JP5859948B2 - Electric washing machine - Google Patents

Electric washing machine Download PDF

Info

Publication number
JP5859948B2
JP5859948B2 JP2012247548A JP2012247548A JP5859948B2 JP 5859948 B2 JP5859948 B2 JP 5859948B2 JP 2012247548 A JP2012247548 A JP 2012247548A JP 2012247548 A JP2012247548 A JP 2012247548A JP 5859948 B2 JP5859948 B2 JP 5859948B2
Authority
JP
Japan
Prior art keywords
voltage
power supply
circuit
washing machine
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012247548A
Other languages
Japanese (ja)
Other versions
JP2014094165A (en
Inventor
宇 董
宇 董
相馬 倫弘
倫弘 相馬
小森 啓礼
啓礼 小森
一秀 糸澤
一秀 糸澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2012247548A priority Critical patent/JP5859948B2/en
Publication of JP2014094165A publication Critical patent/JP2014094165A/en
Application granted granted Critical
Publication of JP5859948B2 publication Critical patent/JP5859948B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)

Description

本発明は、電気洗濯機に係り、特に、洗濯槽を回転駆動する電動モータのブレーキ制御手段に関する。   The present invention relates to an electric washing machine, and more particularly to a brake control means for an electric motor that rotationally drives a washing tub.

特許文献1に記載されているように、商用電源から入力した交流電圧を全波整流回路で整流した後、平滑コンデンサで平滑化することにより、洗濯槽を回転駆動するブラシレスモータの直流電源を形成する直流電源形成手段を備えた電気洗濯機が従来知られている。直流電源形成手段にて形成された直流電源は、駆動制御回路(マイクロコンピュータ)からの指令信号によって駆動制御されるインバータ主回路を介して、ブラシレスモータの各巻線に供給される。   As described in Patent Document 1, a DC power source for a brushless motor that rotationally drives a washing tub is formed by rectifying an AC voltage input from a commercial power source with a full-wave rectifier circuit and then smoothing it with a smoothing capacitor. 2. Description of the Related Art Conventionally, an electric washing machine provided with a DC power source forming means is known. The direct current power generated by the direct current power generation means is supplied to each winding of the brushless motor via an inverter main circuit that is driven and controlled by a command signal from a drive control circuit (microcomputer).

また同じく特許文献1に記載されているように、脱水運転終了後のブレーキ制御時に、ブラシレスモータが発生する回生電力による平滑コンデンサの破損を防止するため、直流電源形成手段の出力側の直流電圧を検出する電圧検出手段と、ブレーキ制御時にブラシレスモータが発生する回生電力を調整する回生電力調整手段と、この回生電力の調整により直流電源形成手段の出力側の直流電圧を所定範囲内に制御する手段を含むブレーキ制御手段を備えてなる洗濯機が従来知られている。駆動制御回路は、電圧検出手段の電圧検出結果に基づいて回生電力が過大となったか否かを繰り返し判定する。そして、その電圧検出結果が基準電圧を超えたと判定したときには、回生電力調整手段によりブラシレスモータが発生する回生電力を調整する。よって、回生電力を常に一定に保つことができ、直流電源側の電気部品の破損を防止することができる(特許文献1の請求項1、段落0055〜0057、段落0065〜0067、図1参照。)。   Similarly, as described in Patent Document 1, in order to prevent the smoothing capacitor from being damaged by the regenerative power generated by the brushless motor at the time of brake control after the completion of the dehydrating operation, the DC voltage on the output side of the DC power supply forming means is Voltage detecting means for detecting, regenerative power adjusting means for adjusting regenerative power generated by the brushless motor during brake control, and means for controlling the DC voltage on the output side of the DC power source forming means within a predetermined range by adjusting the regenerative power A washing machine provided with a brake control means including The drive control circuit repeatedly determines whether or not the regenerative power has become excessive based on the voltage detection result of the voltage detection means. When it is determined that the voltage detection result exceeds the reference voltage, the regenerative power generated by the brushless motor is adjusted by the regenerative power adjusting means. Therefore, the regenerative power can always be kept constant, and the electrical components on the DC power supply side can be prevented from being damaged (see claim 1, paragraphs 0055 to 0057, paragraphs 0065 to 0067 of FIG. 1 and FIG. 1). ).

特開2003−225493号公報JP 2003-225493 A

ところで、電気洗濯機の直流電源形成手段としては、特許文献1にも記載されているように、倍電圧整流平滑回路が用いられる。これは、ブラシレスモータへの給電を制御するインバータ主回路を構成する各スイッチング素子に流れる電流値を約半分に抑え、各スイッチング素子の電力損失を低減するためである。この倍電圧整流平滑回路からなる電気洗濯機の直流電源形成手段においては、直流電源側の電気部品の破損を防止するための基準電圧が、概ね350Vに設定される。この基準電圧値は、ブラシレスモータの起動を確保すると共に、商用電源電圧の変動及び電圧検出手段による検出電圧のばらつきを考慮して決められるものである。   By the way, as described in Patent Document 1, a voltage doubler rectifying / smoothing circuit is used as the DC power source forming means of the electric washing machine. This is to reduce the power loss of each switching element by suppressing the current value flowing through each switching element constituting the inverter main circuit that controls power supply to the brushless motor to about half. In the DC power supply forming means of the electric washing machine comprising this voltage doubler rectifying and smoothing circuit, the reference voltage for preventing damage to the electrical components on the DC power supply side is set to approximately 350V. This reference voltage value is determined in consideration of fluctuations in the commercial power supply voltage and variations in the detection voltage by the voltage detection means while ensuring the start of the brushless motor.

図3に示すように、直流電源形成手段の出力側の直流電圧は、モータブレーキモード以外の通常運転モードでは常に商用電源電圧の2×√2倍で安定している。しかしながら、モータブレーキモードでは、モータ逆起電力により発生する回生電力を抑制しながらモータのブレーキ制御を行うため、図3に示すように、直流電源形成手段の出力側の直流電圧が基準電圧値である350Vまで上昇する。このとき、倍電圧整流平滑回路に備えられた2つの平滑コンデンサの両端にかかる電圧は、それぞれ基準電圧値(350V)の半分である175V程度となる。この状態になると、モータブレーキ中に一方の平滑コンデンサ(図2の平滑コンデンサ18b参照)の両端電圧が、直流電源形成手段の入力側の直流電圧(商用電源電圧の√2倍、商用電源電圧が100Vである場合には141V)より高くなるため、他方の平滑コンデンサ(図2の平滑コンデンサ18c参照)より放電が行われる。その放電は、当該他方の平滑コンデンサの両端に係る電圧が、商用電源電圧の直流整流電圧値(商用電源電圧の√2倍)になるまで行われる。   As shown in FIG. 3, the DC voltage on the output side of the DC power supply forming means is always stable at 2 × √2 times the commercial power supply voltage in the normal operation mode other than the motor brake mode. However, in the motor brake mode, since the brake control of the motor is performed while suppressing the regenerative power generated by the motor back electromotive force, the DC voltage on the output side of the DC power supply forming means is a reference voltage value as shown in FIG. It rises to a certain 350V. At this time, the voltage applied to both ends of the two smoothing capacitors provided in the voltage doubler rectifying and smoothing circuit is about 175 V, which is half of the reference voltage value (350 V). In this state, during motor braking, the voltage across one smoothing capacitor (see smoothing capacitor 18b in FIG. 2) becomes DC voltage on the input side of the DC power supply forming means (√2 times the commercial power supply voltage, the commercial power supply voltage is When the voltage is 100 V, the voltage is higher than 141 V), so that the other smoothing capacitor (see the smoothing capacitor 18 c in FIG. 2) discharges. The discharge is performed until the voltage applied to both ends of the other smoothing capacitor reaches the DC rectified voltage value of the commercial power supply voltage (√2 times the commercial power supply voltage).

このため、一方の平滑コンデンサの両端にかかる電圧は、図5に示すように、基準電圧値である350Vから商用電源電圧の直流整流電圧値(商用電源電圧の√2倍)を引いた電圧値になる。特に、商用電源電圧が低い時には、前記一方の平滑コンデンサの両端にかかる電圧がさらに高くなる。したがって、少なくとも前記一方の平滑コンデンサについては、部品寿命を確保するため及び直流電源形成手段の安全性を考慮して、定格電圧の高いものを採用せざるを得ず、洗濯機がコスト高になったり、制御基板の実装面積が増加して制御基板の設定が困難になるなどの問題を生じる。   For this reason, as shown in FIG. 5, the voltage applied to both ends of one smoothing capacitor is a voltage value obtained by subtracting the DC rectified voltage value of the commercial power supply voltage (√2 times the commercial power supply voltage) from the reference voltage value of 350V. become. In particular, when the commercial power supply voltage is low, the voltage applied to both ends of the one smoothing capacitor is further increased. Therefore, for at least one of the smoothing capacitors, in order to ensure the life of the parts and considering the safety of the DC power source forming means, it is unavoidable to use one having a high rated voltage, which increases the cost of the washing machine. Or the mounting area of the control board increases, making it difficult to set the control board.

本発明は、上述した従来技術の問題点に鑑みてなされたものであり、その目的は、直流電源形成手段に備えられる平滑コンデンサの両端にかかる電圧を抑制し、定格電圧の低い平滑コンデンサの採用を可能にすることを課題とする。   The present invention has been made in view of the above-described problems of the prior art, and its purpose is to suppress the voltage applied to both ends of the smoothing capacitor provided in the DC power supply forming means and to employ a smoothing capacitor having a low rated voltage. The challenge is to make this possible.

本発明は、前記課題を解決するため、洗濯物を入れる洗濯槽と、前記洗濯槽を回転駆動する電動モータと、商用電源から入力した交流電圧を整流して平滑コンデンサで平滑化することにより主回路用直流電源電圧を生成する主回路用直流電源発生回路と、前記主回路用直流電源発生回路の出力側の直流電圧値を監視する直流電源電圧監視回路と、前記主回路用直流電源発生回路の出力電圧を電源として前記電動モータへの給電を制御するインバータ回路と、前記インバータ回路を介して前記電動モータの駆動制御及びブレーキ制御を行う制御装置とを備えた電気洗濯機において、前記制御装置は、前記電動モータのブレーキ制御に先立ち、前記商用電源の電圧値に応じた制限電圧閾値の設定を行い、前記直流電源電圧監視回路により検出される直流電圧値が先に設定された制限電圧閾値を超えないように、前記インバータ回路を介して前記電動モータのブレーキ制御を行うことを特徴とする。   In order to solve the above-mentioned problems, the present invention mainly provides a washing tub for putting laundry, an electric motor for rotationally driving the washing tub, and an AC voltage input from a commercial power source and rectified and smoothed by a smoothing capacitor. DC power supply generation circuit for main circuit for generating DC power supply voltage for circuit, DC power supply voltage monitoring circuit for monitoring the DC voltage value on the output side of DC power supply generation circuit for main circuit, and DC power supply generation circuit for main circuit An electric washing machine comprising: an inverter circuit that controls power feeding to the electric motor using the output voltage of the power supply; and a control device that performs drive control and brake control of the electric motor via the inverter circuit. Prior to brake control of the electric motor, a limit voltage threshold is set according to the voltage value of the commercial power supply, and is detected by the DC power supply voltage monitoring circuit. As the DC voltage value does not exceed the limit voltage threshold set previously, and performs brake control of the electric motor via the inverter circuit.

制限電圧閾値を一定値に設定するのではなく、商用電源電圧に合わせた電圧値に設定することで、主回路用直流電源発生回路電圧と、倍電圧整流平滑用のコンデンサの両端にかかる電圧を抑えることができる。よって、倍電圧整流平滑用のコンデンサとして、従来よりも定格電圧の低い電解コンデンサを採用することが可能となり、電気洗濯機の原価低減と制御基板実装面積の削減を実現できる。   Rather than setting the limit voltage threshold to a constant value, the voltage applied to both ends of the DC power supply circuit voltage for main circuit and the voltage doubler rectifying and smoothing capacitor is set by setting the voltage value to match the commercial power supply voltage. Can be suppressed. Therefore, it is possible to employ an electrolytic capacitor having a lower rated voltage than the conventional capacitor for voltage doubler rectification smoothing, and it is possible to reduce the cost of the electric washing machine and the control board mounting area.

実施形態に係る電気洗濯機の縦断面図である。It is a longitudinal cross-sectional view of the electric washing machine which concerns on embodiment. 実施形態に係る電気洗濯機のモータ駆動回路を示す回路図である。It is a circuit diagram which shows the motor drive circuit of the electric washing machine which concerns on embodiment. 実施形態に係る電気洗濯機の運転モードの変化に伴う主回路用直流電源発生回路の出力側の電圧変化を示すグラフ図である。It is a graph which shows the voltage change by the side of the output of the direct-current power generation circuit for main circuits accompanying the change of the operation mode of the electric washing machine which concerns on embodiment. 実施形態に係る電気洗濯機の効果を示すグラフ図である。It is a graph which shows the effect of the electric washing machine which concerns on embodiment. 従来例に係る電気洗濯機の問題点を示すグラフ図である。It is a graph which shows the problem of the electric washing machine which concerns on a prior art example.

以下、本発明に係る電気洗濯機の実施形態を、図面を参照して説明する。   Hereinafter, an electric washing machine according to an embodiment of the present invention will be described with reference to the drawings.

図1に示すように、実施形態に係る電気洗濯機は、外枠1の内部に複数のサスペンション2を介して、外槽3が設置されている。また、この外槽3内には、洗濯兼脱水槽である洗濯槽4が回転可能に設置されており、この洗濯槽4内の底部には、撹拌翼5が回転可能に設置されている。洗濯槽4と撹拌翼5は、外槽3を貫通させた同心の2重軸の内端に結合されており、外槽3の外側に取り付けた主駆動装置6のモータによって回転される。   As shown in FIG. 1, in the electric washing machine according to the embodiment, an outer tub 3 is installed in the outer frame 1 via a plurality of suspensions 2. A washing tub 4 as a washing / dehydrating tub is rotatably installed in the outer tub 3, and a stirring blade 5 is rotatably installed at the bottom of the washing tub 4. The washing tub 4 and the stirring blade 5 are coupled to the inner end of a concentric double shaft passing through the outer tub 3, and are rotated by the motor of the main drive device 6 attached to the outside of the outer tub 3.

主駆動装置6は、直流ブラシレスモータ(電動モータ)とクラッチ機構と減速歯車機構を備えており、洗濯工程および乾燥工程では、洗濯槽4を静止させた状態で撹拌翼5を緩速回転駆動し、脱水工程では、洗濯槽4と撹拌翼5を一体的に高速回転駆動する。   The main drive device 6 includes a direct current brushless motor (electric motor), a clutch mechanism, and a reduction gear mechanism. In the washing process and the drying process, the stirring blade 5 is driven to rotate at a slow speed while the washing tub 4 is stationary. In the dehydration step, the washing tub 4 and the stirring blade 5 are integrally rotated at a high speed.

外枠1の上端には、衣類投入口7aを有するトップカバー7を固着されており、衣類投入口7aは、外蓋8によって開閉自在に覆われている。トップカバー7内の前部には、指示入力スイッチ群及び表示素子群を備えた操作基板9、制御基板10及び水位センサ11等を収納し、トップカバー7内の後部には、給水電磁弁12や図示しない風呂水給水ポンプ等を収納する。   A top cover 7 having a garment input port 7 a is fixed to the upper end of the outer frame 1, and the garment input port 7 a is covered with an outer lid 8 so as to be freely opened and closed. An operation board 9 having an instruction input switch group and a display element group, a control board 10, a water level sensor 11 and the like are housed in the front part in the top cover 7, and a water supply electromagnetic valve 12 is placed in the rear part in the top cover 7. Or a bath water supply pump (not shown).

外槽3の下部に設けたエアトラップ3aは、エアチューブ13を介して水位センサ11に接続されており、排水口3bは、排水電磁弁14を介して排水ホース15に接続されている。なお、乾燥機能付きの電気洗濯機については、外槽3の底部側壁に排気口を形成し、外槽3内の空気を空気循環ファンにより吸い出して、冷却除湿した後に加熱して洗濯槽4の上方から該洗濯槽4内に吹き込む乾燥空気循環系(図示省略)が備えられる。   The air trap 3 a provided at the lower part of the outer tub 3 is connected to the water level sensor 11 via the air tube 13, and the drain port 3 b is connected to the drain hose 15 via the drain electromagnetic valve 14. In addition, about the electric washing machine with a drying function, an exhaust port is formed in the bottom side wall of the outer tub 3, the air in the outer tub 3 is sucked out by an air circulation fan, cooled and dehumidified, and then heated to heat the washing tub 4. A dry air circulation system (not shown) that blows into the washing tub 4 from above is provided.

次に、図2を用いて、主駆動装置6に備えられた直流ブラシレスモータの駆動回路について説明する。このモータ駆動回路は、主として主制御基板10に実装される。   Next, a drive circuit for a DC brushless motor provided in the main drive device 6 will be described with reference to FIG. This motor drive circuit is mainly mounted on the main control board 10.

図2に示すように、本例のモータ駆動回路は、主駆動装置6に備えられた直流ブラシレスモータ6aに給電するインバータ回路17と、インバータ回路17の直流電源となる主回路用直流電源発生回路18と、主回路用直流電源発生回路18の出力側の直流電圧値を監視する直流電源電圧監視回路19と、給水電磁弁等の電気負荷を制御する回路(図示省略)に給電する制御回路用直流源発生回路22と、商用電源21の交流電圧値及び直流電源電圧監視回路19から出力される直流監視電圧値に基づいて直流ブラシレスモータ6aの駆動制御を行うマイクロコンピュータ(制御装置)20を備えている。   As shown in FIG. 2, the motor drive circuit of this example includes an inverter circuit 17 that supplies power to a DC brushless motor 6 a provided in the main drive device 6, and a DC power supply generation circuit for a main circuit that serves as a DC power supply for the inverter circuit 17. 18, a DC power supply voltage monitoring circuit 19 for monitoring the DC voltage value on the output side of the DC power supply generation circuit 18 for the main circuit, and a control circuit for supplying power to a circuit (not shown) for controlling an electric load such as a water supply solenoid valve A DC source generation circuit 22 and a microcomputer (control device) 20 that controls the driving of the DC brushless motor 6a based on the AC voltage value of the commercial power supply 21 and the DC monitoring voltage value output from the DC power supply voltage monitoring circuit 19 are provided. ing.

主回路用直流電源発生回路18は、倍電圧整流平滑回路を構成するように接続した整流ダイオードブリッジ回路18aと、該整流ダイオードブリッジ回路18aの直流端子から出力する整流脈動電圧を平滑して得た直流電圧にする平滑コンデンサ18b、18cを備える。整流ダイオードブリッジ回路18aの交流端子は、常開の電源リレー接点(図示省略)を介して商用交流電源21に接続されている。   The DC power generation circuit for main circuit 18 is obtained by smoothing a rectifying diode bridge circuit 18a connected so as to constitute a voltage doubler rectifying / smoothing circuit and a rectified pulsation voltage output from the DC terminal of the rectifying diode bridge circuit 18a. Smoothing capacitors 18b and 18c for making a DC voltage are provided. The AC terminal of the rectifier diode bridge circuit 18a is connected to the commercial AC power supply 21 via a normally open power relay contact (not shown).

直流電源電圧監視回路19は、主回路用直流電源発生回路18の出力側の直流電圧を分圧する2つの抵抗器19a、19bを備える。マイクロコンピュータ20は、この直流電源電圧監視回路19から出力される電圧アナログ値を読み取り、常にモータ駆動用主回路直流電源電圧を監視する。   The DC power supply voltage monitoring circuit 19 includes two resistors 19 a and 19 b that divide the DC voltage on the output side of the main circuit DC power supply generation circuit 18. The microcomputer 20 reads the voltage analog value output from the DC power supply voltage monitoring circuit 19 and always monitors the motor drive main circuit DC power supply voltage.

制御回路用直流電源発生回路22は、商用電源21を半波整流する半波整流ダオード22aと、半波整流ダイオード22aを通して出力する半波整流の脈動電圧を平滑して直流電圧にする平滑用電解コンデンサ22bと、電圧変換回路であるスイッチング電源回路22cと、DC−DCコンバータ回路22dとを備える。   The control circuit DC power supply generation circuit 22 smoothes the half-wave rectifier diode 22a for half-wave rectifying the commercial power supply 21 and the half-wave rectification pulsating voltage output through the half-wave rectifier diode 22a to make the DC voltage smooth. A capacitor 22b, a switching power supply circuit 22c that is a voltage conversion circuit, and a DC-DC converter circuit 22d are provided.

本構成のモータ駆動回路は、商用電源21から主回路用直流電源発生回路18の整流ダイオードブリッジ18aに商用交流電圧を供給し、整流ダイオードブリッジ18aは交流電圧を整流して平滑コンデンサ18bと18cをそれぞれ充電するため、商用電源電圧のほぼ2倍になる直流電圧を生成する。そして、インバータ回路17に安定した所定の直流電圧を供給する状態となり、洗濯,脱水,乾燥の工程制御が可能な状態となる。   The motor drive circuit of this configuration supplies a commercial AC voltage from the commercial power source 21 to the rectifier diode bridge 18a of the DC power generation circuit 18 for the main circuit, and the rectifier diode bridge 18a rectifies the AC voltage to provide smoothing capacitors 18b and 18c. In order to charge each, a DC voltage that is almost twice the commercial power supply voltage is generated. And it will be in the state which supplies the predetermined DC voltage stable to the inverter circuit 17, and will be in the state in which washing, dehydration, and drying process control are possible.

先に説明したように、モータブレーキモード以外の洗濯、乾燥及び脱水回転等の通常運転モードにおいては、主回路用直流電源発生回路18に備えられた倍電圧整流平滑用の電解コンデンサ18b及び18cと、制御回路用直流源発生回路22に備えられた平滑用の電解コンデンサ22bとは、商用電源21より電圧を供給され、モータや制御回路の負荷電流の増加により多少電圧低下しても、それぞれの端子電圧がほぼ商用電源電圧の√2倍に安定している(図3参照)。   As described above, in the normal operation mode such as washing, drying, and spin-drying rotation other than the motor brake mode, electrolytic capacitors 18b and 18c for voltage doubler rectification smoothing provided in the DC power generation circuit for main circuit 18 The smoothing electrolytic capacitor 22b provided in the control circuit DC source generation circuit 22 is supplied with a voltage from the commercial power supply 21, and even if the voltage drops slightly due to an increase in the load current of the motor or control circuit, The terminal voltage is stable to approximately √2 times the commercial power supply voltage (see FIG. 3).

これに対して、モータブレーキモードにおいては、減速により直流ブラシレスモータ6aが発電機として動作するため、その回転動作エネルギーが回生電力に変換され、その回生電力が直流ブラシレスモータ6a側からインバータ回路17を介して、主回路用直流電源発生回路18に流れ込む。主回路用直流電源発生回路18に流れ込んだ回生電力は、倍電圧整流平滑用の電解コンデンサ18bと18cにチャージし、電解コンデンサ18bと18cの端子電圧が上昇する。そのため、マイクロコンピュータ20は、主回路用直流電源発生回路18に備えられた整流ダイオード18a及び電解コンデンサ18b、18cと、インバータ回路17を構成するインバータ素子を過電圧から守るため、設定した制限電圧を目標に主回路の直流電圧を抑制しながら、直流ブラシレスモータ6aの減速制御を行う。減速制御の原理は、特許文献1に記載されている通りである。   On the other hand, in the motor brake mode, since the DC brushless motor 6a operates as a generator due to deceleration, the rotational operation energy is converted into regenerative power, and the regenerative power is supplied to the inverter circuit 17 from the DC brushless motor 6a side. To the main circuit DC power supply generation circuit 18. The regenerative power flowing into the main circuit DC power generation circuit 18 charges the electrolytic capacitors 18b and 18c for voltage doubler rectification and smoothing, and the terminal voltages of the electrolytic capacitors 18b and 18c rise. Therefore, the microcomputer 20 sets the target limit voltage to protect the rectifier diode 18a and the electrolytic capacitors 18b and 18c provided in the main circuit DC power generation circuit 18 and the inverter elements constituting the inverter circuit 17 from overvoltage. In addition, the DC brushless motor 6a is decelerated while suppressing the DC voltage of the main circuit. The principle of deceleration control is as described in Patent Document 1.

実施形態に係る電気洗濯機の特徴は、直流ブラシレスモータ6aを減速制御する際の制限電圧(制限電圧閾値)を、商用電源21の電圧値に応じて可変に設定する点にある。即ち、モータブレーキ時に電解コンデンサ18bの両端にかかる電圧は、制限電圧閾値Vs(350V)から商用電源電圧の直流整流電圧値を引いた電圧値であることから、下記の式1により電解コンデンサ18bの両端にかかる電圧が求められる。   A feature of the electric washing machine according to the embodiment is that a limit voltage (limit voltage threshold) when the DC brushless motor 6a is controlled to be decelerated is variably set according to the voltage value of the commercial power source 21. That is, the voltage applied to both ends of the electrolytic capacitor 18b during motor braking is a voltage value obtained by subtracting the DC rectified voltage value of the commercial power supply voltage from the limit voltage threshold Vs (350V). The voltage across both ends is required.

Vc1=Vs−Vac×√2 式1
そこで、電解コンデンサ18bの両端に印加する電圧が制限電圧閾値と商用電源電圧に関係するため、電解コンデンサ18bの両端に係る電圧値Vc1を抑えるには、制限電圧閾値Vsも商用電源電圧に応じて変動させて設定することが有効である。
Vc1 = Vs−Vac × √2 Equation 1
Therefore, since the voltage applied to both ends of the electrolytic capacitor 18b is related to the limit voltage threshold and the commercial power supply voltage, in order to suppress the voltage value Vc1 related to both ends of the electrolytic capacitor 18b, the limit voltage threshold Vs also depends on the commercial power supply voltage. It is effective to set by changing.

即ち、上述したように、モータブレーキモード以外のモータ通常回転モードでは、倍電圧整流平滑回路に備えられた電解コンデンサ18b、18cの両端にそれぞれ印加される電圧は、およそ商用電源電圧の整流した後に得た直流電圧になることから、日本国内の商用電源電圧仕様及び電解コンデンサの寿命を維持するための定格電圧に対するディレーティング率を考慮し、電解コンデンサ18b、18cの定格電圧は、200V程度とすることが妥当である。一方、モータブレーキモードにおいて、商用電源電圧が変動した場合でも、電解コンデンサ18b両端に印加する電圧を、通常運転モードと同様に、定格電圧200Vに対して電解コンデンサ18b、18cの寿命を維持するため、制限電圧閾値Vsを、ディレーティング率を考慮して、下記の式2で求められる電圧値に設定する。   That is, as described above, in the normal motor rotation mode other than the motor brake mode, the voltage applied to both ends of the electrolytic capacitors 18b and 18c provided in the voltage doubler rectifying and smoothing circuit is approximately after the commercial power supply voltage is rectified. Since the obtained DC voltage is obtained, the rated voltage of the electrolytic capacitors 18b and 18c is set to about 200 V in consideration of the commercial power supply voltage specification in Japan and the derating rate with respect to the rated voltage for maintaining the life of the electrolytic capacitor. It is reasonable. On the other hand, in the motor brake mode, even when the commercial power supply voltage fluctuates, the voltage applied to both ends of the electrolytic capacitor 18b is maintained at the rated voltage of 200V for the life of the electrolytic capacitors 18b and 18c as in the normal operation mode. The limit voltage threshold Vs is set to a voltage value obtained by the following equation 2 in consideration of the derating rate.

Vs=180V+Vac×√2 式2
つまり、図4に示すように、商用電源電圧が高い場合には、制限電圧閾値Vsを高く設定し、商用電源電圧が低い場合には、制限電圧閾値Vsを低く設定する。これにより、モータブレーキモードにおける直流ブラシレスモータ6aの回生電力を抑制できると共に、主回路用直流電源発生回路18に備えられる平滑用電解コンデンサ18bの両端にかかる電圧を抑えることができる。
Vs = 180V + Vac × √2 Equation 2
That is, as shown in FIG. 4, when the commercial power supply voltage is high, the limit voltage threshold Vs is set high, and when the commercial power supply voltage is low, the limit voltage threshold Vs is set low. Thereby, the regenerative power of the DC brushless motor 6a in the motor brake mode can be suppressed, and the voltage applied to both ends of the smoothing electrolytic capacitor 18b provided in the main circuit DC power generation circuit 18 can be suppressed.

なお、制限電圧閾値Vsの設定は、ノイズの影響を除外するため、直流ブラシレスモータ6aを脱水モードで回転する直前で行うことが望ましい。マイクロコンピュータ20は、このタイミングで直流電源電圧監視回路19から読み取った数値に基づいて商用電源電圧Vacを算出し、得られた商用電源電圧Vacを式2に代入して、制限電圧閾値Vsを算出する。   The limit voltage threshold Vs is preferably set immediately before the DC brushless motor 6a is rotated in the dewatering mode in order to eliminate the influence of noise. The microcomputer 20 calculates the commercial power supply voltage Vac based on the numerical value read from the DC power supply voltage monitoring circuit 19 at this timing, and substitutes the obtained commercial power supply voltage Vac into Equation 2 to calculate the limit voltage threshold Vs. To do.

一方、モータブレーキ時には、直流ブラシレスモータ6aが発生する回生電力が電解コンデンサ18b、18cにチャージされ、各電解コンデンサの端子電圧が上昇するため、電解コンデンサ18cの端子電圧が制御回路用直流電源発生回路22の平滑用電解コンデンサ22bよりも高くなり、ダイオード22aが開放状態になる。これにより、電解コンデンサ18cより電解コンデンサ22bに充電する経路ができるので、電解コンデンサ18cの両端電圧が、商用電源電圧の√2倍、即ち、Vac×√2で安定する。このとき、電解コンデンサ18bの両端電圧は、制限電圧閾値Vsと電解コンデンサ18cの差分である約180Vとなり、定格電圧(200V)以下となる。よって、倍電圧整流平滑用の電解コンデンサ18b、18cとして、従来よりも定格電圧の低いものを採用することが可能となり、電気洗濯機の原価低減と制御基板実装面積の削減を実現できる。   On the other hand, at the time of motor braking, the regenerative power generated by the DC brushless motor 6a is charged in the electrolytic capacitors 18b and 18c, and the terminal voltage of each electrolytic capacitor rises, so that the terminal voltage of the electrolytic capacitor 18c becomes the DC power generation circuit for the control circuit. 22 is higher than the smoothing electrolytic capacitor 22b, and the diode 22a is opened. As a result, a path for charging the electrolytic capacitor 22b from the electrolytic capacitor 18c is formed, so that the voltage across the electrolytic capacitor 18c is stabilized at √2 times the commercial power supply voltage, that is, Vac × √2. At this time, the voltage across the electrolytic capacitor 18b is about 180V, which is the difference between the limit voltage threshold Vs and the electrolytic capacitor 18c, and is equal to or lower than the rated voltage (200V). Therefore, it is possible to employ electrolytic capacitors 18b and 18c for voltage doubler rectification smoothing that have a lower rated voltage than the conventional ones, and it is possible to reduce the cost of the electric washing machine and the control board mounting area.

また仮に、ブレーキ中に商用電源電圧が(±10%)変動した場合、特に商用電源電圧が低くなった場合でも、電解コンデンサ18bの両端電圧は高くなるが、定格電圧よりオーバーすることなく、使用寿命の低下には至らない。   Also, if the commercial power supply voltage fluctuates (± 10%) during braking, even if the commercial power supply voltage is low, the voltage across the electrolytic capacitor 18b increases, but it does not exceed the rated voltage. The life is not reduced.

本発明は、洗濯槽を横軸や斜め軸に設置すると共に、撹拌翼を省略したドラム式の電気洗濯機にもそのまま適用することができる。   The present invention can be directly applied to a drum-type electric washing machine in which a washing tub is installed on a horizontal axis or an oblique axis and a stirring blade is omitted.

本例の電気洗濯機は、モータブレーキ時の制限電圧閾値Vsを一定値ではなく、商用電源21の交流電圧値Vacに応じた電圧値に設定するので、主回路用直流電源発生回路18の直流電圧と、倍電圧整流平滑用の電解コンデンサ18b両端にかかる電圧を抑えることができる。よって、定格電圧の低い電子部品(電解コンデンサ)の採用が可能となり、電気洗濯機の原価低減と、部品サイズの小型化による制御基板実装面積の削減を実現することができる。   In the electric washing machine of this example, the limit voltage threshold Vs during motor braking is set to a voltage value corresponding to the AC voltage value Vac of the commercial power supply 21 instead of a constant value. The voltage and the voltage applied to both ends of the electrolytic capacitor 18b for voltage doubler rectification smoothing can be suppressed. Therefore, it is possible to employ an electronic component (electrolytic capacitor) having a low rated voltage, and it is possible to reduce the cost of the electric washing machine and reduce the control board mounting area by reducing the component size.

1 外枠
2 サスペンション
3 外槽
3a エアトラップ
3b 排水口
4 洗濯槽
5 撹拌翼
6 主駆動装置
6a 直流ブラシレスモータ
7 トップカバー
7a 衣類投入口
8 外蓋
9 操作基板
10 制御基板
11 水位センサ
12 給水電磁弁
13 エアチューブ
14 排水電磁弁
15 排水ホース
17 インバータ回路
18 主回路用直流電源発生回路
18a 整流ダイオードブリッジ回路
18b、18c 平滑コンデンサ(電解コンデンサ)
19 直流電源電圧監視回路
19a、19b 抵抗器
20 マイクロコンピュータ(制御装置)
21 商用電源
22 制御回路用直流源発生回路
22a 半波整流ダオード
22b 平滑コンデンサ(電解コンデンサ)
22c スイッチング電源回路
22d DC−DCコンバータ回路
DESCRIPTION OF SYMBOLS 1 Outer frame 2 Suspension 3 Outer tub 3a Air trap 3b Drain port 4 Washing tub 5 Stirring blade 6 Main drive device 6a DC brushless motor 7 Top cover 7a Clothing input port 8 Outer lid 9 Operation board 10 Control board 11 Water level sensor 12 Water supply electromagnetic Valve 13 Air tube 14 Drain solenoid valve 15 Drain hose 17 Inverter circuit 18 DC power generation circuit for main circuit 18a Rectifier diode bridge circuit 18b, 18c Smoothing capacitor (electrolytic capacitor)
19 DC power supply voltage monitoring circuit 19a, 19b Resistor 20 Microcomputer (control device)
21 Commercial Power Supply 22 DC Source Generation Circuit for Control Circuit 22a Half-wave Rectifier Diode 22b Smoothing Capacitor (Electrolytic Capacitor)
22c switching power supply circuit 22d DC-DC converter circuit

Claims (2)

洗濯物を入れる洗濯槽と、前記洗濯槽を回転駆動する電動モータと、商用電源から入力した交流電圧を整流して平滑コンデンサで平滑化することにより主回路用直流電源電圧を生成する主回路用直流電源発生回路と、前記主回路用直流電源発生回路の出力側の直流電圧値を監視する直流電源電圧監視回路と、前記主回路用直流電源発生回路の出力電圧を電源として前記電動モータへの給電を制御するインバータ回路と、前記インバータ回路を介して前記電動モータの駆動制御及びブレーキ制御を行う制御装置とを備えた電気洗濯機において、
前記制御装置は、前記電動モータのブレーキ制御に先立ち、前記商用電源の電圧値に応じた制限電圧閾値の設定を行い、前記直流電源電圧監視回路により検出される直流電圧値が先に設定された制限電圧閾値を超えないように、前記インバータ回路を介して前記電動モータのブレーキ制御を行うことを特徴とする電気洗濯機。
For a main circuit that generates a DC power supply voltage for a main circuit by rectifying an AC voltage input from a commercial power source and smoothing it with a smoothing capacitor, a washing tub for storing laundry, an electric motor for rotationally driving the laundry tub DC power supply generation circuit, DC power supply voltage monitoring circuit for monitoring the DC voltage value on the output side of the main circuit DC power supply generation circuit, and the output voltage of the main circuit DC power supply generation circuit as a power source to the electric motor In an electric washing machine comprising an inverter circuit that controls power feeding, and a control device that performs drive control and brake control of the electric motor via the inverter circuit,
Prior to brake control of the electric motor, the control device sets a limit voltage threshold corresponding to the voltage value of the commercial power supply, and the DC voltage value detected by the DC power supply voltage monitoring circuit is set first. An electric washing machine that performs brake control of the electric motor through the inverter circuit so as not to exceed a limit voltage threshold.
請求項1に記載の電気洗濯機において、
前記制限電圧閾値の設定は、前記制御装置からの指令により前記電動モータを脱水モードで回転駆動する直前に行うことを特徴とする電気洗濯機。
In the electric washing machine according to claim 1 ,
The limit voltage threshold is set immediately before the electric motor is rotationally driven in a dehydration mode in accordance with a command from the control device.
JP2012247548A 2012-11-09 2012-11-09 Electric washing machine Expired - Fee Related JP5859948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012247548A JP5859948B2 (en) 2012-11-09 2012-11-09 Electric washing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012247548A JP5859948B2 (en) 2012-11-09 2012-11-09 Electric washing machine

Publications (2)

Publication Number Publication Date
JP2014094165A JP2014094165A (en) 2014-05-22
JP5859948B2 true JP5859948B2 (en) 2016-02-16

Family

ID=50937800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012247548A Expired - Fee Related JP5859948B2 (en) 2012-11-09 2012-11-09 Electric washing machine

Country Status (1)

Country Link
JP (1) JP5859948B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3162942B1 (en) * 2015-10-26 2021-06-30 Electrolux Appliances Aktiebolag Laundry treating machine and method for determining the amount of laundry loaded in a rotating drum of a laundry treating machine
DE102019212969A1 (en) * 2019-08-29 2021-03-04 BSH Hausgeräte GmbH Laundry care device with DC motor and converter electronics

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001046777A (en) * 1999-08-10 2001-02-20 Hitachi Ltd Electric washing machine
JP2003326086A (en) * 2002-05-14 2003-11-18 Matsushita Electric Ind Co Ltd Washing machine
JP3841412B2 (en) * 2003-02-17 2006-11-01 株式会社東芝 Washing machine
JP2005261957A (en) * 2005-04-08 2005-09-29 Sharp Corp Inverter washing machine
JP5092328B2 (en) * 2006-09-26 2012-12-05 ブラザー工業株式会社 Motor control device and motor control method
US20100024137A1 (en) * 2008-08-01 2010-02-04 Myong Hum Im Washing machine and washing method therefor
JP2012055402A (en) * 2010-09-07 2012-03-22 Panasonic Corp Washing machine

Also Published As

Publication number Publication date
JP2014094165A (en) 2014-05-22

Similar Documents

Publication Publication Date Title
KR20140045713A (en) Laundry treatment machine and the method for operating the same
JP5575423B2 (en) Motor drive device for washing machine
JP5859948B2 (en) Electric washing machine
JP2011205723A (en) Drum washing machine
US20210317834A1 (en) Drain pump driving apparatus and laundry treatment machine including the same
JP5097072B2 (en) Drum washing machine
JP2008018131A (en) Electric washing machine
JP4528139B2 (en) Electric washing machine
JP4969924B2 (en) Washing and drying machine
JP6605836B2 (en) Motor drive device for washing machine
US11952698B2 (en) Laundry treatment machine
KR102161630B1 (en) Motor drive apparatus performing regenerative breaking
JP2017213115A (en) Electric washing machine
JP2014045836A (en) Drum type washing machine
JP4985687B2 (en) Drum washing machine
JP2021093778A (en) Inverter device and washing machine
JP2012196398A (en) Drum-type washing machine
US11739459B2 (en) Laundry treatment machine
US11718946B2 (en) Laundry treatment machine
JP2003340192A (en) Fully automatic washer-dryer
JP2006204714A (en) Washing and drying machine
JP7352771B2 (en) washing machine
JP3475863B2 (en) Electric washing machine
JP3593243B2 (en) Drum type washing machine
JP6713753B2 (en) Washing machine controller and washing machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151217

R150 Certificate of patent or registration of utility model

Ref document number: 5859948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees