JP5859755B2 - Piezoelectric element - Google Patents

Piezoelectric element Download PDF

Info

Publication number
JP5859755B2
JP5859755B2 JP2011144660A JP2011144660A JP5859755B2 JP 5859755 B2 JP5859755 B2 JP 5859755B2 JP 2011144660 A JP2011144660 A JP 2011144660A JP 2011144660 A JP2011144660 A JP 2011144660A JP 5859755 B2 JP5859755 B2 JP 5859755B2
Authority
JP
Japan
Prior art keywords
protective layer
piezoelectric
piezoelectric element
stress relaxation
lead member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011144660A
Other languages
Japanese (ja)
Other versions
JP2013012600A (en
Inventor
稲田 豊
豊 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd filed Critical Nihon Ceratec Co Ltd
Priority to JP2011144660A priority Critical patent/JP5859755B2/en
Publication of JP2013012600A publication Critical patent/JP2013012600A/en
Application granted granted Critical
Publication of JP5859755B2 publication Critical patent/JP5859755B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、矩形に形成され、電圧の印加により伸縮する積層型の圧電素子に関する。   The present invention relates to a laminated piezoelectric element that is formed in a rectangular shape and expands and contracts when a voltage is applied.

積層型圧電アクチュエータは、内部電極が重なっている部分、すなわち活性部のみが圧電効果を有し変位する。図4は、従来の積層型圧電アクチュエータ400を示す断面図である。積層型圧電アクチュエータ400は、アクチュエータ本体410、半田420およびリード線430を有しており、素子本体410は、内部に内部電極411、側面に外部電極414を有している。   In the laminated piezoelectric actuator, only the portion where the internal electrodes overlap, that is, the active portion has a piezoelectric effect and is displaced. FIG. 4 is a cross-sectional view showing a conventional multilayer piezoelectric actuator 400. The laminated piezoelectric actuator 400 has an actuator body 410, solder 420, and lead wires 430. The element body 410 has an internal electrode 411 inside and an external electrode 414 on a side surface.

従来の積層型圧電アクチュエータでは、図4に示すように不活性領域が活性領域に引っ張られて変位し、不活性部自体は圧電効果で変形しない。なお、両端の内部電極411の間で積層方向に内部電極411が重なっている領域、すなわち電圧の印加により変形する領域を活性領域と呼ぶ。また、その他の周囲の領域、すなわち電圧の印加によっても変形しない領域を不活性領域と呼ぶ。また、両端の内部電極より端部側の不活性領域を保護層と呼ぶ。上記のような積層型圧電アクチュエータには、電圧印加時に内部電極付近に応力が発生し、この応力は、積層型圧電アクチュエータの耐久性に悪影響を与えることが知られている。   In the conventional multilayer piezoelectric actuator, as shown in FIG. 4, the inactive region is pulled and displaced by the active region, and the inactive portion itself is not deformed by the piezoelectric effect. Note that a region where the internal electrodes 411 overlap in the stacking direction between the internal electrodes 411 at both ends, that is, a region deformed by application of a voltage is referred to as an active region. In addition, other surrounding regions, that is, regions that are not deformed by application of voltage are referred to as inactive regions. Further, the inactive region on the end side from the internal electrodes at both ends is called a protective layer. It is known that the multilayer piezoelectric actuator as described above generates a stress near the internal electrode when a voltage is applied, and this stress adversely affects the durability of the multilayer piezoelectric actuator.

これを防止するために、不活性領域に、応力緩和部として空乏層(スリット)を設け応力を緩和する技術が開発されている。たとえば特許文献2記載の圧電アクチュエータは、スリットを設けることで不良品発生率の減少や生産コストの低減等を図っている。また、特許文献1記載の圧電アクチュエータのように、複数の圧電素子を直列に連結し、内部リード電極の素子接合対応部がばね部となっている金属板で形成されたものも知られている。   In order to prevent this, a technique for relaxing stress by providing a depletion layer (slit) as a stress relaxation part in an inactive region has been developed. For example, the piezoelectric actuator described in Patent Document 2 aims to reduce the defective product generation rate and the production cost by providing a slit. In addition, as in the piezoelectric actuator described in Patent Document 1, a plurality of piezoelectric elements are connected in series, and an element joining corresponding portion of an internal lead electrode is formed of a metal plate that is a spring portion. .

