JP5858926B2 - 一酸化炭素の製造方法及び製造装置 - Google Patents

一酸化炭素の製造方法及び製造装置 Download PDF

Info

Publication number
JP5858926B2
JP5858926B2 JP2012540890A JP2012540890A JP5858926B2 JP 5858926 B2 JP5858926 B2 JP 5858926B2 JP 2012540890 A JP2012540890 A JP 2012540890A JP 2012540890 A JP2012540890 A JP 2012540890A JP 5858926 B2 JP5858926 B2 JP 5858926B2
Authority
JP
Japan
Prior art keywords
zirconium
gas
carbon dioxide
cerium oxide
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012540890A
Other languages
English (en)
Other versions
JPWO2012057162A1 (ja
Inventor
肇 名井
肇 名井
八島 勇
勇 八島
菅野 明弘
明弘 菅野
陽介 柴田
陽介 柴田
雄一 妹尾
雄一 妹尾
和也 木下
和也 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2012540890A priority Critical patent/JP5858926B2/ja
Publication of JPWO2012057162A1 publication Critical patent/JPWO2012057162A1/ja
Application granted granted Critical
Publication of JP5858926B2 publication Critical patent/JP5858926B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/202Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/602Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/20Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/025Other waste gases from metallurgy plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、二酸化炭素を原料とする一酸化炭素の製造方法及び製造装置に関する。また本発明は、該製造方法に用いられる変換剤に関する。
二酸化炭素は温室効果ガスとして知られている。大気中の二酸化炭素の濃度は上昇を続けており、地球温暖化の一因とされている。したがって地球温暖化防止の観点から、環境中に放出される二酸化炭素を回収する技術は、非常に重要である。
二酸化炭素を回収する技術として、例えば酸素欠損状態の鉄の酸化物を用いて二酸化炭素ガスを一酸化炭素ガスと酸素ガスとに分解し、生成した酸素ガスによって酸素欠損状態の鉄の酸化物を元の鉄酸化物に戻し、一酸化炭素ガスのみを回収する技術が提案されている(特許文献1参照)。
前記の技術は、酸素欠損を有する鉄の酸化物を用いた二酸化炭素との化学量論的な反応によって二酸化炭素から一酸化炭素ガスを生成する技術であるのに対して、触媒的な接触還元によって二酸化炭素から一酸化炭素ガスを生成する技術も提案されている。例えば非特許文献1においては、WO3、Y23、ZnOなどの金属酸化物を触媒とし、水素やメタンなどを還元剤として用いた二酸化炭素の接触還元によって、一酸化炭素ガスや炭素の生成が可能であることが報告されている。
これらの技術とは別に、特許文献2には、CeO2からなる酸素イオン伝導体と触媒とを有する固体反応膜を用いて二酸化炭素を一酸化炭素と酸素に分離する方法が提案されている。この方法においては、CeO2からなる酸素イオン伝導体に担持された触媒によって二酸化炭素から酸素を分離させて、この酸素を、酸素濃度差のために生じる電位によって酸素イオン伝導体内を拡散させている。
また、特許文献3には、Bi23、ZrO2、CeO2等及びこれらの混合物からなる群から選ばれ、希土類金属酸化物等でドープされたセラミック物質である酸素イオン伝導性セラミック導体について記載されている。また同文献には、酸素イオン伝導性セラミック導体を二酸化炭素に接触させて酸素で飽和させ、一酸化炭素を生成すること、及び酸素で飽和した酸素イオン伝導性セラミック導体を炭化水素ガスに接触させて酸素イオン伝導性セラミック導体から酸素を除去することが記載されている。しかし、同文献には、酸素イオン伝導性セラミック導体においてジルコニウムを含む酸化セリウムが可逆的な酸素欠損を有することや二酸化炭素から一酸化炭素を生成するには可逆的な酸素欠損が必要なことは、何ら記載されていない。
特開平5−68853号公報 特開2001−322958号公報 US2002/0064494A1
石原、滝田、「二酸化炭素の固体炭素への化学的固定のための触媒の開発」、ファインケミカル、vol21、No.14、1992年、pp.5−13
特許文献1に記載の技術によれば、確かに二酸化炭素ガスから一酸化炭素ガスが生成する。しかし、鉄の酸化物は、酸素イオン伝導性が低く、表面が酸化されてしまうと、たとえ該酸化物の内部に酸素欠損が存在していても、該酸素欠損は二酸化炭素ガスと接触することができない。したがって二酸化炭素ガスから一酸化炭素ガスへの変換効率を高めたい場合には、酸素欠損を有する鉄の酸化物を多量に使用する必要があり、経済的に不利になる。
非特許文献1に記載の技術では、二酸化炭素と同時に水素やメタンを投入する必要があり、生成物としての一酸化炭素や炭素の他に、未反応の二酸化炭素や水素、メタンなどが混在してしまうので、最終的に分離工程を要するという点で経済的に不利であり、しかも生成物が炭素である場合には、それが触媒上に析出することに起因して触媒活性が低下しやすい。
特許文献2に記載の技術では、二酸化炭素を一酸化炭素と酸素に分解させるために貴金属触媒を用いているので経済的に不利である。また、貴金属触媒を担持している酸化セリウムは、酸素イオンを拡散させるためのイオンポンプとして使用されているに過ぎず、酸化セリウムは二酸化炭素からの一酸化炭素の生成に直接関与していない。
したがって本発明の課題は、前述した従来技術が有する種々の欠点を解消し得る二酸化炭素からの一酸化炭素の製造方法を提供することにある。
本発明は、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物と二酸化炭素含有ガスとを加熱下に接触させ、化学量論反応によって二酸化炭素を還元して、一酸化炭素を生成させる一酸化炭素の製造方法であって、
前記の金属酸化物として、ジルコニウムを含む酸化セリウムを用い
前記ジルコニウムを含む酸化セリウムにおいて、セリウム及びジルコニウムのモル数の合計量に対するジルコニウムのモル数の割合が0.001〜0.5である一酸化炭素の製造方法を提供するものである。
また本発明は、前記の製造方法を実施するための好適な装置として、
外管と、該外管内に配置された内管とを備え、
該内管は、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物を含んで構成されており、
該外管と該内管との間に二酸化炭素含有ガスを流通させ、かつ該内管内に還元性ガスを流通させるように構成されているか、又は
該外管と該内管との間に還元性ガスを流通させ、かつ該内管内に二酸化炭素含有ガスを流通させるように構成されており、
前記の金属酸化物として、ジルコニウムを含む酸化セリウムを用い
前記ジルコニウムを含む酸化セリウムにおいて、セリウム及びジルコニウムのモル数の合計量に対するジルコニウムのモル数の割合が0.001〜0.5である一酸化炭素の製造装置を提供するものである。
更に本発明は、前記の製造方法を実施するための別の好適な装置として、
酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物を含んで構成される板状体と、板状のセパレータとが交互にスタックされてなる一酸化炭素の製造装置であって、
各セパレータの各面には、一方向に延びる複数の凸条部及び凹条部が交互に配置されており、
前記の板状体を挟んで対向する2つのセパレータにおける一方のセパレータと該板状体との対向面に位置する凹条部に二酸化炭素含有ガスを流通させ、かつ他方のセパレータと該板状体との対向面に位置する凹条部に還元性ガスを流通させるように構成されており、
前記の金属酸化物として、ジルコニウムを含む酸化セリウムを用い
