JP5860728B2 - Electronic equipment cooling system - Google Patents

Electronic equipment cooling system Download PDF

Info

Publication number
JP5860728B2
JP5860728B2 JP2012046057A JP2012046057A JP5860728B2 JP 5860728 B2 JP5860728 B2 JP 5860728B2 JP 2012046057 A JP2012046057 A JP 2012046057A JP 2012046057 A JP2012046057 A JP 2012046057A JP 5860728 B2 JP5860728 B2 JP 5860728B2
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
liquid
heat transfer
cooling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012046057A
Other languages
Japanese (ja)
Other versions
JP2013182439A (en
Inventor
武田 文夫
文夫 武田
近藤 義広
義広 近藤
藤居 達郎
達郎 藤居
浩之 豊田
浩之 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012046057A priority Critical patent/JP5860728B2/en
Publication of JP2013182439A publication Critical patent/JP2013182439A/en
Application granted granted Critical
Publication of JP5860728B2 publication Critical patent/JP5860728B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、電子機器の冷却システムに関する。例えば、データセンタなどに設置される複数のサーバユニットを着脱可能に積層されるサーバ等において、各サーバユニット内のマザーボードに搭載される複数のCPU等の発熱素子の熱をサーバの設置空間を介さずに直接、屋外へ排出可能な電子機器の冷却システムに関する。   The present invention relates to a cooling system for electronic equipment. For example, in a server or the like in which a plurality of server units installed in a data center or the like are detachably stacked, the heat of heating elements such as a plurality of CPUs mounted on a motherboard in each server unit is passed through the server installation space. The present invention relates to a cooling system for electronic devices that can be discharged directly to the outside.

本技術分野の背景技術として、特開平9−139453号公報(特許文献1)がある。
特許文献1には、内部に冷媒液を封入し、その外面に少なくとも1個以上の半導体素子を圧接接合した蒸発器と該蒸発器から発生する冷媒蒸気を凝縮させ該凝縮した冷媒液を蒸発器へ循環させる凝縮器を備えた半導体冷却装置において、前記半導体素子を圧接した前記蒸発器内の伝熱面に密着させて1層以上の金属性の網を積層配置して、伝熱面で生じる乾きによるCPU等の素子の急激な温度上昇を防止すると共に冷却効率の向上を図った半導体冷却装置を提供することにある。また、前記半導体素子を圧接接合した前記蒸発器内の伝熱面の下方或いは上方の何れか一方を前記蒸発器の内壁面より高くし前記伝熱面に傾斜を持たせたことを特徴とする。また、前記半導体を圧接接合した前記蒸発器内の伝熱面の高さを下方に位置する伝熱面ほど高くしたことを特徴とする。また、下方位置の伝熱面から発生した蒸気泡が上方位置の伝熱面上を通過しないように伝熱面下部にガイドを設けたことを特徴としている内容が記載されている。
As background art in this technical field, there is JP-A-9-139453 (Patent Document 1).
Patent Document 1 discloses that an evaporator in which a refrigerant liquid is sealed and at least one semiconductor element is pressure-welded to an outer surface thereof, a refrigerant vapor generated from the evaporator is condensed, and the condensed refrigerant liquid is evaporated. In a semiconductor cooling device provided with a condenser that circulates to the heat generating surface, the semiconductor element is brought into close contact with the heat transfer surface in the evaporator, and one or more metallic nets are stacked and formed on the heat transfer surface. An object of the present invention is to provide a semiconductor cooling device that prevents a rapid temperature rise of an element such as a CPU due to drying and improves cooling efficiency. Further, the lower or upper side of the heat transfer surface in the evaporator to which the semiconductor element is pressure bonded is made higher than the inner wall surface of the evaporator so that the heat transfer surface is inclined. . Further, the height of the heat transfer surface in the evaporator to which the semiconductor is pressure-welded is increased as the heat transfer surface located below. Moreover, the content characterized by having provided the guide in the heat-transfer surface lower part so that the vapor bubble generated from the heat-transfer surface of the lower position may not pass on the heat-transfer surface of an upper position is described.

また、特開2010−79403号公報(特許文献2)がある。特許文献2には、筺体内に複数のブレードが着脱自在に装着され、その内部には発熱量の異なる複数のCPUを含む半導体デバイスが搭載されたブレードサーバなど、電子装置用の冷却システムは、比較的発熱量の大きなデバイスからの発熱を外部に輸送するサーモサイフォンと、比較的発熱量の小さなデバイスからの発熱をサーモサイフォンへ輸送するサーマルハイウエイと、更に、ブレードの装置筺体内への挿入に伴って、サーモサイフォンとサーマルハイウエイとの間を熱的に結合するためのサーマルコネクタを備えている内容が記載されている。   Moreover, there exists Unexamined-Japanese-Patent No. 2010-79403 (patent document 2). In Patent Document 2, a cooling system for an electronic device such as a blade server in which a plurality of blades are detachably mounted in a housing and semiconductor devices including a plurality of CPUs having different calorific values are mounted therein, A thermosiphon that transports heat from a device with a relatively large calorific value to the outside, a thermal highway that transports heat from a device with a relatively small calorific value to the thermosyphon, and the insertion of a blade into the device housing Accordingly, the contents including a thermal connector for thermally connecting the thermosiphon and the thermal highway are described.

特開平9−139453号公報JP-A-9-139453 特開2010−79403号公報JP 2010-79403 A

電子機器の冷却システムとして、例えば、サーバラックに設置される複数のサーバユニット内の複数のCPU等の発熱素子を冷却する第1気化型冷却装置(サーモサイフォン)の冷媒の蒸気を冷却する凝縮器とサーマルコネクタを介して熱的に結合される第2気化型冷却装置(サーマルハイウエイ)の蒸発器に接続される蒸気・冷媒配管を第3水冷型冷却装置である屋外の水冷機で冷却される水と熱交換して凝縮させる凝縮器(熱交換器)を内蔵するサーバラック上部に設けるトップボックスに接続することでサーバユニット内のCPU等の発熱素子の熱をサーバの設置空間を介さずに直接、屋外に排出することが可能なサーバ等の電子機器の冷却システムの技術が想定される場合、第2気化型冷却装置(サーマルハイウエイ)のサーマルコネクタに内蔵する蒸発器の伝熱性能を許容設置スペース内において向上させることと、稼働時に蒸気・液の流れる配管や熱交換器の配管内に凝縮した冷媒が滞在することで生じる蒸発器の液面の低下による伝熱面の乾きによる急激な温度上昇を防止する課題が想定される。   As a cooling system for electronic devices, for example, a condenser that cools the vapor of refrigerant in a first evaporative cooling device (thermosyphon) that cools heating elements such as a plurality of CPUs in a plurality of server units installed in a server rack The steam / refrigerant pipe connected to the evaporator of the second vaporization type cooling device (thermal highway) that is thermally coupled to the outside through the thermal connector is cooled by an outdoor water cooler that is the third water cooling type cooling device. By connecting to a top box provided at the top of the server rack that contains a condenser (heat exchanger) that condenses by exchanging heat with water, heat from the heat generating elements such as CPU in the server unit is not passed through the server installation space. When technology for a cooling system for electronic devices such as servers that can be directly discharged to the outdoors is assumed, the thermal evaporation of the second evaporative cooling device (thermal highway) Evaporator liquid generated by improving the heat transfer performance of the evaporator built in the reactor in the allowable installation space and by condensing refrigerant in the piping of the steam / liquid and heat exchanger during operation The subject which prevents the rapid temperature rise by drying of the heat-transfer surface by the fall of a surface is assumed.

本発明の一つの目的は、電子機器の冷却システムとして、好適なサーマルコネクタを有する電子機器の冷却システムを提供することに有る。   One object of the present invention is to provide an electronic device cooling system having a suitable thermal connector as an electronic device cooling system.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。   In order to solve the above problems, for example, the configuration described in the claims is adopted.

本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、サーバラックに設置されるサーバユニットのトレイ内に配置されるマザーボードのCPU等発熱素子の放熱部に設ける第一蒸発器と、前記放熱部に着脱可能かつ伝熱可能に接続されるサーマルコネクタと、前記トレイにトレイ外部の第二蒸発器を内蔵する前記サーマルコネクタと結合可能に固定される第一凝縮器と、各々前記第一蒸発器と前記第一凝縮器とを接続する蒸気・冷媒配管とからなる第1の気化型冷却装置と、外部から流入する冷水により冷却される第二凝縮器と、前記サーマルコネクタ内の第二蒸発器と前記第二凝縮器とを接続する蒸気・冷媒配管からなる第2気化型冷却装置とを有し、前記サーマルコネクタに内蔵する第二蒸発器において、一方の面が前記サーマルコネクタの伝熱面を形成し、反対の面が前記第二蒸発器内の蒸発面を形成する伝熱板を、前記第二蒸発器内に垂直に配置すると共に、前記伝熱板の前記蒸発面側の表面に表面張力により冷媒を吸い上げる垂直方向のスリットを設け、前記冷媒を供給する液供給ガイドを前記冷媒の液面と前記蒸発面の高さ方向の間に液面と平行に設けることを特徴とする。
The present application includes a plurality of means for solving the above-described problems. For example, the first application is provided in the heat-dissipating part of the heat-generating element such as the CPU of the motherboard arranged in the tray of the server unit installed in the server rack. An evaporator, a thermal connector detachably connected to the heat radiating portion, and a first condenser fixed to be connectable to the thermal connector including a second evaporator outside the tray in the tray. A first evaporative cooling device comprising a vapor / refrigerant pipe connecting the first evaporator and the first condenser, a second condenser cooled by cold water flowing from the outside, and the thermal A second evaporator having a second vaporization type cooling device comprising a vapor / refrigerant pipe connecting the second evaporator in the connector and the second condenser; A heat transfer plate whose surface forms the heat transfer surface of the thermal connector and whose opposite surface forms the evaporation surface in the second evaporator is disposed vertically in the second evaporator, and the heat transfer A vertical slit for sucking up the refrigerant by surface tension is provided on the surface on the evaporation surface side of the plate, and a liquid supply guide for supplying the refrigerant is disposed between the liquid surface of the refrigerant and the height direction of the evaporation surface. They are provided in parallel.

本発明によれば、電子機器の冷却システムとして、好適なサーマルコネクタを有する電子機器の冷却システムを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the cooling system of the electronic device which has a suitable thermal connector as a cooling system of an electronic device can be provided.

より具体的には、例えば、本発明によれば、電子機器の冷却システムとして、サーマルコネクタの蒸発器の伝熱性能を許容設置スペース内において向上させることができる。また、稼働時に蒸気・液の流れる配管や熱交換器の配管内に凝縮した冷媒が滞在することで生じる蒸発器の液面の低下による伝熱面の乾きによる急激な温度上昇を防止することができる。   More specifically, for example, according to the present invention, the heat transfer performance of the evaporator of the thermal connector can be improved in the allowable installation space as a cooling system for electronic equipment. In addition, rapid temperature rise due to drying of the heat transfer surface due to a decrease in the liquid level of the evaporator caused by the residence of condensed refrigerant in the piping of the steam / liquid and heat exchanger piping during operation can be prevented. it can.

本発明の実施形態のサーバ冷却システムの全体構成を示す斜視図。The perspective view which shows the whole structure of the server cooling system of embodiment of this invention. 本発明の実施形態のマザーボードに第1冷却装置(サーモサイフォン)を取り付けるサーバユニットの斜視図。The perspective view of the server unit which attaches the 1st cooling device (thermo siphon) to the motherboard of embodiment of this invention. 本発明の実施形態の第2冷却装置(サーマルハイウエイ)を示す斜視図。The perspective view which shows the 2nd cooling device (thermal highway) of embodiment of this invention. 本発明の実施形態のサーマルハイウエイの凝縮器である熱交換器の縦断面図。The longitudinal cross-sectional view of the heat exchanger which is the condenser of the thermal highway of embodiment of this invention. 本発明の実施形態のサーマルハイウエイのサーマルコネクタを示す平面図。The top view which shows the thermal connector of the thermal highway of embodiment of this invention. 本発明の実施形態のサーマルハイウエイのサーマルコネクタ縦断面図。The thermal connector longitudinal cross-sectional view of the thermal highway of embodiment of this invention. 本発明の実施形態のサーマルコネクタの冷媒供給ガイドとその上面に設ける金網の斜視図。The perspective view of the metal-mesh provided in the refrigerant | coolant supply guide of the thermal connector of embodiment of this invention, and its upper surface. 本発明の実施形態のCPU動作時におけるサーマルコネクタの蒸発器内部の冷媒の動きを示すサーマルコネクタの縦断面図。The longitudinal cross-sectional view of the thermal connector which shows the motion of the refrigerant | coolant inside the evaporator of the thermal connector at the time of CPU operation | movement of embodiment of this invention. 本発明の実施形態のCPU動作時におけるサーマルコネクタの蒸発器内部の他の冷媒の動きを示すサーマルコネクタの縦断面図。The longitudinal cross-sectional view of the thermal connector which shows the motion of the other refrigerant | coolant inside the evaporator of a thermal connector at the time of CPU operation | movement of embodiment of this invention. 本発明の実施形態のサーマルコネクタの蒸発器内の伝熱面に高性能伝熱面として多孔質沸騰伝熱面を用いるサーマルコネクタの縦断面図。The longitudinal cross-sectional view of the thermal connector which uses a porous boiling heat transfer surface as a high performance heat transfer surface for the heat transfer surface in the evaporator of the thermal connector of embodiment of this invention.

以下、実施例について図面を用いて説明する。なお各図に示された同一の符号を付された構成は、同一の機能を有するので、それらの説明を省略する場合がある。   Hereinafter, embodiments will be described with reference to the drawings. In addition, since the structure which attached | subjected the same code | symbol shown in each figure has the same function, those description may be abbreviate | omitted.

図1を用いて本発明のサーバ冷却システム全体の構成を説明する。サーバラック100の各ラックには、左右2列にマザーボード102を搭載するサーバユニット101が積層されている。但し、図1は省略して1段のサーバユニットのみを記載している。サーバユニット101には左右のマザーボードに対して各々CPU等の発熱素子を冷却する第1気化型冷却装置(以下サーモサイフォンと称する場合がある。)104を取り付けており、第2気化型冷却装置(以下サーマルハイウエイと称する場合がある。)105とサーマルコネクタ106を介してCPU等の発熱素子の熱を排出する。サーマルハイウエイ105に伝達される熱はサーバラック100の上部に設けるトップボックス107に収納される熱交換器134で更に、屋外に設置され屋外冷水機109を備える第3水冷型冷却装置108により供給される冷水で冷却される。   The overall configuration of the server cooling system of the present invention will be described with reference to FIG. In each rack of the server rack 100, server units 101 on which motherboards 102 are mounted are stacked in two rows on the left and right. However, FIG. 1 is omitted and only a one-stage server unit is shown. The server unit 101 is provided with a first evaporative cooling device (hereinafter sometimes referred to as a thermosiphon) 104 that cools heating elements such as CPUs to the left and right motherboards, respectively, and a second evaporative cooling device ( Hereinafter, it may be referred to as a thermal highway.) The heat of a heating element such as a CPU is discharged through 105 and the thermal connector 106. The heat transmitted to the thermal highway 105 is supplied by a third water-cooling type cooling device 108 that is installed outdoors and is provided with an outdoor water cooler 109 by a heat exchanger 134 that is housed in a top box 107 provided at the top of the server rack 100. Cooled with cold water.

図2によりマザーボード102に取り付けるサーモサイフォン104について詳細に説明する。図2では、一つのトレイ137に二つ(複数)のマザーボード102が搭載されている。マザーボード102には複数のCPU(103)が取り付けられており、これらの発熱素子であるCPU(103)の放熱部にはサーモサイフォン蒸発器110が取り付けられている。各サーモサイフォン蒸発器110は蒸気と凝縮した戻りの冷媒を通すサーモサイフォン蒸気・液配管135で各々接続されており、接続されるサーモサイフォン蒸発器110のうちの1箇所からは更に蒸気と凝縮した戻りの冷媒を通すサーモサイフォン蒸気・液配管(2)136(ここで「(2)」は「第2の」を意味している。)を介してサーモサイフォン凝縮器111と接続されている。さらに、サーモサイフォン凝縮器111はマザーボード102を搭載するトレイ137のトレイ側板139に設ける切欠138に第2気化型冷却装置(サーマルハイウエイ)のサーマルコネクタ106(詳細は後で説明する。)と伝熱面を合わせて結合可能となるように取り付けられている。なお、サーモサイフォン凝縮器111はトレイ137の両側に各々左右のマザーボード102に対して取り付けられている。   The thermosiphon 104 attached to the motherboard 102 will be described in detail with reference to FIG. In FIG. 2, two (plural) motherboards 102 are mounted on one tray 137. A plurality of CPUs (103) are attached to the mother board 102, and a thermosiphon evaporator 110 is attached to a heat radiation portion of the CPU (103) which is a heat generating element. Each thermosiphon evaporator 110 is connected to each other by a thermosiphon vapor / liquid pipe 135 through which the vapor and condensed return refrigerant are passed, and further condensed with vapor from one of the thermosiphon evaporators 110 connected. A thermosiphon condenser 111 is connected via a thermosiphon vapor / liquid pipe (2) 136 (where “(2)” means “second”) through which the return refrigerant passes. Further, the thermosiphon condenser 111 is provided with a thermal connector 106 (details will be described later) and a thermal connector 106 of a second evaporative cooling device (thermal highway) in a notch 138 provided in the tray side plate 139 of the tray 137 on which the motherboard 102 is mounted. It is attached so that the surfaces can be joined together. The thermosiphon condenser 111 is attached to the left and right motherboards 102 on both sides of the tray 137, respectively.

次に図3を用いて、第2気化型冷却装置(サーマルハイウエイ)105の構成について説明する。第2気化型冷却装置(サーマルハイウエイ)105は真空引きして冷媒を封入する蒸発器112を内蔵し、蒸発器112の裏面に伝熱面を有するサーマルコネクタ106と、図1に示すトップボックス107内に設けられる凝縮器を形成する熱交換器134と、サーマルコネクタ106と熱交換器134とを接続するサーマルハイウエイの蒸気と凝縮した戻りの冷媒を通す蒸気・液配管140及び蒸気・液配管(2)141とから構成される。   Next, the configuration of the second vaporization type cooling device (thermal highway) 105 will be described with reference to FIG. The second evaporative cooling device (thermal highway) 105 incorporates an evaporator 112 that evacuates and encloses the refrigerant, a thermal connector 106 having a heat transfer surface on the back surface of the evaporator 112, and a top box 107 shown in FIG. A heat exchanger 134 that forms a condenser provided inside, a steam / liquid pipe 140 and a steam / liquid pipe (through which the steam of the thermal highway connecting the thermal connector 106 and the heat exchanger 134 and the condensed return refrigerant are passed ( 2) 141.

蒸気・液配管140と蒸気・液配管(2)141はエルボ配管を介して接続されております。以下で説明するように蒸気・液配管140の液配管は凝縮液を戻りやすくするために水平面に対して傾斜を設けるため、蒸気・液配管(2)141の縦の配管と別の番号を付ける。なお、蒸気・液配管140と蒸気・液配管(2)141及び熱交換器134とを接続したサーマルハイウエイは左右各々のサーモサイフォン凝縮器111と接合してサーバラック100の各ラックの左右に各々1組配置される。なお、複数の熱交換器134はトップボックスで同じ空間に各々平行に配置される。   Steam / liquid piping 140 and steam / liquid piping (2) 141 are connected via elbow piping. As will be described below, the liquid pipe of the steam / liquid pipe 140 is inclined with respect to the horizontal plane so that the condensate can be easily returned. Therefore, a different number is attached to the vertical pipe of the steam / liquid pipe (2) 141. . The thermal highway connecting the steam / liquid pipe 140, the steam / liquid pipe (2) 141, and the heat exchanger 134 is joined to the left and right thermosiphon condensers 111, respectively, to the left and right of each rack of the server rack 100. One set is arranged. The plurality of heat exchangers 134 are arranged in parallel in the same space in the top box.

図4より、サーマルハイウエイ105の中の冷媒の流れを説明すると、サーマルコネクタ106内の図3に示す蒸発器112内で蒸発した冷媒は図3に示す蒸気・液配管140を通って垂直に配置される蒸気・液配管(2)141を通って熱交換器134に流入する。ここで、二重円管を形成する熱交換器134の外側の冷却水流路145には屋外に設ける図1に示す屋外冷水機109から供給される冷水が冷却水入口146から流入して冷却水出口147から流出することで熱交換器134に流入する冷媒の蒸気は管壁から冷やされて液状の冷媒となる。液状の冷媒は熱交換器134内を下部の管壁に沿って戻り、垂直に配置される蒸気・液配管(2)141内を落差により落下し、再度、蒸気・液配管140内を流れてサーマルコネクタ106内の蒸発器112内へ回収される。   Referring to FIG. 4, the flow of the refrigerant in the thermal highway 105 will be described. The refrigerant evaporated in the evaporator 112 shown in FIG. 3 in the thermal connector 106 is arranged vertically through the vapor / liquid pipe 140 shown in FIG. The steam / liquid pipe (2) 141 flows into the heat exchanger 134. Here, in the cooling water flow path 145 outside the heat exchanger 134 forming a double circular tube, cold water supplied from the outdoor water cooler 109 shown in FIG. By flowing out from the outlet 147, the vapor of the refrigerant flowing into the heat exchanger 134 is cooled from the tube wall to become a liquid refrigerant. The liquid refrigerant returns inside the heat exchanger 134 along the lower pipe wall, falls in the vertically disposed steam / liquid pipe (2) 141 due to a drop, and flows again in the steam / liquid pipe 140. It is recovered into the evaporator 112 in the thermal connector 106.

したがって、サーマルコネクタ106内の蒸発器112内の冷媒液面は封入した静止状態に対して、CPUが動作して発熱すると途中の蒸気・液配管140や熱交換器134の配管内に滞在する冷媒が生じるので冷媒の液面は低下する。その低下量が多い場合は伝熱面全体に乾きが生じ、CPUに急激な温度上昇を生じることがある。そこで、できるだけ、配管内に滞在する冷媒量を少なくするために、水平に配置される熱交換器134や、蒸気・液配管140を内部の冷媒が蒸発器112へ戻りやすくする方向へ傾斜を設ける。このことで、サーマルコネクタ内の蒸発器112の液面低下を緩和できる。すなわち、第2気化型冷却装置(サーマルハイウエイ)105の前記サーマルコネクタに接続する水平な蒸気・冷媒配管と、トップボックス107内の凝縮器(熱交換器134)に、水平面に対して傾斜を設けることが望ましい。   Accordingly, the refrigerant level in the evaporator 112 in the thermal connector 106 stays in the vapor / liquid pipe 140 and the heat exchanger 134 in the middle when the CPU operates and generates heat in the encapsulated stationary state. As a result, the liquid level of the refrigerant decreases. If the amount of decrease is large, the entire heat transfer surface may dry out, and the CPU may rapidly increase in temperature. Therefore, in order to reduce the amount of refrigerant staying in the pipe as much as possible, the horizontally arranged heat exchanger 134 and the steam / liquid pipe 140 are inclined in such a direction that the refrigerant inside easily returns to the evaporator 112. . By this, the liquid level fall of the evaporator 112 in a thermal connector can be relieved. That is, the horizontal vapor / refrigerant pipe connected to the thermal connector of the second vaporization type cooling device (thermal highway) 105 and the condenser (heat exchanger 134) in the top box 107 are inclined with respect to the horizontal plane. It is desirable.

なお、サーマルコネクタ106とサーモサイフォン凝縮器111とは一方の外周に空穴を設け他方の外周に雌ネジを加工し、ネジで各々の部材を結合することが可能である。また、サーマルコネクタ106とサーモサイフォン凝縮器111とは通常、伝熱性を良くするために銅系金属を用いており、ネジ部の強度が不足する場合はサーマルコネクタ106とサーモサイフォン凝縮器111の外周に各々空穴をあけ、更に一方は外周に空穴を設け、他方は外周にネジ穴を設けたステンレス板などの強度のある金属板で両外側からサンドイッチ構造として挟み込み、互いにネジ止めで結合することも可能である。ただし、本構造は図には記載していない。   The thermal connector 106 and the thermosiphon condenser 111 can be provided with a hole in one outer periphery, machine a female screw on the other outer periphery, and connect each member with a screw. In addition, the thermal connector 106 and the thermosiphon condenser 111 usually use copper-based metal to improve heat transfer. If the strength of the screw portion is insufficient, the outer periphery of the thermal connector 106 and the thermosiphon condenser 111 Drill holes in each of them, and one is provided with holes on the outer periphery, and the other is sandwiched from both sides with a strong metal plate such as a stainless steel plate with screw holes on the outer periphery, and they are joined together with screws. It is also possible. However, this structure is not shown in the figure.

図5は、本発明の実施形態のサーマルハイウエイのサーマルコネクタを示す平面図であり、サーマルコネクタ106の少なくとも一面に伝熱板115を有する。   FIG. 5 is a plan view showing a thermal connector of the thermal highway according to the embodiment of the present invention, and has a heat transfer plate 115 on at least one surface of the thermal connector 106.

次に、図6を用いてサーマルコネクタ106の内部構造について説明する。サーマルコネクタ106の伝熱板は垂直に配置され、下部の半分以下の高さ(冷媒の液面156を点線で示す)部分に冷媒の液溜め149を設けている。また、伝熱板の伝熱面にはスリット151を設けており、液溜めの冷媒が表面張力により伝熱面に供給される。なお、伝熱面に設けるスリット幅に対して表面張力により上昇する冷媒の高さは冷媒に同じ物質を用いた場合、一般的にスリット幅に逆比例する。したがって、スリット幅は小さいほど冷媒が伝熱面を上昇し、各スリットのピッチもできるだけ小さくする方が伝熱面全体を冷媒で薄膜状に供給でき熱伝達特性からは高性能となる。しかし、反面、スリット幅およびピッチを小さくするほど加工が困難となり、加工コストも上がるので適正な大きさが存在する。   Next, the internal structure of the thermal connector 106 will be described with reference to FIG. The heat transfer plate of the thermal connector 106 is arranged vertically, and a refrigerant reservoir 149 is provided at a lower half height (refrigerant liquid level 156 is indicated by a dotted line). In addition, a slit 151 is provided on the heat transfer surface of the heat transfer plate, and the refrigerant in the liquid reservoir is supplied to the heat transfer surface by surface tension. In addition, the height of the refrigerant | coolant which raises by surface tension with respect to the slit width provided in a heat-transfer surface is generally in inverse proportion to a slit width, when the same substance is used for a refrigerant | coolant. Therefore, the smaller the slit width is, the higher the refrigerant is on the heat transfer surface, and the smaller the pitch of each slit is, the more the heat transfer surface can be supplied in the form of a thin film with the refrigerant. However, as the slit width and pitch are reduced, the processing becomes more difficult and the processing cost increases, so there is an appropriate size.

また、伝熱面の高さ方向の中間位置に更に冷媒を供給する液供給ガイド132を設ける。また、蒸気の流れ153で示すように蒸発器112内の蒸気の排出と、熱交換器134で凝縮する戻りの冷媒が液供給ガイド132の上に、実線矢印で示す液の流れ154で示すように供給されるようにサーマルハイウエイの蒸気・液配管140の開口部である蒸気・液配管開口部144を液供給ガイド132の上に配置する。さらに、蒸発器112の下部から蒸気が排出可能なように液供給ガイド132の端部側には蒸気通路152を設けると共に、液供給ガイド132上の壁面の拘束が無い部分には堰とするための側板150を設ける。側板150の高さは液供給ガイド132上に溜める冷媒の高さから設定する。その高さ以上に凝縮する冷媒が戻る時は液供給ガイドに設ける側板の上から下部の冷媒液溜めへ落下するので下部の冷媒液溜めから冷媒が無くなることはない。液供給ガイド132は、液面156と蒸発面の高さ方向の間に液面156と平行に設けることが望ましい。   Further, a liquid supply guide 132 for further supplying a refrigerant is provided at an intermediate position in the height direction of the heat transfer surface. Further, as shown by the steam flow 153, the discharge of the steam in the evaporator 112 and the return refrigerant condensed in the heat exchanger 134 are shown on the liquid supply guide 132 by the liquid flow 154 indicated by the solid line arrow. The steam / liquid pipe opening 144, which is the opening of the steam / liquid pipe 140 of the thermal highway, is disposed on the liquid supply guide 132. Further, a steam passage 152 is provided on the end side of the liquid supply guide 132 so that the steam can be discharged from the lower portion of the evaporator 112, and a weir is provided in a portion where the wall surface on the liquid supply guide 132 is not restricted. Side plate 150 is provided. The height of the side plate 150 is set from the height of the refrigerant stored on the liquid supply guide 132. When the refrigerant condensing more than that height returns, it falls from the top of the side plate provided in the liquid supply guide to the lower refrigerant liquid reservoir, so that the refrigerant does not disappear from the lower refrigerant liquid reservoir. The liquid supply guide 132 is preferably provided in parallel with the liquid level 156 between the liquid level 156 and the height direction of the evaporation surface.

次に、図7を用いて液供給ガイド132の上面全体に凝縮して回収される冷媒を均一に分布するように金網133を設ける例を示す。図7は縦横等ピッチで重ねあわされる銅線かステンレスの金網の例を示す。   Next, an example in which a metal mesh 133 is provided so as to uniformly distribute the refrigerant condensed and recovered over the entire upper surface of the liquid supply guide 132 will be described with reference to FIG. FIG. 7 shows an example of a copper wire or a stainless steel wire mesh overlapped at equal pitches.

さらに、CPUの発熱量が多くなった場合、冷媒の蒸発に伴いサーマルハイウエイの途中の配管に凝縮した戻りの冷媒が滞留する量が多くなり、冷媒の液面156の低下が顕著になる。そこで、サーマルコネクタ106の蒸発器内への冷媒封入量を増やすために液溜めバッファ142を設ける。また、液溜めバッファ142内空間と、蒸発器112の空間を接続し、接続部の断面の半分を遮蔽する仕切り板148を設ける。サーマルコネクタ106内に内蔵する蒸発器112の隣に内部空間が連通する液溜めバッファ142を設けることで蒸発器内の冷媒封入量を蒸発器のみの場合に比べ2倍に増加できる。   Further, when the amount of heat generated by the CPU increases, the amount of the return refrigerant condensed in the piping in the middle of the thermal highway increases as the refrigerant evaporates, and the liquid level 156 of the refrigerant decreases significantly. Therefore, a liquid storage buffer 142 is provided to increase the amount of refrigerant enclosed in the evaporator of the thermal connector 106. Further, a partition plate 148 that connects the space in the liquid storage buffer 142 and the space of the evaporator 112 and shields half of the cross section of the connection portion is provided. By providing a liquid storage buffer 142 in which the internal space communicates next to the evaporator 112 built in the thermal connector 106, the amount of refrigerant enclosed in the evaporator can be increased by a factor of two compared to the case of the evaporator alone.

CPUの稼働状態が最大の場合、蒸発器112のみだと蒸発器内の冷媒の液面が低下して、伝熱面に乾きを起こす可能性を生じるが、液溜めバッファ142を設ける結果、冷媒の液面が低下しても伝熱面全体に乾きを生ぜず、許容内となる。   When the operating state of the CPU is the maximum, if only the evaporator 112 is used, the liquid level of the refrigerant in the evaporator is lowered and the heat transfer surface may be dried. However, as a result of providing the liquid storage buffer 142, the refrigerant Even if the liquid level of the liquid drops, the entire heat transfer surface does not dry and is within the allowable range.

さらに、伝熱面の熱伝達率についても、CPUの発熱が小さい時は冷媒がスリットによって上昇し、伝熱面で蒸発することでバランスが取れている。   Further, the heat transfer coefficient of the heat transfer surface is balanced by the refrigerant rising by the slit and evaporating on the heat transfer surface when the heat generation of the CPU is small.

図8に示すように、CPUが定格負荷に対して中発熱量の時は蒸発室内の下部冷媒の液溜め149において、伝熱面の発熱で沸騰を生じるが、この時、変動液面158で示すように冷媒の液面が変動し、その変動は隣の液溜めバッファ142の冷媒液面に伝播する。
その結果、液面の変動波形は液溜めバッファ142の進行方向の壁に衝突して反転し、仕切り板148で流路断面が縮小されているため開口側の冷媒が、実線矢印で示す戻り液の流れ157で示すように側板150を乗り越え液供給ガイド132の上に流れ込み、周期的に液供給ガイド上に冷媒の供給が可能となる。すなわち、蒸発器112と液溜めバッファ142との連通位置に連通部の断面を部分的に遮蔽する仕切り板148を設けることが望ましい。
As shown in FIG. 8, when the CPU has a medium calorific value with respect to the rated load, boiling occurs due to heat generation on the heat transfer surface in the lower refrigerant reservoir 149 in the evaporation chamber. As shown, the liquid level of the refrigerant fluctuates, and the fluctuation propagates to the refrigerant liquid level of the adjacent liquid reservoir buffer 142.
As a result, the fluctuation waveform of the liquid level collides with the wall in the traveling direction of the liquid storage buffer 142 and reverses, and the flow path cross section is reduced by the partition plate 148, so that the refrigerant on the opening side returns to the return liquid indicated by the solid line arrow. As shown by the flow 157, the vehicle passes over the side plate 150 and flows onto the liquid supply guide 132 so that the refrigerant can be periodically supplied onto the liquid supply guide. That is, it is desirable to provide a partition plate 148 that partially shields the cross section of the communication portion at the communication position between the evaporator 112 and the liquid storage buffer 142.

さらに、CPUの発熱量が定格負荷の最大となった場合、図9に示すように蒸発器下部の液溜め149にある冷媒は伝熱面からの加熱で沸騰により爆発的な液面の膨張を生じる。この時は、上方液流れ159及び横方向液流れ160で示すように液供給ガイド132に設ける蒸気通路152から膨張した冷媒が直接液供給ガイド132の上部へ流れ込み、液供給ガイド132上の伝熱面にも飛散する。その結果、液供給ガイド132下の伝熱面のスリットだけではなく、周期的に液供給ガイド132上の伝熱面のスリットに冷媒を供給でき、沸騰による蒸発が行われるため、伝熱面に乾きを生ぜず、効率の良い熱交換が可能となる。   Further, when the heat generation amount of the CPU reaches the maximum rated load, as shown in FIG. 9, the refrigerant in the liquid reservoir 149 at the lower part of the evaporator expands explosively due to boiling by heating from the heat transfer surface. Arise. At this time, as indicated by the upper liquid flow 159 and the lateral liquid flow 160, the refrigerant expanded from the vapor passage 152 provided in the liquid supply guide 132 flows directly into the upper part of the liquid supply guide 132, and heat transfer on the liquid supply guide 132 is performed. Splashes on the surface. As a result, the refrigerant can be periodically supplied not only to the slit of the heat transfer surface under the liquid supply guide 132 but also to the slit of the heat transfer surface on the liquid supply guide 132, and evaporation due to boiling is performed. Efficient heat exchange is possible without drying.

図6、図8、図9、図10において、サーマルコネクタ106の上面および下面のそれぞれ3箇所の突起部分は、サーマルコネクタの組み立てのためのネジ穴を有する部分である。ネジを用いず他の方法で組み立てる場合は省略可能である。   6, 8, 9, and 10, three protruding portions on the upper surface and the lower surface of the thermal connector 106 are portions having screw holes for assembling the thermal connector. It can be omitted when assembling by other methods without using screws.

図10に、サーマルコネクタ106の内部構造の実施例として伝熱板の表面に高性能伝熱面155(例えば、多孔質沸騰伝熱面)を設ける例を示す。高性能伝熱面155は多孔質の伝熱面が形成されている。高性能伝熱面155は表面に冷媒の膜を形成することで連続的に沸騰を形成し、高性能な伝熱性能を得ている。そこで、同様に高性能伝熱面155の下部は液溜め149の冷媒が直接浸漬することで蒸発を図り、高性能伝熱面155の上部はできるだけ、上部から長手方向に均一に冷媒を滴下させる構造とする。そのため、この場合は液供給ガイド132の面をできるだけ高性能伝熱面155の高さ方向における上部に設けることが望ましい。すなわち、実施例1では、伝熱面の高さ方向の中間位置に冷媒を供給する冷媒供給ガイド132を設けているが、実施例2では、伝熱面の高さ方向の中間位置より高い位置に液供給ガイド132を設けることが望ましい。また、液供給ガイド132から高性能伝熱面155に冷媒が流れ込み、高性能伝熱面155を冷媒が滴下可能なように、高性能伝熱面155と液供給ガイド132との間に隙間を設けている(図10では省略している。)。   FIG. 10 shows an example in which a high performance heat transfer surface 155 (for example, a porous boiling heat transfer surface) is provided on the surface of the heat transfer plate as an example of the internal structure of the thermal connector 106. The high performance heat transfer surface 155 is formed with a porous heat transfer surface. The high-performance heat transfer surface 155 continuously forms boiling by forming a refrigerant film on the surface, and obtains high-performance heat transfer performance. Therefore, similarly, the lower part of the high-performance heat transfer surface 155 is evaporated by directly immersing the refrigerant in the liquid reservoir 149, and the upper part of the high-performance heat transfer surface 155 is dripped as uniformly as possible in the longitudinal direction from the upper part. Structure. Therefore, in this case, it is desirable to provide the surface of the liquid supply guide 132 as high as possible in the height direction of the high performance heat transfer surface 155. That is, in the first embodiment, the refrigerant supply guide 132 for supplying the refrigerant to the intermediate position in the height direction of the heat transfer surface is provided, but in the second embodiment, the position is higher than the intermediate position in the height direction of the heat transfer surface. It is desirable to provide a liquid supply guide 132 on the surface. In addition, a gap flows between the high-performance heat transfer surface 155 and the liquid supply guide 132 so that the refrigerant flows from the liquid supply guide 132 to the high-performance heat transfer surface 155 and the refrigerant can drop on the high-performance heat transfer surface 155. Provided (omitted in FIG. 10).

以下、本発明の特徴を例示すると、例えば、電子機器の冷却システムであって、少なくとも電子機器からの放熱部に着脱可能かつ伝熱可能に接続されるサーマルコネクタと、前記サーマルコネクタ内の蒸発器に接続される凝縮器とを有し、前記サーマルコネクタにおいて、少なくとも前記サーマルコネクタの一の面が前記放熱部へ接続されるサーマルコネクタの伝熱面を形成し、別の面が前記サーマルコネクタ内の蒸発器内の蒸発面を形成し、前記蒸発面は、前記蒸発器内に垂直に配置される伝熱板であり、前記伝熱板の蒸発面側の表面に表面張力により冷媒を吸い上げるスリットを設け、前記冷媒を供給する液供給ガイドを前記冷媒の液面と蒸発面の高さ方向の間に設けることを特徴とする。   Hereinafter, the features of the present invention will be exemplified. For example, in a cooling system for an electronic device, at least a thermal connector that is detachably connected to a heat radiating portion from the electronic device and is capable of transferring heat, and an evaporator in the thermal connector. A condenser connected to the thermal connector, wherein at least one surface of the thermal connector forms a heat transfer surface of the thermal connector connected to the heat radiating portion, and the other surface is inside the thermal connector. An evaporation surface in the evaporator is formed, and the evaporation surface is a heat transfer plate arranged vertically in the evaporator, and a slit that sucks the refrigerant by surface tension on the surface on the evaporation surface side of the heat transfer plate And a liquid supply guide for supplying the refrigerant is provided between the liquid level of the refrigerant and the height direction of the evaporation surface.

また、例えば、第2気化型冷却装置(サーマルハイウエイ)の蒸発器において、垂直に配置される伝熱板の蒸発側表面に上下方向のスリットを形成する。また、蒸発器において伝熱板の高さ方向の間に冷媒の液面に平行に液供給ガイドを設け、蒸発器で発生する蒸気と凝縮器で凝縮する冷媒の流路を形成する蒸気・液配管の開口部を前記液供給ガイドの上部に配置する。また、液供給ガイドの上面に金網を設ける。更に、前記液供給ガイドに蒸気通路を設ける。また、液供給ガイドの拘束の無い端部に冷媒を溜めるのに可能な高さの側板を設ける。   Further, for example, in the evaporator of the second vaporization type cooling device (thermal highway), a vertical slit is formed on the evaporation side surface of the heat transfer plate arranged vertically. In the evaporator, a liquid supply guide is provided in parallel with the liquid level of the refrigerant between the heat transfer plate height directions, and the vapor / liquid that forms the flow path of the vapor generated in the evaporator and the refrigerant condensed in the condenser. An opening of the pipe is arranged on the upper part of the liquid supply guide. Further, a metal mesh is provided on the upper surface of the liquid supply guide. Further, a steam passage is provided in the liquid supply guide. Further, a side plate having a height capable of storing the refrigerant is provided at an unconstrained end portion of the liquid supply guide.

また、例えば、コネクタに内蔵する蒸発器の隣に内部空間が連通する液溜めバッファを設ける。また、前記蒸発器と液溜めバッファとの連通位置に断面を半分遮蔽する仕切り板を設ける。   Further, for example, a liquid storage buffer whose internal space communicates is provided next to the evaporator built in the connector. In addition, a partition plate that half shields the cross section is provided at a communication position between the evaporator and the liquid storage buffer.

また、例えば、コネクタに内蔵する蒸発器の伝熱板の蒸発面に高効率な多孔質沸騰伝熱面を設けることを特徴とするサーバラックの冷却システム。   Also, for example, a server rack cooling system characterized in that a highly efficient porous boiling heat transfer surface is provided on the evaporation surface of the heat transfer plate of the evaporator built in the connector.

また、第2気化型冷却装置(サーマルハイウエイ)のコネクタに内蔵する蒸発器に垂直に配置される伝熱板の蒸発側表面に垂直方向のスリットを形成することで、蒸発器に封入される下部の液溜めの冷媒が表面張力によりスリット内を上方へ連続的に吸い上げられ、薄い水膜を形成するために冷媒の蒸発が連続的に効率良く行われ、伝熱性能が安定する。   In addition, a lower slit sealed in the evaporator is formed by forming a vertical slit on the evaporation side surface of the heat transfer plate arranged perpendicular to the evaporator built in the connector of the second evaporative cooling device (thermal highway). The liquid in the liquid reservoir is continuously sucked upward by the surface tension, and the thin film is formed to evaporate the refrigerant continuously and efficiently, thereby stabilizing the heat transfer performance.

また、前記蒸発器において伝熱板の高さ方向の間に冷媒の液面と平行に液供給ガイドを設けると共に蒸発器で発生する蒸気と凝縮器で凝縮する冷媒の回収流路を形成する蒸気・冷媒配管の開口部を前記冷媒供給ガイドの上部に配置することで、凝縮した冷媒が液供給ガイド上に流入するので、伝熱板の下半分は蒸発器内の液溜めから冷媒が吸い上げられると共に、伝熱板の上半分は凝縮して流入する冷媒が液供給ガイド面から吸い上げられる。
また、液供給ガイドの上面に金網を設けることで凝縮して流入する冷媒が液供給ガイド上に均一に広がり蒸発するまで液供給ガイド上に保持されるため、伝熱板からの蒸発が維持される。さらに、前記液供給ガイドに蒸気通路を設けるので、液供給ガイドの下の蒸発室で蒸発する冷媒ガスも蒸気通路を通って液供給ガイドの上に流れるため、液供給ガイド上に配置する蒸気管からトップボックス内の凝縮器へと流れやすくなり、冷媒の循環を促進できる。
また、コネクタに内蔵される蒸発器の隣に内部空間を連通する液溜めバッファを設けることで、サーバが稼働して冷媒が配管内を循環し始める時、サーマルハイウエイを構成する配管内に滞留する容積分だけ蒸発器内の冷媒の液面が低下するが、この液面低下を少なくすることが可能である。また、前記蒸発器と液溜めバッファとの連通位置に連通する断面を部分的に遮蔽する仕切り板を設けると共に冷媒供給ガイドの拘束の無い端部に、液を溜めるのに可能な高さの側板を設ける。このことで、サーバの負荷が高くなると、伝熱面に浸かった冷媒供給ガイドよりも下部の伝熱面で急激な沸騰が生じ、液供給ガイド下の冷媒の液面が変動して波を打ち始める。この時、蒸発器の下部の液溜めの液面変動は隣の液溜めに伝播し、液溜め端部壁面で反射して戻る際、液面変動が増幅されて液供給ガイド板の上に戻ってくる。
In the evaporator, a liquid supply guide is provided in parallel to the liquid level of the refrigerant between the height directions of the heat transfer plate, and vapor forming a recovery flow path for the vapor generated in the evaporator and the refrigerant condensed in the condenser -By arranging the opening of the refrigerant pipe above the refrigerant supply guide, the condensed refrigerant flows into the liquid supply guide, so that the lower half of the heat transfer plate sucks up the refrigerant from the liquid reservoir in the evaporator. At the same time, the upper half of the heat transfer plate is condensed and sucked in and flows in from the liquid supply guide surface.
In addition, by providing a metal mesh on the upper surface of the liquid supply guide, the refrigerant that is condensed and flows in is uniformly held on the liquid supply guide until it evaporates, so that evaporation from the heat transfer plate is maintained. The Further, since a vapor passage is provided in the liquid supply guide, the refrigerant gas that evaporates in the evaporation chamber below the liquid supply guide also flows on the liquid supply guide through the vapor passage. Therefore, the steam pipe disposed on the liquid supply guide It becomes easy to flow from the to the condenser in the top box, and the circulation of the refrigerant can be promoted.
In addition, by providing a liquid storage buffer that communicates with the internal space next to the evaporator built in the connector, when the server operates and the refrigerant begins to circulate in the pipe, it stays in the pipe constituting the thermal highway. Although the liquid level of the refrigerant in the evaporator is lowered by the volume, it is possible to reduce this liquid level drop. Also, a partition plate that partially shields the cross section that communicates with the communication position between the evaporator and the liquid storage buffer is provided, and a side plate that is high enough to store liquid at the unrestricted end of the refrigerant supply guide. Is provided. As a result, when the load on the server increases, a sudden boiling occurs on the heat transfer surface below the refrigerant supply guide immersed in the heat transfer surface, and the liquid level of the refrigerant under the liquid supply guide fluctuates and waves. start. At this time, the liquid level fluctuation of the liquid reservoir at the bottom of the evaporator propagates to the adjacent liquid reservoir, and when reflected back from the wall surface of the liquid reservoir, the liquid level fluctuation is amplified and returns to the top of the liquid supply guide plate. Come.

その結果、周期的に蒸発室下部の液溜めの冷媒が液供給ガイドの上に供給される。液供給ガイドの面から伝熱板の上方へはスリットによる表面張力によって吸い上げられる。その結果、伝熱面には下部からも、液供給ガイドの設けられた付近からも冷媒が表面張力で吸い上げられ、常時伝熱面全体に薄膜状に冷媒が供給され効率的な蒸発が行われる。さらに、サーバの負荷が大きくなり、最大付近では伝熱面下部の冷媒溜めに浸かった伝熱面付近で、更に爆発的な沸騰が生じると、液溜めの冷媒が急膨張する蒸気によって吹き飛ばされる。その時、一部は液供給ガイドに設ける蒸気通路から液供給ガイドの上に吹き出し、液供給ガイドに設ける側板の高さだけ冷媒が液供給ガイド上に溜まる。同時に伝熱面のスリットにかかるため伝熱面に薄膜状の液膜を形成し、効率良い蒸発が継続される。   As a result, the refrigerant in the liquid reservoir below the evaporation chamber is periodically supplied onto the liquid supply guide. From the surface of the liquid supply guide, it is sucked up by the surface tension by the slit from above the heat transfer plate. As a result, the refrigerant is sucked up by the surface tension from the lower part and the vicinity where the liquid supply guide is provided on the heat transfer surface, and the refrigerant is constantly supplied to the entire heat transfer surface in the form of a thin film so that efficient evaporation is performed. . Further, when the load on the server increases and near the maximum near the heat transfer surface immersed in the refrigerant reservoir below the heat transfer surface, further explosive boiling occurs, the refrigerant in the liquid reservoir is blown away by the rapidly expanding steam. At that time, a part of the liquid supply guide blows out from the vapor passage provided in the liquid supply guide onto the liquid supply guide, and the refrigerant accumulates on the liquid supply guide by the height of the side plate provided in the liquid supply guide. At the same time, since it is applied to the slit of the heat transfer surface, a thin liquid film is formed on the heat transfer surface, and efficient evaporation is continued.

また、サーマルコネクタに内蔵される蒸発器の伝熱板の蒸発面に高効率な伝熱フィン形状を有する金属板(例えば、多孔質沸騰伝熱面)を設けることで、効率良く蒸発器内の冷媒の蒸発を行うことができる。   Further, by providing a metal plate (for example, a porous boiling heat transfer surface) having a highly efficient heat transfer fin shape on the evaporation surface of the heat transfer plate of the evaporator built in the thermal connector, the inside of the evaporator can be efficiently obtained. The refrigerant can be evaporated.

また、蒸気管及び凝縮した冷媒の回収配管に水平面に対して傾斜を設けることで蒸発器からの蒸気のトップボックスへの上昇と、トップボックス内の凝縮器(熱交換器)で凝縮した冷媒の回収がスムースになる。さらに、サーバの稼働時に蒸発してトップボックス内の凝縮器内で凝縮して液化した冷媒の凝縮器内や蒸発器への回収の水平配管内への滞留が少なくなるので、蒸発器内の液面低下も少なくなり、伝熱面の乾きを防止できる。   In addition, the steam pipe and the condensed refrigerant recovery pipe are inclined with respect to the horizontal plane, so that the vapor from the evaporator rises to the top box and the refrigerant condensed in the condenser (heat exchanger) in the top box. Recovery is smooth. Further, since the refrigerant that has evaporated and condensed in the condenser in the top box in the operation of the server is less likely to stay in the condenser or in the horizontal piping for recovery to the evaporator, the liquid in the evaporator is reduced. Surface degradation is also reduced, and drying of the heat transfer surface can be prevented.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。
例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
In addition, this invention is not limited to an above-described Example, Various modifications are included.
For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

100 サーバラック
101 サーバユニット
102 マザーボード
103 CPU
104 第1気化型冷却装置(サーモサイフォン)
105 第2気化型冷却装置(サーマルハイウエイ)
106 サーマルコネクタ
107 トップボックス
108 第3水冷型冷却装置
109 屋外冷水機
110 サーモサイフォン蒸発器
111 サーモサイフォン凝縮器
112 蒸発器
115 伝熱板
132 液供給ガイド
133 金網
134 熱交換器
135 サーモサイフォン蒸気・液配管
136 サーモサイフォン蒸気・液配管(2)
137 トレイ
138 切欠
139 トレイ側板
140 蒸気・液配管
141 蒸気・液配管(2)
142 液溜めバッファ
143 スリット付伝熱板
144 蒸気・液配管開口部
145 冷却水流路
146 冷却水入口
147 冷却水出口
148 仕切り板
149 液溜め
150 側板
151 スリット
152 蒸気通路
153 蒸気の流れ
154 液の流れ
155 高性能伝熱面
156 液面
157 戻り液の流れ
158 変動液面
159 上方液流れ
160 横方向液流れ
100 server rack 101 server unit 102 motherboard 103 CPU
104 First evaporative cooling device (thermo siphon)
105 Second evaporative cooling device (thermal highway)
106 Thermal Connector 107 Top Box 108 Third Water Cooling Cooling Device 109 Outdoor Water Cooler 110 Thermosiphon Evaporator 111 Thermosiphon Condenser 112 Evaporator 115 Heat Transfer Plate 132 Liquid Supply Guide 133 Wire Mesh 134 Heat Exchanger 135 Thermosiphon Steam / Liquid Piping 136 Thermosiphon steam / liquid piping (2)
137 Tray 138 Notch 139 Tray side plate 140 Steam / liquid piping 141 Steam / liquid piping (2)
142 Liquid reservoir buffer 143 Heat transfer plate with slit 144 Steam / liquid piping opening 145 Cooling water flow path 146 Cooling water inlet 147 Cooling water outlet 148 Partition plate 149 Liquid reservoir 150 Side plate 151 Slit 152 Steam passage 153 Steam flow 154 Liquid flow 155 High Performance Heat Transfer Surface 156 Liquid Level 157 Return Liquid Flow 158 Fluctuating Liquid Level 159 Upper Liquid Flow 160 Lateral Liquid Flow

Claims (8)

サーバラックに設置されるサーバユニットのトレイ内に配置されるマザーボードのCPU等発熱素子の放熱部に設ける第一蒸発器と、
前記放熱部に着脱可能かつ伝熱可能に接続されるサーマルコネクタと、
前記トレイにトレイ外部の第二蒸発器を内蔵する前記サーマルコネクタと結合可能に固定される第一凝縮器と、
各々前記第一蒸発器と前記第一凝縮器とを接続する蒸気・冷媒配管とからなる第1の気化型冷却装置と、
外部から流入する冷水により冷却される第二凝縮器と、
前記サーマルコネクタ内の第二蒸発器と前記第二凝縮器とを接続する蒸気・冷媒配管からなる第2気化型冷却装置とを有し、
前記サーマルコネクタに内蔵する第二蒸発器において、一方の面が前記サーマルコネクタの伝熱面を形成し、反対の面が前記第二蒸発器内の蒸発面を形成する伝熱板を、前記第二蒸発器内に垂直に配置すると共に、前記伝熱板の前記蒸発面側の表面に表面張力により冷媒を吸い上げる垂直方向のスリットを設け、
前記冷媒を供給する液供給ガイドを前記冷媒の液面と前記蒸発面の高さ方向の間に液面と平行に設けることを特徴とする電子機器の冷却システム。
A first evaporator provided in a heat radiating portion of a heat generating element such as a CPU of a motherboard arranged in a tray of a server unit installed in a server rack;
A thermal connector that is detachably connected to the heat radiating portion and capable of transferring heat;
A first condenser fixed to the tray so as to be connectable to the thermal connector containing a second evaporator outside the tray;
A first evaporative cooling device comprising a vapor / refrigerant pipe each connecting the first evaporator and the first condenser;
A second condenser cooled by cold water flowing from the outside;
A second evaporative cooling device comprising a vapor / refrigerant pipe connecting the second evaporator and the second condenser in the thermal connector;
In the second evaporator built in the thermal connector, the first plate forms a heat transfer surface of the thermal connector, and the opposite surface forms a heat transfer plate in the second evaporator. A vertical slit is arranged in the two evaporators, and a vertical slit for sucking up the refrigerant by surface tension is provided on the surface of the heat transfer plate on the evaporation surface side,
A cooling system for an electronic device, wherein a liquid supply guide for supplying the refrigerant is provided between the liquid level of the refrigerant and a height direction of the evaporation surface in parallel with the liquid level.
請求項1において、
前記第2気化型冷却装置の第二蒸発器において、発生する蒸気の通路と第二凝縮器で液化する冷媒の回収通路を形成する蒸気・液配管の一方の開口部を前記液供給ガイドの上部に設けることを特徴とする電子機器の冷却システム。
In claim 1,
In the second evaporator of the second vaporization type cooling device, one opening of a steam / liquid pipe that forms a passage for the generated steam and a recovery passage for the refrigerant liquefied by the second condenser is provided above the liquid supply guide. A cooling system for electronic equipment, characterized in that the electronic equipment cooling system is provided.
請求項2において、
前記液供給ガイドの上面に金網を設けることを特徴とする電子機器の冷却システム。
In claim 2,
A cooling system for electronic equipment, wherein a metal mesh is provided on an upper surface of the liquid supply guide.
請求項1において、
前記液供給ガイドの拘束の無い部分に側板を設けることを特徴とする電子機器の冷却システム。
In claim 1,
A cooling system for electronic equipment, wherein a side plate is provided in an unconstrained portion of the liquid supply guide.
請求項1において、
前記液供給ガイドに蒸気通路を設けることを特徴とする電子機器の冷却システム。
In claim 1,
A cooling system for electronic equipment, wherein a vapor passage is provided in the liquid supply guide.
請求項1において、
前記サーマルコネクタ内に内蔵する第二蒸発器の隣に内部空間が連通する液溜めバッファを設けることを特徴とする電子機器の冷却システム。
In claim 1,
A cooling system for an electronic device, comprising a liquid reservoir buffer having an internal space communicating next to a second evaporator built in the thermal connector.
請求項6において、
前記第二蒸発器と前記液溜めバッファとの連通位置に連通部の断面を部分的に遮蔽する仕切り板を設けることを特徴とする電子機器の冷却システム。
In claim 6,
A cooling system for electronic equipment, wherein a partition plate for partially shielding a cross section of the communication portion is provided at a communication position between the second evaporator and the liquid storage buffer.
請求項1から7のいずれか1項において、
前記第2気化型冷却装置の前記サーマルコネクタに接続する水平な蒸気・冷媒配管と、トップボックス内の前記第二凝縮器に、水平面に対して傾斜を設けることを特徴とする電子機器の冷却システム。
In any one of Claims 1-7,
A cooling system for electronic equipment, characterized in that a horizontal steam / refrigerant pipe connected to the thermal connector of the second vaporization type cooling device and the second condenser in the top box are inclined with respect to a horizontal plane. .
JP2012046057A 2012-03-02 2012-03-02 Electronic equipment cooling system Expired - Fee Related JP5860728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012046057A JP5860728B2 (en) 2012-03-02 2012-03-02 Electronic equipment cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012046057A JP5860728B2 (en) 2012-03-02 2012-03-02 Electronic equipment cooling system

Publications (2)

Publication Number Publication Date
JP2013182439A JP2013182439A (en) 2013-09-12
JP5860728B2 true JP5860728B2 (en) 2016-02-16

Family

ID=49273038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012046057A Expired - Fee Related JP5860728B2 (en) 2012-03-02 2012-03-02 Electronic equipment cooling system

Country Status (1)

Country Link
JP (1) JP5860728B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012108110B4 (en) * 2012-08-31 2014-06-26 Rittal Gmbh & Co. Kg Cooling arrangement for arranged in an interior of a cabinet components
CN113163683B (en) * 2021-04-02 2023-05-30 西安易朴通讯技术有限公司 Liquid cooling heat dissipation equipment, cabinet and system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6643132B2 (en) * 2002-01-04 2003-11-04 Intel Corporation Chassis-level thermal interface component for transfer of heat from an electronic component of a computer system
JP2004363308A (en) * 2003-06-04 2004-12-24 Hitachi Ltd Rack-mounted server system
JP2008281253A (en) * 2007-05-09 2008-11-20 Denso Corp Cooling device
JP2010079401A (en) * 2008-09-24 2010-04-08 Hitachi Ltd Cooling system and electronic equipment using the same
CN102577654B (en) * 2009-09-29 2015-02-11 日本电气株式会社 Heat conveying structure for electronic device
JP2011142298A (en) * 2009-12-11 2011-07-21 Panasonic Corp Boiling cooler

Also Published As

Publication number Publication date
JP2013182439A (en) 2013-09-12

Similar Documents

Publication Publication Date Title
JP6015675B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME
CN107302839B (en) Make the system and method for Electronic cooling in the data center
US7936560B2 (en) Cooling device and electronic equipment including cooling device
US9250024B2 (en) Pump-enhanced, sub-cooling of immersion-cooling fluid
JP5824662B2 (en) Cooling device for cooling rack servers and data center equipped with the same
JP4997215B2 (en) Server device
WO2013018667A1 (en) Cooling device and electronic device using same
JP2020136335A (en) Cooling device, cooling system, and cooling method
US9696094B2 (en) Cooling unit
JP2007533944A (en) Thermosyphon-based thin cooling system for computers and other electronic equipment
JP5262473B2 (en) Electronic equipment and its components
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
JP2010079401A (en) Cooling system and electronic equipment using the same
JP2013007501A (en) Cooling device
US11754344B2 (en) Boiling cooler
JP2013033807A (en) Cooling device and electronic apparatus using the same
JP5860728B2 (en) Electronic equipment cooling system
JP2010080507A (en) Electronic apparatus
JP2018133529A (en) Cooling device
WO2015128951A1 (en) Semiconductor element cooling device and electronic apparatus
JP6197651B2 (en) Cooling system
WO2017208461A1 (en) Boiling cooling device and electronic device having same mounted thereon
WO2013073696A1 (en) Cooling device and electronic device using same
JP2015140949A (en) Cooling device and data center including the same
JP2016133230A (en) Heat radiator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R151 Written notification of patent or utility model registration

Ref document number: 5860728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees