリーキルン4の出口は、クリンカ冷却装置5に接続されている。
セメント原料は、予熱器2内を下向きに搬送される過程で、焼成反応に先立ち予熱される。また、セメント原料は、予熱器2から仮焼炉3へと導かれ、仮焼炉3内で仮焼される。予熱及び仮焼は、ロータリーキルン4からの排気及び仮焼炉3での燃焼ガスとの熱交換により行われ、ロータリーキルン4からの排気は、仮焼炉3及び予熱器2内を上向きに流れて最上段のサイクロン6から排出される。予熱及び仮焼されたセメント原料は、ロータリーキルン4の入口に供給される。セメント原料は、ロータリーキルン4内で出口に向かって搬送されていく過程で焼成される。焼成されたセメント原料は、粒状又は塊状となってロータリーキルン4の出口から排出され、クリンカ冷却装置5に供給される。以降では、クリンカ冷却装置5の構成及び作用の説明の便宜のため、ロータリーキルン4の出口から仕上工程が行われるまでのセメントの中間製品を「セメントクリンカ」として説明する。
クリンカ冷却装置5は、ロータリーキルン4から排出されたセメントクリンカの供給を受ける。クリンカ冷却装置5は、供給されたセメントクリンカを層状にして搬送しながら、セメントクリンカ層に冷却エアを供給する。これにより、セメントクリンカ層が、搬送されていく過程で、約1400℃から大気温+65℃程度にまで急冷される。なお、冷却エアは、セメントクリンカ層との熱交換により加熱される。加熱されたエアの一部は、仮焼炉3及びロータリーキルン4に送られ、燃焼用空気として利用される。加熱されたエアの熱が仮焼炉3及びロータリーキルン4で回収されるので、焼成設備1の燃費を改善することができる。
[セメントクリンカの搬送]
図2は、図1に示すクリンカ冷却装置5の斜視図である。なお、図2では、説明の便宜のため、クリンカ冷却装置5内ではセメントクリンカ90の図示を省略する。図2に示すように、クリンカ冷却装置5は、セメントクリンカ90が搬送されていく方向(以下、「搬送方向」)に長尺に構成されている。
クリンカ冷却装置5は、セメントクリンカにどのようにして冷却エアを供給するのかという観点に照らして、前段冷却部101と、前段冷却部101の搬送方向下流側に設けられた細粒分離部102と、細粒分離部102の搬送方向下流側に設けられた後段冷却部103とを有している。
また、クリンカ冷却装置5は、セメントクリンカをどのようにして搬送するのかという観点に照らして、ロータリーキルン4からセメントクリンカ90の供給を受け入れる受入れ部11と、受入れ部11から搬送方向の下流側へ延びる可動部12とを有している。まず、受入れ部11及び可動部12の構成について説明する。
受入れ部11は、ロータリーキルン4の出口下に設けられた固定傾斜格子13を有している。固定傾斜格子13は、ロータリーキルン4の出口下から下傾しつつ搬送方向下流側の可動部12に向かって延びる傾斜面14を有している。傾斜面14は、その法線方向に見て等脚台形状に形成されており、上流部(すなわち、ロータリーキルン4の出口下の部分)から下流部(すなわち、可動部12に接続する部分)に向かうに連れて幅広になっている。また、受入れ部11は、傾斜面14の幅方向両側から上方に延びる一対の案内壁15を有している。
ロータリーキルン4から排出されたセメントクリンカ90は、固定傾斜格子13の傾斜面14の上流部に向かって落下する。傾斜面14の上流部には、セメントクリンカ90の堆積物91が丘状に残留している。ロータリーキルン4から落下したセメントクリンカ90は、堆積物91上を滑って傾斜面14上に落ち、傾斜面14及び案内壁15に沿って下流部へと転がり落ちていく。セメントクリンカ90を丘状の堆積物91で滑らせるので、ロータリーキルン4から排出される多数のセメントクリンカ90を幅方向に均質に分散させて可動部12へと送ることができる。
可動部12は、搬送方向と直交する方向であって上下方向と異なる方向(以下「直交方向」)に並べられた複数列の可動床17と、複数列の可動床17それぞれに対応する搬送アクチュエータ18とを備えている。各可動床17は、搬送方向に並べられた複数の移動格子19を有し、複数の移動格子19は、搬送方向に長尺のフレーム20に固定されている。
受入れ部11から送られてきたセメントクリンカ層は、複数列の可動床17上に支持される。また、セメントクリンカ層は、複数列の可動床17の搬送方向の全体及び直交方向の全体に亘って敷き詰められる。搬送アクチュエータ18が動作すると、対応するフレーム20に搬送方向の推進力が付与され、フレーム20が搬送方向の上流側又は下流側に移動し、当該フレーム20に固定された複数の移動格子19が同速度で同方向に移動する。このようにして搬送アクチュエータ18の動作に伴って可動床17が搬送方向に移動し、可動床17の移動に伴って可動床17上のセメントクリンカ層が搬送される。本実施形態では、いわゆる縦列摺動方式により可動床17が動作してセメントクリンカ層が搬送される。
