JP5865166B2 - Purification method and apparatus for water containing oils and / or volatile organic compounds - Google Patents

Purification method and apparatus for water containing oils and / or volatile organic compounds Download PDF

Info

Publication number
JP5865166B2
JP5865166B2 JP2012095399A JP2012095399A JP5865166B2 JP 5865166 B2 JP5865166 B2 JP 5865166B2 JP 2012095399 A JP2012095399 A JP 2012095399A JP 2012095399 A JP2012095399 A JP 2012095399A JP 5865166 B2 JP5865166 B2 JP 5865166B2
Authority
JP
Japan
Prior art keywords
water
volatile organic
oils
treated
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012095399A
Other languages
Japanese (ja)
Other versions
JP2013220407A (en
Inventor
純男 三吉
純男 三吉
篤史 小河
篤史 小河
正敬 大島
正敬 大島
泰宏 船戸
泰宏 船戸
加納 裕士
裕士 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
Nagoya Oshima Machinery Co Ltd
Nihon Kaisui Co Ltd
Original Assignee
Okumura Corp
Nagoya Oshima Machinery Co Ltd
Nihon Kaisui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp, Nagoya Oshima Machinery Co Ltd, Nihon Kaisui Co Ltd filed Critical Okumura Corp
Priority to JP2012095399A priority Critical patent/JP5865166B2/en
Publication of JP2013220407A publication Critical patent/JP2013220407A/en
Application granted granted Critical
Publication of JP5865166B2 publication Critical patent/JP5865166B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Processing Of Solid Wastes (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、油類及び/又は揮発性有機化合物を含有する水の浄化方法、並びに油類及び/又は揮発性有機化合物を含有する水の浄化装置に関する。   The present invention relates to a method for purifying water containing oils and / or volatile organic compounds, and a device for purifying water containing oils and / or volatile organic compounds.

近年、環境破壊の要因又は生物体に対して悪影響を及ぼす要因となる汚染物質が土壌や地下水において検出されており、これらの物質による環境汚染が問題とされている。汚染土壌・地下水の浄化には様々な方法が用いられており、従来は汚染土壌(以下、地下水を含む)を掘削等により地上に取り出して外部で水や溶媒により洗浄、熱処理して無害化する方法が多く用いられていた。しかし、汚染土壌を洗浄した際に出る油が濃縮された洗浄水については、特別管理廃棄物として処理するケースがほとんどであった。揮発性有機化合物については活性炭吸着処理がなされているが、ランニングコストが高くなる。   In recent years, pollutants that cause environmental destruction or have an adverse effect on living organisms have been detected in soil and groundwater, and environmental pollution caused by these substances has been a problem. Various methods are used to purify contaminated soil and groundwater. Conventionally, contaminated soil (hereinafter referred to as groundwater) is taken to the ground by excavation, etc., washed externally with water or solvent, and heat treated to make it harmless. Many methods were used. However, in most cases, the wash water concentrated in the oil produced when washing contaminated soil is treated as specially managed waste. The volatile organic compound is subjected to activated carbon adsorption treatment, but the running cost becomes high.

汚染物質で汚染された土壌の原位置浄化方法として、地下水を浄化し、再度地下に戻して、汚染土壌を洗浄する方法が考えられるようになった。
地下水の油を油水分離装置で取り除ける場合もあるが、廃棄物は特管廃棄物となり非常に厄介なケースが多い。また、エマルジョン化して水と分離できないこともあり、再度地下に戻す前に油分解を行うことが求められる。
As an in-situ purification method for soil contaminated with pollutants, it has become possible to purify groundwater, return it to the ground again, and wash contaminated soil.
In some cases, groundwater oil can be removed with an oil-water separator, but waste becomes special waste and is often very troublesome. Moreover, since it cannot emulsify and separate from water, it is required to perform oil decomposition before returning to the underground again.

生物学的な浄化方法は、重金属類以外の汚染物質、例えば油や揮発性有機化合物等の汚染物質の浄化に好適に用いられ、微生物の分解能力を利用して汚染土壌を修復する浄化技術でありバイオレメディエーションと呼ばれる。これは、汚染土壌、地下水中に元々存在する微生物を利用して土壌中の汚染物質を分解する方法であり、現地に存在する微生物を利用する場合(バイオスティミュレーション)と、微生物を注入する場合(バイオオーグメンテーション)とがある。何れの場合も、必要に応じて微生物の増殖及び生存に必要な栄養剤等を補給し、微生物の分解活性を高めて分解を促進するようにしている。このバイオレメディエーションは、汚染土壌の掘削や汚染物質の抽出の必要がなく、原位置において土壌を浄化できることから低コストで広範囲に利用できるため汚染土壌の浄化に有効な技術として近年注目されている。   The biological purification method is a purification technology that is suitable for the purification of pollutants other than heavy metals, such as oil and volatile organic compounds, and that repairs contaminated soil using the ability to decompose microorganisms. There is called bioremediation. This is a method of decomposing pollutants in soil using microorganisms originally present in contaminated soil and groundwater. When microorganisms present in the field are used (biostimulation), microorganisms are injected. There are cases (bioaugmentation). In any case, nutrients and the like necessary for the growth and survival of microorganisms are supplemented as necessary to enhance the decomposition activity of the microorganisms and promote the decomposition. In recent years, bioremediation has attracted attention as an effective technique for the purification of contaminated soil because it does not require excavation of contaminated soil and extraction of contaminants and can be used in a wide range at low cost because it can purify soil in situ.

一方、重質油の分解にはフェントン酸化法が使われることがあった。この方法は2価鉄と過酸化水素を土壌に添加して生成する水酸化ラジカルによって重質油を分解する技術であり、例えば特許文献1(特開2009−148708号公報)に示されている。   On the other hand, the Fenton oxidation method was sometimes used to decompose heavy oil. This method is a technique for decomposing heavy oil by a hydroxyl radical generated by adding divalent iron and hydrogen peroxide to soil, and is disclosed in, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2009-148708). .

現地浄化による主だった方法は、汚染土壌にバクテリアあるいは過酸化水素などを注入して、地下で反応を起こさせるものである。バクテリアは浄化が完了するまでに時間がかかり、重油には使えないという課題がある。フェントン法は反応が早く、細かに注入点を区分しないと無駄が多くなる可能性があった。
油を地下水から汲み上げて、油水分離槽で油を分離して、地下水に戻す方法も汚染した土壌からの油の分離という点、汚染負荷量を減らし、浄化を早める点で有効であるが、廃棄物が発生する点では欠点を補えていない。また、高濃度の鉄などといっしょに汲み上げられるケースが多く、油水分離槽や保安フィルターが鉄のフロックで閉塞してしまい、維持管理が煩雑になるケースが見受けられる。
The main method of local purification is to inject bacteria or hydrogen peroxide into the contaminated soil and cause a reaction underground. Bacteria have a problem that it takes time to complete purification and cannot be used for heavy oil. The Fenton method has a fast reaction, and there is a possibility that waste will increase unless the injection point is divided finely.
The method of pumping oil from groundwater, separating the oil in an oil-water separation tank and returning it to groundwater is effective in terms of separating oil from contaminated soil, reducing pollution load, and speeding up purification, but is discarded. It does not compensate for the shortcomings in terms of the generation of things. Moreover, there are many cases where the pump is pumped together with high-concentration iron, etc., and there are cases where the oil-water separation tank and the security filter are blocked by iron flocks, which makes maintenance management complicated.

特開2009−148708号公報JP 2009-148708 A

本発明は上記従来技術の問題点に鑑み、油類及び/又は揮発性有機化合物で汚染された水を高速に化学分解せしめ、さらに、地下に返送または河川に放流することができるまで浄化することができる油類及び/又は揮発性有機化合物含有水の浄化方法並びに浄化装置を提供することを目的とする。
更には、油汚染土壌の洗浄水を再利用できるまで迅速に浄化することができる浄化方法及び浄化装置を提供することを目的とする。
In view of the above-mentioned problems of the prior art, the present invention chemically decomposes water contaminated with oils and / or volatile organic compounds at high speed, and further purifies until it can be returned underground or discharged into a river. An object of the present invention is to provide a purification method and a purification device for water containing oils and / or volatile organic compounds.
Furthermore, it aims at providing the purification method and purification apparatus which can purify | clean rapidly until the wash water of oil-contaminated soil can be reused.

本発明者らは、鋭意検討を行った結果、少なくとも油類及び/又は揮発性有機化合物を含有する被処理水を、2価鉄及び/又は0価の鉄を鉄濃度20mg/L以上に、pHを3〜5の範囲に調整し、該調整した被処理液にオゾン化酸素をミキサーにより混入し、循環処理しながら連続的にオゾンの注入を行うことにより、油類及び揮発性有機化合物含有水を迅速に浄化することができることを見出し、本発明に至った。   As a result of intensive studies, the present inventors have determined that the water to be treated containing at least oils and / or volatile organic compounds is divalent iron and / or zero-valent iron with an iron concentration of 20 mg / L or more. Adjusting the pH to the range of 3-5, mixing ozonized oxygen into the adjusted liquid to be treated with a mixer, and continuously injecting ozone while circulating, containing oils and volatile organic compounds The present inventors have found that water can be purified quickly and have reached the present invention.

即ち、本発明は以下の通りである。
(1)少なくとも油類及び/又は揮発性有機化合物を含有する被処理水の浄化方法であって、該被処理水を、2価鉄及び/又は0価の鉄の鉄濃度を 20mg/L以上に、pHを3〜5の範囲に調整し、該調整した被処理にオゾン化酸素をミキサーにより混入し、循環処理しながら連続的にオゾンの注入を行いオゾンを含む被処理水中の油類及び揮発性有機化合物をエマルジョン化することを特徴とする油類及び/又は揮発性有機化合物含有水の浄化方法。
(2)前記オゾン化酸素の注入体積比率が循環水量に対して9%以上であることを特徴とする前記(1)記載の油類及び/又は揮発性有機化合物含有水の浄化方法。
(3)前記鉄の濃度を30mg/L以上とすることを特徴とする前記(1)又は(2)記載の油類及び/又は揮発性有機化合物含有水の浄化方法。
(4)更に、前記オゾン化酸素を注入して浄化した被処理水中に、空気を吹き込み汚泥を浮上させ除去する浮上分離工程を有することを特徴とする前記(1)〜(3)のいずれかに記載の油類及び/又は揮発性有機化合物含有水の浄化方法。
(5)更に、生物分解処理を行う工程を有することを特徴とする前記(1)〜(4)のいずれかに記載の油類及び/又は揮発性有機化合物含有水の浄化方法。
(6)前記被処理水が、地下水であることを特徴とする前記(1)〜(5)のいずれかに記載の油類及び/又は揮発性有機化合物含有水の浄化方法。
(7)前記被処理水が、油汚染土壌に付着した油分を洗浄した際の洗浄水であることを特徴とする前記(1)〜(5)のいずれかに記載の油類及び/又は揮発性有機化合物含有水の浄化方法。
(8)油汚染土壌の浄化方法であって、油汚染土壌を水により洗浄し、洗浄水と洗浄された土壌に分離し、洗浄後の少なくとも油類及び/又は揮発性有機化合物を含有する洗浄水を前記(1)〜(5)のいずれかに記載の浄化方法により浄化することを特徴とする油汚染水の浄化方法。
(9)少なくとも油類及び/又は揮発性有機化合物を含有する被処理水の浄化装置であって、攪拌機を備えた反応槽と、反応槽に接続された被処理水 の循環ラインとを備え、該循環ラインに循環ポンプを設置し、循環ポンプのサクション側にオゾン化酸素を注入する装置を備え、ポンプの吐出側にその混合を促進してオゾンを含む被処理水中の油類及び揮発性有機化合物をエマルジョン化するミキサーを備えることを特徴とする油類及び/又は揮発性有機化合物含有水の浄化装置。
(10)更に、前記オゾン化酸素を注入して浄化した被処理水中に、空気を吹き込み汚泥を浮上させ除去する浮上分離槽を備えることを特徴とする前記(9)に記載の油類及び/又は揮発性有機化合物含有水の浄化装置。
(11)更に、生物分解処理を行う生物処理槽を備えることを特徴とする前記(9)又は(10)に記載の油類及び/又は揮発性有機化合物含有水の浄化装置。
That is, the present invention is as follows.
(1) A method for purifying water to be treated containing at least oils and / or volatile organic compounds, wherein the water to be treated has an iron concentration of divalent iron and / or zero-valent iron of 20 mg / L or more. , the pH was adjusted to the range of 3-5, the treated ozonized oxygen mixed by a mixer to water, oil in the for-treatment water containing continuous ozone have line injection of ozone while circulating processing the adjusted A method for purifying oils and / or water containing volatile organic compounds, comprising emulsifying volatile organic compounds and volatile organic compounds .
(2) The method for purifying oil and / or volatile organic compound-containing water according to (1), wherein the ozonized oxygen injection volume ratio is 9% or more with respect to the amount of circulating water.
(3) The method for purifying oil and / or volatile organic compound-containing water according to (1) or (2), wherein the iron concentration is 30 mg / L or more.
(4) Further, any one of the above (1) to (3), further comprising a flotation separation step in which air is blown into the treated water that has been purified by injecting the ozonated oxygen to float and remove sludge. The method for purifying oils and / or volatile organic compound-containing water described in 1.
(5) The method for purifying oil and / or volatile organic compound-containing water according to any one of (1) to (4), further comprising a step of performing biodegradation treatment.
(6) The method for purifying oil and / or volatile organic compound-containing water according to any one of (1) to (5), wherein the treated water is groundwater.
(7) The oils and / or volatilization according to any one of (1) to (5), wherein the water to be treated is wash water obtained by washing oil adhering to oil-contaminated soil. For purifying water containing volatile organic compounds.
(8) A method for purifying oil-contaminated soil, wherein the oil-contaminated soil is washed with water, separated into wash water and washed soil, and washed at least containing oils and / or volatile organic compounds. A method for purifying oil-contaminated water, wherein the water is purified by the purification method according to any one of (1) to (5).
(9) A purification apparatus for water to be treated containing at least oils and / or volatile organic compounds, comprising a reaction tank equipped with a stirrer and a circulation line for water to be treated connected to the reaction tank, A circulation pump is installed in the circulation line, and a device for injecting ozonized oxygen into the suction side of the circulation pump is provided. On the discharge side of the pump, the mixing is promoted , and oils and volatile organics in the water to be treated containing ozone. A purification apparatus for water containing oils and / or volatile organic compounds , comprising a mixer for emulsifying a compound.
(10) The oils and / or (9) further comprising a flotation separation tank that blows air into the treated water that has been purified by injecting the ozonated oxygen to float and remove sludge. Or a purification device for water containing volatile organic compounds.
(11) The apparatus for purifying oil and / or volatile organic compound-containing water according to (9) or (10), further comprising a biological treatment tank for performing biodegradation treatment.

本発明によると、少なくとも油類及び/又は揮発性有機化合物を含有する被処理水を迅速に浄化することができる。
従って、油類及び/又は揮発性有機化合物で汚染された土壌に井戸を掘って、そこから地下水を揚水して、高濃度に油、揮発性有機化合物等で汚染された地下水を現地に設置した反応槽にて高速に化学分解せしめ、さらに、鉄フロックを分離して再び地下に返送することで、汚染土壌の修復を高速に行う方法と装置を提供することができる。
本発明の浄化方法は、地下水中の油類及び揮発性有機化合物の浄化に適用できるだけでなく、油類及び/又は揮発性有機化合物で汚染された土壌の洗浄水の浄化や廃水中の油類及び揮発性有機化合物の浄化にも使用することができる。
According to the present invention, water to be treated containing at least oils and / or volatile organic compounds can be quickly purified.
Therefore, a well was dug in soil contaminated with oils and / or volatile organic compounds, groundwater was pumped from there, and groundwater contaminated with high concentrations of oil, volatile organic compounds, etc. was installed on site. It is possible to provide a method and an apparatus for repairing contaminated soil at high speed by chemically decomposing at high speed in a reaction tank and further separating and returning the iron floc to the underground again.
The purification method of the present invention can be applied not only to purification of oils and volatile organic compounds in groundwater, but also to purification of washing water for soil contaminated with oils and / or volatile organic compounds and oils in wastewater. It can also be used to purify volatile organic compounds.

油類及び/又は揮発性有機化合物が含まれる地下水を浄化する際に用いる本発明の浄化装置の一例を示す概略図である。It is the schematic which shows an example of the purification apparatus of this invention used when purifying the groundwater containing oils and / or a volatile organic compound. 油類及び/又は揮発性有機化合物が含まれる地下水を浄化する際に用いる本発明の浄化装置のバッチ処理方式の一例を示す概略図である。It is the schematic which shows an example of the batch processing system of the purification apparatus of this invention used when purifying the groundwater containing oils and / or a volatile organic compound. 図2に示す浄化装置に生物分解処理を組み合わせた装置の一例の概略図である。It is the schematic of an example of the apparatus which combined the biodegradation process with the purification apparatus shown in FIG.

本発明の浄化方法は、少なくとも油類及び/又は揮発性有機化合物を含有する被処理水を、2価鉄及び/又は0価の鉄を鉄濃度20mg/L以上、pHを3〜5の範囲に調整し、該調整した被処理にオゾン化酸素をミキサーにより混入し、循環処理しながら連続的にオゾンの注入を行いオゾンを含む被処理水中の油類及び揮発性有機化合物をエマルジョン化することにより、油類及び/又は揮発性有機化合物を含有する水を浄化する。
被処理水のpHを3〜5に調整して、オゾンを注入することにより2価鉄及び0価の鉄が酸化され3価の鉄となると共に、水酸化ラジカルが生じ、該水酸化ラジカルが油分を分解し、被処理水を浄化することができる。また、オゾンが水に溶解した時に発生するスーパーオキシドにより3価の鉄は2価に還元され、鉄は再利用される。
In the purification method of the present invention, water to be treated containing at least oils and / or volatile organic compounds, divalent iron and / or zero-valent iron in an iron concentration of 20 mg / L or more, and a pH in the range of 3 to 5. was adjusted to, the ozonized oxygen mixed by a mixer to the water to be treated was adjusted, the circulation process while oils in the water to be treated continuously with rows have ozone injection of ozone and volatile organic compounds emulsified By doing so, water containing oils and / or volatile organic compounds is purified.
By adjusting the pH of the water to be treated to 3 to 5 and injecting ozone, divalent iron and zerovalent iron are oxidized to become trivalent iron, and a hydroxyl radical is generated. Oil can be decomposed and water to be treated can be purified. Further, trivalent iron is reduced to divalent by superoxide generated when ozone is dissolved in water, and iron is reused.

少なくとも油類及び/又は揮発性有機化合物を含有する被処理水としては、油類や揮発性有機化合物により汚染された土壌から汲み上げた地下水、汚染した土壌の洗浄水(微細粒子を含む)、及び油類及び/又は揮発性有機化合物等を含む廃水等が挙げられる。
油類としては、原油、重油、軽油、灯油、ガソリン、潤滑油、汎用油(マシン油)、スピンドル油、ダイナモ油、シリンダー油、タービン油、油圧作動油(ブレーキフルードなど)、軸受け油、ギヤー油、摺動面潤滑油、冷凍機油、コンプレッサー油、熱媒体油、熱処理油、グリース、エンジンオイル、切削油、絶縁油、圧延油などの石油または石油を原料とする有機物、合成油、動植物油等が挙げられる。
揮発性有機化合物としては、常温常圧で大気中に容易に揮発する有機化学物質であり、ジクロロメタン、四塩化炭素、1,2−ジクロロエタン、1,1−ジクロロエチレン、シス−1,2−ジクロロエチレン、1,1,1−トリクロロエタン、1,1,2−トリクロロエタン、トリクロロエチレン、1,3−ジクロロプロペン、テトラクロロエチレン、ベンゼン等が挙げられる。
As treated water containing at least oils and / or volatile organic compounds, ground water pumped from soil contaminated with oils and volatile organic compounds, wash water (including fine particles) of contaminated soil, and Examples include waste water containing oils and / or volatile organic compounds.
Oils include crude oil, heavy oil, light oil, kerosene, gasoline, lubricating oil, general-purpose oil (machine oil), spindle oil, dynamo oil, cylinder oil, turbine oil, hydraulic fluid (such as brake fluid), bearing oil, gears Oil, sliding surface lubricating oil, refrigeration oil, compressor oil, heat medium oil, heat treatment oil, grease, engine oil, cutting oil, insulating oil, rolling oil, and other oils or organic materials derived from petroleum, synthetic oils, animal and vegetable oils Etc.
The volatile organic compound is an organic chemical substance that easily volatilizes in the atmosphere at normal temperature and pressure, dichloromethane, carbon tetrachloride, 1,2-dichloroethane, 1,1-dichloroethylene, cis-1,2-dichloroethylene, 1,1,1-trichloroethane, 1,1,2-trichloroethane, trichloroethylene, 1,3-dichloropropene, tetrachloroethylene, benzene and the like can be mentioned.

本発明では、前記油類及び/又は揮発性有機化合物を含んだ地下水もしくは廃水、または洗浄水を反応槽に導入し、pHを3〜5、さらに好ましくは3〜4に調整し、溶解性2価及び/又は0価の鉄が20mg/L以上になるように調整し、前記油や揮発性有機化合物と水、さらには反応により不溶化する可能性がある鉄が分離しないように混合しながらオゾンを溶解する反応槽によって油、揮発性有機化合物の分解を行う。   In the present invention, groundwater or wastewater containing the oils and / or volatile organic compounds, or washing water is introduced into the reaction tank, and the pH is adjusted to 3 to 5, more preferably 3 to 4, so that the solubility 2 Oxidation and / or zero-valent iron is adjusted to 20 mg / L or more and mixed with ozone so that the oil, volatile organic compound, water, and iron that may be insolubilized by the reaction are not separated. Oil and volatile organic compounds are decomposed in a reaction tank that dissolves water.

被処理水の2価鉄及び/又は0価の鉄の鉄濃度は20mg/L以上であり、より好ましくは30mg/L以上である。鉄濃度が20mg/L未満であると、油の分解反応速度が著しく低下する。
被処理水の鉄濃度が高い場合は、油分解後にpHを中性に調整して、河川放流等をする前に汚泥として処理水から鉄を分離することができる。汚染地下水中には鉄が高濃度に存在するケースがあるので、その場合は、地下水中に含まれる鉄は除去することが好ましい。逆に地下水中に0価または2価の鉄が含まれない場合は、濃度20mg/L以上になるよう鉄源を添加する。
鉄濃度を調整する際に被処理水に添加して用いる鉄源としては、2価の鉄を供給できる化合物を用いることができる。例えば、硫酸第一鉄、重炭酸第一鉄等が挙げられる。
The iron concentration of the divalent iron and / or zero-valent iron of the water to be treated is 20 mg / L or more, more preferably 30 mg / L or more. When the iron concentration is less than 20 mg / L, the oil decomposition reaction rate is significantly reduced.
When the iron concentration of water to be treated is high, the pH can be adjusted to neutral after oil decomposition, and iron can be separated from the treated water as sludge before being discharged into a river or the like. Since there is a case where iron is present in a high concentration in the contaminated groundwater, in that case, it is preferable to remove the iron contained in the groundwater. On the other hand, when zero-valent or divalent iron is not contained in the groundwater, an iron source is added so that the concentration becomes 20 mg / L or more.
As the iron source used by adding to the water to be treated when adjusting the iron concentration, a compound capable of supplying divalent iron can be used. Examples thereof include ferrous sulfate and ferrous bicarbonate.

2価鉄及び/又は0価の鉄の鉄濃度は、比色法により測定することができる。前記鉄濃度の測定は、被処理水のpHを3〜4とし、0価の鉄を2価鉄として溶解した後に、2価鉄の濃度をo−フェナントロリン法による比色法で測定する。即ち、前記2価鉄及び/又は0価の鉄の鉄濃度は、被処理水中含有される2価鉄及び0価の鉄の合計の濃度である。
本発明においては、被処理水のpHを3.4〜3.6として2価鉄及び/又は0価の鉄の鉄濃度を測定した。
The iron concentration of divalent iron and / or zero-valent iron can be measured by a colorimetric method. The iron concentration is measured by setting the pH of the water to be treated to 3 to 4, dissolving zero-valent iron as divalent iron, and then measuring the concentration of divalent iron by a colorimetric method using an o-phenanthroline method. That is, the iron concentration of the divalent iron and / or zero-valent iron is the total concentration of divalent iron and zero-valent iron contained in the water to be treated.
In the present invention, the iron concentration of divalent iron and / or zero-valent iron was measured by setting the pH of the water to be treated to 3.4 to 3.6.

また、被処理水のpHは3〜5、さらに好適にはpHは3〜4に調整する。pHが5を越える場合は、溶解性鉄が不溶化して反応に供しなくなる。pHが3未満になるとランニングコストがアップする。
本発明においては、pHを3〜5とすることにより、鉄が溶解するので、油分解槽や保安フィルターが鉄のフロックで閉塞してしまうことを防止することができ、維持管理が容易である。
pHの調整剤としては、一般的な酸、アルカリを用いることができ、例えば、硫酸、苛性ソーダが好ましい。
Moreover, pH of to-be-processed water is adjusted to 3-5, More preferably, pH is adjusted to 3-4. When the pH exceeds 5, the soluble iron becomes insoluble and cannot be used for the reaction. When the pH is less than 3, the running cost increases.
In the present invention, since iron is dissolved by adjusting the pH to 3 to 5, it is possible to prevent the oil decomposition tank and the safety filter from being clogged with iron flocs, and maintenance is easy. .
As the pH adjuster, general acids and alkalis can be used. For example, sulfuric acid and caustic soda are preferable.

前記鉄濃度及びpHを調整した被処理液にオゾン化酸素をミキサーにより混入し、循環処理しながら連続的にオゾンの注入を行う。オゾン化酸素をミキサーにより混入し、連続的にオゾンの注入を行うことにより、オゾンを含む被処理水中の油類及び揮発性有機化合物をエマルジョン化することができ反応を効率よく進めることができる。
循環処理しながらオゾン化酸素を注入しても被処理水中の油類及び揮発性有機化合物をエマルジョン化させることができない場合は、反応を効率よく進めることができない。オゾンを含む被処理水中の油類及び揮発性有機化合物をエマルジョン化する手段としては、ミキサー以外に、超音波や乳化剤等の薬品の使用などが挙げられるが、コストが安価で大型化ができる点でミキサーが良い。
また、ミキサーを用いても循環処理をしないでオゾン化酸素の注入を行った場合は、被処理水中の油類及び揮発性有機化合物をエマルジョン化させることが困難であり、反応を効率よく進めることができない。
Ozonated oxygen is mixed into the liquid to be treated whose iron concentration and pH are adjusted by a mixer, and ozone is continuously injected while circulating. By mixing ozonized oxygen with a mixer and continuously injecting ozone, oils and volatile organic compounds in the water to be treated containing ozone can be emulsified and the reaction can be efficiently advanced.
If oils and volatile organic compounds in the water to be treated cannot be emulsified even when ozonated oxygen is injected while circulating, the reaction cannot proceed efficiently. As means for emulsifying the oils and volatile organic compounds in the water to be treated containing ozone, in addition to the mixer, use of chemicals such as ultrasonic waves and emulsifiers may be mentioned, but the cost can be reduced and the size can be increased. And a mixer is good.
In addition, when ozonized oxygen is injected without circulating treatment even if a mixer is used, it is difficult to emulsify oils and volatile organic compounds in the water to be treated, and the reaction should proceed efficiently. I can't.

反応を効率よく進めるための全循環量としては、油類及び揮発性有機化合物の濃度により異なるが、反応槽の容量に対して1倍の量から60倍量が好ましい。
前記全循環量とは、下記式で表される反応時間あたり容量であり、循環水量とは循環させた循環水の単位時間当たりの容量である。
全循環量=循環水量×反応時間
例えば、被処理水5Lを10Lの反応槽に入れ、循環水量20L/minで1.2分間反応させた場合、全循環量は24Lとなり、反応槽の2.4倍の量となる。
また、オゾン化酸素の注入比率は、循環水量に対して体積比で9%以上であることが好ましく、より好ましくは、9%〜15%であり、10%〜12%が特に好ましい。
オゾン化酸素の注入体積比率が循環水量に対して9%未満であると、オゾンを含む被処理水中に油類及び揮発性有機化合物をエマルジョン化することが難しく、被処理水に含有される油類及び揮発性有機化合物の濃度が高い場合は、効率が悪くなる場合がある。
The total circulation amount for efficiently advancing the reaction varies depending on the concentrations of oils and volatile organic compounds, but is preferably 1 to 60 times the volume of the reaction tank.
The total circulation amount is a capacity per reaction time represented by the following formula, and the circulating water amount is a capacity per unit time of the circulated circulating water.
Total circulation amount = circulation water amount × reaction time For example, when 5 L of water to be treated is placed in a 10 L reaction vessel and reacted at a circulation water amount of 20 L / min for 1.2 minutes, the total circulation amount is 24 L, and 2. Four times the amount.
The injection ratio of ozonized oxygen is preferably 9% or more by volume with respect to the amount of circulating water, more preferably 9% to 15%, and particularly preferably 10% to 12%.
When the injection volume ratio of ozonized oxygen is less than 9% with respect to the amount of circulating water, it is difficult to emulsify oils and volatile organic compounds in the treated water containing ozone, and the oil contained in the treated water If the concentration of the volatile organic compound is high, the efficiency may deteriorate.

また、被処理水に含有される油類及び揮発性有機化合物が、分解が難しい物質であればあるほど、濃度が高いほど、循環水中のオゾンの濃度は高い方が反応性が向上するため好ましい。逆に、油類及び揮発性有機化合物が希薄になり、分子量が小さくなると、濃度の高いオゾンは未反応になり、無駄になる。従って経済性を考慮し、オゾンの濃度を抑えることが好ましい。
オゾン化酸素は、例えば酸素を供給してオゾン化するPSA付きオゾン発生器等により発生させることができる。油類及び揮発性有機化合物の濃度が高い場合は、オゾン濃度の高いオゾン化酸素を用いることが好ましい。また、被処理水中のn−ヘキサン抽出物濃度が300mg/L〜十万mg/L程度を超える場合であっても、オゾンが4〜5vol%含有されているオゾン化酸素を用いることで十分な処理が可能である。
オゾン化酸素は気体であり、上記体積比における体積は、標準状態(1気圧、0℃)における体積である。
Further, the more the oils and volatile organic compounds contained in the water to be treated are difficult to decompose, the higher the concentration, the higher the concentration of ozone in the circulating water is preferable because the reactivity is improved. . Conversely, when oils and volatile organic compounds become dilute and the molecular weight decreases, high-concentration ozone becomes unreacted and is wasted. Therefore, it is preferable to suppress the concentration of ozone in consideration of economy.
The ozonized oxygen can be generated by, for example, an ozone generator with PSA that supplies oxygen to ozonize. When the concentrations of oils and volatile organic compounds are high, it is preferable to use ozonated oxygen having a high ozone concentration. Moreover, even if it is a case where the n-hexane extract density | concentration in to-be-processed water exceeds about 300 mg / L-100,000 mg / L, it is enough to use the ozonized oxygen in which ozone contains 4-5 vol%. Processing is possible.
Ozonated oxygen is a gas, and the volume in the volume ratio is a volume in a standard state (1 atm, 0 ° C.).

油類及び揮発性有機化合物は溶解した反応性の高いオゾンによって化学分解され、水と炭酸ガスにまで分解される。一部は低分子化された状態で残る場合もあるが、低分子化された状態で残った分については生物処理により分解が可能となる。生物処理を使う場合は、不溶化した鉄(FeOOH)を浮上分離して、その処理水を生物分解処理し、地下水に戻したり、放流することもできる。
廃水処理の場合は、本発明の浄化方法によりn−ヘキサン抽出物濃度(n−H濃度)が300mg/L程度まで低減できれば、その後で、水質汚濁法により日量50m3/日以上の特定有害物質を扱う工場等で義務付けられている排水の処理を行う既設の微生物処理による活性汚泥処理設備に投入して処理することが可能である。
Oils and volatile organic compounds are chemically decomposed by dissolved highly reactive ozone and decomposed into water and carbon dioxide. Some may remain in a low molecular state, but the portion remaining in the low molecular state can be decomposed by biological treatment. When using biological treatment, insolubilized iron (FeOOH) can be floated and separated, and the treated water can be biodegraded and returned to groundwater or discharged.
In the case of wastewater treatment, if the n-hexane extract concentration (nH concentration) can be reduced to about 300 mg / L by the purification method of the present invention, then the specific pollution of 50 m 3 / day or more per day by the water pollution method. It can be put into an activated sludge treatment facility using existing microbial treatment that treats wastewater required by factories that handle substances.

本発明の浄化方法により、油濃度がn−H濃度数万ppmの被処理水が、10分程度の処理でn−H濃度百ppm以下に処理することができ、さらに長時間の処理で5ppm以下にすることも可能である。ランニングコストとしては高反応性オゾンによる反応とバクテリアによる分解で役割分担を行う方が安価な場合がある。その場合は前記高反応性オゾンによる反応で得られた処理水には高濃度の酸素が残留しているので、そのまま微生物処理が可能で、pHを中性として除鉄の後に、生物処理を行い、n−H濃度を5mg/L以下とすることができる。   By the purification method of the present invention, water to be treated having an oil concentration of nH concentration of several tens of thousands ppm can be processed to an nH concentration of 100 ppm or less in a treatment of about 10 minutes, and further 5 ppm in a long time treatment. It is also possible to: As the running cost, there are cases where it is cheaper to share roles by reaction with highly reactive ozone and decomposition by bacteria. In that case, since high-concentration oxygen remains in the treated water obtained by the reaction with the highly reactive ozone, the microorganism can be treated as it is, and the biological treatment is performed after removing iron with neutral pH. , NH concentration can be 5 mg / L or less.

被処理水中の油類及び揮発性有機化合物の濃度が高い場合は、高反応性オゾンによる油類及び揮発性有機化合物の分解は、2段階処理とし、第1段階目では前記オゾンの濃度を高濃度とした処理とし、更に第2段階目でオゾンの濃度を第1段階目より低濃度として処理することが好ましく、このようにすることにより、反応時間を短縮することができる。
第1段階目のオゾンを高濃度とする際のオゾンの濃度は、好ましくはオゾンを3〜5.5vol%、より好ましくはオゾンを4〜5vol%含有するオゾン化酸素を用いて、オゾンの濃度を循環水中5.8〜18mg/L(オゾン化酸素注入時)とすることが好ましく、8.1〜16.5mg/Lとすることがより好ましい。第2段階目のオゾンを低濃度とする際のオゾンの濃度は、n−H濃度が300mg/L程度とすると、好ましくはオゾンを0.1〜3vol%、より好ましくはオゾンを0.1〜2.5vol%含有するオゾン化酸素を用いて、オゾンの濃度を循環水中0.3〜9.7mg/L(オゾン化酸素注入時)とすることが好ましく、0.3〜8.1mg/L程度とすることがより好ましい。高濃度の場合の循環水中のオゾンの濃度は11〜13mg/Lが更に好ましく、低濃度の場合の循環水中のオゾンの濃度は5〜6mg/Lが更に好ましい。
低い方の濃度はコストと反応性を考慮し、即ち、濃度が低い方が動力費を安価にできるが、反応性が悪くなり、濃度を高くすると未反応オゾンが生じ、無駄になるということから、循環水中5〜6mg/Lがさらに好ましい。
上記のように、オゾン化酸素中のオゾンの濃度はオゾン発生器により発生させるオゾン化酸素中のオゾンの濃度を変えることにより調整することができる。
反応槽の攪拌は攪拌機による攪拌の他に、循環ポンプによって鉄が不溶化して浮上してしまわないように攪拌してもよい。
When the concentration of oils and volatile organic compounds in the water to be treated is high, the decomposition of oils and volatile organic compounds by highly reactive ozone is a two-stage treatment, and in the first stage, the concentration of ozone is increased. It is preferable to treat the concentration, and in the second stage, the ozone concentration is preferably lower than that in the first stage. By doing so, the reaction time can be shortened.
The ozone concentration at the time of increasing the ozone concentration in the first stage is preferably 3 to 5.5 vol% ozone, more preferably 4 to 5 vol% ozone, and the ozone concentration Is preferably set to 5.8 to 18 mg / L in circulating water (at the time of ozonized oxygen injection), and more preferably set to 8.1 to 16.5 mg / L. When the n-H concentration is about 300 mg / L, the ozone concentration at the time of lowering the second stage ozone is preferably 0.1 to 3 vol%, more preferably 0.1 to 0.1 ozone. Using ozonated oxygen containing 2.5 vol%, the concentration of ozone is preferably 0.3 to 9.7 mg / L in circulating water (at the time of ozonated oxygen injection), and 0.3 to 8.1 mg / L. More preferably, it is about. The concentration of ozone in the circulating water when the concentration is high is more preferably 11 to 13 mg / L, and the concentration of ozone in the circulating water when the concentration is low is more preferably 5 to 6 mg / L.
The lower concentration considers cost and reactivity, that is, the lower concentration can lower the power cost, but the reactivity becomes worse, and if the concentration is increased, unreacted ozone is generated and wasted. Further, 5 to 6 mg / L of circulating water is more preferable.
As described above, the concentration of ozone in ozonated oxygen can be adjusted by changing the concentration of ozone in ozonated oxygen generated by the ozone generator.
In addition to stirring with a stirrer, the reaction vessel may be stirred so that iron is insolubilized and does not float by a circulation pump.

生物処理を併用する場合は、油類及び揮発性有機化合物を高反応性オゾンにより低分子化して得られた処理水を、pHを中性に調整して鉄を分離後、微生物と、リンや窒素、微量アミノ酸等の栄養塩を投入し、酸素を混ぜ合わせることでn−H濃度5mg/L以下まで油の分解を実施することができる。   When biological treatment is used in combination, the treated water obtained by reducing the molecular weight of oils and volatile organic compounds with highly reactive ozone is adjusted to neutral pH to separate iron, then microorganisms, phosphorus and Oil can be decomposed to an n-H concentration of 5 mg / L or less by adding nutrient salts such as nitrogen and trace amino acids and mixing oxygen.

本発明の浄化装置は、攪拌機を備えた反応槽と、反応槽に接続された被処理水の循環ラインとを備え、該循環ラインに循環ポンプを設置し、循環ポンプのサクション側にオゾン化酸素を注入する装置を備え、ポンプの吐出側にその混合を促進するミキサーを備える。   The purification apparatus of the present invention comprises a reaction tank equipped with a stirrer, and a circulation line of water to be treated connected to the reaction tank. A circulation pump is installed in the circulation line, and the ozonated oxygen is provided on the suction side of the circulation pump. And a mixer for promoting mixing on the discharge side of the pump.

以下、図面を参照して本発明の好適な浄化装置を例示的に詳しく説明する。但しこの装置に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は油類及び/又は揮発性有機化合物が含まれる地下水を浄化する際に用いる浄化装置の一例を示した概略図である。土壌汚染により地下水まで汚染が広がり、地下水を浄化する場合は、地下水を揚水ポンプ1により汲み上げ、高濃度反応槽4に受ける。地下水中に2価鉄及び/又は0価の鉄が最低20mg/L含まれない場合は、反応槽に2価鉄もしくは0価の鉄を添加し20mg/L以上に調整し、pHを3〜5に調整して、攪拌機6によって攪拌混合を行う。
Hereinafter, a preferred purification device of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described in this apparatus are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Absent.
FIG. 1 is a schematic diagram showing an example of a purification device used when purifying groundwater containing oils and / or volatile organic compounds. When the groundwater is contaminated by soil contamination and the groundwater is purified, the groundwater is pumped by the pump 1 and received in the high-concentration reaction tank 4. If divalent iron and / or zero-valent iron is not contained in groundwater at least 20 mg / L, add divalent iron or zero-valent iron to the reaction tank to adjust to 20 mg / L or more, and adjust the pH to 3 to 5 and stirring and mixing are performed by the stirrer 6.

高濃度反応槽4には循環ライン5が接続されており、循環ポンプ3により、油を含む被処理水が循環し、オゾン発生器2により循環ポンプ3のサクション側にオゾン化酸素を注入し、ポンプの吐出側に混合を促進するミキサー20を備える。
ミキサーはポンプによりある程度、微細化された泡をさらに細かくして、液体に混合するためにポンプの吐出側に備えることが好ましい。大きな泡がミキサーに入ると、配管の抵抗になったり、ミキサーの効率が低下する問題があるため、ポンプで細かくしてからミキシングすることが好ましい。
A circulation line 5 is connected to the high-concentration reaction tank 4, water to be treated containing oil is circulated by the circulation pump 3, and ozonized oxygen is injected into the suction side of the circulation pump 3 by the ozone generator 2. A mixer 20 for promoting mixing is provided on the discharge side of the pump.
It is preferable that the mixer is provided on the discharge side of the pump in order to make the foam finer to some extent finer by the pump and mix it with the liquid. When large bubbles enter the mixer, there is a problem that the resistance of the pipe is reduced or the efficiency of the mixer is lowered.

ポンプによる循環水量及びオゾンの注入量は被処理水の有機物負荷から決定し、オゾン化ガス濃度を選定する。オゾン化酸素の注入体積比率は、循環水量に対して9%以上が好ましい。例えばオゾン化酸素ガスは使用する機器によりオゾン濃度4.67vol%(100g/m3N)のオゾン化酸素ガスが得られる。時間1kgのオゾンを供給する場合は、オゾン化酸素ガスのオゾン濃度を100g/m3Nとすると、10m3N/hrのオゾン化酸素ガス量となり、循環水量は最大111m3/hrと計算される。オゾン化酸素の注入体積比率が0.9/10未満の場合はオゾン化酸素の混合率が低くなり、被処理水中に油類及び揮発性有機化合物をエマルジョン化することが難しくなり、難分解性の有機物を分解するだけの酸化力不足が生じる。 The amount of circulating water and the amount of ozone injected by the pump is determined from the organic load of the water to be treated, and the ozonized gas concentration is selected. The injection volume ratio of ozonized oxygen is preferably 9% or more with respect to the amount of circulating water. For example, as for the ozonized oxygen gas, an ozonized oxygen gas having an ozone concentration of 4.67 vol% (100 g / m 3 N) is obtained depending on the equipment used. When supplying 1 kg of ozone for an hour, if the ozone concentration of the ozonized oxygen gas is 100 g / m 3 N, the amount of ozonated oxygen gas is 10 m 3 N / hr, and the amount of circulating water is calculated to be 111 m 3 / hr at the maximum. The When the ozonated oxygen injection volume ratio is less than 0.9 / 10, the mixing ratio of ozonated oxygen becomes low, making it difficult to emulsify oils and volatile organic compounds in the water to be treated, and hardly decompose. Insufficient oxidation power to decompose the organic matter.

反応時間は処理する油類及び揮発性有機化合物の濃度によるが、数分から1時間程度である。濃度が低下してくると、反応効率が低下するため、2槽構造として高濃度、高効率で運転できる槽と、低濃度でゆっくり反応させる槽を区分することが好ましい。1槽で長時間かけて処理しても構わない。図1は2槽構造の例であり、高濃度の油や揮発性有機化合物を分解して、n−H濃度で数百ppmまで処理した後、後段の低濃度反応槽7に受け、同様に攪拌機11で混合しながら、反応槽に接続した循環ライン9にオゾン発生器8により低濃度オゾンを注入し、循環ポンプ10にて循環処理を行う。処理液のn−H濃度が例えば5mg/L以下になるように反応槽7の容量を決定する。その後pH調整19にてpHを6以上として鉄を不溶化物として析出させ、浮上分離槽15にて鉄フロックを浮上分離する。浮上分離槽15では循環ライン14にコンプレッサー17にて空気を注入し、循環ポンプにて循環して微細化された空気で鉄フロックを浮上させる。循環ラインから処理水を得る。浮上した鉄フロックは汚泥掻き寄せ機12にて除去して汚泥受け13から排出される。排出された汚泥は明記していないが脱水機にて処理しても構わない。   The reaction time depends on the concentration of the oil to be treated and the volatile organic compound, but is from several minutes to about 1 hour. As the concentration decreases, the reaction efficiency decreases. Therefore, it is preferable to separate a tank that can operate at a high concentration and a high efficiency as a two-tank structure and a tank that reacts slowly at a low concentration. You may process in 1 tank over a long time. FIG. 1 shows an example of a two-tank structure. After decomposing a high-concentration oil or volatile organic compound and treating it to several hundred ppm with an n-H concentration, it is received in a low-concentration reaction tank 7 in the subsequent stage. While mixing with the stirrer 11, low-concentration ozone is injected into the circulation line 9 connected to the reaction tank by the ozone generator 8, and circulation processing is performed by the circulation pump 10. The capacity of the reaction tank 7 is determined so that the nH concentration of the treatment liquid is, for example, 5 mg / L or less. Thereafter, the pH is adjusted to 19 or more by pH adjustment 19 to precipitate iron as an insolubilized material, and the iron floc is levitated and separated in the flotation separation tank 15. In the flotation separation tank 15, air is injected into the circulation line 14 by the compressor 17, and the iron flocs are levitated by the air refined by being circulated by the circulation pump. Obtain treated water from the circulation line. The floated iron flock is removed by the sludge scraper 12 and discharged from the sludge receiver 13. Although the discharged sludge is not specified, it may be treated with a dehydrator.

また、図2に示すように、連続処理ではなく、バッチ処理で十分油を分解してから鉄汚泥を分離して処理水を得るようにしてもよい。
バッチ処理の場合、反応槽4の大きさは処理水のn−H濃度が例えば5mg/L以下になる大きさとし、処理時間が最大1時間程度になるようにオゾン発生器2の大きさを決定する。
Further, as shown in FIG. 2, treated water may be obtained by separating the iron sludge after sufficiently decomposing oil in a batch process instead of a continuous process.
In the case of batch processing, the reaction vessel 4 is sized so that the n-H concentration of the treated water is, for example, 5 mg / L or less, and the size of the ozone generator 2 is determined so that the treatment time is about 1 hour at maximum. To do.

本発明の浄化方法及び浄化装置の効率を高めるには、生物処理と組み合わせることが重要になる。処理水のn−H濃度を5mg/Lまで低減するためには、被処理水のn−H濃度、分解性にも関連するが、オゾン処理により300ppm程度まで分解し、引き続き、例えば図3のような形態で生物分解で十分対応が可能となる。処理水18を生物処理25に受け入れ、ろ材21に付着している油分解菌によりn−H濃度5mg/L以下まで分解する。分解は好気的に行い、ブロワ22にて空気を供給しながら、エアー攪拌を行い、水流を発生して槽内の攪拌を行う。ろ材は繊維状のものやプラスチック状、多孔質状のものが好適ではあるが、それに限定するものではない。   In order to increase the efficiency of the purification method and the purification apparatus of the present invention, it is important to combine with the biological treatment. In order to reduce the n-H concentration of treated water to 5 mg / L, it is related to the n-H concentration and decomposability of the water to be treated, but it is decomposed to about 300 ppm by ozone treatment. In such a form, it is possible to sufficiently cope with biodegradation. The treated water 18 is received in the biological treatment 25 and decomposed to an nH concentration of 5 mg / L or less by the oil-degrading bacteria adhering to the filter medium 21. Decomposition is performed aerobically, while air is supplied by the blower 22, air agitation is performed, and a water flow is generated to agitate the tank. The filter medium is preferably fibrous, plastic, or porous, but is not limited thereto.

次に実施例によってこの発明をさらに詳細に説明する。
(実施例1)
冷却油で汚染された汚染水5Lを10Lの反応槽に入れ、図2の形態で冷却油の分解を行った。冷却油で汚染された汚染水の初期の全体のn−ヘキサン抽出物濃度(n−H濃度)は16000mg/L、TOC(トータルオーガニックカーボン)38000mg/Lであり、2価及び0価の鉄の鉄濃度が33mg/Lであった。
硫酸を用いて被処理水のpHを3に調整し、オゾン化酸素を2NL(ノルマルリットル)/minで注入した。2NL/minのオゾン化酸素量に対して、循環水量は20L/minであり、オゾン化酸素の注入体積比率は循環水量に対して1/10であった。反応時間は1.2分、オゾン注入量は10gO3/hrとしたので200mgであった。その結果、上部の油層約500mLのn−H濃度は120mg/L、下部4.5Lのn−H濃度は43mg/L、全体のn−H濃度は50.7mg/Lであり、油分の99.7%が分解された。
冷却油が水と炭酸ガスに分解されたことを確認するため、上部に蓋を設けて、その一部にノズルを固定し、ノズルから反応後のガスを採取できるようにした。供給しているオゾンは酸素ガスから発生させたオゾンガスであり、供給ガスにはほとんど炭酸ガスは含まれない。反応ガスの炭酸ガス濃度を測定すると、炭酸ガス濃度66%となり、油分が分解されていることがわかった。
また、反応時間を15分にした場合、全体のn−H濃度は4mg/Lとなった。
オゾンとの反応時間を1.2分として、上層のn−H濃度120mg/Lと下層のn−H濃度43mg/Lを混合して、油分解菌が付着した活性汚泥を植種した繊維ろ材を200mL充填した反応槽800mLに移し替え、下部からの散気によって空気を供給し、分解実験を行った。
上記油分解菌が付着した活性汚泥は、パラフィン油でn−H濃度を300mg/Lに調整した原水を毎日600mlずつ入れ替え、バッチ処理で20日間馴養を行い微生物を増殖させたものを用いた。
分解実験では、オゾンとの反応後の処理水のpHを6〜7に調整し、20日間馴養した微生物を用いた処理を1日行った後の処理水全体のn−H濃度は4.8mg/Lであった。上部の油層のn−H濃度が120mg/L程度まで分解できれば、滞留時間1日の生物処理において分解できることがわかった。
Next, the present invention will be described in more detail by way of examples.
Example 1
2 L of contaminated water contaminated with cooling oil was put into a 10 L reaction tank, and the cooling oil was decomposed in the form of FIG. The initial total n-hexane extract concentration (n-H concentration) of contaminated water contaminated with cooling oil is 16000 mg / L and TOC (total organic carbon) 38000 mg / L. The iron concentration was 33 mg / L.
The pH of the water to be treated was adjusted to 3 using sulfuric acid, and ozonated oxygen was injected at 2 NL (normal liter) / min. The amount of circulating water was 20 L / min with respect to the amount of ozonized oxygen of 2 NL / min, and the injection volume ratio of ozonized oxygen was 1/10 with respect to the amount of circulating water. Since the reaction time was 1.2 minutes and the ozone injection amount was 10 gO 3 / hr, it was 200 mg. As a result, the n-H concentration in the upper oil layer of about 500 mL was 120 mg / L, the n-H concentration in the lower 4.5 L was 43 mg / L, and the overall n-H concentration was 50.7 mg / L. .7% decomposed.
In order to confirm that the cooling oil was decomposed into water and carbon dioxide, a lid was provided on the top, and a nozzle was fixed to a part of the lid so that the gas after reaction could be collected from the nozzle. The supplied ozone is ozone gas generated from oxygen gas, and the supplied gas contains almost no carbon dioxide. When the carbon dioxide concentration of the reaction gas was measured, the carbon dioxide concentration was 66%, and it was found that the oil was decomposed.
In addition, when the reaction time was 15 minutes, the total n-H concentration was 4 mg / L.
A fiber filter medium in which the reaction time with ozone is 1.2 minutes, the upper layer n-H concentration of 120 mg / L and the lower layer n-H concentration of 43 mg / L are mixed, and the activated sludge to which oil-decomposing bacteria are attached is seeded. Was transferred to 800 mL of a reaction tank filled with 200 mL, and air was supplied by aeration from the bottom to conduct a decomposition experiment.
As the activated sludge to which the oil-degrading bacteria adhered, 600 ml of raw water whose paraffin oil was adjusted to an n-H concentration of 300 mg / L was replaced every day, and the microorganism was grown by acclimatization for 20 days by batch processing.
In the decomposition experiment, the pH of the treated water after reaction with ozone was adjusted to 6-7, and the n-H concentration of the treated water as a whole after one day of treatment using microorganisms acclimatized for 20 days was 4.8 mg. / L. It was found that if the n-H concentration in the upper oil layer can be decomposed to about 120 mg / L, it can be decomposed in biological treatment for a residence time of 1 day.

(実施例2)
実施例1において、更にテトラクロロエチレンが20mg/L含まれる冷却油で汚染された汚染水を用いて実施例1の条件でオゾンによる浄化を行ったところ、反応時間1.2分で上部のn−H濃度が150mg/L、下部が39mg/Lまで処理された。処理水全体におけるテトラクロロエチレンとその代謝産物であるトリクロロエチレン、シス−1,2−ジクロロエチレン。1,1−ジクロロエチレンの濃度はそれぞれ0.01mg/L未満となった。
(Example 2)
In Example 1, purification with ozone was carried out under the conditions of Example 1 using contaminated water contaminated with cooling oil containing 20 mg / L of tetrachlorethylene. The concentration was processed to 150 mg / L and the lower part to 39 mg / L. Tetrachloroethylene and its metabolites trichlorethylene and cis-1,2-dichloroethylene in the entire treated water. The concentration of 1,1-dichloroethylene was less than 0.01 mg / L, respectively.

(実施例3)
n−H濃度16000mg/L、2価及び0価の鉄の鉄濃度が33mg/Lの油が混入した地下水20Lの油の分解処理を、図1に示す形態で行った。滞留時間2分の高濃度反応槽処理と滞留時間40分の低濃度反応槽処理、滞留時間40分の汚泥分離槽処理を組合わせた。
高濃度反応槽は40Lのタンクで、被処理水のpHを3に硫酸を用いて調整し、75L/minの循環水量、オゾン濃度110g/m3のオゾン化酸素ガスを用い7.3NL/minのオゾン化酸素を供給した(48gオゾン/hrの発生)。高濃度反応槽における、全循環量は150Lであり、反応槽の3.75倍となった。7.3NL/minのオゾン化酸素量に対して、循環水量は75L/minであり、オゾン化酸素の注入体積比率は循環水量に対し0.97/10であった。反応時間は2分、オゾン注入量は48gO3/hrとしたので1.6gであった。また、オゾン化酸素注入時の循環水中のオゾンの濃度は、10.7mg/Lであった。
低濃度反応槽は800Lのタンクにオゾン濃度54g/m3のオゾン化酸素を用い、31NL/minのオゾン化酸素を供給した(100gオゾン/hrの発生)。循環水量は300L/minであった。低濃度反応槽における全循環量は12000Lとなり反応槽の15倍であった。31NL/minのオゾン化酸素量に対して、循環水量は300L/minであり、オゾン化酸素の注入体積比率は循環水量に対し10.3%であった。反応時間は40分、オゾン注入量は100gO3/hrとしたので66gであった。また、オゾン化酸素注入時の循環水中のオゾンの濃度は5.58mg/Lであった。
汚泥分離槽には800Lのタンクとして、pHを中性に調整後、高分子凝集剤を2ppmになるように添加して、60L/minの循環ポンプで、6L/minの空気を供給し、鉄汚泥を浮上分離した。
これにより、分離水のn−H濃度は4.6mg/Lとなった。
(Example 3)
The decomposition treatment of 20 L of groundwater mixed with oil having an n-H concentration of 16000 mg / L, divalent and zero-valent iron with an iron concentration of 33 mg / L was performed in the form shown in FIG. A high concentration reaction tank treatment with a residence time of 2 minutes, a low concentration reaction tank treatment with a residence time of 40 minutes, and a sludge separation tank treatment with a residence time of 40 minutes were combined.
The high-concentration reaction tank is a 40 L tank, the pH of the water to be treated is adjusted to 3 with sulfuric acid, and the circulating water volume is 75 L / min, and the ozone concentration is 110 g / m 3 , and the ozone concentration is 7.3 NL / min. Of ozonated oxygen (48 g ozone / hr generation) was supplied. The total circulation amount in the high concentration reaction tank was 150 L, which was 3.75 times that of the reaction tank. The circulating water amount was 75 L / min with respect to the ozonized oxygen amount of 7.3 NL / min, and the injection volume ratio of ozonized oxygen was 0.97 / 10 with respect to the circulating water amount. The reaction time was 2 minutes and the ozone injection amount was 48 gO 3 / hr, so it was 1.6 g. Moreover, the density | concentration of the ozone in circulating water at the time of ozonized oxygen injection | pouring was 10.7 mg / L.
In the low concentration reaction tank, ozonized oxygen having an ozone concentration of 54 g / m 3 was used in an 800 L tank, and 31 NL / min of ozonated oxygen was supplied (generation of 100 g ozone / hr). The amount of circulating water was 300 L / min. The total circulation amount in the low concentration reaction tank was 12,000 L, 15 times that of the reaction tank. The amount of circulating water was 300 L / min with respect to the amount of ozonated oxygen of 31 NL / min, and the injection volume ratio of ozonated oxygen was 10.3% with respect to the amount of circulating water. The reaction time was 40 minutes, and the ozone injection amount was 100 gO 3 / hr, so it was 66 g. Moreover, the ozone concentration in the circulating water at the time of ozonized oxygen injection was 5.58 mg / L.
The sludge separation tank is an 800 L tank, the pH is adjusted to neutral, the polymer flocculant is added to 2 ppm, and 6 L / min of air is supplied by a 60 L / min circulating pump. Sludge was levitated and separated.
As a result, the n-H concentration of the separated water was 4.6 mg / L.

(比較例1)
実施例1の条件でpHを調整せず6として、オゾンによる浄化を1.2分間行った。上部500mLのn−H濃度が155000mg/L、下部4.5Lのn−H濃度が300mg/Lとなった。実施例1と同様に反応ガスの炭酸ガス濃度を測定すると、1.4%であり若干の分解が確認できたが、実施例1より遙かに少なかった。
(Comparative Example 1)
The pH was not adjusted under the conditions of Example 1, and purification with ozone was performed for 1.2 minutes. The nH concentration in the upper 500 mL was 155000 mg / L, and the nH concentration in the lower 4.5 L was 300 mg / L. When the carbon dioxide gas concentration of the reaction gas was measured in the same manner as in Example 1, it was 1.4% and a slight decomposition was confirmed, but it was much less than in Example 1.

(比較例2)
実施例1の条件で鉄濃度のみ10mg/Lに変更して、オゾンによる浄化を1.2分間行った。上部500mLのn−H濃度が150000mg/L、下部4.5Lのn−H濃度が220mg/Lとなった。
(Comparative Example 2)
Under the conditions of Example 1, only the iron concentration was changed to 10 mg / L, and purification with ozone was performed for 1.2 minutes. The nH concentration in the upper 500 mL was 150,000 mg / L, and the nH concentration in the lower 4.5 L was 220 mg / L.

(比較例3)
実施例1の条件でミキサーを用いず、オゾン化酸素を注入した処理を1.2分間行った。n−H濃度は上部500mL部分が110000mg/L、下部4.5Lのn−H濃度は180mg/Lであって、約30%の除去率にとどまった。
(Comparative Example 3)
The treatment of injecting ozonated oxygen was performed for 1.2 minutes without using a mixer under the conditions of Example 1. The n-H concentration was 110,000 mg / L in the upper 500 mL portion and the n-H concentration in the lower 4.5 L was 180 mg / L, and the removal rate was only about 30%.

(比較例4)
実施例1と同様な、n−H濃度16000mg/Lの汚染水5Lを35%過酸化水素を用いて分解した。35%過酸化水素230mLを6回注入し、また、鉄は400mg/L添加することによりn−H濃度51mg/Lの処理水が得られた。
実施例1ではオゾン注入量が200mgであったので、活性酸素は約67mg、これに対してフェントン法では活性酸素が約220mg必要であったと考えられるため、約3倍程度多く必要になる。
(Comparative Example 4)
Similar to Example 1, 5 L of contaminated water having an n-H concentration of 16000 mg / L was decomposed using 35% hydrogen peroxide. Treatment water with an n-H concentration of 51 mg / L was obtained by injecting 230 mL of 35% hydrogen peroxide 6 times and adding 400 mg / L of iron.
In Example 1, since the ozone injection amount was 200 mg, the active oxygen was about 67 mg. On the other hand, the Fenton method required about 220 mg of active oxygen.

Claims (11)

少なくとも油類及び/又は揮発性有機化合物を含有する被処理水の浄化方法であって、該被処理水を、2価鉄及び/又は0価の鉄の鉄濃度を20mg/L以上に、pHを3〜5の範囲に調整し、該調整した被処理にオゾン化酸素をミキサーにより混入し、循環処理しながら連続的にオゾンの注入を行い、オゾンを含む被処理水中の油類及び揮発性有機化合物をエマルジョン化することを特徴とする油類及び/又は揮発性有機化合物含有水の浄化方法。 A purification method of water to be treated containing at least oils and / or volatile organic compounds, wherein the water to be treated has an iron concentration of divalent iron and / or zero-valent iron of 20 mg / L or more, pH was adjusted to a range of 3 to 5, the ozonized oxygen mixed by a mixer to the water to be treated and the adjustment while circulating process have rows injection continuously ozone, oils in the for-treatment water containing ozone and A method for purifying oils and / or water containing volatile organic compounds, comprising emulsifying volatile organic compounds. 前記オゾン化酸素の注入体積比率が循環水量に対して9%以上であることを特徴とする請求項1記載の油類及び/又は揮発性有機化合物含有水の浄化方法。   The method for purifying oil and / or volatile organic compound-containing water according to claim 1, wherein the injection volume ratio of the ozonized oxygen is 9% or more with respect to the amount of circulating water. 前記鉄の濃度を30mg/L以上とすることを特徴とする請求項1又は2記載の油類及び/又は揮発性有機化合物含有水の浄化方法。   The method for purifying oil and / or volatile organic compound-containing water according to claim 1 or 2, wherein the iron concentration is 30 mg / L or more. 更に、前記オゾン化酸素を注入して浄化した被処理水中に、空気を吹き込み汚泥を浮上させ除去する浮上分離工程を有することを特徴とする請求項1〜3のいずれかに記載の油類及び/又は揮発性有機化合物含有水の浄化方法。   Furthermore, the oils according to any one of claims 1 to 3, further comprising a flotation separation step of blowing air into the treated water purified by injecting the ozonated oxygen to float and remove sludge. A method for purifying water containing volatile organic compounds. 更に、生物分解処理を行う工程を有することを特徴とする請求項1〜4のいずれかに記載の油類及び/又は揮発性有機化合物含有水の浄化方法。   Furthermore, it has the process of performing a biodegradation process, The purification | cleaning method of the oils and / or volatile organic compound containing water in any one of Claims 1-4 characterized by the above-mentioned. 前記被処理水が、地下水であることを特徴とする請求項1〜5のいずれかに記載の油類及び/又は揮発性有機化合物含有水の浄化方法。   The method for purifying oil and / or volatile organic compound-containing water according to any one of claims 1 to 5, wherein the treated water is groundwater. 前記被処理水が、油汚染土壌に付着した油分を洗浄した際の洗浄水であることを特徴とする請求項1〜5のいずれかに記載の油類及び/又は揮発性有機化合物含有水の浄化方法。   The oil and / or volatile organic compound-containing water according to any one of claims 1 to 5, wherein the water to be treated is wash water obtained when washing oil adhering to oil-contaminated soil. Purification method. 油汚染土壌の浄化方法であって、油汚染土壌を水により洗浄し、洗浄水と洗浄された土壌に分離し、洗浄後の少なくとも油類及び/又は揮発性有機化合物を含有する洗浄水を請求項1〜5のいずれかに記載の浄化方法により浄化することを特徴とする油汚染土壌の浄化方法。   A method for purifying oil-contaminated soil, wherein oil-contaminated soil is washed with water, separated into washed water and washed soil, and washed water containing at least oils and / or volatile organic compounds after washing is claimed A method for purifying oil-contaminated soil, comprising purifying by the purification method according to any one of Items 1 to 5. 少なくとも油類及び/又は揮発性有機化合物を含有する被処理水の浄化装置であって、攪拌機を備えた反応槽と、反応槽に接続された被処理水の循 環ラインとを備え、該循環ラインに循環ポンプを設置し、循環ポンプのサクション側にオゾン化酸素を注入する装置を備え、ポンプの吐出側にその混合を促進してオゾンを含む被処理水中の油類及び揮発性有機化合物をエマルジョン化するミキサーを備えることを特徴とする油類及び/又は揮発性有機化合物含有水の浄化装置。 A purification apparatus for water to be treated containing at least oils and / or volatile organic compounds, comprising a reaction tank equipped with a stirrer and a circulation line of water to be treated connected to the reaction tank. A circulation pump is installed in the line, and a device for injecting ozonated oxygen into the suction side of the circulation pump is provided. On the discharge side of the pump, mixing is promoted so that oils and volatile organic compounds in the water to be treated containing ozone A device for purifying water containing oils and / or volatile organic compounds , comprising a mixer for emulsification . 更に、前記オゾン化酸素を注入して浄化した被処理水中に、空気を吹き込み汚泥を浮上させ除去する浮上分離槽を備えることを特徴とする請求項9に記載の油類及び/又は揮発性有機化合物含有水の浄化装置。   The oils and / or volatile organics according to claim 9, further comprising a flotation separation tank that blows air into the treated water purified by injecting the ozonated oxygen to float and remove sludge. Purification equipment for compound-containing water. 更に、生物分解処理を行う生物処理槽を備えることを特徴とする請求項9又は10に記載の油類及び/又は揮発性有機化合物含有水の浄化装置。   Furthermore, the biological treatment tank which performs a biodegradation process is provided, The purification apparatus of the oils and / or volatile organic compound containing water of Claim 9 or 10 characterized by the above-mentioned.
JP2012095399A 2012-04-19 2012-04-19 Purification method and apparatus for water containing oils and / or volatile organic compounds Active JP5865166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012095399A JP5865166B2 (en) 2012-04-19 2012-04-19 Purification method and apparatus for water containing oils and / or volatile organic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012095399A JP5865166B2 (en) 2012-04-19 2012-04-19 Purification method and apparatus for water containing oils and / or volatile organic compounds

Publications (2)

Publication Number Publication Date
JP2013220407A JP2013220407A (en) 2013-10-28
JP5865166B2 true JP5865166B2 (en) 2016-02-17

Family

ID=49591780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012095399A Active JP5865166B2 (en) 2012-04-19 2012-04-19 Purification method and apparatus for water containing oils and / or volatile organic compounds

Country Status (1)

Country Link
JP (1) JP5865166B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103624079B (en) * 2013-12-05 2015-08-05 沈阳环境科学研究院 The circulating ozone Oxidation Treatment system of contaminated soil
JP6490978B2 (en) * 2015-02-18 2019-03-27 千代田化工建設株式会社 Water treatment method
JP6490979B2 (en) * 2015-02-18 2019-03-27 千代田化工建設株式会社 Water treatment method
JP2016215080A (en) * 2015-05-14 2016-12-22 三菱レイヨンアクア・ソリューションズ株式会社 Apparatus and method for treating water to be treated
JP6240800B2 (en) * 2016-05-19 2017-11-29 株式会社神鋼環境ソリューション Waste treatment apparatus and waste treatment method
CN107697987A (en) * 2017-10-27 2018-02-16 同济大学 Integral type nanometer Zero-valent Iron reaction unit
RU2709593C1 (en) * 2019-05-07 2019-12-18 Роман Николаевич Семенцов Method for purification of contaminated ground water using nanosized iron of zero valence
KR102344641B1 (en) * 2020-07-30 2021-12-29 주식회사 자연바이오 Apparatus and Method for Making Ozonated Oil Using Ozonated Water

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155989A (en) * 1985-12-27 1987-07-10 Hitachi Plant Eng & Constr Co Ltd Method for suppressing formation of trihalomethane
JP2001129572A (en) * 1999-11-05 2001-05-15 Mitsubishi Heavy Ind Ltd Method for treating hazardous substance and its apparatus
JP2001149964A (en) * 1999-11-30 2001-06-05 Mitsubishi Electric Corp Water treating method
JP3820180B2 (en) * 2002-05-02 2006-09-13 新日本製鐵株式会社 Purification method for contaminated soil
JP2005066442A (en) * 2003-08-22 2005-03-17 Fuji Electric Systems Co Ltd Cleansing method of contaminated soil
JP2005118664A (en) * 2003-10-16 2005-05-12 Fuso Kensetsu Kogyo Kk Method and apparatus for purifying ground water
US7481937B2 (en) * 2005-01-19 2009-01-27 Heavy Industry Technology Solutions, Llc Methods and systems for treating wastewater using ozone activated flotation
GR1006296B (en) * 2008-02-11 2009-03-09 Παντελης Ξυνογαλας Ozone-based physicochemical method for the treatment of oil press liquids and semi-solid waste

Also Published As

Publication number Publication date
JP2013220407A (en) 2013-10-28

Similar Documents

Publication Publication Date Title
JP5865166B2 (en) Purification method and apparatus for water containing oils and / or volatile organic compounds
US9624113B2 (en) Method for recycling oilfield and other wastewater
JP3697361B2 (en) Waste water treatment method and waste water treatment equipment
CN104261617B (en) The processing method of waste emulsified mixture
KR20110127216A (en) Method and device for scrubbing effluents
CN106396270A (en) High-concentration pharmaceutical wastewater treatment system and treatment method
US10266424B2 (en) Method for recycling oilfield and other wastewater
KR101768006B1 (en) Soil Treatment System Using Nanobubble and Multi-Stage Washing of Inorganic Acid
JP2007029825A (en) Apparatus for treating waste water and method for treating waste water using the apparatus
CN105481170A (en) Treating system and method for coking waste water
JP4065226B2 (en) Method for purifying contaminated soil and contaminated groundwater
JP6619160B2 (en) Soil purification method, soil purification system, and sparging rod assembly
JP4380020B2 (en) Ozone treatment method for contaminated soil
CN106630399A (en) Method for treating oily sewage by electrocatalytic oxidation MBR combined technology
JP2019084493A (en) Decomposition purification method of hardly decomposable organic compound
KR20090052946A (en) Manufacture and procedure to make clean waste water containing oil and salt
KR100500374B1 (en) The method and wastewater disposal plant of high concentration using a vacuum pump
JP2014094322A (en) Multistage organic waste water treatment system
JP2003103287A (en) Treatment apparatus for oils and fats-containing wastewater and treatment method using the same
TWI439425B (en) Gas dissolution mechanism
JP2018126703A (en) Decomposition purification method of hardly decomposable organic compound
KR101279137B1 (en) Water quality purification system of small water area
JP3221558B2 (en) Soil purification method and equipment
JP6405411B2 (en) High concentration organic wastewater treatment method and high concentration organic wastewater treatment system
TWI829361B (en) Kitchen waste water treatment system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151225

R150 Certificate of patent or registration of utility model

Ref document number: 5865166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250