JP5864212B2 - Heat shield sheet - Google Patents

Heat shield sheet Download PDF

Info

Publication number
JP5864212B2
JP5864212B2 JP2011234903A JP2011234903A JP5864212B2 JP 5864212 B2 JP5864212 B2 JP 5864212B2 JP 2011234903 A JP2011234903 A JP 2011234903A JP 2011234903 A JP2011234903 A JP 2011234903A JP 5864212 B2 JP5864212 B2 JP 5864212B2
Authority
JP
Japan
Prior art keywords
fiber
nonwoven fabric
weight
heat shield
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011234903A
Other languages
Japanese (ja)
Other versions
JP2013091876A (en
Inventor
美一 小林
美一 小林
稲垣 健治
健治 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2011234903A priority Critical patent/JP5864212B2/en
Publication of JP2013091876A publication Critical patent/JP2013091876A/en
Application granted granted Critical
Publication of JP5864212B2 publication Critical patent/JP5864212B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Description

本発明は、遮熱性だけでなく成形性にも優れた遮熱シートに関する。   The present invention relates to a heat shield sheet excellent not only in heat shield properties but also in formability.

遮熱シートとは、太陽光をさえぎり建物や物体の内部にその影響がでないようにするシートのことであり、夏場ではエアコン等の電力節減にもつながり、地球環境の点でも注目されている。
かかる遮熱シートとしては、アルミニウム箔や石膏ボードなどの無機材料を用いたものが提案されている。
しかしながら、無機材料を用いた遮熱シートでは、シートが硬いため成形性に劣るという問題があった。
A heat shielding sheet is a sheet that blocks sunlight and prevents the inside of buildings and objects from being affected. In summer, it also saves power in air conditioners and the like, and is attracting attention from the viewpoint of the global environment.
As such a heat shield sheet, a sheet using an inorganic material such as aluminum foil or gypsum board has been proposed.
However, the heat-insulating sheet using an inorganic material has a problem that the formability is inferior because the sheet is hard.

特開2007−170158号公報JP 2007-170158 A 特開2010−64296号公報JP 2010-64296 A 特開2011−148923号公報JP 2011-148923 A

本発明は上記の背景に鑑みなされたものであり、その目的は、遮熱性だけでなく成形性にも優れた遮熱シートを提供することにある。   This invention is made | formed in view of said background, The objective is to provide the heat shield sheet excellent not only in heat shield but also in moldability.

本発明者らは上記の課題を達成するため鋭意検討した結果、極めて単繊維径が小さい極細繊維を含む不織布を用いて遮熱シートを構成すると、遮熱性だけでなく成形性にも優れた遮熱シ遮熱シートが得られることを見出し、さらに鋭意検討を重ねることにより本発明を完成するに至った。   As a result of intensive investigations to achieve the above-mentioned problems, the present inventors have found that when a heat-shielding sheet is formed using a nonwoven fabric containing ultrafine fibers having a very small single fiber diameter, not only heat-shielding properties but also excellent moldability are obtained. The present inventors have found that a heat insulation sheet can be obtained, and have made further studies, and have completed the present invention.

かくして、本発明によれば「不織布を含む遮熱シートであって、前記不織布が単繊維径(D)が10〜1000nmの極細繊維を含み、かつ前記極細繊維が、ポリエステルからなりかつ島径(D)が10〜1000nmである島成分と前記ポリエステルよりもアルカリ水溶液易溶解性ポリマーからなる海成分とを有する複合繊維にアルカリ減量加工を施すことにより、前記海成分を溶解除去したポリエステル繊維であり、かつ前記極細繊維が前記不織布に不織布重量対比3重量%以上含まれ、かつ目付けが5〜120g/m の範囲内であり、かつ厚さが20〜400μmの範囲内であり、かつ前記不織布が湿式不織布であることを特徴とする遮熱シート。」が提供される。 Thus, a thermal barrier sheet comprising Invite "nonwoven according to the present invention, the nonwoven fabric is a single fiber diameter (D) is viewed contains ultrafine fibers of 10 to 1000 nm, and wherein the ultrafine fibers made of polyester and Shima径(D) A polyester fiber obtained by dissolving and removing the sea component by subjecting a composite fiber having an island component having a thickness of 10 to 1000 nm and a sea component made of a polymer that is more easily dissolved in an alkaline aqueous solution than the polyester to an alkali weight reduction process. And the ultrafine fiber is contained in the nonwoven fabric in an amount of 3% by weight or more with respect to the nonwoven fabric weight, the basis weight is in the range of 5 to 120 g / m 2 , and the thickness is in the range of 20 to 400 μm, and There is provided a thermal insulation sheet, wherein the nonwoven fabric is a wet nonwoven fabric .

その際、遮熱シートが多層構造を有し、前記不織布が少なくとも1層として遮熱シートに含まれることが好ましい。また、遮熱シートの近赤外線遮蔽率が60%以上であることが好ましい。 In that case, it is preferable that the heat shield sheet has a multilayer structure, and the nonwoven fabric is included in the heat shield sheet as at least one layer. Moreover, it is preferable that the near-infrared shielding rate of a heat shielding sheet is 60% or more.

本発明によれば、遮熱性だけでなく成形性にも優れた遮熱シートが得られる。   According to the present invention, a heat shield sheet excellent not only in heat shield properties but also in formability can be obtained.

以下、本発明の実施の形態について詳細に説明する。
まず、本発明の遮熱シートには不織布が含まれ、該不織布には極細繊維が含まれる。かかる極細繊維において、単繊維径(D)が10〜1000nm(より好ましくは300〜1000nm、さらに好ましくは550〜800nm)の範囲内であることが肝要である。該単繊維径が10nm未満の場合、極細繊維同士が擬似膠着しやすく均一分散しにくいため、遮熱効果が低下するおそれがある。逆に、該該単繊維径が1000nmより大きい場合も、極細繊維としての効果が低くなり、遮熱効果が低下するおそれがある。極細繊維の単繊維断面形状が丸断面以外の異型断面である場合には外接円の直径を単繊維径とする。なお、単繊維径は、透過型電子顕微鏡で繊維の横断面を撮影することにより測定が可能である。
Hereinafter, embodiments of the present invention will be described in detail.
First, the heat shielding sheet of the present invention includes a nonwoven fabric, and the nonwoven fabric includes ultrafine fibers. In such ultrafine fibers, it is important that the single fiber diameter (D) is in the range of 10 to 1000 nm (more preferably 300 to 1000 nm, and still more preferably 550 to 800 nm). If the single fiber diameter is less than 10 nm, the ultrafine fibers tend to be pseudo-glueed and difficult to uniformly disperse, which may reduce the heat shielding effect. On the other hand, when the single fiber diameter is larger than 1000 nm, the effect as an ultrafine fiber is lowered and the heat shielding effect may be lowered. When the single fiber cross-sectional shape of the ultrafine fiber is an atypical cross section other than the round cross section, the diameter of the circumscribed circle is the single fiber diameter. The single fiber diameter can be measured by photographing the cross section of the fiber with a transmission electron microscope.

また、前記極細繊維において、単繊維径(D)nmに対する繊維長(L)nmの比(L/D)が100〜10000(好ましくは600〜3000)の範囲内であることが好ましい。該比(L/D)が100未満では、繊維長が短くなり過ぎるため、他の繊維との絡みが小さくなり、不織布の製造工程において繊維が脱落するおそれがある。逆に、該比(L/D)が10000を越える場合、繊維長が長すぎるため、極細繊維自身の絡みが大きくなり、均一分散が阻害され、遮熱効果が低下するおそれがある。   In the ultrafine fiber, the ratio (L / D) of the fiber length (L) nm to the single fiber diameter (D) nm is preferably in the range of 100 to 10,000 (preferably 600 to 3000). When the ratio (L / D) is less than 100, the fiber length becomes too short, so that the entanglement with other fibers becomes small, and the fibers may fall off in the manufacturing process of the nonwoven fabric. On the other hand, when the ratio (L / D) exceeds 10,000, the fiber length is too long, so that the entanglement of the ultrafine fibers itself is increased, the uniform dispersion is hindered, and the heat shielding effect may be lowered.