特許第4443707号公報Japanese Patent No. 44443707 特開2001−267646号公報JP 2001-267646 A

しかし、上記のようなスリットを設けた積層型圧電アクチュエータであっても、圧電素子変位時に外部リード端部に発生する応力で圧電素子にクラックが入って絶縁性が低下しショート故障する問題があった。   However, even the multilayer piezoelectric actuator provided with the slits as described above has a problem that the piezoelectric element cracks due to stress generated at the end of the external lead when the piezoelectric element is displaced, resulting in a decrease in insulation and short circuit failure. It was.

本発明は、このような事情に鑑みてなされたものであり、複数の圧電素子を直列に連結して形成し、内部リード電極の素子接合対応部がばね部となっている金属板をリード部材として形成した圧電素子連の変位時にリード部材の直線端部に発生する応力を、保護層の応力緩和構造で低減し、クラックの発生を防止し、動作の信頼性を向上できる圧電素子を提供することを目的とする。   The present invention has been made in view of such circumstances, and a metal plate in which a plurality of piezoelectric elements are connected in series and an element joining corresponding portion of an internal lead electrode is a spring portion is used as a lead member. A piezoelectric element capable of reducing the stress generated at the straight end portion of the lead member when the piezoelectric element series formed as described above is reduced by the stress relaxation structure of the protective layer, preventing the occurrence of cracks, and improving the operation reliability. For the purpose.

(1)上記の目的を達成するため、本発明の圧電素子は、矩形に形成され、電圧の印加により伸縮する積層型の圧電素子であって、圧電層と内部電極とが交互に積層され、両端の内部電極より端部側の不活性領域が保護層として応力緩和構造を有する素子本体と、前記内部電極に接続し、積層方向に沿って前記素子本体の側面に設けられた外部電極と、固着により前記外部電極に接続された金属製板状のリード部材と、を備え、前記リード部材は、その端部が前記保護層に重なる位置まで及ぶように形成されていることを特徴としている。   (1) In order to achieve the above object, the piezoelectric element of the present invention is a laminated piezoelectric element that is formed in a rectangular shape and expands and contracts by application of a voltage, and piezoelectric layers and internal electrodes are alternately laminated, An element body having a stress relaxation structure as a protective layer as an inactive region on the end side from the internal electrodes at both ends, and an external electrode connected to the internal electrode and provided on a side surface of the element body along the stacking direction; And a metal plate-like lead member connected to the external electrode by fixing, wherein the lead member is formed so that its end portion extends to a position overlapping the protective layer.

このように、本発明の圧電素子は、変位時にリード部材の端部に発生する応力を、保護層の応力緩和構造で低減し、クラックの発生を防止し、動作の信頼性を向上できる。   As described above, the piezoelectric element of the present invention can reduce the stress generated at the end of the lead member when displaced by the stress relaxation structure of the protective layer, prevent the occurrence of cracks, and improve the operation reliability.

(2)また、本発明の圧電素子は、前記保護層が、外周に接して設けられ、積層面に沿って形成された応力緩和層を有することを特徴としている。これにより、応力緩和層でリード部材の端部に発生する応力を低減できる。   (2) Further, the piezoelectric element of the present invention is characterized in that the protective layer has a stress relaxation layer provided in contact with the outer periphery and formed along the laminated surface. Thereby, the stress which generate | occur | produces in the edge part of a lead member with a stress relaxation layer can be reduced.