図示のように6列の可動床17を例にして、典型的な縦列摺動方式による可動床17の動作及びセメントクリンカ層の搬送について説明する。まず、全ての搬送アクチュエータ18を同期動作させ、全列の可動床17を初期位置から搬送方向下流側に所定ストロークだけ同期移動させる(送り工程)。すると、可動床17上のセメントクリンカ層が、搬送方向下流側に一斉に搬送される。次に、6列の可動床17のうち一部(例えば、図2紙面の左から1列目と4列目の2列)を搬送方向上流側に前記所定ストロークだけ移動させて前記初期位置に戻す(戻り工程)。逆に言えば、残りの可動床17を静止させておく。このとき、移動させる可動床を静止させる可動床よりも少なくしておき、また、移動させる可動床を複数列とした場合には、それらが隣り合っていないことが好ましい。移動させる可動床17がこのようにして選定されると、一部の可動床17が移動しているにも関わらず、セメントクリンカ層の全体が残りの静止した可動床17により支持されて静止状態となる。一方、移動する可動床17は、静止状態のセメントクリンカ層に対して滑って初期位置まで戻ることとなる。その後は、搬送方向下流側に移動したままとなっている可動床17が、これと同様にして、搬送方向上流側に戻される。以上の工程(例えば、送り工程1回、戻り工程3回)を1サイクルとする一連の動作を繰り返すことにより、各可動床17が前記所定ストロークの往復移動を繰り返しているだけであるのに、セメントクリンカ層が搬送方向下流側に間欠的に搬送される。なお、可動床17の列数が6列以外であっても、上記同様の方式により、セメントクリンカ層を同様にして搬送することができる。
縦列摺動方式により可動床17が動作する場合には、送り工程で、可動床17上のセメントクリンカ層が搬送方向下流側に一斉に搬送される。すると、セメントクリンカが、受入れ部11から可動床17の上流端部に流れ込んでいく。本実施形態では、受入れ部11においてセメントクリンカが傾斜面14上に支持されているので、セメントクリンカ層が、可動部12へと自動的に且つ円滑に流れ込んでいく。戻り工程では、可動床17が上流側に移動する一方、セメントクリンカ層の全体は静止しようとするので、移動している可動床17の下流端部では、当該可動床17により支持され得なくなったセメントクリンカが落下する。このようにして落下したセメントクリンカが、回収されて仕上工程に供給される。以上のように、縦列摺動方式を採用している場合、可動部12は、送り工程においてセメントクリンカの供給を受け、戻り工程においてセメントクリンカを排出する。
図3は、図2に示す受入れ部11と可動部12の上流端部とを部分的に示す側断面図である。図3に示すように、各移動格子19は、上に開放された略直方体状の箱部21を有し、箱部21は、セメントクリンカ層を支持する底壁22を有している。すると、セメントクリンカ層には、箱部21の内部に収容されたデッド層93と、箱部21の矩形枠状の上端面及びデッド層93の上に積み重なった輸送層94とが存在することとなる。
上記のように可動床17が動作すると、送り工程では、デッド層93が、箱部21と完全に一体化して搬送方向下流側に移動する。また、輸送層94は、箱部21に対して相対的には搬送方向上流側に滑りつつも、搬送方向下流側へと搬送されていく。戻り工程では、デッド層93が、箱部21と完全に一体化して搬送方向上流側に移動する。一方、輸送層94は、箱部21の移動には追従しない。デッド層93は、箱部21と共に可動部12を成しているとも言え、焼成設備1の操業中には原則的に箱部21上に残留する。なお、本実施形態では、輸送層94の層高が、概ね、700mm以上に設定される。
[セメントクリンカの冷却]
図3に示すように、このようにして搬送されるセメントクリンカ層に実質的に上方に向かう冷却エアを供給するために、固定傾斜格子13の傾斜面14には、幅方向(直交方向)に長尺に延びるスリット32が設けられている。移動格子19の底壁22にも、スリット35が設けられる。スリット32を介して、固定傾斜格子13の上のクリンカへ冷却空気を供給する。また、スリット35及び移動格子19上のデッド層93を介し、更に上方にある高温クリンカへ冷却空気を供給する。
図2に示すように、本実施形態に係るクリンカ冷却装置5は、先に簡単に触れたように、前段冷却部101と、前段冷却部101の搬送方向の下流側に設けられた細粒分離部102と、細粒分離部102の搬送方向の下流側に設けられた後段冷却部103とを有している。
前段冷却部101は、受入れ部11と可動部12との境界から搬送方向上流側に設けられており、受入れ部11は、前段冷却部101を構成している。前段冷却部101は、前述した固定傾斜格子13と、固定傾斜格子13の下側のスペースに設けられた第1冷却ファン41とを備えている。第1冷却ファン41は、大気からエアを取り込んで冷却エアA1を圧送する。圧送された冷却エアA1は、固定傾斜格子13を下から上に通り抜け、受入れ部11内のセメントクリンカに供給されて略上方に向けて流れていく。
細粒分離部102は、受入れ部11と可動部12との境界から搬送方向の下流側に一定距離進んだ位置までの間に設けられている。つまり、本実施形態では、細粒分離部102が、可動部12の搬送方向上流端部であって、前段冷却部101の直後に連続して設けられている。前記一定距離は、搬送方向に並ぶ複数の移動格子19のうち数個分に相当する搬送方向長さである。セメントクリンカ層は、細粒分離部102を例えば1〜2分程度の時間をかけて通過するが、細粒分離部102の実際の搬送方向長さは実機全体のバランスを考慮して決められる。細粒分離部102は、当該一定距離内に含まれる移動格子19と、当該移動格子19の下側のスペースに設けられた第2冷却ファン42とを備えている。第2冷却ファン42は、大気からエアを取り込んで冷却エアA2を圧送する。圧送された冷却エアA2は、細粒分離部102に対応する移動格子19を下から上に通り抜け、可動床17上のセメントクリンカ層に供給されて略上方に向けて流れていく。
後段冷却部103は、細粒分離部102の直後に連続し、可動部12の搬送方向下流端部にまで設けられている。このように、本実施形態では、細粒分離部102及び後段冷却部103が可動部12を構成している。後段冷却部103は、搬送方向に並ぶ複数の移動格子19のうち細粒分離部102よりも下流側の移動格子19と、当該移動格子19の下側のスペースに設けられた第3冷却ファン43とを備えている。本実施形態では、後段冷却部103が、搬送方向に比較的長尺となっているので、後段冷却部103は複数の第3冷却ファン43を備えており、これら複数の第3冷却ファン43が、搬送方向に間隔をおいて並べられている。各第3冷却ファン43は、大気からエアを取り込んで冷却エアA3を圧送する。圧送された冷却エアA3は、各第3冷却ファン43に対応する移動格子19を下から上に通り抜け、可動床17上のセメントクリンカ層に供給されて略上方に向けて流れていく。
ファンの配置に着目すれば、第1冷却ファン41、第2冷却ファン42及び複数の第3冷却ファン43が、受入れ部11から可動部12の搬送方向下流部に至るまでの間に、搬送方向に間隔をおいて並べて配置されている。複数の可動床17が動作している間、これら冷却ファン41〜43も動作し続ける。よって、セメントクリンカ層は、受入れ部11から可動部12の搬送方向の下流端部に至るまでの間、すなわち前段冷却部101、細粒分離部102及び後段冷却部103をこの順で通過していく間、冷却エアの供給を受け続けて急冷される。なお、冷却エアの単位面積当たりの流量は、直交方向においては略均質で殆ど勾配がなく、セメントクリンカ層が直交方向に極力均質に冷却されるようになっている。ここで、「単位面積当たりの流量」は、単位面積単位時間当たりに流れる冷却エアの基準状態(0℃、1気圧)下での体積[Nm3/m2・s]として定義されることができ、当該単位面積は、各冷却ファン41〜43に割り当てられた領域全体の平面積を基準にして算出されることができる。
本実施形態では、細粒分離部102における冷却エアA2の単位面積当たりの流量は、前段冷却部101における冷却エアA1の単位面積当たりの流量よりも小さく、後段冷却部103における冷却エアA3の単位面積当たりの流量よりも大きい。このようにファンにより流量を異ならせているため、クリンカ冷却装置5は、セメントクリンカ層を搬送しながら冷却するにあたり、下記のとおり特異な作用効果を奏する。
すなわち、前段冷却部101での冷却エアA1の単位面積当たりの流量が、他の部位(特に、細粒分離部102)よりも大きく設定されている。このため、ロータリーキルン4から供給されたセメントクリンカは可及的速くに冷却される。前述したように、セメントクリンカ層は堆積物91を用いて幅方向に均質に分散されるので、受入れ部11においてセメントクリンカ層の層高を幅方向にも安定させることができる。また、流量が大きければ、固定傾斜格子13を通り抜けるときに生じる冷却エアA1のコアンダ効果が良好に発揮され、可動床17の送り工程において、層高が安定したセメントクリンカ層を傾斜面14に沿って自動的に且つ円滑に可動部12に送ることができる。複数の可動床17が動作している間は、上記作用が連続的にもたらされるので、可動部12に送られたセメントクリンカ層の層高が、搬送方向にも直交方向にも安定する。よって、セメントクリンカ層の冷却ムラを小さくすることができる。
図4(a)は、前段冷却部101から細粒分離部102に送られた直後のセメントクリンカの状態を示す模式図、図4(b)は、細粒分離部102から後段冷却部103に送られた直後のセメントクリンカの状態を示す模式図である。つまり、細粒分離部102において、セメントクリンカの状態は図4(a)に示すものから図4(b)に示すものへと変化していく。
図4(a)に示すように、セメントクリンカの粒径は、1mm〜25mmの広範囲に分布しており、セメントクリンカの粒径のバラツキは比較的大きい。すると、前段冷却部101において傾斜面14に沿って移送される過程において、セメントクリンカ層は、急速に冷却される一方で、様々な粒径のものが混合された状態となる。細粒分離部102に送られた直後のセメントクリンカ層のうち少なくとも輸送層94は、このような状態になる。
このように様々な粒径のセメントクリンカが層内で混合されていると、粒径の小さいセメントクリンカが粒径の大きいセメントクリンカ同士の間に入り込み、輸送層94の充填率が高さ方向において略一定の高い値で推移する。一方、第2冷却ファン42からの冷却エアA2は、セメントクリンカの表面間に形成される空隙を通過することにより、セメントクリンカ層内を略上向きに流れていく。充填率が高ければ(空隙が狭ければ)、セメントクリンカ層を通過するときの冷却エアA2の圧力損失(以下、「クリンカ通過圧損」)が高くなる。また、充填率が高ければ、粒径の大きいセメントクリンカの表面のうち大部分が粒径の小さいセメントクリンカの表面と接触する可能性があり、それにより粒径の大きいセメントクリンカが冷却エアと接触しにくくなる。
そこで、細粒分離部102では、セメントクリンカの層に略上方に向かう冷却エアが供給されると共に、当該冷却エアA2を活用してセメントクリンカ層の中から細粒が選択的に上層側へと分離される。逆に言えば、第2冷却ファン42は、細粒を選択的に上層側へ押し上げるために必要となる圧力及び流量を有した冷却エアA2を圧送することとなる。細粒は、冷却エアA2と共にセメントクリンカ同士の間の空隙を潜り抜けるようにして又は冷却エアA2に押されることで他のセメントクリンカを押し退けるようにして、上層側へと輸送されていく。
一般に、粉粒体の層内に供給されるエアの流量が高くなっていくに連れて、粉粒体の層は、固定層から最小流動層、均一流動層、気泡流動層へとこの順で移行する。流量が更に高くなっていくに連れて、スラッギング、乱流流動化及び高速流動化がこの順で生じていく。また、一般に、粉流体の粒径が大きければ、同一の流動化状態(例えば、均一流動化や気泡流動化やスラッギング)になるために必要な流量は大きくなる。逆に言えば、粒径の小さなものほど、前記のような流動化状態の移行が早くなる。
本実施形態において、「流動化する直前の状態」とは、少なくとも気泡流動層へ移行する直前の状態、好ましくは、均一流動化又は最小流動化する直前の状態である。このため、冷却エアA2の流量は、少なくとも分離する細粒のうち最大粒径のセメントクリンカの気泡発生速度未満に設定されていることが好ましい。セメントクリンカの流動化が気泡流動化を生じるまでに促進されてしまうと、クリンカ通過圧損が顕著に高くなり、冷却ファンの圧力を高くする必要性が生じるからである。また、セメントクリンカの流動化が均一流動化を生じるまでに促進されてしまうと、均一流動化を生じている部分において温度が平均化され、冷却エアを供給してもセメントクリンカから効率よく熱を回収することができなくなる可能性があるからである。セメントクリンカの気泡流動化や均一流動化を生じさせないように冷却エアの流量を設定することにより、冷却エアの圧力及び流量を無駄に高くすることなく、効率的にセメントクリンカを冷却することができるし効率的にセメントクリンカから熱を回収することができる。
本実施形態において、分離すべき細粒の大きさの選定については、後述する作用(下層側での充填率の低下)を得ることが可能な範囲内であれば、特に限定されない。例えば、細粒は、可動床17上のセメントクリンカ層に含まれるセメントクリンカのうち、粒径6mm付近以下のセメントクリンカであってもよい。また、細粒は、累積粒子重量割合の20〜30%であってもよい。
セメントクリンカの粒度分布は、セメント原料の組成やその他の条件に応じて変わる。図5にその一例を極めて概念的に示すと、ある粒度分布を持つセメントクリンカでは、粒径6mmの細粒側からの累積粒子重量割合は約25%である。このような一例において、本件発明者が試験を行った結果、冷却エアA2の流量を1.25〜1.45[Nm3/m2・s]に設定すると、粒径6mm以下の累積粒子重量割合約25%分のセメントクリンカを、流動化する直前の状態にして、選択的に上層側に分離することができることを確認した。このとき、粒径が極小のものは流動化を生じるものの、分離された細粒のうち比較的粒径の大きいものは、均一流動化を生じないような状態、つまり、流動化する直前の状態となる。
細粒を流動化する直前の状態にして選択的に上層側に分離することは、粒径が大きいセメントクリンカを下層側で選択的に固定層として維持することと殆ど同義である。図4(b)に示すように、細粒を分離した結果、下層側では、粒径の大きいセメントクリンカが残留する一方で、これら粒径の大きいセメントクリンカ同士の間に入り込んでいた細粒がなくなる。よって、下層側における充填率が低下する。この細粒の分離は、冷却エアA2の供給により実現される。このため、セメントクリンカは当該冷却エアA2の供給を受けて良好に冷却される。
細粒分離部102の下流側に設けられた後段冷却部103では、第3冷却ファン43からの冷却エアA3のクリンカ通過圧損が小さくなる。よって、後段冷却部103では、冷却エアA3の圧力が小さくても、冷却エアA3がセメントクリンカ層を通過しやすくなり、セメントクリンカ層を好適に冷却することができる。また、下層側では、充填率の低下に伴って、粗粒の表面のうち空隙に大きく露出する部分が増えるので、粗粒と冷却エアA3とが接触する機会が増え、粗粒が冷却エアA3と効率良く熱交換可能になる。よって、冷却エアA3の流量が小さくても粗粒が好適に冷却される。このようにして、可動部12の全体に供給される冷却エアの流量を小さくしながら、セメントクリンカを良好に冷却することもでき、冷却性能が向上する。冷却エアA2の流量を前述の数値に設定した場合、冷却エアA3の流量を例えば0.6〜0.8[Nm3/m2・s]に設定しても、セメントクリンカ層を必要な温度まで冷却することが可能である。なお、冷却エアA2及び冷却エアA3の流量を前述の数値に設定した場合、冷却エアA1の流量を例えば1.60〜1.55[Nm3/m2・s]に設定することが可能である。
このように、本実施形態に係るクリンカ冷却装置5では、セメントクリンカ層の充填率を部分的にでも低下させるために、局所的に冷却エアの流量を大きくして細粒を上層側に分離する。これにより、全体としての冷却ファンの圧力及び流量を小さくしながらも従前同様にしてセメントクリンカを冷却することができ、その結果として、クリンカ冷却装置5の冷却性能及び熱回収性能が改善される。したがって、クリンカ冷却装置5のエネルギー効率が改善され、ひいては、焼成工程を行う装置全体の燃費が良好に改善される。また、前段冷却部101で冷却エアA1を供給した後、細粒分離部102において細粒が分離されるようにしているので、前段冷却部101では冷却に特化して冷却エアの仕様を決めることができ、ロータリーキルン4から排出された直後のセメントクリンカを好適に冷却することができる。
[変更例]
上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
例えば、細粒分離部102は、必ずしも受入れ部11の直後に設けられていなくてもよく、細粒を分離するには不十分な流量の冷却エアを供給する部位が、受入れ部11と細粒分離部102との間に設けられていてもよい。ただし、細粒分離部102を受入れ部11の直後に設けていれば、細粒の分離による充填率の低下が、なるべく搬送方向上流側で達成されるので、冷却効率が良好に向上する。
また、可動部12が二階式である場合があり、典型的な二階式の可動部は、受入れ部から搬送方向下流側に延びる上階部と、上階部の搬送方向下流端部の直下から搬送方向下流側に延びる下階部とを有する。この場合、細粒分離部102は、上階部における受入れ部の直後だけでなく、下階部における搬送方向上流端部にも設けられていてもよい(いずれの箇所も受入れ部よりも下流側である)。すると、上階部から下階部へと落下したセメントクリンカ層の中から細粒を分離しなおすことができ、下階部における冷却エアの流量及び圧力を小さくすることができる。
細粒分離部102に複数の第2冷却ファン42を設け、これら複数の第2冷却ファン42が、搬送方向に並べられていてもよい。この場合、細粒を分離するために必要な流量である限りにおいて、各第2冷却ファン42の流量が互いに異なっていてもよい。後段冷却部103に設けられている複数の第3冷却ファン43も、互いに同じ流量の冷却エアを圧送していてもよいし、互いに異なる流量の冷却エアを圧送していてもよい。第1冷却ファン41についても同様である。また、上記実施形態では、説明の単純化のため、前段冷却部101、細粒分離部102及び後段冷却部103の各部において、直交方向には1台の冷却ファンを設けるとしているが、複数の冷却ファンが直交方向に並べられていてもよい。
セメントクリンカの搬送には、いわゆる振り子摺動方式など、縦列摺動方式以外の方式が用いられていてもよい。固定傾斜格子13及び移動格子19の構造様式及び冷却エアの噴出方式も、上記のものに限定されない。なお、細粒の分離に別の手法が用いられてもよいが、上方に向かう冷却エアを活用すると、細粒の分離のために専用のデバイスを別途付加する必要がないので、有益である。
本発明に係るバルク材冷却装置は、バルク材の層を搬送しながら略上方に向かう冷却エアを供給して当該バルク材の層を冷却する構成の装置であれば、どのような装置にも好適に適用可能である。セメント原料を焼成することによって生成されるセメントクリンカは、粒径にバラツキがあって保有熱量も高いことに照らすと、セメントクリンカを冷却するクリンカ冷却装置では、細粒を分離することによる作用効果が顕著にもたらされる。よって、クリンカ冷却装置には本発明を特に好適に適用することができる。
本発明は、バルク材の層を搬送しながら当該バルク材の層を冷却するにあたり、エネルギー効率を改善することができるとの作用効果を奏し、セメントプラントの焼成設備に備わるクリンカ冷却装置に適用すると有益である。
1 焼成設備
2 予熱器
3 仮焼炉
4 ロータリーキルン
5 クリンカ冷却装置(バルク材冷却装置)
11 受入れ部
12 可動部
13 固定傾斜格子
14 傾斜面
17 可動床
19 移動格子
32,35 スリット
41〜43 冷却ファン
90 セメントクリンカ(バルク材)
93 デッド層
94 輸送層
101 前段冷却部
102 細粒分離部
103 後段冷却部

Claims (6)

  1. バルク材の層を搬送しながら冷却するバルク材冷却装置であって、
    上方に向かう冷却エアをバルク材の層に供給しながら当該冷却エアによってバルク材の層の中から細粒を上層側に選択的に分離する細粒分離部と、
    前記細粒分離部の下流側に設けられ、前記細粒分離部における冷却エアよりも単位面積当たりの流量が小さい冷却エアをバルク材の層に供給する後段冷却部と、
    前記細粒分離部よりも上流でバルク材を受け入れる受入れ部と、を備え
    前記受入れ部が、上方に向かう冷却エアをバルク材に供給する前段冷却部を構成しているバルク材冷却装置。
  2. 前記前段冷却部が供給する冷却エアの単位面積当たりの流量は、前記細粒分離部が供給する冷却エアの単位面積当たりの流量よりも大きい、請求項1に記載のバルク材冷却装置。
  3. 前記細粒分離部が、前記受入れ部の直後に連続して設けられている、請求項2に記載のバルク材冷却装置。
  4. 前記細粒分離部は、前記冷却エアを供給することにより、細粒の流動化が開始する直前の状態にする、請求項1乃至3のいずれか1項に記載のバルク材冷却装置。
  5. 前記バルク材がセメントクリンカであり、前記受入れ部が、セメント原料を焼成するためのキルンからセメントクリンカを受け入れる、請求項1乃至4のいずれか1項に記載のバルク材冷却装置。
  6. バルク材の層を搬送しながら冷却するバルク材冷却方法であって、
    上方に向かう冷却エアを受入れ部に受け入れられたバルク材に供給する前段冷却工程と、
    前記前段冷却工程の後に、上方に向かう冷却エアをバルク材の層に供給しながら当該冷却エアによってバルク材の層の中から細粒を上層側に選択的に分離する細粒分離工程と、
    前記細粒分離工程の後に、前記細粒分離工程での冷却エアよりも単位面積当たりの流量が小さい冷却エアをバルク材の層に供給する後段冷却工程と、
    を有するバルク材冷却方法。
JP2011282986A 2011-12-26 2011-12-26 バルク材冷却装置及びバルク材冷却方法 Active JP5866196B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011282986A JP5866196B2 (ja) 2011-12-26 2011-12-26 バルク材冷却装置及びバルク材冷却方法
CN201280062958.2A CN104011492B (zh) 2011-12-26 2012-12-21 散状物料冷却装置及散状物料冷却方法
DK12863238.7T DK2799801T4 (da) 2011-12-26 2012-12-21 Indretning til afkøling af styrtgods og fremgangsmåde til afkøling af styrtgods
PCT/JP2012/008197 WO2013099186A1 (ja) 2011-12-26 2012-12-21 バルク材冷却装置及びバルク材冷却方法
EP12863238.7A EP2799801B2 (en) 2011-12-26 2012-12-21 Bulk-material cooling device and bulk-material cooling method
MYPI2014701739A MY167643A (en) 2011-12-26 2012-12-21 Bulk material cooling device and bulk material cooling method
TW101149413A TWI495550B (zh) 2011-12-26 2012-12-24 Block cooling device and block cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011282986A JP5866196B2 (ja) 2011-12-26 2011-12-26 バルク材冷却装置及びバルク材冷却方法

Publications (2)

Publication Number Publication Date
JP2013133953A JP2013133953A (ja) 2013-07-08
JP5866196B2 true JP5866196B2 (ja) 2016-02-17

Family

ID=48696728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011282986A Active JP5866196B2 (ja) 2011-12-26 2011-12-26 バルク材冷却装置及びバルク材冷却方法

Country Status (7)

Country Link
EP (1) EP2799801B2 (ja)
JP (1) JP5866196B2 (ja)
CN (1) CN104011492B (ja)
DK (1) DK2799801T4 (ja)
MY (1) MY167643A (ja)
TW (1) TWI495550B (ja)
WO (1) WO2013099186A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105180662B (zh) * 2015-08-07 2017-05-24 天津水泥工业设计研究院有限公司 一种高温颗粒状物料分级冷却方法及装置
CN105546976B (zh) * 2016-01-07 2017-07-14 湖南大学 一种篦式冷却机
WO2020058874A1 (en) * 2018-09-18 2020-03-26 Material Handling System Industry S.R.L. Plant for the recovery of white slag resulting from an iron and steel process
WO2021074055A1 (de) * 2019-10-14 2021-04-22 Thyssenkrupp Industrial Solutions Ag Kühler und verfahren zum kühlen von schüttgut
BE1027677B1 (de) * 2019-10-14 2021-05-10 Thyssenkrupp Ind Solutions Ag Verfahren und Kühler zum Kühlen von Schüttgut, insbesondere Zementklinker

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3831291A (en) * 1972-08-16 1974-08-27 Fuller Co Method and apparatus for treatment of particulate material
JPS5211322B2 (ja) 1972-08-28 1977-03-30
DE3131514C1 (de) 1981-08-08 1988-09-08 Karl von Dipl.-Ing. Dipl.-Wirtsch.-Ing. 3057 Neustadt Wedel Verfahren zum Kuehlen von Kuehlgutbetten und Stauvorrichtung zur Durchfuehrung des Verfahrens
DE3616630A1 (de) 1986-05-16 1987-11-19 Krupp Polysius Ag Kuehlvorrichtung
JPS6414135A (en) * 1987-07-08 1989-01-18 Babcock Hitachi Kk Cooling device for high temperature clinker
DK154692D0 (da) 1992-12-23 1992-12-23 Smidth & Co As F L Fremgangsmaade og koeler til afkoeling af partikelformet materiale
JP2579885B2 (ja) * 1993-10-15 1997-02-12 川崎重工業株式会社 粉粒体原料の粉砕方法と粉砕装置および分級機
ZA969708B (en) 1995-12-15 1997-06-20 Krupp Polysius Ag Prevention of snowmen and removal of lumps in clinker coolers
DE59910759D1 (de) 1999-11-03 2004-11-11 Peters Claudius Tech Gmbh Verfahren zum Betrieb eines Brenngutkühlers sowie Brenngutkühler
BR9905656A (pt) * 1999-11-30 2001-07-24 Viviane Vasconcelos Vilela Ltd Aparelhagem e processo para a extração de calor e para a solidificação de partìculas de materiais fundidos
IL159522A0 (en) * 2001-07-05 2004-06-01 Kerr Mcgee Pigments Internat G Method for directly cooling fine-particle solid substances
EP1475594A1 (de) 2003-05-08 2004-11-10 Claudius Peters Technologies GmbH Verfahren und Vorrichtung zum Förderen einer Schüttgutschicht auf einem Rost
DE10355822B4 (de) 2003-11-28 2013-06-13 Khd Humboldt Wedag Gmbh Schüttgutkühler zum Kühlen von heißem Kühlgut
DE102005032518B4 (de) 2005-07-12 2017-10-19 Thyssenkrupp Industrial Solutions Ag Verfahren und Vorrichtung zum Kühlen von Schüttgut
DE102006026234A1 (de) 2006-06-06 2007-12-13 Polysius Ag Vorrichtung und Verfahren zum Kühlen von Schüttgut
KR101390592B1 (ko) * 2007-12-19 2014-04-30 미츠비시 마테리알 가부시키가이샤 시멘트 소성 설비의 배기 가스 처리 방법 및 처리 시스템
JP5544684B2 (ja) * 2008-03-20 2014-07-09 Jfeスチール株式会社 溶融スラグの冷却処理装置および冷却処理方法

Also Published As

Publication number Publication date
EP2799801A4 (en) 2015-08-19
MY167643A (en) 2018-09-21
TW201334934A (zh) 2013-09-01
EP2799801A1 (en) 2014-11-05
EP2799801B2 (en) 2023-10-04
WO2013099186A1 (ja) 2013-07-04
TWI495550B (zh) 2015-08-11
CN104011492A (zh) 2014-08-27
JP2013133953A (ja) 2013-07-08
EP2799801B1 (en) 2017-05-10
CN104011492B (zh) 2016-03-30
DK2799801T4 (da) 2023-11-06
DK2799801T3 (en) 2017-07-17

Similar Documents

Publication Publication Date Title
JP5866196B2 (ja) バルク材冷却装置及びバルク材冷却方法
EP2004319B1 (en) System and method for the calcination of minerals
EP3419746B1 (en) Method and device for the heat treatment of granular solids
JP2006511419A (ja) 微細粒状化固形物の熱処理方法およびプラント
AU2021272372B2 (en) Device for producing supplementary cementitious material
CN106568331A (zh) 一种大型悬浮窑及其生产工艺
Mei et al. The experimental study of fly ash decarbonization on a circulating fluidized bed combustor
JP6534423B2 (ja) フライアッシュの冷却装置
JP2014181887A (ja) 湿潤燃料流動層乾燥装置及びその乾燥方法
TWI460145B (zh) A cooling unit and a cooler device having the same
Missalla et al. Significant improvement of energy efficiency at alunorte’s calcination facility
WO2013099187A1 (ja) バルク材冷却装置及びバルク材冷却方法
US20150021159A1 (en) Compact fast pyrolysis system for conversion of carbonaceous materials to liquid, solid and gas
JP5911091B2 (ja) セメント焼成装置
CA2821474C (en) Compact fast pyrolysis system for conversion of carbonacous materials to liquid, solid and gas
JP6206197B2 (ja) 石炭灰処理装置
EA029071B1 (ru) Теплообменник с псевдоожиженным слоем
JP6091922B2 (ja) 流動層乾燥装置
US10513660B2 (en) Compact fast pyrolysis system for conversion of carbonaceous materials to liquid, solid and gas
JPS6046054B2 (ja) 堅型石灰焼成炉
JPH0129223Y2 (ja)
JP2020158326A (ja) セメント焼成装置の運転制御方法、並びに、セメント焼成装置及びその運転方法
JPH11294970A (ja) 予熱装置
JP2013167379A (ja) 流動層乾燥装置及び石炭を用いたガス化複合発電システム
JPS598651A (ja) 焼塊物の冷却装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160104

R150 Certificate of patent or registration of utility model

Ref document number: 5866196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250