前記極細繊維Aを形成するポリマーの種類としては、ポリエチレンテレフタレートやポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ステレオコンプレックスポリ乳酸、ポリ乳酸、第3成分を共重合させたポリエステルなどのポリエステル、ナイロン、アクリル、アラミドなどが例示されるが、製造工程性の点でポリエステル(この場合、極細繊維がポリエステル繊維となる。)が好ましい。   Examples of the polymer forming the ultrafine fiber A include polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, stereocomplex polylactic acid, polylactic acid, polyester such as polyester copolymerized with a third component, nylon, acrylic, Aramid and the like are exemplified, but polyester (in this case, ultrafine fibers are polyester fibers) is preferable in terms of production processability.

かかるポリエステルとしては、マテリアルリサイクルまたはケミカルリサイクルされたポリエステルや、特開2009−091694号公報に記載された、バイオマスすなわち生物由来の物質を原材料として得られたモノマー成分を使用してなるポリエステルであってもよい。さらには、特開2004−270097号公報や特開2004−211268号公報に記載されているような、特定のリン化合物およびチタン化合物を含む触媒を用いて得られたポリエステルでもよい。   Examples of such polyesters include material-recycled or chemical-recycled polyesters, and polyesters described in JP-A-2009-091694, which use monomer components obtained from biomass, that is, biological materials, as raw materials. Also good. Furthermore, the polyester obtained using the catalyst containing the specific phosphorus compound and titanium compound which are described in Unexamined-Japanese-Patent No. 2004-270097 and 2004-2111268 may be sufficient.

前記極細繊維には、必要に応じて、艶消し剤、有機充填剤、酸化防止剤、熱安定剤、光安定剤、難燃剤、滑剤、帯電防止剤、防錆剤、架橋剤、発泡剤、蛍光剤、表面平滑剤、表面光沢改良剤、フッ素樹脂等の離型改良剤、等の各種添加剤を含んでいてもさしつかえない。   For the ultrafine fibers, a matting agent, an organic filler, an antioxidant, a heat stabilizer, a light stabilizer, a flame retardant, a lubricant, an antistatic agent, a rust preventive, a crosslinking agent, a foaming agent, Various additives such as a fluorescent agent, a surface smoothing agent, a surface gloss improving agent, and a mold release improving agent such as a fluororesin may be included.

また、前記極細繊維は単一ポリマー成分で形成されることが好ましいが、複数のポリマー成分からなるブレンド繊維や芯鞘型(またはサイドバイサイド型)複合繊維であってもよい。   The ultrafine fibers are preferably formed of a single polymer component, but may be a blend fiber or a core-sheath (or side-by-side) composite fiber composed of a plurality of polymer components.

本発明の遮熱シートにおいて、遮熱シートを構成する不織布に含まれる前記極細繊維の含有量としては、不織布重量対比3%以上(より好ましくは3〜70重量%)であることが好ましい。極細繊維の含有量が3重量%よりも小さい場合は、遮熱効果が低下するおそれがある。   In the heat shield sheet of the present invention, the content of the ultrafine fibers contained in the nonwoven fabric constituting the heat shield sheet is preferably 3% or more (more preferably 3 to 70% by weight) relative to the weight of the nonwoven fabric. If the ultrafine fiber content is less than 3% by weight, the heat shielding effect may be reduced.

前記のような極細繊維の製造方法としては、海成分に島成分をブレンドしたブレンド型複合繊維の海成分を溶解除去したものでもよいが、国際公開第2005/095686号パンフレットに開示された方法が、単繊維径が均一となり遮熱効果が向上し好ましい。   As the method for producing the ultrafine fiber as described above, the sea component of the blend type composite fiber obtained by blending the island component with the sea component may be dissolved and removed. However, the method disclosed in the pamphlet of International Publication No. 2005/095686 is disclosed. It is preferable because the single fiber diameter becomes uniform and the heat shielding effect is improved.

すなわち、ポリエステルポリマーからなりかつその島径(D)が10〜1000nmである島成分と、前記のポリエステルポリマーよりもアルカリ水溶液易溶解性ポリマー(以下、「易溶解性ポリマー」ということもある。)からなる海成分とを有する海島型複合繊維を、海島型複合繊維用口金を用いて紡糸、延伸した後にアルカリ減量加工を施し、前記海成分を溶解除去したものであることが好ましい。なお、前記島径は、透過型電子顕微鏡で繊維の横断面を撮影することにより測定が可能である。なお、島の形状が丸断面以外の異型断面である場合には、前記の島径(D)はその外接円の直径を用いる。   That is, the island component which consists of a polyester polymer, and the island diameter (D) is 10-1000 nm, and an aqueous solution easily soluble in alkali solution than the above polyester polymer (hereinafter sometimes referred to as “easily soluble polymer”). It is preferable that a sea-island type composite fiber having a sea component composed of the above is spun and drawn using a base for sea-island type composite fiber, and then subjected to alkali weight loss processing to dissolve and remove the sea component. The island diameter can be measured by photographing a cross section of the fiber with a transmission electron microscope. In addition, when the shape of the island is an atypical cross section other than the round cross section, the diameter of the circumscribed circle is used as the island diameter (D).

ここで、海成分を形成するアルカリ水溶液易溶解性ポリマーの、島成分を形成するポリエステルポリマーに対する溶解速度比が200以上(好ましくは300〜3000)であると、島分離性が良好となり好ましい。溶解速度が200倍未満の場合には、海成分溶解を目的としたアルカリ減量工程において、島成分の溶解も進むため、実質的に島成分を効率的に抽出することが困難となるおそれがある。   Here, it is preferable that the dissolution rate ratio of the aqueous alkali-soluble polymer that forms the sea component to the polyester polymer that forms the island component is 200 or more (preferably 300 to 3000) because the island separability is good. When the dissolution rate is less than 200 times, the dissolution of the island component also proceeds in the alkali weight reduction process for the purpose of dissolving the sea component, so that it may be difficult to effectively extract the island component substantially. .

海成分を形成する易溶解性ポリマーとしては、特に繊維形成性の良いポリエステル系ポリマー、脂肪族ポリアミド系ポリマーを好ましい例としてあげることができる。さらに具体例をあげれば、アルカリ水溶液易溶解性ポリマーとして、ポリ乳酸、超高分子量ポリアルキレンオキサイド縮合系ポリマー、ポリアルキレングリコール系化合物と5−ナトリウムスルホイソフタル酸の共重合ポリエステルが最適である。ここでアルカリ水溶液とは、水酸化カリウム、水酸化ナトリウム水溶液などをいう。これ以外にも、ナイロン6やナイロン66等の脂肪族ポリアミドに対するギ酸、ポリビニルアルコールやエチレン変性ビニルアルコール系ポリマーに対する熱水を例示することができる。   Preferable examples of the readily soluble polymer that forms the sea component include polyester polymers and aliphatic polyamide polymers that are particularly good in fiber formation. As specific examples, polylactic acid, an ultrahigh molecular weight polyalkylene oxide condensation polymer, and a copolymerized polyester of polyalkylene glycol compound and 5-sodium sulfoisophthalic acid are optimal as the alkaline water soluble polymer. Here, the alkaline aqueous solution refers to potassium hydroxide, sodium hydroxide aqueous solution and the like. In addition, formic acid for aliphatic polyamides such as nylon 6 and nylon 66, and hot water for polyvinyl alcohol and ethylene-modified vinyl alcohol polymers can be exemplified.

ポリエステル系ポリマーの中でも、5−ナトリウムスルホイソフタル酸6〜12モル%と分子量4000〜12000のポリエチレングリコールを3〜10重量%共重合させた固有粘度が0.4〜0.6のポリエチレンテレフタレート系共重合ポリエステルが特に好ましい。ここで、5−ナトリウムスルホイソフタル酸は親水性と溶融粘度向上に寄与し、ポリエチレングリコール(PEG)は親水性を向上させる。また、PEGは分子量が大きいほど、その高次構造に起因すると考えられる親水性増加作用があるが、反応性が悪くなってブレンド系になるため、耐熱性や紡糸安定性の面で問題が生じるおそれがある。また、共重合量が10重量%以上になると、溶融粘度が低下するおそれがある。   Among polyester polymers, polyethylene terephthalate copolymer having an intrinsic viscosity of 0.4 to 0.6 obtained by copolymerizing 6 to 12 mol% of 5-sodium sulfoisophthalic acid and 3 to 10% by weight of polyethylene glycol having a molecular weight of 4000 to 12000. Polymerized polyester is particularly preferred. Here, 5-sodium sulfoisophthalic acid contributes to improving hydrophilicity and melt viscosity, and polyethylene glycol (PEG) improves hydrophilicity. In addition, PEG has a hydrophilicity increasing action that is considered to be due to its higher-order structure as the molecular weight increases. However, since the reactivity becomes poor and a blend system is produced, problems arise in terms of heat resistance and spinning stability. There is a fear. Moreover, when the copolymerization amount is 10% by weight or more, the melt viscosity may be lowered.

一方、島成分を形成するポリエステルポリマーとしては、前述のものが好ましい。なお、海成分を形成するポリマーおよび島成分を形成するポリマーについて、製糸性および抽出後の極細繊維の物性に影響を及ぼさない範囲で、必要に応じて、有機充填剤、酸化防止剤、熱安定剤、光安定剤、難燃剤、滑剤、帯電防止剤、防錆剤、架橋剤、発泡剤、蛍光剤、表面平滑剤、表面光沢改良剤、フッ素樹脂等の離型改良剤、等の各種添加剤を含んでいてもさしつかえない。   On the other hand, as a polyester polymer which forms an island component, the above-mentioned thing is preferable. In addition, for the polymer that forms the sea component and the polymer that forms the island component, organic fillers, antioxidants, and heat-stable as necessary, as long as they do not affect the physical properties of the fine fiber after extraction. Various additives such as additives, light stabilizers, flame retardants, lubricants, antistatic agents, rust preventives, crosslinking agents, foaming agents, fluorescent agents, surface smoothing agents, surface gloss improvers, mold release improvers such as fluororesins, etc. It doesn't matter if it contains an agent.

前記海島型複合繊維において、溶融紡糸時における海成分の溶融粘度が島成分ポリマーの溶融粘度よりも大きいことが好ましい。かかる関係にある場合には、海成分の複合重量比率が40%未満と少なくなっても、島同士が接合しにくくなり好ましい。   In the sea-island composite fiber, it is preferable that the melt viscosity of the sea component during melt spinning is greater than the melt viscosity of the island component polymer. In such a relationship, even if the composite weight ratio of the sea components is less than 40%, it is preferable that the islands are difficult to join.

好ましい溶融粘度比(海/島)は、1.1〜2.0、特に1.3〜1.5の範囲である。この比が1.1倍未満の場合には溶融紡糸時に島成分が接合しやすくなり、一方2.0倍を越える場合には、粘度差が大きすぎるために紡糸調子が低下しやすい。   A preferred melt viscosity ratio (sea / island) is in the range of 1.1 to 2.0, especially 1.3 to 1.5. If this ratio is less than 1.1 times, the island components are likely to be joined during melt spinning, whereas if it exceeds 2.0 times, the viscosity difference is too large and the spinning tone tends to be lowered.

次に島数は、100以上(より好ましくは300〜1000)であることが好ましい。また、その海島複合重量比率(海:島)は、5:95〜95:5の範囲が好ましい。かかる範囲であれば、島間の海成分の厚みを薄くすることができ、海成分の溶解除去が容易となり、島成分の極細繊維への転換が容易になるので好ましい。ここで海成分の割合が95%を越える場合には海成分の厚みが厚くなりすぎ、一方5%未満の場合には海成分の量が少なくなりすぎて、島間に接合が発生しやすくなる。   Next, the number of islands is preferably 100 or more (more preferably 300 to 1000). The sea-island composite weight ratio (sea: island) is preferably in the range of 5:95 to 95: 5. Within such a range, the thickness of the sea component between the islands can be reduced, the sea component can be easily dissolved and removed, and the conversion of the island component into ultrafine fibers is facilitated. Here, when the proportion of the sea component exceeds 95%, the thickness of the sea component becomes too thick. On the other hand, when the proportion is less than 5%, the amount of the sea component becomes too small and joining between islands is likely to occur.

溶融紡糸に用いられる海島型複合繊維用口金としては、島成分を形成するための中空ピン群や微細孔群を有するものなど任意のものを用いることができる。例えば、中空ピンや微細孔より押し出された島成分とその間を埋める形で流路を設計されている海成分流とを合流し、これを圧縮することにより海島断面が形成されるといった紡糸口金でもよい。吐出された海島型複合繊維は冷却風により固化され、所定の引き取り速度に設定した回転ローラーあるいはエジェクターにより引き取られ、未延伸糸を得る。この引き取り速度は特に限定されないが、200〜5000m/分であることが望ましい。200m/分以下では生産性が悪くなるおそれがある。また、5000m/分以上では紡糸安定性が悪くなるおそれがある。   As the die for the sea-island type composite fiber used for melt spinning, an arbitrary one such as a hollow pin group or a fine hole group for forming an island component can be used. For example, a spinneret in which a cross section of a sea island is formed by merging and compressing an island component extruded from a hollow pin or a fine hole and a sea component flow designed to fill the gap between them. Good. The discharged sea-island type composite fiber is solidified by cooling air and taken up by a rotating roller or an ejector set at a predetermined take-up speed to obtain an undrawn yarn. The take-up speed is not particularly limited, but is preferably 200 to 5000 m / min. If it is 200 m / min or less, the productivity may be deteriorated. Further, if it is 5000 m / min or more, the spinning stability may be deteriorated.

得られた未延伸糸は、海成分を抽出後に得られる極細繊維の用途・目的に応じて、そのままカット工程あるいはその後の抽出工程に供してもよいし、目的とする強度・伸度・熱収縮特性に合わせるために、延伸工程や熱処理工程を経由して、カット工程あるいはその後の抽出工程に供することができる。延伸工程は紡糸と延伸を別ステップで行う別延方式でもよいし、一工程内で紡糸後直ちに延伸を行う直延方式を用いてもかまわない。   The obtained undrawn yarn may be subjected to the cutting process or the subsequent extraction process as it is depending on the use and purpose of the ultrafine fiber obtained after extracting the sea component, and the intended strength, elongation, and heat shrinkage may be used. In order to match the characteristics, it can be subjected to a cutting step or a subsequent extraction step via a stretching step or a heat treatment step. The stretching process may be a separate stretching method in which spinning and stretching are performed in separate steps, or a straight stretching method in which stretching is performed immediately after spinning in one process may be used.

次に、かかる複合繊維を、必要に応じて、島径(D)に対する繊維長(L)の比(L/D)が前記の範囲内となるようにカットした後、アルカリ減量加工を施すことにより前記海成分を溶解除去するか、または、アルカリ減量加工を施すことにより前記海成分を溶解除去した後カットする。かかるカットは、未延伸糸または延伸糸をそのまま、または数十本〜数百万本単位に束ねたトウにしてギロチンカッターやロータリーカッターなどでカットすることが好ましい。   Next, the composite fiber is cut if necessary so that the ratio (L / D) of the fiber length (L) to the island diameter (D) is within the above range, and then subjected to alkali weight reduction processing. Then, the sea component is dissolved and removed, or the sea component is dissolved and removed by performing an alkali weight reduction process, and then cut. Such cutting is preferably performed by using a guillotine cutter, a rotary cutter, or the like with undrawn yarn or drawn yarn as it is or with a tow bundled in units of tens to millions.

前記のアルカリ減量加工は、不織布の製造後であってもよいし、不織布の製造前であってもよい。かかるアルカリ減量加工において、繊維とアルカリ液の比率(浴比)は0.1〜5%である事が好ましく、さらには0.4〜3%であることが好ましい。0.1%未満では繊維とアルカリ液の接触は多いものの、排水等の工程性が困難となるおそれがある。一方、5%以上では繊維量が多過ぎるため、アルカリ減量加工時に繊維同士の絡み合いが発生するおそれがある。なお、浴比は下記式にて定義する。
浴比(%)=(繊維質量(gr)/アルカリ水溶液質量(gr)×100)
The alkali weight reduction process may be after the production of the nonwoven fabric or before the production of the nonwoven fabric. In such alkali weight loss processing, the ratio of fiber to alkaline solution (bath ratio) is preferably 0.1 to 5%, more preferably 0.4 to 3%. If it is less than 0.1%, the contact between the fiber and the alkali liquid is large, but the processability such as drainage may be difficult. On the other hand, if the amount is 5% or more, the amount of fibers is too large, and there is a risk that fibers will be entangled during alkali weight reduction processing. The bath ratio is defined by the following formula.
Bath ratio (%) = (Fiber mass (gr) / Alkaline aqueous solution mass (gr) × 100)

また、アルカリ減量加工の処理時間は5〜60分であることが好ましく、さらには10〜30分であることが好ましい。5分未満ではアルカリ減量が不十分となるおそれがある。一方、60分以上では島成分までも減量されるおそれがある。
また、アルカリ減量加工において、アルカリ濃度は2%〜10%であることが好ましい。2%未満では、アルカリ不足となり、減量速度が極めて遅くなるおそれがある。一方、10%を越えるとアルカリ減量が進みすぎ、島部分まで減量されるおそれがある。
Moreover, it is preferable that the processing time of an alkali weight reduction process is 5 to 60 minutes, Furthermore, it is preferable that it is 10 to 30 minutes. If it is less than 5 minutes, the alkali weight loss may be insufficient. On the other hand, in the case of 60 minutes or more, the island component may be reduced.
In the alkali weight reduction processing, the alkali concentration is preferably 2% to 10%. If it is less than 2%, the alkali is insufficient, and the weight loss rate may be extremely slow. On the other hand, if it exceeds 10%, the weight loss of alkali proceeds too much and there is a risk that the weight may be reduced to the island portion.

前記不織布において、紡糸速度が500〜1200m/分で紡糸された未延伸繊維(複屈折率(Δn)が0.05以下)や、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステルが芯部に配され、一方、鞘部に非晶性共重合ポリエステルやポリエーテルエステル(エラストマー)が配された芯鞘型複合繊維や、さらには、木材パルプ、リンターパルプ等の天然パルプ、アラミドやポリエチレンを主成分とする合成パルプ、ポリエステル、ナイロン、アクリル、ビニロン、レーヨン等の成分を含む合成繊維または半合成繊維を他の繊維として混合、添加してもよい。   In the nonwoven fabric, unstretched fibers (birefringence (Δn) of 0.05 or less) spun at a spinning speed of 500 to 1200 m / min, and polyesters such as polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate are cores. Core-sheath type composite fiber in which amorphous copolyester or polyetherester (elastomer) is arranged in the sheath, and natural pulp such as wood pulp and linter pulp, aramid and polyethylene Synthetic fibers or semi-synthetic fibers containing components such as synthetic pulp, polyester, nylon, acrylic, vinylon, rayon, etc., as a main component, may be mixed and added as other fibers.

その際、かかる他の繊維において、単繊維繊度としては0.1〜6.0dtex(より好ましくは0.5〜2.0dtex)の範囲内であることが好ましい。該単繊維繊度が0.1dtexよりも小さいと不織布の布帛強度が低下したり、カード工程性が低下するおそれがある。逆に、該単繊維繊度が6.0dtexよりも大きいと、不織布表面に形成される繊維間空隙孔が大きくなり、遮熱効果が低下するおそれがある。   At this time, in such other fibers, the single fiber fineness is preferably in the range of 0.1 to 6.0 dtex (more preferably 0.5 to 2.0 dtex). If the single fiber fineness is less than 0.1 dtex, the fabric strength of the nonwoven fabric may be lowered, and the card processability may be lowered. On the contrary, when the single fiber fineness is larger than 6.0 dtex, the inter-fiber voids formed on the surface of the nonwoven fabric become large, and the heat shielding effect may be lowered.

また、他の繊維の繊維長としては、10〜100mm(より好ましくは20〜60mm)の範囲内であることが好ましい。該繊維長が10mm未満では、繊維長が短くなり過ぎるため、他の繊維との絡みが小さくなり、不織布の製造工程において繊維が脱落するおそれがある。逆に、該繊維長が100mmを越える場合、繊維長が長すぎるため、極細繊維自身の絡みが大きくなり、均一分散が阻害され、遮熱効果が低下するおそれがある。   The fiber length of the other fibers is preferably in the range of 10 to 100 mm (more preferably 20 to 60 mm). If the fiber length is less than 10 mm, the fiber length becomes too short, so that the entanglement with other fibers becomes small, and the fibers may fall off in the manufacturing process of the nonwoven fabric. On the contrary, when the fiber length exceeds 100 mm, the fiber length is too long, so that the entanglement of the ultrafine fiber itself is increased, the uniform dispersion is hindered, and the heat shielding effect may be lowered.

前記不織布の種類としては特に限定されず、湿式不織布、スパンレース不織布、乾式不織布のいずれでもよい。不織布を製造する方法としては、カード法、エアーレイド法、湿式法などが例示される。また、繊維を絡合させる、ニードルパンチ法やウオータージェットニードル法を併用してもよい。金属/金属ローラー、金属/ペーパーローラー、金属/弾性ローラーなどのカレンダー/エンボスを施してもよい。さらには、染色加工、親水加工、撥水加工を施してもよい。   It does not specifically limit as a kind of the said nonwoven fabric, Any of a wet nonwoven fabric, a spunlace nonwoven fabric, and a dry-type nonwoven fabric may be sufficient. Examples of the method for producing the nonwoven fabric include a card method, an air raid method, and a wet method. Moreover, you may use together the needle punch method and water jet needle method which entangle a fiber. You may give calendar / embossing, such as a metal / metal roller, a metal / paper roller, and a metal / elastic roller. Further, a dyeing process, a hydrophilic process, and a water repellent process may be performed.

前記不織布において、目付けとしては5〜120g/m(より好ましくは5〜80g/m)の範囲内であることが好ましい。該目付けが5g/mよりも小さいと、遮熱効果が低下するおそれがある。逆に該目付けが120g/mよりも大きいと、成形性が低下するおそれがある。 In the nonwoven fabric, the basis weight is preferably within a range of 5 to 120 g / m 2 (more preferably 5 to 80 g / m 2 ). If the basis weight is less than 5 g / m 2 , the heat shielding effect may be reduced. On the other hand, if the basis weight is larger than 120 g / m 2 , the moldability may be lowered.

また、前記不織布において、厚さが20〜400μm(より好ましくは20〜350μm)の範囲内であることが好ましい。該厚さが20μmよりも小さいと、遮熱効果が低下するおそれがある。逆に該厚さが400μmよりも大きいと、成形性が低下するおそれがある。   The nonwoven fabric preferably has a thickness in the range of 20 to 400 μm (more preferably 20 to 350 μm). If the thickness is less than 20 μm, the heat shielding effect may be reduced. Conversely, if the thickness is larger than 400 μm, the moldability may be reduced.

本発明の遮熱シートは、前記不織布単独で構成されていてもよいし、遮熱シートを多層構造とし、前記不織布が少なくとも1層として遮熱シートに含まれていてもよい。
その際、他層を構成する布帛としては、前記のようなポリエステル繊維、ナイロン繊維、アクリル繊維、アラミド繊維などからなる、不織布、織物、編物などが好ましい。中でも、優れた遮熱効果を得る上でポリエステル繊維からなる不織布が好ましい。
The heat shield sheet of the present invention may be composed of the nonwoven fabric alone, or the heat shield sheet may have a multilayer structure, and the nonwoven fabric may be included in the heat shield sheet as at least one layer.
At that time, as the fabric constituting the other layer, a nonwoven fabric, a woven fabric, a knitted fabric or the like made of polyester fiber, nylon fiber, acrylic fiber, aramid fiber or the like as described above is preferable. Among these, a nonwoven fabric made of polyester fiber is preferable for obtaining an excellent heat shielding effect.

かかる他層を構成する布帛において、目付けとしては300〜3000g/m(より好ましくは500〜2000g/m)の範囲内であることが好ましい。該目付けが300g/mよりも小さいと、遮熱効果が低下するおそれがある。逆に該目付けが3000g/mよりも大きいと、成形性が低下するおそれがある。 In the fabric constituting the other layer, the basis weight is preferably in the range of 300 to 3000 g / m 2 (more preferably 500 to 2000 g / m 2 ). If the basis weight is less than 300 g / m 2 , the heat shielding effect may be reduced. On the other hand, if the basis weight is larger than 3000 g / m 2 , the moldability may be lowered.

また、かかる他層を構成する布帛において、厚さが10〜100mm(より好ましくは15〜50mm)の範囲内であることが好ましい。該厚さが10mmよりも小さいと、遮熱効果が低下するおそれがある。逆に該厚さが100mmよりも大きいと、成形性が低下するおそれがある。   Moreover, in the fabric which comprises this other layer, it is preferable that thickness exists in the range of 10-100 mm (more preferably 15-50 mm). If the thickness is less than 10 mm, the heat shielding effect may be reduced. Conversely, if the thickness is larger than 100 mm, the moldability may be reduced.

遮熱シートを多層構造とする場合、各層を別々に製造した後に、熱接着や接着剤を用いた化学的接着により貼り合わせてもよいし、ウエブを積層した後にウオータージェットニードル処理などを施して繊維を絡合させてもよい。
かくして得られた遮熱シートは有機繊維だけで構成されるので、遮熱性だけでなく成形性にも優れ、自動車用遮熱シート、建物の屋外または屋内用遮熱シート、各種物体用遮熱シート、日傘、帽子、遮熱服(例えば高温作業用)などとして好適に使用される。
When the heat shield sheet has a multilayer structure, after each layer is manufactured separately, it may be bonded by thermal bonding or chemical bonding using an adhesive, or after water lamination, a water jet needle treatment is applied. Fibers may be entangled.
Since the heat shielding sheet thus obtained is composed of only organic fibers, it is excellent not only in heat shielding properties but also in formability. It is a heat shielding sheet for automobiles, outdoor or indoor heat shielding sheets for buildings, and heat shielding sheets for various objects. It is preferably used as a parasol, a hat, a heat shield (for example, for high temperature work) and the like.

その際、遮熱シートの近赤外線遮蔽率が60%以上であることが好ましい。また、遮熱シートの近赤外線反射率が60%以上であることが好ましい。また、通気度が20.0cm/cm・s以下であると近赤外線遮蔽効果の点で好ましい。
なお、本発明の遮熱シートを使用する際、アルミニウム箔、赤外線反射材などの無機材料や付属物などを付加してもよい。
In that case, it is preferable that the near-infrared shielding rate of a heat shielding sheet is 60% or more. Moreover, it is preferable that the near-infrared reflectance of a thermal insulation sheet is 60% or more. Further, the air permeability is preferably 20.0 cm 3 / cm 2 · s or less from the viewpoint of the near-infrared shielding effect.
In addition, when using the heat shield sheet of this invention, you may add inorganic materials, accessories, etc., such as aluminum foil and an infrared reflecting material.

次に本発明の実施例及び比較例を詳述するが、本発明はこれらによって限定されるものではない。なお、実施例中の各測定項目は下記の方法で測定した。   Next, although the Example and comparative example of this invention are explained in full detail, this invention is not limited by these. In addition, each measurement item in an Example was measured with the following method.

(1)溶融粘度
乾燥処理後のポリマーを紡糸時のルーダー溶融温度に設定したオリフィスにセットして5分間溶融保持したのち、数水準の荷重をかけて押し出し、そのときのせん断速度と溶融粘度をプロットする。そのプロットをなだらかにつないで、せん断速度−溶融粘度曲線を作成し、せん断速度が1000秒−1の時の溶融粘度を見た。
(1) Melt Viscosity The polymer after drying treatment is set in an orifice set at the melter melting temperature at the time of spinning, melted and held for 5 minutes, and then extruded with several levels of load. The shear rate and melt viscosity at that time are determined. Plot. The plot was gently connected to create a shear rate-melt viscosity curve, and the melt viscosity when the shear rate was 1000 seconds -1 was observed.

(2)溶解速度測定
海成分および島成分のポリマーを、各々、径0.3mm、長さ0.6mmのキャピラリーを24孔もつ口金から吐出し、1000〜2000m/分の紡糸速度で引き取って得た未延伸糸を残留伸度が30〜60%の範囲になるように延伸して、83dtex/24フィラメントのマルチフィラメントを作成した。これを所定の溶剤および溶解温度で浴比100として、溶解時間と溶解量から減量速度を算出した。
(2) Dissolution rate measurement Obtained by discharging the sea component and island component polymers from a die having a diameter of 0.3 mm and a length of 0.6 mm from a die having 24 holes and spinning at a spinning speed of 1000 to 2000 m / min. The undrawn yarn was drawn so that the residual elongation was in the range of 30 to 60% to prepare a multifilament of 83 dtex / 24 filament. Using this as a bath ratio of 100 at a predetermined solvent and dissolution temperature, the rate of weight loss was calculated from the dissolution time and the dissolution amount.

(3)島径の測定
透過型電子顕微鏡TEMで、倍率30000倍で繊維断面写真を撮影し、測定した。ただし、繊維径は、繊維断面におけるその外接円の直径を用いた(n数5の平均値)。
(3) Measurement of island diameter With a transmission electron microscope TEM, a fiber cross-sectional photograph was taken at a magnification of 30000 times and measured. However, the diameter of the circumscribed circle in the fiber cross section was used as the fiber diameter (average value of n number 5).

(4)繊維長
走査型電子顕微鏡(SEM)により、海成分溶解除去前の極細短繊維を基盤上に寝かせた状態とし、20〜500倍で測定した。SEMの測長機能を活用して測定した(n数5の平均値)。
(4) Fiber length Using a scanning electron microscope (SEM), the ultrafine short fibers before being dissolved and removed from the sea component were placed on the base and measured at 20 to 500 times. Measurement was performed by utilizing the length measurement function of SEM (average value of n number 5).

(5)目付
JIS P8124(紙のメートル坪量測定方法)に基づいて測定した。
(5) Weight per unit area Measured based on JIS P8124 (Measuring basis weight of paper).

(6)厚み
JIS P8118(紙及び板紙の厚さと密度の試験方法)に基づいて測定した。
(6) Thickness Measured based on JIS P8118 (Test method for thickness and density of paper and paperboard).

(7)通気度
JIS L1096 A法(フラジール法)で通気度(cm/cm・s)を求めた。
(7) Air permeability The air permeability (cm 3 / cm 2 · s) was determined by JIS L1096 A method (Fragile method).

(8)近赤外線反射率
島津製作所社製MPC−3100を用いて近赤外線(760〜2000nm)反射率を求めた。
(8) Near-infrared reflectance The near-infrared (760-2000 nm) reflectance was calculated | required using Shimadzu Corporation MPC-3100.

(9)近赤外線遮蔽率
島津製作所社製MPC−3100を用いて近赤外線(760〜2000nm)遮蔽率を求めた。
(9) Near-infrared shielding rate Near infrared (760-2000 nm) shielding rate was calculated | required using Shimadzu Corporation MPC-3100.

(10)遮熱性
自社製の遮熱試験機を用いて自社方法を用いて測定した。綿布の上10cmの位置に試料を置き、試料の75cm上から500Wのレフランプで15分照射した。その時の綿布から5cmの空間温度、綿布温度の変化を測定する。空間の裸温度に対して10℃以上遮熱効果のあったものを遮熱性良好(○)、9.5℃以下を遮熱性不良(×)、中間のものを(△)と判定した。
(10) Heat insulation property It measured using the company's method using a company's own heat insulation tester. A sample was placed at a position 10 cm above the cotton cloth and irradiated with a 500 W reflex lamp for 15 minutes from 75 cm above the sample. The space temperature of the cotton cloth at that time and the change of the cotton cloth temperature are measured. Those having a heat shielding effect of 10 ° C. or more with respect to the bare temperature of the space were judged to have good heat shielding properties (◯), those having a temperature of 9.5 ° C. or less to poor heat shielding properties (×), and those having an intermediate property as (Δ).

(11)成形性
極細繊維を含む不織布と他の布帛とを、温度125℃、圧力9.8N/cm未満の軽い圧力で貼りあわせ成形加工を行い、成形性良好(○)、やや劣る(△)、劣る(×)の3段階で判定した。
(11) Formability A non-woven fabric containing ultrafine fibers and another fabric are bonded to each other at a temperature of 125 ° C. and a light pressure of less than 9.8 N / cm 2 , and the moldability is good. (Triangle | delta) and inferior (x) determined in three steps.

[実施例1]
島成分に285℃での溶融粘度が120Pa・secのポリエチレンテレフタレート、海成分に285℃での溶融粘度が135Pa・secである平均分子量4000のポリエチレングリコールを4重量%、5−ナトリウムスルホイソフタル酸を9mol%共重合した改質ポリエチレンテレフタレートを使用し、海:島=10:90の重量比率で島数400の口金を用いて紡糸し、紡糸速度1500m/minで引き取った。海成分と島成分とのアルカリ減量速度比は1000倍であった。これを3.9倍に延伸することにより、極細繊維用として海島型複合繊維(単繊維繊度5.6dtex、単繊維に含まれる島成分の島径700nm)を得た。
次いで、前記海島型複合繊維を、275000dtexに集束機で集束させてトウとし、該トウをNaOH40g/L 78℃溶液中に速度1.2m/分で連続投与することにより、トウを構成する海島型複合繊維を単繊維径(D)が700nmの極細繊維(ポリエチレンテレフタレート繊維)とした後、ギロチンカッターで繊維長0.5mmにカットした。
次いで、該極細繊維を3重量%、ポリエチレンテレフタレート短繊維(単繊維繊度1.7dtex、繊維長5mm)原綿を67重量%、鞘成分にイソフタル酸を共重合した変性ポリエチレンテレフタレートポリマー、芯成分にポリエチレンテレフタレートポリマーを配した芯鞘型複合繊維(単繊維繊度1.2dtex、繊維長5mm)を30重量%混合し、目付け60g/mの湿式不織布を抄紙した。
該湿式不織布だけを用いて遮熱シートとした。評価結果を表1に示す。
[Example 1]
Polyethylene terephthalate with a melt viscosity at 285 ° C. of 120 Pa · sec as the island component, polyethylene glycol with an average molecular weight of 4000 with a melt viscosity at 285 ° C. of 135 Pa · sec as the sea component, 4% by weight of 5-sodium sulfoisophthalic acid Using 9 mol% copolymerized modified polyethylene terephthalate, spinning was performed using a die having a number of islands of 400 at a weight ratio of sea: island = 10: 90, and taken up at a spinning speed of 1500 m / min. The alkali weight loss rate ratio between the sea component and the island component was 1000 times. By stretching this 3.9 times, a sea-island type composite fiber (single fiber fineness 5.6 dtex, island diameter of island component contained in single fiber 700 nm) was obtained for ultrafine fiber.
Subsequently, the sea-island type composite fiber is converged to 275000 dtex with a bundling machine to form a tow, and the tow is continuously administered at a rate of 1.2 m / min in a NaOH 40 g / L 78 ° C. solution, thereby forming the sea-island type constituting the tow. The composite fiber was made into an ultrafine fiber (polyethylene terephthalate fiber) having a single fiber diameter (D) of 700 nm, and then cut to a fiber length of 0.5 mm with a guillotine cutter.
Next, 3% by weight of the ultrafine fibers, a polyethylene terephthalate short fiber (single fiber fineness 1.7 dtex, fiber length 5 mm) raw cotton 67% by weight, a modified polyethylene terephthalate polymer copolymerized with isophthalic acid in the sheath component, and polyethylene in the core component 30% by weight of a core-sheath type composite fiber (single fiber fineness: 1.2 dtex, fiber length: 5 mm) in which a terephthalate polymer is arranged was mixed, and a wet nonwoven fabric with a basis weight of 60 g / m 2 was made.
Only the wet nonwoven fabric was used to obtain a heat shield sheet. The evaluation results are shown in Table 1.

[実施例2]
実施例1において、実施例1と同じ極細繊維を5重量%、ポリエチレンテレフタレート短繊維(単繊維繊度1.7dtex、繊維長5mm)原綿を65重量%、鞘成分にイソフタル酸を共重合した変性ポリエチレンテレフタレートポリマー、芯成分にポリエチレンテレフタレートポリマーを配した芯鞘型複合繊維(単繊維繊度1.2dtex、繊維長5mm)を30重量%混合し、目付け60g/mの湿式不織布を抄紙すること以外は実施例1と同様にした。評価結果を表1に示す。
[Example 2]
In Example 1, 5% by weight of the same ultrafine fiber as in Example 1, polyethylene terephthalate short fiber (single fiber fineness 1.7 dtex, fiber length 5 mm) raw cotton 65% by weight, modified polyethylene obtained by copolymerization of sheath component with isophthalic acid Other than mixing 30% by weight of terephthalate polymer, core-sheath type composite fiber (single fiber fineness 1.2dtex, fiber length 5mm) with polyethylene terephthalate polymer in the core component, and making a wet nonwoven fabric with a basis weight of 60g / m 2 Same as Example 1. The evaluation results are shown in Table 1.

[実施例3]
実施例1において、実施例1と同じ極細繊維を60重量%、鞘成分にイソフタル酸を共重合した変性ポリエチレンテレフタレートポリマー、芯成分にポリエチレンテレフタレートポリマーを配した芯鞘型複合繊維(単繊維繊度0.2dtex、繊維長3mm)を40重量%混合し、目付け10g/mの湿式不織布を抄紙すること以外は実施例1と同様にした。評価結果を表1に示す。
[Example 3]
In Example 1, a core-sheath type composite fiber (single fiber fineness of 0) was prepared by adding 60% by weight of the same ultrafine fiber as in Example 1, a modified polyethylene terephthalate polymer copolymerized with isophthalic acid as a sheath component, and a polyethylene terephthalate polymer as a core component. .2 dtex, fiber length 3 mm) was mixed at 40% by weight, and the same procedure as in Example 1 was performed except that a wet nonwoven fabric having a basis weight of 10 g / m 2 was made. The evaluation results are shown in Table 1.

[比較例1]
実施例1において、極細繊維を用いず、ポリエチレンテレフタレート短繊維(単繊維繊度1.7dtex、繊維長5mm)原綿を70重量%、鞘成分にイソフタル酸を共重合した変性ポリエチレンテレフタレートポリマー、芯成分にポリエチレンテレフタレートポリマーを配した芯鞘型複合繊維(単繊維繊度1.2dtex、繊維長5mm)を30重量%混合し、目付け60g/mの湿式不織布を抄紙すること以外は実施例1と同様にした。評価結果を表1に示す。
[Comparative Example 1]
In Example 1, a polyethylene terephthalate short fiber (single fiber fineness 1.7 dtex, fiber length 5 mm) raw cotton is 70% by weight without using ultrafine fibers, and a modified polyethylene terephthalate polymer obtained by copolymerizing isophthalic acid in a sheath component, in a core component Example 1 except that 30% by weight of a core-sheath type composite fiber (single fiber fineness: 1.2 dtex, fiber length: 5 mm) in which a polyethylene terephthalate polymer is arranged is mixed, and a wet nonwoven fabric having a basis weight of 60 g / m 2 is made. did. The evaluation results are shown in Table 1.

参考例
実施例1において、実施例1と同じ極細繊維を1重量%、ポリエチレンテレフタレート短繊維(単繊維繊度1.7dtex、繊維長5mm)原綿を69重量%、鞘成分にイソフタル酸を共重合した変性ポリエチレンテレフタレートポリマー、芯成分にポリエチレンテレフタレートポリマーを配した芯鞘型複合繊維(単繊維繊度1.2dtex、繊維長5mm)を30重量%混合し、目付け60g/mの湿式不織布を抄紙すること以外は実施例1と同様にした。評価結果を表1に示す。
[ Reference example ]
In Example 1, 1% by weight of the same ultrafine fiber as Example 1, polyethylene terephthalate short fiber (single fiber fineness 1.7 dtex, fiber length 5 mm) raw cotton 69% by weight, modified polyethylene obtained by copolymerizing isophthalic acid as a sheath component Other than mixing 30% by weight of terephthalate polymer, core-sheath type composite fiber (single fiber fineness 1.2dtex, fiber length 5mm) with polyethylene terephthalate polymer in the core component, and making a wet nonwoven fabric with a basis weight of 60g / m 2 Same as Example 1. The evaluation results are shown in Table 1.

[比較例2]
実施例3において、極細繊維にかえてポリエチレンテレフタレート短繊維(単繊維繊度0.1dtex、繊維長3mm)原綿を60重量%用いること以外は実施例3と同様にした。評価結果を表1に示す。
[Comparative Example 2]
Example 3 was the same as Example 3 except that 60% by weight of polyethylene terephthalate short fiber (single fiber fineness 0.1 dtex, fiber length 3 mm) was used instead of the ultrafine fiber. The evaluation results are shown in Table 1.

Figure 0005864212
Figure 0005864212

[実施例
実施例2と同様にして湿式不織布を得た。一方、ポリエチレンテレフタレート短繊維(単繊維繊度2.2dtex、繊維長51mm 30%、短繊維 4.4dtx、繊維長51mm70%)原綿を用いて目付け800g/m、厚み24mmの不織布(断熱材)をサーマルボンドで作製した。
次いで、前記湿式不織布と前記断熱材とを温度125℃、圧力9.8N/cm未満の軽い圧力で貼り合わせて2層構造を有する遮熱シートを得た。評価結果を表2に示す。
[Example 4 ]
A wet nonwoven fabric was obtained in the same manner as in Example 2. On the other hand, a non-woven fabric (heat insulating material) having a basis weight of 800 g / m 2 and a thickness of 24 mm is obtained using polyethylene terephthalate short fiber (single fiber fineness 2.2 dtex, fiber length 51 mm 30%, short fiber 4.4 dtex, fiber length 51 mm 70%). Made by thermal bond.
Next, the wet nonwoven fabric and the heat insulating material were bonded together at a temperature of 125 ° C. and a light pressure of less than 9.8 N / cm 2 to obtain a heat shield sheet having a two-layer structure. The evaluation results are shown in Table 2.

[実施例
実施例において、断熱材の目付けを1600g/m、厚みを35mmに変更すること以外は実施例と同様にした。評価結果を表2に示す。
[Example 5 ]
In Example 4 , it carried out similarly to Example 4 except having changed the fabric weight of a heat insulating material into 1600 g / m < 2 >, and thickness to 35 mm. The evaluation results are shown in Table 2.

[実施例
実施例3と同様にして湿式不織布を得た。一方、ポリエチレンテレフタレート短繊維(単繊維繊度2.2dtex、繊維長51mm 30%、短繊維 4.4dtx、繊維長51mm70%)原綿を用いて目付け1200g/m、厚み30mmの不織布(断熱材)をサーマルボンドで作製した。
次いで、前記湿式不織布と前記断熱材とを温度125℃、圧力9.8N/cm未満の軽い圧力で貼り合わせて2層構造を有する遮熱シートを得た。評価結果を表2に示す。
[Example 6 ]
A wet nonwoven fabric was obtained in the same manner as in Example 3. On the other hand, a non-woven fabric (heat insulating material) having a basis weight of 1200 g / m 2 and a thickness of 30 mm is obtained using polyethylene terephthalate short fibers (single fiber fineness 2.2 dtex, fiber length 51 mm 30%, short fibers 4.4 dtex, fiber length 51 mm 70%). Made by thermal bond.
Next, the wet nonwoven fabric and the heat insulating material were bonded together at a temperature of 125 ° C. and a light pressure of less than 9.8 N / cm 2 to obtain a heat shield sheet having a two-layer structure. The evaluation results are shown in Table 2.

[比較例3]
実施例において断熱材のみを用いた。評価結果を表2に示す。
[Comparative Example 3]
In Example 4 , only the heat insulating material was used. The evaluation results are shown in Table 2.

[比較例4]
実施例において断熱材のみを用いた。評価結果を表2に示す。
[Comparative Example 4]
In Example 5 , only the heat insulating material was used. The evaluation results are shown in Table 2.

[実施例
実施例において、断熱材の目付けを600g/m、厚みを18mmに変更すること以外は実施例と同様にした。評価結果を表2に示す。
[Example 7 ]
In Example 4 , it carried out similarly to Example 4 except having changed the fabric weight of a heat insulating material into 600 g / m < 2 >, and thickness to 18 mm. The evaluation results are shown in Table 2.

[実施例
実施例において、断熱材の目付けを1800g/m、厚みを40mmに変更すること以外は実施例と同様にした。評価結果を表2に示す。
[Example 8 ]
In Example 4 , it carried out similarly to Example 4 except having changed the fabric weight of a heat insulating material into 1800 g / m < 2 > and thickness to 40 mm. The evaluation results are shown in Table 2.

[比較例5]
ポリエチレンテレフタレート短繊維(単繊維繊度1.7dtex、繊維長5mm)原綿を70重量%、鞘成分にイソフタル酸を共重合した変性ポリエチレンテレフタレートポリマー、芯成分にポリエチレンテレフタレートポリマーを配した芯鞘型複合繊維(単繊維繊度1.2dtex、繊維長5mm)を30重量%混合し、目付け60g/mの湿式不織布をえた。
一方、ポリエチレンテレフタレート短繊維(単繊維繊度2.2dtex、繊維長51mmを30重量%、単繊維繊度4.4dtex、繊維長51mmを70重量%)原綿を用いて目付け800g/m、厚み24mmの不織布(断熱材)をサーマルボンドで作製した。
次いで、前記湿式不織布と前記断熱材とを温度125℃、圧力9.8N/cm未満の軽い圧力で貼り合わせて2層構造を有する遮熱シートを得た。評価結果を表2に示す。
[Comparative Example 5]
Polyethylene terephthalate short fiber (single fiber fineness 1.7 dtex, fiber length 5 mm) 70% by weight of raw cotton, modified polyethylene terephthalate polymer copolymerized with isophthalic acid as sheath component, core-sheath type composite fiber with polyethylene terephthalate polymer as core component 30% by weight (single fiber fineness 1.2 dtex, fiber length 5 mm) was mixed to obtain a wet nonwoven fabric with a basis weight of 60 g / m 2 .
On the other hand, polyethylene terephthalate short fibers (single fiber fineness 2.2 dtex, fiber length 51 mm 30% by weight, single fiber fineness 4.4 dtex, fiber length 51 mm 70% by weight) using raw cotton with a basis weight of 800 g / m 2 and a thickness of 24 mm A nonwoven fabric (heat insulating material) was produced by thermal bonding.
Next, the wet nonwoven fabric and the heat insulating material were bonded together at a temperature of 125 ° C. and a light pressure of less than 9.8 N / cm 2 to obtain a heat shield sheet having a two-layer structure. The evaluation results are shown in Table 2.

[比較例6]
ポリエチレンテレフタレート短繊維(単繊維繊度0.1dtex、繊維長5mm)原綿を60重量%、鞘成分にイソフタル酸を共重合した変性ポリエチレンテレフタレートポリマー、芯成分にポリエチレンテレフタレートポリマーを配した芯鞘型複合繊維(単繊維繊度1.2dtex、繊維長5mm)を40重量%混合し、目付け10g/mの湿式不織布をえた。一方、ポリエチレンテレフタレート短繊維(単繊維繊度2.2dtex、繊維長51mmを30重量%、単繊維繊度4.4dtex、繊維長51mmを70重量%)原綿を用いて目付け1200g/m、厚み30mmの不織布(断熱材)をサーマルボンドで作製した。
次いで、前記湿式不織布と前記断熱材とを温度125℃、圧力9.8N/cm未満の軽い圧力で貼り合わせて2層構造を有する遮熱シートを得た。評価結果を表2に示す。
[Comparative Example 6]
Polyethylene terephthalate short fiber (single fiber fineness 0.1 dtex, fiber length 5 mm) 60% by weight of raw cotton, modified polyethylene terephthalate polymer copolymerized with isophthalic acid as sheath component, core-sheath type composite fiber with polyethylene terephthalate polymer as core component 40% by weight (single fiber fineness 1.2 dtex, fiber length 5 mm) was mixed to obtain a wet nonwoven fabric having a basis weight of 10 g / m 2 . On the other hand, polyethylene terephthalate short fibers (single fiber fineness 2.2 dtex, fiber length 51 mm, 30% by weight, single fiber fineness 4.4 dtex, fiber length 51 mm, 70% by weight) using raw cotton with a basis weight of 1200 g / m 2 and a thickness of 30 mm A nonwoven fabric (heat insulating material) was produced by thermal bonding.
Next, the wet nonwoven fabric and the heat insulating material were bonded together at a temperature of 125 ° C. and a light pressure of less than 9.8 N / cm 2 to obtain a heat shield sheet having a two-layer structure. The evaluation results are shown in Table 2.

Figure 0005864212
Figure 0005864212

本発明によれば、遮熱性だけでなく成形性にも優れた遮熱シートが提供され、その工業的価値は極めて大である。   According to the present invention, a heat shield sheet excellent not only in heat shield properties but also in formability is provided, and its industrial value is extremely large.

Claims (3)

不織布を含む遮熱シートであって、前記不織布が単繊維径(D)が10〜1000nmの極細繊維を含み、かつ前記極細繊維が、ポリエステルからなりかつ島径(D)が10〜1000nmである島成分と前記ポリエステルよりもアルカリ水溶液易溶解性ポリマーからなる海成分とを有する複合繊維にアルカリ減量加工を施すことにより、前記海成分を溶解除去したポリエステル繊維であり、かつ前記極細繊維が前記不織布に不織布重量対比3重量%以上含まれ、かつ目付けが5〜120g/m の範囲内であり、かつ厚さが20〜400μmの範囲内であり、かつ前記不織布が湿式不織布であることを特徴とする遮熱シート。 A thermal barrier sheet comprises a nonwoven, the nonwoven fabric is a single fiber diameter (D) is viewed contains ultrafine fibers of 10 to 1000 nm, and wherein the ultrafine fibers made of polyester and Shima径(D) is at 10 to 1000 nm A polyester fiber obtained by dissolving and removing the sea component by subjecting a composite fiber having a certain island component and a sea component made of a polymer that is more easily dissolved in an alkaline solution than the polyester to an alkali weight loss process, and the ultrafine fiber is the The nonwoven fabric contains 3% by weight or more with respect to the weight of the nonwoven fabric, the basis weight is in the range of 5 to 120 g / m 2 , the thickness is in the range of 20 to 400 μm, and the nonwoven fabric is a wet nonwoven fabric. Characteristic heat shield sheet. 遮熱シートが多層構造を有し、前記不織布が少なくとも1層として遮熱シートに含まれる、請求項1に記載の遮熱シート。The heat shield sheet according to claim 1, wherein the heat shield sheet has a multilayer structure, and the nonwoven fabric is included in the heat shield sheet as at least one layer. 近赤外線遮蔽率が60%以上である、請求項1または請求項2に記載の遮熱シート。The thermal insulation sheet according to claim 1 or 2 whose near-infrared shielding rate is 60% or more.
JP2011234903A 2011-10-26 2011-10-26 Heat shield sheet Active JP5864212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011234903A JP5864212B2 (en) 2011-10-26 2011-10-26 Heat shield sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011234903A JP5864212B2 (en) 2011-10-26 2011-10-26 Heat shield sheet

Publications (2)

Publication Number Publication Date
JP2013091876A JP2013091876A (en) 2013-05-16
JP5864212B2 true JP5864212B2 (en) 2016-02-17

Family

ID=48615221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011234903A Active JP5864212B2 (en) 2011-10-26 2011-10-26 Heat shield sheet

Country Status (1)

Country Link
JP (1) JP5864212B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6462368B2 (en) * 2015-01-16 2019-01-30 帝人フロンティア株式会社 Wet nonwovens and shoji paper and products

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304836A (en) * 1992-04-30 1993-11-19 Kuraray Co Ltd Production of agricultural/horticultural sheet and vegetables using the same
JP2000297895A (en) * 1999-02-10 2000-10-24 Kitazawa Yakuhin Kk Heat insulating method
JP2001115252A (en) * 1999-10-20 2001-04-24 Suzutora:Kk Heat shielding sheet
JP5098337B2 (en) * 2006-02-03 2012-12-12 東レ株式会社 Light reflecting sheet made of ultrafine fibers and liquid crystal display provided with the same
JP4922964B2 (en) * 2008-02-20 2012-04-25 帝人ファイバー株式会社 Dry nonwoven fabric
JP5027688B2 (en) * 2008-02-25 2012-09-19 帝人ファイバー株式会社 Flexible nonwoven fabric
JP2010070870A (en) * 2008-09-17 2010-04-02 Teijin Fibers Ltd Method for producing nonwoven fabric, the nonwoven fabric, nonwoven fabric structure, and textile product
JP5284889B2 (en) * 2009-06-24 2013-09-11 帝人株式会社 Fiber products
JP5405926B2 (en) * 2009-07-09 2014-02-05 帝人株式会社 Textile structures and textile products

Also Published As

Publication number Publication date
JP2013091876A (en) 2013-05-16

Similar Documents

Publication Publication Date Title
JP5607748B2 (en) Multilayer filter media and filters
KR101421317B1 (en) Wet-laid non-woven fabric and filter
JP6158958B2 (en) Multilayer filter medium, filter manufacturing method and air filter
KR101441723B1 (en) Thin paper
JP5027688B2 (en) Flexible nonwoven fabric
JP5865058B2 (en) Filter media, method for producing the same, and filter
JP5405926B2 (en) Textile structures and textile products
JP4950472B2 (en) Method for producing short cut nanofibers
JP2010070870A (en) Method for producing nonwoven fabric, the nonwoven fabric, nonwoven fabric structure, and textile product
JP5284889B2 (en) Fiber products
JP5329919B2 (en) Sound absorbing structure manufacturing method and sound absorbing structure
JP2014074246A (en) Wet nonwoven fabric for liquid filtration filter and liquid filtration filter
JP2013256739A (en) Nonwoven fabric for mask and mask
JP2012223396A (en) Nonwoven fabric for cosmetic product, and the cosmetic product
JP2013256461A (en) Sheet for body skin contact and cosmetic product
JP2019199668A (en) Mask filter and face mask
JP2012237084A (en) Nonwoven fabric for filter and air filter
JP2012092461A (en) Thin paper
JP5864212B2 (en) Heat shield sheet
JP5908709B2 (en) Nonwoven fabric for filter, method for producing the same and filter
JP2020172034A (en) Water-absorbing vaporized material
JP6462368B2 (en) Wet nonwovens and shoji paper and products
JP2018189346A (en) Water-absorptive and volatile material
JP4922964B2 (en) Dry nonwoven fabric
JP3198198U (en) Thermal insulation sheet and textile products

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151224

R150 Certificate of patent or registration of utility model

Ref document number: 5864212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250