前記ジルコニウムを含む酸化セリウムにおいて、セリウム及びジルコニウムのモル数の合計量に対するジルコニウムのモル数の割合が0.001〜0.5である一酸化炭素の製造装置を提供するものである。
更に、製鉄所、精錬所又は火力発電所から発生した二酸化炭素を含む排気ガスと、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物とを、精錬所、製鉄所又は火力発電所から発生した廃熱を用いた加熱下に接触させ、化学量論反応によって該排気ガス中の二酸化炭素を還元して、一酸化炭素を生成させることを特徴とする二酸化炭素を一酸化炭素に変換するシステムであって、
前記の金属酸化物として、ジルコニウムを含む酸化セリウムを用い
前記ジルコニウムを含む酸化セリウムにおいて、セリウム及びジルコニウムのモル数の合計量に対するジルコニウムのモル数の割合が0.001〜0.5である二酸化炭素を一酸化炭素に変換するシステムを提供するものである。
更に、本発明は、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物からなり、金属酸化物が、ジルコニウムを含む酸化セリウムからなり、
前記ジルコニウムを含む酸化セリウムにおいて、セリウム及びジルコニウムのモル数の合計量に対するジルコニウムのモル数の割合が0.001〜0.5である二酸化炭素の一酸化炭素への変換剤を提供するものである。
本発明によれば、二酸化炭素を原料として、効率的に一酸化炭素を生成させることができる。一酸化炭素の生成に際して、炭素の副生もない。特に、本発明で用いるジルコニウムを含む酸化セリウムは、ジルコニウムを含まない酸化セリウムに比べて、二酸化炭素から一酸化炭素を生成する反応が起こる温度を低下することができ、かつ酸素欠損を生じさせる温度を低くすることができる点で有利である。なお、一酸化炭素を生成する反応が起こる温度と、酸素欠損を生じさせる温度とは必ずしも相関はない。一酸化炭素が効率的に生成するための要因は、酸素欠損を生じさせる温度が低いことだけでなく、ジルコニウムを含むことで二酸化炭素から一酸化炭素を生成する反応が起こる温度が下がることも要因の一つである。
図1は、本発明の一酸化炭素の製造方法に好適に用いられる装置を示す模式図である。 図2は、本発明の一酸化炭素の製造方法に好適に用いられる別の装置を示す模式図である。 図3は、本発明の一酸化炭素の製造方法に好適に用いられる更に別の装置を示す模式図である。 図4は、実施例で用いた装置を示す模式図である。 図5は、示差熱熱重量同時測定装置を用いて得られたTG曲線からTredとTCO2を求める方法を示す説明図である。
以下本発明を、その好ましい実施形態に基づき説明する。本発明においては、二酸化炭素含有ガスを特定の金属酸化物(以下、この金属酸化物のことを「二酸化炭素の一酸化炭素への変換剤」又は単に「変換剤」とも言う。)と加熱下に接触させて一酸化炭素ガスを生成させる。この変換剤と、二酸化炭素ガスとの反応は、この変換剤の還元力を利用した化学量論反応である。つまり、この金属酸化物からなる変換剤は、触媒として用いられるものではなく、反応物そのものとして用いられるものである。本発明においては、特定の金属酸化物として、ジルコニウムを含む酸化セリウムを用いる。
前記の特定の金属酸化物からなる変換剤としては、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有するものが用いられる。この変換剤が、可逆的な酸素欠損を有することによって、該変換剤は二酸化炭素の還元性を獲得する。可逆的な欠損とは、強力な還元条件下の処理によって金属酸化物から酸素が強制的に引き抜かれることで生成するものである。可逆的な欠損は、欠損したサイトに酸素が取り込まれることが可能な欠損である。例えば金属酸化物が、ジルコニウムを含む酸化セリウムである場合、可逆的な欠損を有する、ジルコニウムを含む酸化セリウムにおいては、酸素不足に起因する電荷のアンバランスな状態を、四価のセリウムの一部が三価に還元されることで補償している。三価のセリウムは不安定であり、四価に戻りやすいものである。したがって、欠損したサイトに酸素が取り込まれることで、三価となっているセリウムが四価に戻り、電荷のバランスが常にゼロに保たれる。欠損したサイトに酸素が取り込まれることで、該欠損は消失するが、再び強力な還元条件下の処理によって酸素欠損が生成する。「可逆的な酸素欠損」とは、この意味で用いられる。
これに対して、不可逆的な酸素欠損も知られている。不可逆的な酸素欠損とは、金属酸化物に、該金属の価数よりも低価数の元素をドープすることで形成されるものである。不可逆的な酸素欠損は、可逆的な酸素欠損と異なり、強力な還元条件下の処理で発生した欠損ではない。不可逆的な酸素欠損は、例えば、金属酸化物に、該金属の価数よりも低価数の元素の酸化物を混合し、大気下で焼成するなどして低価数の元素で置換固溶させることによって得られる。無機酸化物が、例えば酸化セリウムである場合、不可逆的な酸素欠損を有する酸化セリウムにおけるセリウムの価数はすべて四価である。したがって、欠損したサイトに酸素が取り込まれることはない。例えば、CeO2に20mol%のCaを固溶させた場合、陽イオンの平均価数は4×0.8+2×0.2=3.6なので、酸素の電荷をこの価数にバランスさせるために必要な酸素原子の数は3.6÷2=1.8個となる。この数は、化学量論量の酸素原子の数である2個よりも少なく、その分だけ酸素欠損が生じる。しかし、この酸素欠損は酸素の吸収が可能なものではない。このように、不可逆的な酸素欠損は、酸素の強制的な引き抜きによって生じるものではなく、金属酸化物における電荷補償によって生じるものである。
本発明において用いられる前記の金属酸化物からなる変換剤は、上述のとおり酸素イオン伝導性を有している。酸素イオン伝導性は、本発明の製造方法を実施する温度において発現すればよい。この変換剤が酸素イオン伝導性を有することで、この変換剤中に存在する可逆的な酸素欠損の概ねすべてが二酸化炭素との反応に有効活用できる。その理由は次のとおりである。すなわち、本発明の製造方法は、固体である金属酸化物と、気体である二酸化炭素ガスとの反応なので、反応は主として固体表面において進行する。そして、金属酸化物の表面に存在する酸素欠損が、二酸化炭素中の酸素と結合することで、該表面における酸素欠損が消失するとともに、二酸化炭素が一酸化炭素へ変換される。この場合、該金属酸化物が酸素イオン伝導性を有することで、該金属酸化物の表面に存在する酸素欠損と結びついた酸素は、酸素イオン(O2-)の状態で該金属酸化物の内部に移動し、該金属酸化物の内部において酸素欠損が消失するとともに、該金属酸化物の表面には可逆的な酸素欠損が再び生成する。この繰り返しによって、変換剤中に存在する可逆的な酸素欠損の概ねすべてを二酸化炭素との反応に寄与させることができる。これに対して、例えば背景技術の項で述べた特許文献1に記載の酸素欠損を有する鉄の酸化物は、酸素イオン伝導性を有していないので、該酸化物の内部に酸素欠損が残存していても、該酸化物の表面に存在するすべて酸素欠損が消失した時点で、二酸化炭素との反応性が非常に低下してしまう。
本発明において用いられる前記の金属酸化物からなる変換剤が酸素イオン伝導性を有することには次の利点もある。すなわち、この変換剤においては、その内部に存在する可逆的な酸素欠損も二酸化炭素との反応に寄与できるので、この変換剤の比表面積を過度に大きくしなくても、二酸化炭素との反応性は低下しづらい。したがって、この変換剤を含む反応体を、例えば粒状やペレット状、板状、筒状などの所望の形状に成形できるという自由度がある。これに対して、酸素イオン伝導性を有していない金属酸化物、例えば背景技術の項で述べた特許文献1に記載の酸素欠損を有する鉄の酸化物は、その内部に存在する酸素欠損は二酸化炭素との反応にほとんど寄与しないので、該酸素欠損を有効活用しようとすれば、該酸化物の比表面積を非常に大きくする必要がある。換言すれば、微粉末の状態で使用することが必須となり、それに起因して取り扱い性や、反応装置の設計の自由度が低い。
以上のとおり、本発明の製造方法で用いられる金属酸化物からなる前記の変換剤は、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有することが必須であるところ、そのような性質を有する金属酸化物として、本発明においては、上述のとおり、ジルコニウムを含む酸化セリウムを用いる。ジルコニウムは、酸化セリウム中において、固溶体として存在していてもよく、あるいは酸化物の状態で存在していてもよい。一般的に言って、酸化セリウム中でのジルコニウムの割合が低い場合には、ジルコニウムは固溶体として存在している傾向にある。
本発明の製造方法で用いられる金属酸化物として、ジルコニウムを含む酸化セリウム(以下、ジルコニウム含有酸化セリウム)を用いる場合、セリウム及びジルコニウムのモル数の合計量に対するジルコニウムのモル数の割合は、好ましくは0.001〜0.7、更に好ましくは0.001〜0.5、より好ましくは0.02〜0.25、特に好ましくは0.02〜0.2である。ジルコニウム含有酸化セリウムにおけるジルコニウムの割合がこの範囲内であることによって、ジルコニウム含有酸化セリウムが二酸化炭素と反応する温度を一層低くすることができ、二酸化炭素を原料として効率的に一酸化炭素を生成させることができる。しかも、後述するように、二酸化炭素との反応によって酸素欠損が消滅したジルコニウム含有酸化セリウムに、再び酸素欠損を生じさせるときに行う還元雰囲気下での熱処理の温度を低くできるという利点もある。ジルコニウムの割合が上述の範囲のジルコニウム含有酸化セリウムを得るためには、後述するジルコニウム含有酸化セリウムの製造時に、使用するセリウム及びジルコニウムの量を調節すればよい。
本発明の製造方法で用いられるジルコニウム含有酸化セリウムには、Bi及びアルカリ土類金属元素から選択される1種又は2種以上の元素をドープ元素として更に添加してもよい。アルカリ土類金属としては、Mg、Ca、Sr及びBaから選択される1種又は2種以上の元素を用いることが好ましい。ジルコニウム含有酸化セリウムが前記の各元素を含むことにより、ジルコニウム含有酸化セリウムを強還元し、酸素欠損を生成させる際の反応温度を更に低くすることができるという効果が奏される。ジルコニウム含有酸化セリウムが前記の元素を含む場合には、セリウム、ジルコニウム及び前記の元素のモル数の合計量に対する前記の元素のモル数の割合は、好ましくは0.001〜0.3、更に好ましくは0.001〜0.2、特に好ましくは0.02〜0.2である。
ジルコニウム含有酸化セリウムは、例えば、以下の方法で好適に製造することができる。炭酸セリウムと炭酸ジルコニウムとを、ボールミル等のメディアミルを用いて粉砕・混合する。得られた混合粉を大気雰囲気下で、好ましくは150〜600℃、更に好ましくは250〜500℃で、好ましくは0.5〜10時間、更に好ましくは2〜10時間仮焼成する。得られた仮焼成物を乳鉢等によって粉砕し、粉砕物を大気雰囲気下で、好ましくは400〜1500℃、更に好ましくは1000〜1500℃、特に好ましくは1000〜1400℃で本焼成する。本焼成の温度は、仮焼成の温度よりも高く設定する。本焼成の時間は、焼成温度は前記の範囲内であることを条件として、好ましくは0.5〜10時間、更に好ましくは2〜10時間とする。この操作によって、可逆的な酸素欠損が未だ生じていないジルコニウム含有酸化セリウムが得られる。
前記の製造方法に代えて、市販されている酸化セリウムと酸化ジルコニウムとの複合酸化物を、上述の焼成条件と同じ条件で焼成することによって、可逆的な酸素欠損が未だ生じていないジルコニウム元素含有酸化セリウムを得ることができる。そのような複合酸化物としては、例えば阿南化成(株)から入手可能である。
上述の方法で得られたジルコニウム含有酸化セリウムを強還元し、可逆的な酸素欠損を生成させることで、本発明の製造方法で用いられる可逆的な酸素欠損を有するジルコニウム含有酸化セリウムを得ることができる。強還元においては、還元雰囲気として、水素濃度が爆発下限以上、好ましくは20体積%以上の含水素雰囲気が用いられる。もちろん水素濃度が100体積%でもよい。強還元時の温度は、比較的低温でも十分であることが本発明者らの検討の結果判明した。この理由は、酸化セリウムにジルコニウムを添加していることに起因するものであると、本発明者らは考えている。特にジルコニウムが酸化セリウムに固溶していると、強還元時の温度を低く設定しても可逆的な酸素欠損を首尾よく生成させられる点から有利である。強還元時の温度は、具体的には好ましくは300〜1050℃、更に好ましくは320〜820℃、より好ましくは350〜820℃、特に好ましくは400〜820℃である。強還元の時間は、温度が上述の範囲であることを条件として、好ましくは0.5〜10時間、更に好ましくは2〜10時間である。
ところで、本発明で用いられる、可逆的な酸素欠損を有する金属酸化物の他に、酸素の吸収が可能な金属酸化物として、OSC(酸素吸蔵放出能力)材料が知られている。OSC材料は自動車用触媒の助触媒としてよく用いられる。OSC材料は酸化セリウムが有する酸素イオン伝導性と価数変化を利用して、酸化反応に対しては酸素を放出し、還元反応に対しては酸素を吸収することで、排気ガス中のガス組成を安定化し、三元触媒による排気ガスの浄化を安定的に行うことを目的として用いられるものである。したがって、OSC材料は排気ガス中の一酸化炭素を二酸化炭素へ変換するための助触媒であって、二酸化炭素から一酸化炭素を生成させる本発明の製造方法とは、正反対の反応プロセスに用いられるものである。
本発明の製造方法において用いられる前記の変換剤と二酸化炭素含有ガスとの反応は、加熱下に行われる。加熱温度は例えば295〜1000℃、特に400〜1000℃、とりわけ400〜800℃、中でも400〜600℃に設定することが、二酸化炭素から一酸化炭素への変換効率を高める点、及び一旦生成した一酸化炭素の作用によって、前記の変換剤が還元されかつ二酸化炭素が再生されることを効果的に防止する点から好ましい。反応はバッチ式で行ってもよく、あるいは連続式で行ってもよい。変換剤と二酸化炭素含有ガスとの量は、本製造方法の反応が化学量論反応であることから、反応をバッチ式で行う場合、二酸化炭素1当量に対して、該変換剤を1当量以上、特に3当量以上とすることが好ましい。ここで言う1当量とは、変換剤がCe(1-y)Zry(2-x)(式中、0<y<1、0≦x<2)で表されるジルコニウム含有酸化セリウムである場合、該ジルコニウム含有酸化セリウムに対し、xmolの二酸化炭素が反応し、xmolの一酸化炭素が生成することを言う。
前記の変換剤は、種々の形態で二酸化炭素含有ガスと接触させることができる。例えばバッチ式反応装置であれば、粉末状の前記の変換剤を静置(又は充填)して反応を行うことができる他、前記の変換剤を造粒したもの、ペレット状、塊状、板状、ハニカム状、ラシヒリング状、ベルサドル状等の形状へ成型したものも静置(又は充填)して使用することも可能である。一方、連続式反応装置であれば、筒状、板状、円盤状等の緻密膜で二酸化炭素を一酸化炭素へ変換する反応面と還元性ガスで酸素欠損を生成する再生面とが隔絶されている構造であればよい。いずれの形態を採用する場合であっても、前記の変換剤と二酸化炭素との反応によって、炭素が副生されないことを本発明者らは確認している。
前記の変換剤と接触させる二酸化炭素含有ガスは、二酸化炭素ガス100体積%からなるものであってよいし、二酸化炭素ガスと、1種又は2種以上のその他のガスとからなるものであってもよい。その他のガスとしては、酸素ガス、窒素ガス、一酸化炭素ガス、メタンガス、アセチレンガス等が挙げられる。二酸化炭素含有ガスがその他のガスを含んでいる場合、該二酸化炭素含有ガスにおいては、二酸化炭素ガスの濃度に特に制限はないが、コスト面を考えると、二酸化炭素ガスが1体積%以上含まれていることが好ましく、15体積%以上含まれていることが更に好ましい。その他のガスが酸素ガスである場合、供給するガス全量に対する酸素ガスの割合は極力少量であることが望ましい。
その他のガスを含む二酸化炭素含有ガスの具体例としては、高炉ガス、転炉ガス等が挙げられる。高炉ガスは、高炉において銑鉄を製造するときに発生するガスであり、その主成分は窒素、一酸化炭素及び二酸化炭素である。高炉ガス中には、窒素が約52〜53体積%、一酸化炭素が約18〜25体積%、二酸化炭素が約20〜24体積%含まれている。転炉ガスは、転炉で鋼を製造するときに発生するガスであり、その主成分は一酸化炭素及び二酸化炭素である。転炉ガス中には、一酸化炭素が約50〜80体積%、二酸化炭素が約15〜17体積%含まれる。
本発明の製造方法においては、二酸化炭素との接触によって酸化された前記の変換剤を、還元性ガスと接触させて該変換剤を再生することが好ましい。変換剤と還元性ガスとを接触させるときの温度は、例えば300〜1050℃、特に320〜820℃、とりわけ350〜820℃、中でも400〜820℃に設定することが好ましい。還元性ガスとしては、例えば後述する水素含有ガスやアセチレン含有ガスを用いることができる。水素含有ガスとしては、例えば、コークス炉ガスが挙げられる。コークス炉ガスは、コークス炉においてコークスを製造するときに発生するガスであり、その主成分は水素及びメタンである。コークス炉ガス中には水素が約50〜60体積%、メタンが約25〜30体積%含まれている。
図1には、本発明の製造方法で好適に用いられる一酸化炭素の製造装置が模式的に示されている。同図に示す装置は連続式のものであり、二重管構造になっている。詳細には、同図に示す装置10は、外管11と、該外管11内に配置された内管12とを備えている。内管12内にはヒーター等の加熱装置13が配置されている。内管12は前記の変換剤を含有している。この装置においては、外管11と内管12との間の空間に二酸化炭素含有ガスを流通させる。この空間内を二酸化炭素含有ガスが流通する間に、二酸化炭素と、内管12に含まれる前記の変換剤とが反応して一酸化炭素が生成する。
図1に示す装置10においては、外管11と内管12との間の空間に二酸化炭素含有ガスを流通させることに加えて、内管12内に還元性ガスを流通させるように構成されている(図1においては、還元性ガスの代表例である水素が記載されている。)。これによって、二酸化炭素との接触によって酸化された前記の変換剤から酸素が引き抜かれ、消失した酸素欠損が再び生成する。このように、同図に示す装置10を用いれば、前記の変換剤を二酸化炭素と接触させて一酸化炭素を生成させた後に、二酸化炭素との接触によって酸化された該変換剤を還元性ガスと接触させて強還元を行い、該金属酸化物を再生することができる。このような繰り返しの再生処理が可能な理由は、前記の変換剤が酸素イオン伝導性を有しているからである。還元性ガスとしては、例えば水素含有ガスやアセチレン含有ガスを用いることができる。特に水素含有ガスを用いることが好ましい。そのような還元性ガスにおける水素ガスの濃度は、好ましくは爆発下限以上〜100体積%、更に好ましくは20体積%〜100体積%である。処理温度に関しては、先に述べたとおり、比較的低温でも十分である。この理由が、酸化セリウムにジルコニウム元素を添加しているからであることも、先に述べたとおりである。処理温度は、具体的には好ましくは300〜1050℃、更に好ましくは320〜820℃、特に好ましくは350〜820℃、中でも好ましくは400〜820℃である。強還元ガスは一般に常圧である。
図1に示す装置においては、内管12の内部に加熱装置13を配置したが、これに代えて外管11の周囲に加熱装置を配置してもよい。一般に、二酸化炭素と変換剤24との反応が起こる温度に比べて、酸化された変換剤24から酸素を強制的に引き抜く温度の方が高いことから、内管12の内部に加熱装置13を配置することが、酸素の強制的な引き抜きのしやすさの点から有利である。尤も、本発明においては、変換剤24がジルコニウムを含んでいることに起因して、ジルコニウム元素が含まれていない場合に比べて、酸素の強制的な引き抜きの温度を低く設定することができるので、変換剤24と二酸化炭素とを反応させる温度と、酸化された変換剤24を強還元処理する温度とをほぼ同一に設定することもできる。したがって、加熱装置13の配置位置の制限は少ない。すなわち、装置10は設計の自由度が高いものである。
なお図1に示す装置においては、二酸化炭素含有ガスの流通方向と還元性ガスの流通方向が同方向であったが、これに代えて二酸化炭素含有ガスの流通方向と還元性ガスの流通方向を反対方向にしてもよい。また、図1に示す装置の変形例として、外管11と内管12との間の空間に還元性ガスを流通させ、内管12内に二酸化炭素含有ガスを流通させるように構成することもできる。この場合には、内管12に含まれている前記の変換剤の再生を効率的に行うために、外管11の周囲に加熱装置を配置することが好ましい。
図2に示す装置20は、二基のバッチ式反応装置21,22を備えている。更に装置20は、切替弁23を備えている。切替弁23は、二酸化炭素含有ガス源及び還元性ガス源(図2においては、還元性ガスの代表例である水素が記載されている。)にそれぞれ接続する入力部23a,23bを有している。更に切替弁23は、各反応装置21,22のそれぞれに接続する出力部23c,23dを有している。反応装置21,22内には、前記の変換剤24の配置が可能になっている。また、各反応装置21,22の周囲には、加熱装置25が配置されている。
図2に示す装置20においては、切替弁23を介して各反応装置21,22に二酸化炭素含有ガス又は還元性ガスが択一的にかつ同時に供給されるようになっている。これに加えて、切替弁23の切り替えによって、各反応装置に供給されるガスの種類を切り替えられるようになっている。
図2に示す装置を運転する場合には、まず、切替弁23を図2に示す位置に設定し、二酸化炭素含有ガスが第2反応装置22に供給され、かつ還元性ガスが第1反応装置21に供給されるようにする。そして、加熱装置25によって各反応装置21,22を加熱して、各反応装置21,22に還元性ガス及び二酸化炭素含有ガスを供給する。このようにすると、第1反応装置21においては、その内部に静置された前記の変換剤24が強還元されて、酸素が強制的に引き抜かれ、可逆的な酸素欠損が変換剤24に生じる。一方、第2反応装置22においては、二酸化炭素と、あらかじめ強還元した変換剤24との反応によって一酸化炭素が生成するとともに、該変換剤24中の酸素欠損の数が次第に減少してくる。そして、第2反応装置22における一酸化炭素の生成量が減少してきたら、切替弁23を切り替えて、二酸化炭素含有ガスが第1反応装置21に供給され、かつ還元性ガスが第2反応装置22に供給されるようにする。第1反応装置21内に静置されている変換剤24は、二酸化炭素と接触していない活性の高いものなので、これを二酸化炭素と接触させることで、一酸化炭素の生成量が増加に転じる。一方第2反応装置22においては、酸素欠損の数が減少して活性の低下した変換剤24が強還元されて、酸素が強制的に引き抜かれ、可逆的な酸素欠損が変換剤24に再び生じる。
図2に示す装置20においては、第1反応装置21と第2反応装置22の加熱温度は同じに設定してもよく、あるいは異なる温度に設定してもよい。一般に、二酸化炭素と変換剤24との反応が起こる温度に比べて、酸化された変換剤24から酸素を強制的に引き抜く温度の方が高いことから、還元性ガスを供給する方の反応装置の加熱温度を、一酸化炭素を生成させる方の反応装置の加熱温度よりも高く設定することが好ましい。しかし変換剤24を用いた装置20においては、変換剤24がジルコニウムを含んでいることに起因して、変換剤24と二酸化炭素含有ガスとを反応させる温度と、酸化された変換剤24を強還元処理する温度とをほぼ同一に設定することもできる。したがって、第1反応装置21と第2反応装置22の加熱温度については、特に制限なく決定することができる。すなわち、装置20は設計の自由度が高いものである。
このように、二酸化炭素ガスと変換剤24との反応を、第1反応装置21と第2反応装置22とで交互に行うことで、該変換剤24を再生しつつ、一酸化炭素の生成を半連続的に行うことが可能になる。なお、図2に示す装置20においてはバッチ式反応装置を二基用いたが、これに代えて三基以上の反応装置を用いてもよい。
図3に示す装置30は、前記の変換剤を含んで構成される板状体31と、板状のセパレータ32とが交互にスタックされた構造を有している。各セパレータ32の各面には、一方向に延びる複数の凸部33及び凹条部34が交互に配置されている。これによって、板状体31と、これを挟んで対向する一対のセパレータとの間には、凹条部34によって形成されたガスの流通が可能な空間が形成される。また図示していないが、装置30は、スタック構造体の周囲に配置された加熱装置を備えている。
図3に示す装置30を運転する場合には、加熱装置(図示せず)によってスタック構造体を所定温度に加熱した状態下に、板状体31を挟んで対向する2つのセパレータ32a,32bにおける一方のセパレータ32aと板状体31との対向面に位置する凹条部34aに二酸化炭素含有ガスを流通させる。この凹条部34a内を二酸化炭素含有ガスが流通する間に、二酸化炭素と、板状体31に含まれる前記の変換剤とが反応して一酸化炭素が生成する。これに加えて、かつ他方のセパレータ32bと板状体31との対向面に位置する凹条部34bに還元性ガスを流通させるように構成する(図3においては、還元性ガスの代表例である水素が記載されている。)。これによって、二酸化炭素との接触によって酸化された前記の変換剤から酸素が引き抜かれ、消失した酸素欠損が再び生成する。このように、装置30を用いれば、先に説明した図1に示す装置10と同様に、前記の変換剤を二酸化炭素含有ガスと接触させて一酸化炭素を生成させた後、二酸化炭素含有ガスとの接触によって酸化された該変換剤を還元性ガスと接触させて強還元を行い、該金属酸化物を再生することができる。
図3に示す装置30の各セパレータ32は、その一方の面と他方の面に形成されている凸部33及び凹条部34の延びる方向が90度ずれている。しかし、セパレータ32の各面に形成されている凸部33及び凹条部34の延びる方向は、これに限られない。例えばセパレータ32の各面に形成されている凸部33及び凹条部34の延びる方向は、90度以外の角度で交差していてもよく、あるいは同方向でもよい。セパレータ32の各面に形成されている凸部33及び凹条部34の延びる方向が同方向である場合、セパレータ32の一方の面側の凹条部34に流通させるガスの方向と、他方の面側の凹条部34に流通させるガスの方向とは同方向でもよく、あるいは反対方向でもよい。
なお、図2及び図3に示す装置に関して、特に説明しない点については、図1に示す装置に関する説明が適宜適用される。
また、本発明によれば、前記の変換剤を用いた、二酸化炭素を一酸化炭素に変換するシステムも提供される。このシステムにおいては、産業上、二酸化炭素の主要な発生源である製鉄所、精錬所又は火力発電所から発生した二酸化炭素を含む排気ガスと、前記の変換剤とを接触させる。製鉄所、精錬所又は火力発電所から発生する二酸化炭素を含む排気ガスとしては、高炉ガス、転炉ガス等が挙げられる。このとき、製鉄所、精錬所又は火力発電所から発生した廃熱を用いた加熱下に接触させれば、エネルギー効率を高めることができて有利である。この加熱下の接触によって一酸化炭素が生成する。このシステムによれば、二酸化炭素が大気中に放出されることが抑制されるだけでなく、生成した一酸化炭素を、C1ケミストリーの原料として有効活用できるという利点がある。あるいは、生成した一酸化炭素を、例えば製鉄所の高炉にフィードバックして、再使用することもできる。
製鉄所又は精錬所においては、二酸化炭素を含むガス排気ガスが生成する他、水素含有ガスも生成する。特に製鉄所においては、水素含有ガスが多量に生成する。この水素含有ガスを、二酸化炭素との接触によって酸化された前記の変換剤の再生に用いれば、別途水素ガスを用意することなく、可逆的な酸素欠損を有する前記の変換剤を得ることができるので、エネルギー効率が一層高くなり有利である。製鉄所又は精錬所において生成する水素含有ガスとしては、コークス炉ガス等が挙げられる。しかも、本発明で用いられる前記の変換剤は、ジルコニウムを含んでいることに起因して、該変換剤に可逆的な酸素欠損を生成させるための温度を低く設定できるので、精錬所、製鉄所又は火力発電所から発生した廃熱を利用して、前記の変換剤の再生を首尾よく行うことができるという利点もある。本システムが適用される施設は製鉄所又は精錬所に限られず、コークス炉を有する施設等、水素を多量に副生する施設に有利に適用することができる。
以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り「%」は「質量%」を意味する。
〔実施例1〕
(1)可逆的な酸素欠損を有するジルコニウム含有酸化セリウムの製造
(a)ジルコニウム含有酸化セリウムの合成
酸化セリウム−酸化ジルコニウムの複合酸化物(阿南化成(株))の粉末を用いた。該複合酸化物は、セリウムとジルコニウムのモル数の合計量に対するジルコニウムのモル数の割合が0.25となるように調製されたものであった。該複合酸化物50gを加熱炉内に静置し、空気を流通させながら加熱して焼成を行った。加熱は、室温から開始し、5℃/分の昇温速度で加熱を行い、1400℃に到達したのち、この温度を2時間保持した。空気の流通量は0.5L/minとした。その後、自然放冷し、可逆的な酸素欠損を有さないジルコニウム含有酸化セリウムを得た。XRDによる測定で、このジルコニウム含有酸化セリウムにおいてはZrO2に由来する回折ピークは観察されず、CeO2に由来する回折ピークのみ観察された。この結果から、ジルコニウムは酸化セリウムに固溶していることが確認された。
(b)可逆的な酸素欠損を有するジルコニウム含有酸化セリウムの合成
前項(a)で得られたジルコニウム含有酸化セリウム(50g)を雰囲気制御型加熱炉内に静置し、100体積%の水素ガスを流通させながら加熱して還元を行った。加熱は、室温から開始し、5℃/分の昇温速度で加熱を行い、600℃に到達したのち、この温度を3時間保持した。その後、自然放冷した。水素ガスの流通量は1.5L/minとした。このようにして、可逆的な酸素欠損を有するジルコニウム含有酸化セリウムを得た。
(2)二酸化炭素ガスからの一酸化炭素ガスの変換評価
図4に示す装置を用いた、管状炉を窒素ガス雰囲気のグローブボックス内に設置した。管状炉内には、前項(1)で得られた可逆的な酸素欠損を有するジルコニウム含有酸化セリウムの粉末8.5gが静置されている。まず、バルブV5を閉じ、他のバルブはすべて開けて、管状炉内を真空吸引した。この状態のまま、バルブV1を閉じて管状炉を600℃まで加熱した。次いでバルブV2及びV3を閉じた後に管状炉内の吸引を停止した。バルブV4を締めて管状炉内に二酸化炭素ガス(100体積%)を供給した。供給量は280mLとした(0℃、1atm換算値)。そしてバルブV1を閉じて1時間放置した。その後バルブV2を開け、更にガス回収袋が少し膨らむまで窒素ガスを管状炉内に供給した。次いで、バルブV2を閉じるとともに、ガス回収袋を熱シールして管から切り離した。この状態のまま管状炉を降温し、室温になるまで冷却した。冷却完了後、バルブV1を開けて管状炉内に窒素ガスを供給した。供給は、管状炉内の圧力が大気圧になるまで行った。最後に、バルブV3及びV5を開け、窒素ガスによって管状炉内の一酸化炭素を押し出した。回収された反応後のガスは、ガスクロマトグラフィーを用いて定性と定量を行い、以下の基準で、600℃における二酸化炭素から一酸化炭素への変換を評価した。この評価とは別に、管状炉の加熱温度を400℃に低下させた以外は上述の方法と同様にして、400℃における二酸化炭素から一酸化炭素への変換を評価した。これらの結果を、以下の表1に示す。
○:0.5%以上の二酸化炭素が一酸化炭素に変換された。
×:0.5%未満の二酸化炭素が一酸化炭素に変換された。
(3)二酸化炭素との反応温度
実施例1で用いたジルコニウム含有酸化セリウムが、二酸化炭素と反応する温度(以下「TCO2」と言う。)を以下の方法で測定した。その結果を以下の表1に示す。
示差熱熱重量同時測定装置(TG/DTA)(SII社製 EXSTAR6000)を用いて、可逆的な酸素欠損を有さないジルコニウム含有酸化セリウム30mgを、還元ガス雰囲気下で700℃まで昇温後、700℃の状態を30分保持して還元させた。還元ガスの流通速度は300mL/min、昇温速度は20℃/minとした。還元ガスとしては水素・窒素混合ガス(水素4体積%、窒素96体積%)を用いた。このようにして、可逆的な酸素欠損を有するジルコニウム含有酸化セリウムを得た。次いで、降温速度40℃/minで室温まで降温させた後、二酸化炭素ガス(100体積%)を流通させて、再び前記の昇温速度で昇温し、可逆的な酸素欠損を有するジルコニウム含有酸化セリウムと二酸化炭素ガスとを反応させた。二酸化炭素ガスの流通速度は300mL/minとした。可逆的な酸素欠損を有するジルコニウム含有酸化セリウムの質量変化を測定し、酸素の結合に起因する質量増加が観察される温度をTCO2とした。図5に示すように、TG曲線における、質量増が生じ始める前の接線L1と、質量増が生じた後の接線L2との交点における温度をTCO2とした。
(4)酸素欠損の生成温度
実施例1で用いた可逆的な酸素欠損を有しないジルコニウム含有酸化セリウムが、可逆的な酸素欠損を生成する温度(以下「Tred」と言う。)を以下の方法で測定した。その結果を以下の表1に示す。
示差熱熱重量同時測定装置(TG/DTA)(SII社製 EXSTAR6000)を用いて、可逆的な酸素欠損を有さないジルコニウム含有酸化セリウム30〜35mgを還元ガス雰囲気下で昇温させた。酸素の離脱に起因する質量変化が観察される温度をTredとした。還元ガスとしては水素・窒素混合ガス(水素4体積%、窒素96体積%)を用いた。還元ガスの流通速度は300mL/min、昇温速度は20℃/minとした。図5に示すように、TG曲線における、質量減が生じ始める前の接線L3と、質量減が生じた後の接線L4との交点における温度をTredとした。
〔実施例2及び3〕
ジルコニウム含有酸化セリウムとして、セリウムとジルコニウムのモル数の合計量に対するジルコニウムのモル数の割合が、表1に示すものを用いたこと以外、実施例1と同様にして、可逆的な酸素欠損を有さないジルコニウム含有酸化セリウム及び可逆的な酸素欠損を有するジルコニウム含有酸化セリウムを得た。得られた可逆的な酸素欠損を有さないジルコニウム含有酸化セリウムについて実施例1と同様のTredとTCO2の測定を行った。また、可逆的な酸素欠損を有するジルコニウム含有酸化セリウムについて、実施例1と同様の二酸化炭素ガスからの一酸化炭素ガスへの変換評価を行った。その結果を表1に示す。
なお、XRDによる測定で、実施例2及び3のジルコニウム含有酸化セリウムにおいてZrO2に由来する回折ピークは観察されず、CeO2に由来する回折ピークのみ観察され、ジルコニウムが酸化セリウムに固溶していることが確認された。
〔実施例4〜6〕
ジルコニウム含有酸化セリウムとして、セリウムとジルコニウムのモル数の合計量に対するジルコニウムのモル数の割合が表1に示すものを用い、焼成条件を1400℃・2時間の代わりに1500℃・5時間とした以外は、実施例1と同様にして、可逆的な酸素欠損を有さないジルコニウム含有酸化セリウム及び可逆的な酸素欠損を有するジルコニウム含有酸化セリウムを得た。得られた可逆的な酸素欠損を有さないジルコニウム含有酸化セリウムについて実施例1と同様のTredとTCO2の測定を行った。また、可逆的な酸素欠損を有するジルコニウム含有酸化セリウムについて、実施例1と同様の二酸化炭素ガスからの一酸化炭素ガスへの変換評価を行った。その結果を表1に示す。
なお、XRDによる測定によって、実施例4及び5のジルコニウム含有酸化セリウムにおいては、ジルコニウムが固溶した酸化セリウム及びセリウムが固溶した酸化ジルコニウムが混合した状態であることが確認された。実施例4及び5のジルコニウム含有酸化セリウムのいずれについても、ジルコニウムが固溶した酸化セリウムにおけるジルコニウムの固溶量が、ジルコニウムが固溶した酸化セリウムの格子定数(実施例4:5.3205Å 実施例5:5.3209Å)及びベガード則から約35%と推測された。また、実施例4及び5のジルコニウム含有酸化セリウムのいずれについても、セリウムが固溶した酸化ジルコニウムにおけるセリウムの固溶量が、セリウムが固溶した酸化ジルコニウム(正方晶)のa,b軸の格子定数(実施例4、5ともに3.6482Å)及びベガード則から約37%と推測された。
また、実施例6のジルコニウム含有酸化セリウムにおいては、CeO2に由来する回折ピークは観察されず、セリウムの固溶により生ずる正方晶ZrO2に由来する回折ピークのみ観察され、セリウムが酸化ジルコニウムに固溶していることが確認された。
〔参考例1〕
炭酸セリウム・八水和物(和光純薬製)を、120℃で12時間乾燥させて炭酸セリウムを得た。得られた炭酸セリウムを更に乳鉢によって粉砕及び混合した。この粉砕物を加熱炉内に静置し、空気を流通させながら加熱して焼成を行った。加熱は、室温から開始し、5℃/分の昇温速度で行い、1400℃に到達した後、この温度を2時間保持した。その後、自然放冷し、可逆的な酸素欠損を有さない酸化セリウムを得た。空気の流通量は0.5L/minとした。得られた酸化セリウムを、実施例1と同様の条件で強還元し、可逆的な酸素欠損を有する酸化セリウムを得た。
前記の可逆的酸素欠損を有さない酸化セリウムについて、実施例1と同様のTredとTCO2の測定をした。また、前記の可逆的な酸素欠損を有する酸化セリウムを用いて、実施例1と同様の二酸化炭素ガスから一酸化炭素ガスへの変換評価を行った。
その結果を以下の表1に示す。
〔参考例2〕
実施例1において、可逆的な酸素欠損を有さないジルコニウム含有酸化セリウムを水素還元せずに、そのまま二酸化炭素ガスから一酸化炭素ガスへの変換評価を行った。また、該ジルコニウム含有酸化セリウムについて、還元ガスによる可逆的な酸素欠損の生成工程を行わず、直接二酸化炭素ガスと反応させて、TCO2を測定した。その結果を以下の表1に示す。
Figure 0005858926
表1に示す結果から明らかなように、実施例1〜6で得られた変換剤を用いると、二酸化炭素を一酸化炭素に変換できることが判る。特に温度400℃における実施例1〜6と参考例1との対比から明らかなように、酸化セリウムにジルコニウムを添加させることで、一層低温でも二酸化炭素から一酸化炭素を生成させられることが判る。またTCO2の測定結果から、特にセリウムとジルコニウムのモル数の合計量に対するジルコニウムのモル数の割合が0.25以下の場合、更に一層低温で二酸化炭素を一酸化炭素に変換できることが判る。また、Tredの測定結果から、酸化セリウムにジルコニウムを添加させることで、一層低温で酸素欠損を生じさせることができることが判る。更に、参考例2に示す結果から明らかなように、ジルコニウム含有酸化セリウムに、可逆的な酸素欠損を生じさせない場合には、二酸化炭素ガスとの反応が起こらないことが判る。
なお表1には示していないが、実施例1〜6においては、炭素の副生は観察されなかった。
〔実施例7〕
実施例1で得られた可逆的な酸素欠損を有さないジルコニウム含有酸化セリウムの粉末を用いた。この粉末9.37g及び硝酸ビスマス・五水和物0.58gを、500mlビーカーに投入し、300mlの水と混合させた。ホットスターラーにて80℃で攪拌して硝酸ビスマスを溶解した後、加熱してビーカー内の水を蒸発させた。蒸発後、残った粉末を乳鉢にて粉砕した。得られた混合粉を加熱炉内に静置し、空気を流通させながら加熱して仮焼成した。加熱は、室温から開始し、5℃/分の昇温速度で行い、700℃に到達した後、この温度を1時間保持した。空気の流通量は0.5 L/minとした。仮焼成によって得られた仮焼成物を更に乳鉢によって粉砕した。この粉砕物を加熱炉内に静置し、空気を流通させながら加熱して本焼成を行った。加熱は、室温から開始し、5℃/分の昇温速度で行い、1000℃に到達した後、この温度を3時間保持した。空気の流通量は0.5 L/minとした。自然放冷した本焼成後の粉末を乳鉢にて粉砕した後、可逆的な酸素欠損を有さないビスマス・ジルコニウム含有酸化セリウムを得た。その後、この可逆的な酸素欠損を有さないビスマス・ジルコニウム含有酸化セリウムから、実施例1と同様にして可逆的な酸素欠損を有するビスマス・ジルコニウム含有酸化セリウムを得た。実施例7の可逆的な酸素欠損を有さないビスマス・ジルコニウム含有酸化セリウムについて実施例1と同様のTredとTCO2の測定を行った。また可逆的な酸素欠損を有するビスマス・ジルコニウム含有酸化セリウムについて実施例1と同様の二酸化炭素ガスからの一酸化炭素ガスへの変換評価を行った。その結果を以下の表2に示す。
〔実施例8〜10〕
実施例1で得られた可逆的な酸素欠損を有さないジルコニウム含有酸化セリウムの代わりに実施例4で得られた可逆的な酸素欠損を有さないジルコニウム含有酸化セリウムを用いた以外は実施例7と同様にして、実施例8の可逆的な酸素欠損を有さないビスマス・ジルコニウム含有酸化セリウム及び可逆的な酸素欠損を有するビスマス・ジルコニウム含有酸化セリウムを得た。
実施例1で得られた可逆的な酸素欠損を有さないジルコニウム含有酸化セリウムの代わりに実施例5で得られた可逆的な酸素欠損を有さないジルコニウム含有酸化セリウムを用いた以外は実施例7と同様にして、実施例9の可逆的な酸素欠損を有さないビスマス・ジルコニウム含有酸化セリウム及び可逆的な酸素欠損を有するビスマス・ジルコニウム含有酸化セリウムを得た。
実施例1で得られた可逆的な酸素欠損を有さないジルコニウム含有酸化セリウムの代わりに実施例6で得られた可逆的な酸素欠損を有さないジルコニウム含有酸化セリウムを用いた以外は実施例7と同様にして、実施例10の可逆的な酸素欠損を有さないビスマス・ジルコニウム含有酸化セリウム及び可逆的な酸素欠損を有するビスマス・ジルコニウム含有酸化セリウムを得た。
実施例8〜10で得られたいずれも可逆的な酸素欠損を有さないビスマス・ジルコニウム含有酸化セリウムについて、実施例1と同様のTredとTCO2の測定を行った。また、実施例8〜10で得られたいずれも可逆的な酸素欠損を有するビスマス・ジルコニウム含有酸化セリウムについて実施例1と同様の二酸化炭素ガスからの一酸化炭素ガスへの変換評価を行った。その結果を表2に示す。
〔実施例11〜14〕
セリウム、ジルコニウム及びビスマスのモル数の合計量に対するビスマスのモル数の割合が表2に示す値となるように調整した以外は、実施例7と同様にして、可逆的な酸素欠損を有さないビスマス・ジルコニウム含有酸化セリウム、及び可逆的な酸素欠損を有するビスマス・ジルコニウム含有酸化セリウムを得た。得られた可逆的な酸素欠損を有さないビスマス・ジルコニウム含有酸化セリウムについて実施例1と同様のTredとTCO2の測定を行った。また、可逆的な酸素欠損を有するビスマス・ジルコニウム含有酸化セリウムについて実施例1と同様の二酸化炭素ガスからの一酸化炭素ガスへの変換評価を行った。その結果を表2に示す。
なお、XRDによる測定で、実施例7〜12のビスマス・ジルコニウム含有酸化セリウムにおいて、Bi23に由来する回折ピークは観察されず、ビスマスは酸化セリウム又は酸化ジルコニウムに固溶していることが確認された。実施例13及び14のビスマス・ジルコニウム含有酸化セリウムにおいては、Bi23に由来する回折ピークが観察された。
〔参考例3〕
実施例7において、可逆的な酸素欠損を有さないビスマス・ジルコニウム含有酸化セリウムを水素還元せずに、そのまま二酸化炭素ガスから一酸化炭素ガスへの変換評価を行った。また、該ビスマス・ジルコニウム含有酸化セリウムについて、還元ガスによる可逆的な酸素欠損の生成工程を行わず、直接二酸化炭素ガスと反応させて、TCO2を測定した。その結果を以下の表2に示す。
Figure 0005858926
表1及び表2に示す結果から、ジルコニウム含有酸化セリウムにビスマスを添加させることで、二酸化炭素の一酸化炭素への変換を、一層低温で行うことができるとともに、酸素欠損の生成も一層低温で行うことができることが判る。
また、表2に示す結果から、ビスマス・ジルコニウム含有酸化セリウムに含有されるビスマス量が多いほど、低温で二酸化炭素を一酸化炭素に変換できることが判る。更に、参考例3に示す結果から明らかなように、ビスマス・ジルコニウム含有酸化セリウムに、可逆的な酸素欠損を生じさせない場合には、二酸化炭素ガスとの反応が起こらないことが判る。
なお表2には示していないが、実施例7〜14においても、炭素の副生は観察されなかった。

Claims (14)

  1. 酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物と二酸化炭素含有ガスとを加熱下に接触させ、化学量論反応によって二酸化炭素を還元して、一酸化炭素を生成させる一酸化炭素の製造方法であって、
    前記の金属酸化物として、ジルコニウムを含む酸化セリウムを用い
    前記ジルコニウムを含む酸化セリウムにおいて、セリウム及びジルコニウムのモル数の合計量に対するジルコニウムのモル数の割合が0.001〜0.5である一酸化炭素の製造方法。
  2. 前記の金属酸化物として、ジルコニウムが固溶した酸化セリウムを用いる請求項に記載の製造方法。
  3. 前記ジルコニウムを含む酸化セリウムに、ビスマス及びアルカリ土類金属元素から選択される1種又は2種以上の元素をドープ元素として添加し、
    前記元素及びジルコニウムを含む酸化セリウムとして、セリウム、ジルコニウム及び前記の元素のモル数の合計量に対する前記の元素のモル数の割合が、0.001〜0.3であるものを用いる、請求項1又は2に記載の製造方法。
  4. 前記元素としてビスマスを用いる、請求項に記載の製造方法。
  5. 二酸化炭素含有ガスとして高炉ガス又は転炉ガスを用いる請求項1ないしのいずれか一項に記載の製造方法。
  6. 前記の金属酸化物を二酸化炭素含有ガスと接触させて一酸化炭素を生成させた後、二酸化炭素含有ガスとの接触によって酸化された該金属酸化物を還元性ガスと接触させて該金属酸化物を再生する請求項1ないしのいずれか一項に記載の製造方法。
  7. 還元性ガスとしてコークス炉ガスを用いる請求項に記載の製造方法。
  8. 外管と、該外管内に配置された内管とを備え、
    該内管は、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物を含んで構成されており、
    該外管と該内管との間に二酸化炭素含有ガスを流通させ、かつ該内管内に還元性ガスを流通させるように構成されているか、又は
    該外管と該内管との間に還元性ガスを流通させ、かつ該内管内に二酸化炭素含有ガスを流通させるように構成されており、
    前記の金属酸化物として、ジルコニウムを含む酸化セリウムを用い
    前記ジルコニウムを含む酸化セリウムにおいて、セリウム及びジルコニウムのモル数の合計量に対するジルコニウムのモル数の割合が0.001〜0.5である一酸化炭素の製造装置。
  9. 酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物を含んで構成される板状体と、板状のセパレータとが交互にスタックされてなる一酸化炭素の製造装置であって、
    各セパレータの各面には、一方向に延びる複数の凸条部及び凹条部が交互に配置されており、
    前記の板状体を挟んで対向する2つのセパレータにおける一方のセパレータと該板状体との対向面に位置する凹条部に二酸化炭素含有ガスを流通させ、かつ他方のセパレータと該板状体との対向面に位置する凹条部に還元性ガスを流通させるように構成されており、
    前記の金属酸化物として、ジルコニウムを含む酸化セリウムを用い
    前記ジルコニウムを含む酸化セリウムにおいて、セリウム及びジルコニウムのモル数の合計量に対するジルコニウムのモル数の割合が0.001〜0.5である一酸化炭素の製造装置。
  10. 製鉄所、精錬所又は火力発電所から発生した二酸化炭素を含む排気ガスと、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物とを、精錬所、製鉄所又は火力発電所から発生した廃熱を用いた加熱下に接触させ、化学量論反応によって該排気ガス中の二酸化炭素を還元して、一酸化炭素を生成させることを特徴とする二酸化炭素を一酸化炭素に変換するシステムであって、
    前記の金属酸化物として、ジルコニウムを含む酸化セリウムを用い
    前記ジルコニウムを含む酸化セリウムにおいて、セリウム及びジルコニウムのモル数の合計量に対するジルコニウムのモル数の割合が0.001〜0.5である二酸化炭素を一酸化炭素に変換するシステム。
  11. 前記の排気ガスとして高炉ガス又は転炉ガスを用いる請求項10に記載のシステム。
  12. 二酸化炭素との接触によって酸化された該金属酸化物を、精錬所又は製鉄所から発生した水素含有ガスと接触させて、該金属酸化物に可逆的な酸素欠損を生じさせる請求項10又は11に記載のシステム。
  13. 水素含有ガスとしてコークス炉ガスを用いる請求項12に記載のシステム。
  14. 酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物からなり、金属酸化物が、ジルコニウムを含む酸化セリウムからなり、
    前記ジルコニウムを含む酸化セリウムにおいて、セリウム及びジルコニウムのモル数の合計量に対するジルコニウムのモル数の割合が0.001〜0.5である二酸化炭素の一酸化炭素への変換剤。
JP2012540890A 2010-10-26 2011-10-25 一酸化炭素の製造方法及び製造装置 Active JP5858926B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012540890A JP5858926B2 (ja) 2010-10-26 2011-10-25 一酸化炭素の製造方法及び製造装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010240121 2010-10-26
JP2010240121 2010-10-26
JP2012540890A JP5858926B2 (ja) 2010-10-26 2011-10-25 一酸化炭素の製造方法及び製造装置
PCT/JP2011/074583 WO2012057162A1 (ja) 2010-10-26 2011-10-25 一酸化炭素の製造方法及び製造装置

Publications (2)

Publication Number Publication Date
JPWO2012057162A1 JPWO2012057162A1 (ja) 2014-05-12
JP5858926B2 true JP5858926B2 (ja) 2016-02-10

Family

ID=45993868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012540890A Active JP5858926B2 (ja) 2010-10-26 2011-10-25 一酸化炭素の製造方法及び製造装置

Country Status (4)

Country Link
EP (1) EP2634140A4 (ja)
JP (1) JP5858926B2 (ja)
CN (1) CN103097289B (ja)
WO (1) WO2012057162A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019190244A1 (ko) * 2018-03-30 2019-10-03 한국화학연구원 가역적 산화-환원 변환제를 사용하여 이산화탄소 및 물로부터 일산화탄소와 수소를 생산하는 시스템 및 그 방법
WO2021192871A1 (ja) 2020-03-25 2021-09-30 積水化学工業株式会社 還元剤およびガスの製造方法
WO2022029882A1 (ja) 2020-08-04 2022-02-10 積水化学工業株式会社 ガス製造装置、ガス製造システムおよびガス製造方法
WO2022029885A1 (ja) 2020-08-04 2022-02-10 積水化学工業株式会社 ガス製造装置、ガス製造システムおよびガス製造方法
WO2022029881A1 (ja) 2020-08-04 2022-02-10 積水化学工業株式会社 ガス製造装置、ガス製造システムおよびガス製造方法
WO2022029884A1 (ja) 2020-08-04 2022-02-10 積水化学工業株式会社 ガス製造装置、ガス製造システムおよびガス製造方法
WO2022029880A1 (ja) 2020-08-04 2022-02-10 積水化学工業株式会社 ガス製造装置、ガス製造システムおよびガス製造方法
WO2023100833A1 (ja) 2021-11-30 2023-06-08 積水化学工業株式会社 ガス製造装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105293492B (zh) * 2015-10-15 2019-10-15 南开大学 一种利用石墨烯基催化剂热还原co2合成co的方法
US11554960B2 (en) 2018-02-22 2023-01-17 Sekisui Chemical Co., Ltd. Carbon dioxide reduction system and carbon dioxide reduction method
JP2021075447A (ja) * 2019-09-24 2021-05-20 積水化学工業株式会社 ガス製造装置、ガス製造システムおよびガス製造方法
WO2021192872A1 (ja) * 2020-03-25 2021-09-30 積水化学工業株式会社 還元剤およびガスの製造方法
US20220307096A1 (en) * 2020-08-04 2022-09-29 Sekisui Chemical Co., Ltd. System and method for producing steel
WO2022149536A1 (ja) * 2021-01-05 2022-07-14 積水化学工業株式会社 ガス製造装置およびガス製造方法
EP4371935A1 (en) * 2021-07-12 2024-05-22 Sekisui Chemical Co., Ltd. Gas production device, gas production system, and gas production method
WO2023100834A1 (ja) * 2021-11-30 2023-06-08 積水化学工業株式会社 ガス製造装置
WO2023120504A1 (ja) * 2021-12-21 2023-06-29 積水化学工業株式会社 酸素キャリア、酸素キャリアの製造方法、ガスの製造方法及びガス製造装置
CN114875352B (zh) * 2022-04-15 2023-06-27 北京科技大学 一种高效分解co2的金属氧化物的制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769603A (ja) * 1993-09-02 1995-03-14 Sekiyu Shigen Kaihatsu Kk メタンを原料とする水素,一酸化炭素の製造方法
JP2007056159A (ja) * 2005-08-25 2007-03-08 Nippon Steel Corp 高熱量ガスの生成方法
WO2008001745A1 (fr) * 2006-06-29 2008-01-03 Mitsui Mining & Smelting Co., Ltd. Agent déshumidifiant/désoxydant
WO2008140004A1 (ja) * 2007-05-10 2008-11-20 Mitsui Mining & Smelting Co., Ltd. 脱酸素剤及び脱酸素剤の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568853A (ja) 1991-09-11 1993-03-23 Nissan Motor Co Ltd Co2 ガス分解回収法
US5851636A (en) * 1995-12-29 1998-12-22 Lantec Products, Inc. Ceramic packing with channels for thermal and catalytic beds
US6464955B2 (en) 1999-05-13 2002-10-15 The Boc Group, Inc. Production of hydrogen and carbon monoxide
JP2001322958A (ja) 2000-05-12 2001-11-20 Mitsubishi Electric Corp 二酸化炭素の固定方法および二酸化炭素の固定装置
JP4345909B2 (ja) * 2001-12-11 2009-10-14 吟也 足立 低温酸化還元能を有する複合酸化物とその製造方法
FR2852591B1 (fr) * 2003-03-18 2006-06-16 Rhodia Elect & Catalysis Composition a base d'oxyde de zirconium et d'oxyde de cerium a temperature maximale de reductibilite reduite, son procede de preparation et son utilisation comme catalyseur
CN101454063A (zh) * 2006-06-29 2009-06-10 三井金属矿业株式会社 除湿脱氧剂
WO2009051925A1 (en) * 2007-10-16 2009-04-23 Graftech International Holdings Inc. Battery electrode
CN101337672A (zh) * 2008-08-12 2009-01-07 史汉祥 二氧化碳转化一氧化碳循环技术

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769603A (ja) * 1993-09-02 1995-03-14 Sekiyu Shigen Kaihatsu Kk メタンを原料とする水素,一酸化炭素の製造方法
JP2007056159A (ja) * 2005-08-25 2007-03-08 Nippon Steel Corp 高熱量ガスの生成方法
WO2008001745A1 (fr) * 2006-06-29 2008-01-03 Mitsui Mining & Smelting Co., Ltd. Agent déshumidifiant/désoxydant
WO2008140004A1 (ja) * 2007-05-10 2008-11-20 Mitsui Mining & Smelting Co., Ltd. 脱酸素剤及び脱酸素剤の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019190244A1 (ko) * 2018-03-30 2019-10-03 한국화학연구원 가역적 산화-환원 변환제를 사용하여 이산화탄소 및 물로부터 일산화탄소와 수소를 생산하는 시스템 및 그 방법
WO2021192871A1 (ja) 2020-03-25 2021-09-30 積水化学工業株式会社 還元剤およびガスの製造方法
WO2022029882A1 (ja) 2020-08-04 2022-02-10 積水化学工業株式会社 ガス製造装置、ガス製造システムおよびガス製造方法
WO2022029885A1 (ja) 2020-08-04 2022-02-10 積水化学工業株式会社 ガス製造装置、ガス製造システムおよびガス製造方法
WO2022029881A1 (ja) 2020-08-04 2022-02-10 積水化学工業株式会社 ガス製造装置、ガス製造システムおよびガス製造方法
WO2022029884A1 (ja) 2020-08-04 2022-02-10 積水化学工業株式会社 ガス製造装置、ガス製造システムおよびガス製造方法
WO2022029880A1 (ja) 2020-08-04 2022-02-10 積水化学工業株式会社 ガス製造装置、ガス製造システムおよびガス製造方法
WO2023100833A1 (ja) 2021-11-30 2023-06-08 積水化学工業株式会社 ガス製造装置

Also Published As

Publication number Publication date
EP2634140A4 (en) 2016-10-26
CN103097289B (zh) 2016-01-06
EP2634140A1 (en) 2013-09-04
WO2012057162A1 (ja) 2012-05-03
JPWO2012057162A1 (ja) 2014-05-12
CN103097289A (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5858926B2 (ja) 一酸化炭素の製造方法及び製造装置
Hare et al. Enhanced CO2 conversion to CO by silica-supported perovskite oxides at low temperatures
WO2012017916A1 (ja) 製鉄所における二酸化炭素からの一酸化炭素への変換システム
Feng et al. Progress and key challenges in catalytic combustion of lean methane
Zhang et al. Recent advances in lithium containing ceramic based sorbents for high-temperature CO 2 capture
Ding et al. A novel composite perovskite-based material for chemical-looping steam methane reforming to hydrogen and syngas
TWI603779B (zh) 熱化學燃料製造用觸媒及熱化學燃料製造方法
Galvita et al. CeO2-modified Fe2O3 for CO2 utilization via chemical looping
Call et al. Thermogravimetric analysis of zirconia-doped ceria for thermochemical production of solar fuel
JP6111070B2 (ja) 一酸化炭素の製造方法及び製造装置
Shafiefarhood et al. Iron-containing mixed-oxide composites as oxygen carriers for Chemical Looping with Oxygen Uncoupling (CLOU)
Zhu et al. Metal modified hexaaluminates for syngas generation and CO2 utilization via chemical looping
WO2012057161A1 (ja) 一酸化炭素の製造方法及び製造装置
Abad et al. Evaluation of the redox capability of manganese‑titanium mixed oxides for thermochemical energy storage and chemical looping processes
WO2011136045A1 (ja) 一酸化炭素の製造方法及び製造装置
Cho et al. Degradation analysis of mixed ionic-electronic conductor-supported iron-oxide oxygen carriers for chemical-looping conversion of methane
Xu et al. Oxygen permeability and stability of dual-phase Ce0. 85Pr0. 15O2-δ-Pr0. 6Sr0. 4Fe0. 9Al0. 1O3-δ membrane for hydrogen production by water splitting
WO2015015161A1 (en) Energy generation process
JP2010058043A (ja) 水蒸気改質用触媒および水素の製造方法
Ni et al. Promoting effect and kinetic analysis of Fe-Co bimetallic doping on the LaMnO3 catalytic activity for methane combustion
US20240067527A1 (en) Facile co2 sequestration and fuel production from a hydrocarbon
Abad Secades et al. Evaluation of the redox capability of manganese‑titanium mixed oxides for thermochemical energy storage and chemical looping processes
Westbye et al. Combined Mayenite-Based Calcium-Copper Materials for Ca-Cu Looping Technology: Powder Upscaling and Agglomerates
US9868636B1 (en) Thermochemically active iron titanium oxide materials
Vera et al. Alkaline Ceramics-based High-temperature CO2 Sorbents

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151215

R150 Certificate of patent or registration of utility model

Ref document number: 5858926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250