(3)また、本発明の圧電素子は、前記保護層が、前記両端の内部電極に挟まれた中央側の活性領域の密度より低い密度を有することを特徴としている。このような低密度の保護層により、リード部材の端部に発生する応力を低減できる。   (3) Further, the piezoelectric element of the present invention is characterized in that the protective layer has a density lower than that of the active region on the center side sandwiched between the internal electrodes at both ends. Such a low-density protective layer can reduce the stress generated at the end of the lead member.

本発明によれば、変位時にリード部材の端部に発生する応力を、保護層の応力緩和構造で低減し、クラックの発生を防止し、動作の信頼性を向上できる。   According to the present invention, the stress generated at the end of the lead member at the time of displacement can be reduced by the stress relaxation structure of the protective layer, the occurrence of cracks can be prevented, and the operation reliability can be improved.

第1の実施形態の圧電素子を示す断面図である。It is sectional drawing which shows the piezoelectric element of 1st Embodiment. 第1の実施形態の圧電素子を示す断面図である。It is sectional drawing which shows the piezoelectric element of 1st Embodiment. 第2の実施形態の圧電素子を示す断面図である。It is sectional drawing which shows the piezoelectric element of 2nd Embodiment. 従来の圧電素子を示す断面図である。It is sectional drawing which shows the conventional piezoelectric element.

次に、本発明の実施の形態について、図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の参照番号を付し、重複する説明は省略する。   Next, embodiments of the present invention will be described with reference to the drawings. In order to facilitate understanding of the description, the same reference numerals are given to the same components in the respective drawings, and duplicate descriptions are omitted.

[第1の実施形態]
(圧電素子の構成)
図1は、圧電素子100を示す断面図である。圧電素子100は、積層型で矩形に形成され、電圧の印加により伸縮する。圧電素子100は、直列に連結され、連結で形成された圧電素子連は、たとえば圧電アクチュエータとして用いられる。図1に示すように、圧電素子100は、素子本体110、外部電極114、接続層120、リード部材130および応力緩和層113を備える。
[First Embodiment]
(Configuration of piezoelectric element)
FIG. 1 is a cross-sectional view showing the piezoelectric element 100. The piezoelectric element 100 is a laminated type and is formed in a rectangle, and expands and contracts when a voltage is applied. The piezoelectric elements 100 are connected in series, and the piezoelectric element series formed by the connection is used as, for example, a piezoelectric actuator. As shown in FIG. 1, the piezoelectric element 100 includes an element body 110, an external electrode 114, a connection layer 120, a lead member 130, and a stress relaxation layer 113.

素子本体110は、圧電層112と内部電極111とが交互に積層されている。素子本体110は、保護層116に応力緩和構造として応力緩和層113を有する。外部電極114は、内部電極111に接続し、積層方向に沿って素子本体110の側面に設けられている。接続層120は、たとえば半田で形成され、外部電極114とリード部材130とを接続する。接続層120は、応力を低減するため小さいほうが好ましい。   In the element body 110, piezoelectric layers 112 and internal electrodes 111 are alternately stacked. The element body 110 has a stress relaxation layer 113 as a stress relaxation structure in the protective layer 116. The external electrode 114 is connected to the internal electrode 111 and is provided on the side surface of the element body 110 along the stacking direction. The connection layer 120 is formed of, for example, solder, and connects the external electrode 114 and the lead member 130. The connection layer 120 is preferably small in order to reduce stress.

リード部材130は、金属製板状に形成され、固着により外部電極114に接続されている。リード部材130は、リン青銅、銅、SUS等の金属により形成されている。たとえばリン青銅製のリード部材130については、特に規定はないが、圧電素子の変位を阻害しないよう薄い方がよい。ただし、余り薄すぎると圧電素子の変位により疲労破壊することがあるので厚みを、0.1mm以上0.3mm以下程度にするとよい。リード部材130は、その端部が保護層116に重なる位置まで及ぶように形成されている。これにより、変位時にリード部材130の端部に発生する応力を、保護層116の応力緩和構造で低減し、クラックの発生を防止し、動作の信頼性を向上できる。   The lead member 130 is formed in a metal plate shape and is connected to the external electrode 114 by fixing. The lead member 130 is made of a metal such as phosphor bronze, copper, or SUS. For example, the lead member 130 made of phosphor bronze is not particularly defined, but it is preferable that the lead member 130 be thin so as not to hinder the displacement of the piezoelectric element. However, if it is too thin, it may cause fatigue failure due to displacement of the piezoelectric element, so the thickness should be about 0.1 mm to 0.3 mm. The lead member 130 is formed so that the end thereof extends to a position where it overlaps the protective layer 116. Thereby, the stress generated at the end of the lead member 130 at the time of displacement can be reduced by the stress relaxation structure of the protective layer 116, the occurrence of cracks can be prevented, and the operation reliability can be improved.

応力緩和層113は、保護層116の積層面に沿って外周に接して設けられている。これにより、応力緩和層113が広がるように圧電素子100が変形し、表面115に発生する引張応力を軽減できる。図1に示す例では、応力緩和層113は、素子本体110のリード部材130より積層方向端部側に設けられている。   The stress relaxation layer 113 is provided in contact with the outer periphery along the laminated surface of the protective layer 116. Thereby, the piezoelectric element 100 is deformed so that the stress relaxation layer 113 spreads, and the tensile stress generated on the surface 115 can be reduced. In the example shown in FIG. 1, the stress relaxation layer 113 is provided on the end side in the stacking direction from the lead member 130 of the element body 110.

また、応力緩和層113とリード部材130との位置関係で引張応力を軽減する構成であるため、製品として組み上げるのが容易であり、製作工程を複雑化することがない。応力緩和層113は、たとえば空乏層(スリット)で形成されるが、上記の効果を有するものであれば圧電体より弾性の小さい材料で形成されていてもよい。   In addition, since the tensile stress is reduced by the positional relationship between the stress relaxation layer 113 and the lead member 130, it is easy to assemble as a product and the manufacturing process is not complicated. The stress relaxation layer 113 is formed of, for example, a depletion layer (slit), but may be formed of a material having elasticity smaller than that of the piezoelectric body as long as it has the above effect.

また、応力緩和層113は、素子本体の内部電極111より積層方向端部側、すなわち保護層116内に設けられている。これにより、変位時にリード部材130の端部に発生する応力を緩和し、負担を軽減できる。   Further, the stress relaxation layer 113 is provided on the end side in the stacking direction from the internal electrode 111 of the element body, that is, in the protective layer 116. Thereby, the stress which generate | occur | produces in the edge part of the lead member 130 at the time of displacement can be relieve | moderated, and a burden can be reduced.

なお、図2に示すように、圧電素子200には、素子本体110のリード部材230の端部より積層方向中心側に応力緩和層113が形成されていてもよい。言い換えれば、接続層220およびリード部材230が応力緩和層113に重なっていてもよい。   As shown in FIG. 2, in the piezoelectric element 200, a stress relaxation layer 113 may be formed on the center side in the stacking direction from the end of the lead member 230 of the element body 110. In other words, the connection layer 220 and the lead member 230 may overlap the stress relaxation layer 113.

(圧電素子の製造方法)
まず、圧電層112と内部電極111とが交互に積層された素子本体110を形成する。このとき、保護層116に、外周に接し、積層面に沿った応力緩和層113を形成する。具体的には、圧電セラミックスのグリーンシートにAgやAg/Pd等の電極ペーストを印刷して積層、圧着し、焼成することで素子本体を得ることができる。
(Piezoelectric element manufacturing method)
First, the element body 110 in which the piezoelectric layers 112 and the internal electrodes 111 are alternately stacked is formed. At this time, the stress relaxation layer 113 is formed on the protective layer 116 in contact with the outer periphery and along the laminated surface. Specifically, an element body can be obtained by printing an electrode paste such as Ag or Ag / Pd on a green sheet of piezoelectric ceramics, laminating, pressing, and firing.

応力緩和層113の形成には、焼結しない材料、例えばPbTiOを応力緩和層113の位置に印刷しておく。この際に、ロ字状となる応力緩和層113の印刷パターンとともにその中心部に外部とは接続されていない電極パターンを印刷することが好ましい。これにより、圧着工程で応力緩和層113の形成面にプレス圧を均等にかけることができる。その結果、設計通りに応力緩和層113を形成でき、十分な応力緩和機能を持たせることができる。 For the formation of the stress relaxation layer 113, a material that is not sintered, for example, PbTiO 3 is printed at the position of the stress relaxation layer 113. At this time, it is preferable to print an electrode pattern that is not connected to the outside at the center together with the printed pattern of the stress relieving layer 113 having a square shape. Thereby, a press pressure can be uniformly applied to the formation surface of the stress relaxation layer 113 in the crimping step. As a result, the stress relaxation layer 113 can be formed as designed, and a sufficient stress relaxation function can be provided.

次に、焼成後に焼結しない材料が消失することで、スリット状の応力緩和層113を形成することができる。なお、図1、2に示す例では応力緩和層は1層であるが、複数層として形成されていてもよい。   Next, the material that is not sintered after firing disappears, whereby the slit-shaped stress relaxation layer 113 can be formed. In the example shown in FIGS. 1 and 2, the stress relaxation layer is a single layer, but may be formed as a plurality of layers.

次に、端部が保護層116に重なる位置まで及ぶように、素子本体110の側面に積層方向に沿って、内部電極111に接続された外部電極114を形成する。たとえば、素子本体110の側面に電極ペーストを印刷して焼成することで外部電極114を形成できる。このようにして得られた複数の圧電素子を直列に連結して形成し、内部リード電極の素子接合対応部がばね部となっている金属板をリード部材として、圧電素子連を形成する。   Next, the external electrode 114 connected to the internal electrode 111 is formed on the side surface of the element main body 110 along the stacking direction so as to reach the position where the end portion overlaps the protective layer 116. For example, the external electrode 114 can be formed by printing and baking an electrode paste on the side surface of the element body 110. A plurality of piezoelectric elements thus obtained are connected in series, and a piezoelectric element series is formed using a metal plate in which the element joining corresponding portion of the internal lead electrode is a spring portion as a lead member.

金属製板状のリード部材130は、応力緩和層113に重なるように外部電極114に固着させる。あらかじめ所定の寸法を有するリード部材130を用意し、たとえば半田で取り付けることができる。リード部材130は、予め、その端部が保護層116まで及ぶ長さに設計しておき、各端部が各方向の保護層116に重なるように固着させる。このようにして圧電素子100を製作することができる。   The metal plate-like lead member 130 is fixed to the external electrode 114 so as to overlap the stress relaxation layer 113. A lead member 130 having a predetermined dimension is prepared in advance, and can be attached with, for example, solder. The lead member 130 is designed in advance so that the end thereof extends to the protective layer 116 and is fixed so that each end overlaps the protective layer 116 in each direction. In this way, the piezoelectric element 100 can be manufactured.

[第2の実施形態]
上記の実施形態では、保護層116は、活性領域の圧電体と同じ材料で同様に構成されており、両者の密度は同じであるが、保護層が、活性領域の密度より低い密度を有するように構成されていてもよい。図3は、密度の低い保護層316を有する圧電素子300の断面図である。
[Second Embodiment]
In the above embodiment, the protective layer 116 is made of the same material as the piezoelectric material in the active region, and the density of both is the same, but the protective layer has a density lower than that of the active region. It may be configured. FIG. 3 is a cross-sectional view of the piezoelectric element 300 having the protective layer 316 having a low density.

たとえば、保護層316は、活性領域の圧電体と同じ材料の多孔質とすることができる。活性領域の圧電体と同じ材料を用いて粉末プレス法で製造し、へキシレングリコールを添加して保護層316にあたる成形体部分を作製し、焼成後の保護層316を多孔質にすることができる。また、保護層316のみ焼成密度が下がる材料を使用してもよい。その場合には、保護層316の焼結密度を94〜97%程度に低くして応力緩和を図ってもよい。このような低密度の保護層316により、リード部材130の端部に発生する応力を低減できる。   For example, the protective layer 316 can be porous of the same material as the piezoelectric material in the active region. It can be manufactured by a powder press method using the same material as that of the piezoelectric material in the active region, and a molded body portion corresponding to the protective layer 316 can be produced by adding hexylene glycol, and the fired protective layer 316 can be made porous. . Further, only the protective layer 316 may be made of a material whose firing density is lowered. In that case, stress relaxation may be achieved by reducing the sintered density of the protective layer 316 to about 94 to 97%. Such a low-density protective layer 316 can reduce the stress generated at the end of the lead member 130.

以上のように、本発明の圧電素子は、保護層が応力緩和構造を有し、リード部材は、その端部が保護層に重なる位置まで及ぶように形成されているため、変位時にリード部材の端部に発生する応力を、保護層の応力緩和構造で低減し、クラックの発生を防止し、動作の信頼性を向上できる。   As described above, in the piezoelectric element according to the present invention, the protective layer has a stress relaxation structure, and the lead member is formed so that the end of the lead member overlaps the protective layer. The stress generated at the end portion can be reduced by the stress relaxation structure of the protective layer, the occurrence of cracks can be prevented, and the operation reliability can be improved.

100 圧電素子
110 素子本体
111 内部電極
112 圧電層
113 応力緩和層
114 外部電極
115 表面
116 保護層
120 接続層
130 リード部材
200 圧電素子
220 接続層
230 リード部材
300 圧電素子
316 保護層
DESCRIPTION OF SYMBOLS 100 Piezoelectric element 110 Element main body 111 Internal electrode 112 Piezoelectric layer 113 Stress relaxation layer 114 External electrode 115 Surface 116 Protective layer 120 Connection layer 130 Lead member 200 Piezoelectric element 220 Connection layer 230 Lead member 300 Piezoelectric element 316 Protective layer

Claims (3)

圧電素子連として複数で直列に連結されて用いられ、矩形に形成され、電圧の印加により伸縮する積層型の圧電素子であって、
圧電層と内部電極とが交互に積層され、両端の内部電極より端部側の不活性領域が保護層として応力緩和構造を有する素子本体と、
前記内部電極に接続し、積層方向に沿って前記素子本体の側面に設けられた外部電極と、
固着により前記外部電極に接続され、リン青銅製で厚みが0.1mm以上0.3mm以下である板状のリード部材と、を備え、
前記リード部材は、前記圧電素子連の全体にわたって設けられ、その端部が前記保護層に重なる位置まで及ぶように形成されていることを特徴とする圧電素子。
A plurality of piezoelectric elements connected in series are used, and are formed into a rectangular shape, and are stacked piezoelectric elements that expand and contract by application of voltage,
Piezoelectric layers and internal electrodes are alternately laminated, and an element main body having a stress relaxation structure as an inactive region on the end side from the internal electrodes at both ends as a protective layer;
An external electrode connected to the internal electrode and provided on a side surface of the element body along the stacking direction;
A plate-like lead member that is connected to the external electrode by fixing and is made of phosphor bronze and has a thickness of 0.1 mm to 0.3 mm;
The lead element is provided over the entire piezoelectric element series, and is formed so that an end thereof extends to a position overlapping the protective layer.
前記保護層は、外周に接して設けられ、積層面に沿って形成された応力緩和層を有することを特徴とする請求項1記載の圧電素子。   The piezoelectric element according to claim 1, wherein the protective layer includes a stress relaxation layer that is provided in contact with the outer periphery and is formed along the laminated surface. 前記保護層は、前記両端の内部電極に挟まれた中央側の活性領域の密度より低い密度を有することを特徴とする請求項1記載の圧電素子。   2. The piezoelectric element according to claim 1, wherein the protective layer has a density lower than a density of a central active region sandwiched between internal electrodes at both ends.
JP2011144660A 2011-06-29 2011-06-29 Piezoelectric element Expired - Fee Related JP5859755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011144660A JP5859755B2 (en) 2011-06-29 2011-06-29 Piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011144660A JP5859755B2 (en) 2011-06-29 2011-06-29 Piezoelectric element

Publications (2)

Publication Number Publication Date
JP2013012600A JP2013012600A (en) 2013-01-17
JP5859755B2 true JP5859755B2 (en) 2016-02-16

Family

ID=47686243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011144660A Expired - Fee Related JP5859755B2 (en) 2011-06-29 2011-06-29 Piezoelectric element

Country Status (1)

Country Link
JP (1) JP5859755B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021061336A (en) * 2019-10-08 2021-04-15 Tdk株式会社 Laminated piezoelectric element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112957U (en) * 1990-03-06 1991-11-19
JP2001094164A (en) * 1999-09-24 2001-04-06 Taiheiyo Cement Corp Laminated type piezoelectric actuator
JP4158338B2 (en) * 2000-06-06 2008-10-01 株式会社デンソー Piezoelectric element for injector
JP5167576B2 (en) * 2005-04-22 2013-03-21 Tdk株式会社 Multilayer piezoelectric element
JP2008053467A (en) * 2006-08-24 2008-03-06 Denso Corp Stacked piezoelectric device and its manufacturing method

Also Published As

Publication number Publication date
JP2013012600A (en) 2013-01-17

Similar Documents

Publication Publication Date Title
JP5431170B2 (en) Piezo laminate and method for producing piezo laminate
JPWO2006073018A1 (en) Method for manufacturing piezoelectric actuator and piezoelectric actuator
JP2006351602A (en) Multilayer piezoelectric actuator device
JP5786751B2 (en) Laminated electronic components
JP5403170B2 (en) Multilayer piezoelectric actuator and piezoelectric vibration device
JP5859755B2 (en) Piezoelectric element
JPWO2009139112A1 (en) Multilayer ceramic electronic components
JP4539489B2 (en) Manufacturing method of multilayer capacitor
JP2001144340A (en) Laminated piezoelectric actuator
JP6591771B2 (en) Multilayer capacitor
JP5768229B2 (en) Piezoelectric element and manufacturing method thereof
JP5409703B2 (en) Manufacturing method of multilayer piezoelectric actuator
JP5635319B2 (en) Piezoelectric element and manufacturing method thereof
JP6708961B2 (en) Piezoelectric element
JP6729100B2 (en) Piezoelectric element
JP2015050289A (en) Piezoelectric element
JP6064044B2 (en) MULTILAYER DEVICE HAVING EXTERNAL CONNECTIONS AND METHOD FOR PRODUCING MULTILAYER DEVICE HAVING EXTERNAL CONNECTION
JP5821303B2 (en) Piezoelectric element and method for manufacturing the same
JP2015133415A (en) Piezoelectric element
JP2013016548A (en) Piezoelectric element
JP2012178462A (en) Laminated piezoelectric element
JP4529427B2 (en) Multilayer piezoelectric element
JP6047317B2 (en) Piezoelectric element
JP6226451B2 (en) Piezoelectric element and piezoelectric actuator
JP6898167B2 (en) Laminated piezoelectric element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150319

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151217

R150 Certificate of patent or registration of utility model

Ref document number: 5859755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees