JP5856750B2 - Heat dissipation device - Google Patents

Heat dissipation device Download PDF

Info

Publication number
JP5856750B2
JP5856750B2 JP2011093206A JP2011093206A JP5856750B2 JP 5856750 B2 JP5856750 B2 JP 5856750B2 JP 2011093206 A JP2011093206 A JP 2011093206A JP 2011093206 A JP2011093206 A JP 2011093206A JP 5856750 B2 JP5856750 B2 JP 5856750B2
Authority
JP
Japan
Prior art keywords
stress
heat sink
cross
insulating substrate
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011093206A
Other languages
Japanese (ja)
Other versions
JP2012227341A (en
Inventor
南 和彦
和彦 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2011093206A priority Critical patent/JP5856750B2/en
Publication of JP2012227341A publication Critical patent/JP2012227341A/en
Application granted granted Critical
Publication of JP5856750B2 publication Critical patent/JP5856750B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、電子素子を搭載する絶縁基板の他方の面にヒートシンクが接合された放熱装置に関する。   The present invention relates to a heat dissipation device in which a heat sink is bonded to the other surface of an insulating substrate on which an electronic element is mounted.

本明細書および特許請求の範囲の記載において、「アルミニウム」の語はアルミニウムおよびその合金の両者を含む意味で用いられる。   In the present specification and claims, the term “aluminum” is used to include both aluminum and its alloys.

電子素子を搭載するための放熱装置として、絶縁基板の一面側に電子素子搭載用の金属回路層が接合され、他面側にヒートシンクを接合し、絶縁基板をヒートシンクに熱的に結合したものが知られている。かかる放熱装置において、セラミック製絶縁基板と金属製ヒートシンクとを直接ろう付すると通電時の発熱と非通電時の冷却による冷熱サイクルにおいて接合部の剥離やセラミック基板の割れが発生しやすいことから、これらの間に軟質の金属層を介在させて接合部に発生する熱応力を緩和することがある(特許文献1、2参照)。   As a heat dissipation device for mounting electronic elements, a metal circuit layer for mounting electronic elements is bonded to one side of an insulating substrate, a heat sink is bonded to the other side, and the insulating substrate is thermally coupled to the heat sink. Are known. In such a heat dissipation device, if the ceramic insulating substrate and the metal heat sink are brazed directly, peeling of the joints and cracking of the ceramic substrate are likely to occur in the cooling cycle due to heat generation during energization and cooling during non-energization. In some cases, a soft metal layer is interposed between them to relieve the thermal stress generated at the joint (see Patent Documents 1 and 2).

さらには、前記金属層のかわりに貫通穴や有底の穴による応力吸収空間を設けた応力緩和材の使用や、前記応力緩和材と金属層とを併用することが提案されている。図10に示した放熱装置(100)は、絶縁基板(11)とヒートシンク(13)との間に介在させる応力緩和材(101)として、金属板に多数の円形の貫通穴(102)を設けたものを使用している。   Furthermore, it has been proposed to use a stress relaxation material provided with a stress absorption space by a through hole or a bottomed hole instead of the metal layer, or to use the stress relaxation material and the metal layer in combination. The heat dissipation device (100) shown in FIG. 10 is provided with a number of circular through holes (102) in a metal plate as a stress relieving material (101) interposed between the insulating substrate (11) and the heat sink (13). I am using something.

特開2004−153075号公報JP 2004-153075 A 特開2006−294699号公報JP 2006-294699 A

前記放熱装置(100)は、応力緩和材(101)の一方の面が絶縁基板(11)にろう付され、他方の面がヒートシンク(13)にろう付される。このろう付時に余剰のろう材が接合界面から応力吸収空間である貫通穴(102)に流れ込んで貫通穴(102)を塞ぐことがある。応力吸収空間が塞がれて空間の容積が減少すると応力緩和効果が低下するので好ましくない。特に、セラミック製絶縁基板と金属製応力緩和材とは異種材料であり、これらの接合界面にはヒートシンクとの接合界面よりも大きい応力が発生するため、応力吸収空間が絶縁基板側で塞がれることは好ましくない。   In the heat dissipation device (100), one surface of the stress relaxation material (101) is brazed to the insulating substrate (11), and the other surface is brazed to the heat sink (13). During this brazing, excessive brazing material may flow into the through hole (102), which is a stress absorption space, from the joint interface and close the through hole (102). If the stress absorption space is closed and the volume of the space is reduced, the stress relaxation effect is lowered, which is not preferable. In particular, the ceramic insulating substrate and the metal stress relieving material are different materials, and stress is generated at the bonding interface larger than the bonding interface with the heat sink, so that the stress absorption space is blocked on the insulating substrate side. That is not preferred.

本発明は、上述した背景技術に鑑み、絶縁基板とヒートシンクとが応力緩和材を介してろう付された放熱装置において、余剰ろう材による応力吸収空間の絶縁基板側の塞がりを防止することを目的として、応力吸収空間の形状を提案するものである。   SUMMARY OF THE INVENTION In view of the background art described above, the present invention aims to prevent the insulating substrate side of the stress absorbing space from being blocked by excess brazing material in a heat dissipation device in which the insulating substrate and the heat sink are brazed via a stress relaxation material. As a result, the shape of the stress absorption space is proposed.

即ち、本発明の放熱装置は下記[1]〜[12]に記載の構成を有する。   That is, the heat radiating device of the present invention has the configuration described in [1] to [12] below.

[1]絶縁基板の一面側に電子素子搭載用の回路層が接合され、他面側に応力緩和材を介してヒートシンクが接合された放熱装置であって、
前記応力緩和材は、絶縁基板側およびヒートシンク側の両面に開口する少なくとも1つの応力吸収空間を有し、前記応力吸収空間の内壁面に、絶縁基板側およびヒートシンク側の両方の開口部に通じて、応力緩和材と絶縁基板との接合部の余剰ろう材をヒートシンク側に誘導する案内部が形成されていることを特徴とする放熱装置。
[1] A heat dissipation device in which a circuit layer for mounting an electronic element is bonded to one surface side of an insulating substrate, and a heat sink is bonded to the other surface side via a stress relaxation material,
The stress relieving material has at least one stress absorption space that opens on both sides of the insulating substrate side and the heat sink side, and communicates with an inner wall surface of the stress absorption space through openings on both the insulating substrate side and the heat sink side. A heat radiating device characterized in that a guide portion is formed for guiding the surplus brazing material at the joint portion between the stress relaxation material and the insulating substrate to the heat sink side.

[2]前記案内部は、応力吸収空間の内壁面が周方向に屈曲することによって形成された入隅部である前項1に記載の放熱装置。   [2] The heat dissipating device according to [1], wherein the guide portion is a corner portion formed by bending an inner wall surface of the stress absorption space in the circumferential direction.

[3]前記入隅部の入隅角度が90°以下である前項2に記載の放熱装置。   [3] The heat dissipating device according to item 2 above, wherein the corner angle of the corner portion is 90 ° or less.

[4]前記案内部は応力吸収空間の内壁面に設けられた溝である前項1〜3のいずれかに記載の放熱装置。   [4] The heat radiating device according to any one of [1] to [3], wherein the guide portion is a groove provided on an inner wall surface of the stress absorbing space.

[5]前記溝は螺旋状の溝である前項4に記載の放熱装置。   [5] The heat dissipating device according to item 4, wherein the groove is a spiral groove.

[6]前記溝の深さが0.01〜2mmである前項4または5に記載の放熱装置。   [6] The heat dissipation device according to item 4 or 5, wherein the groove has a depth of 0.01 to 2 mm.

[7]前記応力吸収空間のヒートシンク側の開口縁部に、前記絶縁基板、応力緩和材およびヒートシンクが積層する方向に直交する面で切断した断面において応力吸収空間の断面積を拡大する凹部が前記案内部に連通して形成されている前項1〜6のいずれかに記載の放熱装置。   [7] A recess that expands a cross-sectional area of the stress absorption space in a cross section cut at a plane orthogonal to a direction in which the insulating substrate, the stress relaxation material, and the heat sink are stacked is formed at the opening edge of the stress absorption space on the heat sink side. The heat radiating device according to any one of the preceding items 1 to 6, wherein the heat radiating device is formed in communication with the guide portion.

[8]前記凹部の断面積は開口面に向かって連続的に拡大され、かつ前記絶縁基板、応力緩和材およびヒートシンクが積層する方向の断面において、前記凹部の内壁面形状が直線また応力吸収空間内に突出する方向に湾曲する曲線で形成されている前項7に記載の放熱装置。   [8] The cross-sectional area of the concave portion is continuously enlarged toward the opening surface, and the inner wall surface shape of the concave portion is a straight line or a stress absorbing space in the cross section in the direction in which the insulating substrate, the stress relaxation material, and the heat sink are laminated. 8. The heat dissipation device according to item 7, which is formed by a curve that curves in a direction protruding inward.

[9]前記凹部の内壁面とヒートシンクとの成す角度が10〜80°である前項8に記載の放熱装置。   [9] The heat radiating device according to item 8, wherein an angle formed between the inner wall surface of the concave portion and the heat sink is 10 to 80 degrees.

[10]前記凹部の内壁面に周方向に沿った溝が形成されている前項7〜9のいずれかに記載の放熱装置。   [10] The heat dissipating device according to any one of items 7 to 9, wherein a groove along the circumferential direction is formed on the inner wall surface of the recess.

[11]前記応力緩和材は複数の応力吸収空間を有し、前記絶縁基板、応力緩和材およびヒートシンクが積層する方向に直交する面で切断した断面において、ヒートシンクとの接合面の外周側に位置する応力吸収空間の凹部の断面積が、中心側に位置する応力吸収空間の凹部の断面積よりも大きく形成されている前項7〜10のいずれかに記載の放熱装置。   [11] The stress relaxation material has a plurality of stress absorption spaces, and is located on the outer peripheral side of the joint surface with the heat sink in a cross section cut along a plane orthogonal to a direction in which the insulating substrate, the stress relaxation material, and the heat sink are stacked. 11. The heat dissipation device according to any one of items 7 to 10, wherein a cross-sectional area of the concave portion of the stress absorbing space is larger than a cross-sectional area of the concave portion of the stress absorbing space located on the center side.

[12]前記複数の応力吸収空間は、前記絶縁基板、応力緩和材およびヒートシンクが積層する方向に直交する面で切断した断面において、外周側に位置する応力吸収空間の断面積が、中心側に位置する応力吸収空間の断面積よりも大きく形成されている前項11に記載の放熱装置。   [12] In the plurality of stress absorption spaces, the cross-sectional area of the stress absorption space located on the outer peripheral side is on the center side in a cross section cut along a plane orthogonal to the direction in which the insulating substrate, the stress relaxation material, and the heat sink are stacked. 12. The heat dissipating device according to 11 above, wherein the heat dissipating device is formed to be larger than a cross-sectional area of the stress absorption space.

上記[1]に記載の発明によれば、応力緩和材と絶縁基板との間のろう材のうちで、接合界面に供給されない余剰のろう材は毛細管力によって案内部の絶縁基板側の開口部から案内部内に引き込まれ、案内部に誘導されてヒートシンク側に流れ、案内部内に溜まる。また、絶縁基板側の開口部から案内部内に引き込まれず応力吸収空間の内壁面に流れ出た余剰ろう材も、内壁面から案内部に引き込まれ、案内部に誘導されてヒートシンク側に流れる。従って、余剰のろう材が応力吸収空間内に流れ込んで応力吸収空間の絶縁基板側の部分を塞ぐことが防がれる。絶縁基板側では応力吸収空間が確保されて応力緩和力が確保されるので、絶縁基板と応力緩和材との接合部の剥離を防止できる。   According to the invention described in [1] above, of the brazing material between the stress relieving material and the insulating substrate, the surplus brazing material that is not supplied to the bonding interface is opened by the capillary force on the insulating substrate side. Then, it is drawn into the guide part, guided to the guide part, flows to the heat sink side, and accumulates in the guide part. In addition, surplus brazing material that has not been drawn into the guide portion from the opening on the insulating substrate side and has flowed out to the inner wall surface of the stress absorbing space is drawn into the guide portion from the inner wall surface, is guided to the guide portion, and flows to the heat sink side. Therefore, it is possible to prevent the surplus brazing material from flowing into the stress absorption space and closing the portion of the stress absorption space on the insulating substrate side. Since the stress absorption space is secured on the insulating substrate side and the stress relaxation force is secured, it is possible to prevent peeling of the joint portion between the insulating substrate and the stress relaxation material.

上記[2]に記載の発明によれば、案内部として応力吸収空間の内壁面の屈曲によって形成された入隅部を利用して、絶縁基板側の余剰ろう材をヒートシンク側に誘導することができる。また、前記案内部は応力吸収空間の形状をそのまま利用したものであるから、応力吸収空間を形成するための加工と同時に案内部を形成できる。   According to the invention described in [2] above, the surplus brazing material on the insulating substrate side can be guided to the heat sink side by using the corner portion formed by bending the inner wall surface of the stress absorbing space as the guide portion. it can. In addition, since the guide portion uses the shape of the stress absorption space as it is, the guide portion can be formed simultaneously with the processing for forming the stress absorption space.

上記[3]に記載の発明によれば、入隅部の入隅角度が90°以下に形成されているので、毛細管力による余剰ろう材の引き込み力が強い。   According to the invention described in [3] above, since the corner angle of the corner portion is formed to be 90 ° or less, the pulling power of the excess brazing material by the capillary force is strong.

上記[4]に記載の発明によれば、応力吸収空間の内壁面に設けた溝を案内部として絶縁基板側の余剰ろう材をヒートシンク側に誘導することができる。また、前記溝は、応力吸収空間を形成する加工に追加工することによって容易に形成することができる。   According to the invention described in [4] above, the surplus brazing material on the insulating substrate side can be guided to the heat sink side using the groove provided on the inner wall surface of the stress absorbing space as a guide portion. Further, the groove can be easily formed by performing additional machining to the process for forming the stress absorption space.

上記[5]に記載の発明によれば、螺旋状の溝は応力吸収空間の内壁面を周方向に進みながらヒートシンク側に進んでいくので、内壁面の広い範囲から余剰ろう材を溝内に引き込むことができ、ひいては応力吸収空間内に流れ込む余剰ろう材量を減らすことができる。しかも、螺旋状の溝は縦溝よりも長さが長くより多くの余剰ろう材を溜めることができるので、余剰ろう材による応力吸収空間の閉塞を防止する効果が大きい。   According to the invention described in [5] above, since the spiral groove advances toward the heat sink while proceeding in the circumferential direction on the inner wall surface of the stress absorbing space, the excess brazing material is introduced into the groove from a wide range of the inner wall surface. The amount of surplus brazing material that can be pulled in and flow into the stress absorbing space can be reduced. Moreover, since the spiral groove is longer than the longitudinal groove and can accumulate more surplus brazing material, the effect of preventing the stress absorbing space from being blocked by the surplus brazing material is great.

上記[6]に記載の発明によれば、溝の深さが0.01〜2mmであるから毛細管力が強く、余剰ろう材を十分に引き込むことができる。   According to the invention described in [6] above, since the depth of the groove is 0.01 to 2 mm, the capillary force is strong and the surplus brazing material can be sufficiently drawn.

上記[7]に記載の発明によれば、応力吸収空間のヒートシンク側の開口縁部に、断面積が拡大された凹部が案内部に連通して形成されているので、案内部に誘導されてヒートシンク側に流れた余剰ろう材は凹部に流れ込み、凹部に誘導されて周方向に流れていく。凹部に流れ込んだ余剰ろう材は毛細管力によって凹部内に引き込まれるので、ろう材を応力吸収空間に流出させることなく凹部内に留まらせることができる。従って、案内部に加えてヒートシンク側に凹部を形成することによって余剰ろう材の収容量が増えるので、余剰ろう材が多い場合でも応力吸収空間による応力緩和力を確保できる。   According to the invention described in [7] above, since the recess having an enlarged cross-sectional area is formed in the opening edge portion on the heat sink side of the stress absorption space so as to communicate with the guide portion, it is guided to the guide portion. The surplus brazing material that has flowed to the heat sink side flows into the recess, and is guided in the recess to flow in the circumferential direction. Since the surplus brazing material that has flowed into the recess is drawn into the recess by capillary force, the brazing material can remain in the recess without flowing out into the stress absorbing space. Therefore, since the amount of the surplus brazing material is increased by forming the concave portion on the heat sink side in addition to the guide portion, the stress relaxation force by the stress absorbing space can be ensured even when the surplus brazing material is large.

上記[8]に記載の発明によれば、凹部の断面積が開口面に向かって連続的に拡大され、かつ積層方向の断面においては、凹部の内壁面形状が直線または応力吸収空間内に突出する方向に湾曲する曲線で形成されているので、毛細管力による余剰ろう材の引き込み力が大きい。   According to the invention described in [8] above, the cross-sectional area of the concave portion is continuously enlarged toward the opening surface, and the inner wall surface shape of the concave portion projects into the straight line or the stress absorption space in the cross section in the stacking direction. Since it is formed with a curved line that curves in the direction of bending, the pulling force of the surplus brazing material due to the capillary force is large.

上記[9]に記載の発明によれば、凹部の内壁面と絶縁基板またはヒートシンクとの成す角度が10°以上でかつ40°未満に形成されているので、特に毛細管力による余剰ろう材の引き込み力が大きい。   According to the invention described in [9] above, since the angle formed by the inner wall surface of the recess and the insulating substrate or the heat sink is 10 ° or more and less than 40 °, the extra brazing material is drawn in particularly by capillary force. Power is great.

上記[10]に記載の発明によれば、凹部に引き込まれた余剰ろう材が溝に導かれて周方向に流れるので、周方向において均一に余剰ろう材を溜めことができる。   According to the invention described in [10] above, since the surplus brazing material drawn into the recess is guided to the groove and flows in the circumferential direction, the surplus brazing material can be uniformly accumulated in the circumferential direction.

上記[11]に記載の発明は、応力緩和材が複数の応力吸収空間を有し、これらの凹部の断面積は中心部から外周側にいくほど大きくなるように設定され、外周側にいくほど凹部の容積が大きくなるように設定されている。このため、接合面のろう材が中心部から外周側に流れて外周側で余剰ろう材量が増えた場合においても凹部に余剰ろう材を溜めることができるので、外周側の応力吸収空間の塞がりを防止できる。   In the invention described in [11] above, the stress relaxation material has a plurality of stress absorption spaces, and the cross-sectional area of these recesses is set so as to increase from the central portion toward the outer peripheral side, and as it goes toward the outer peripheral side. The volume of the concave portion is set to be large. For this reason, even when the brazing material on the joint surface flows from the central portion to the outer peripheral side and the amount of surplus brazing material increases on the outer peripheral side, the surplus brazing material can be stored in the concave portion, so that the stress absorbing space on the outer peripheral side is blocked. Can be prevented.

上記[12]に記載の発明によれば、熱の主たる伝達経路となる中心部よりも外周側の応力吸収空間の断面積が大きくなるように設定されているので、効率良く放熱でき、放熱装置の放熱性能を維持できる。   According to the invention described in [12] above, since the cross-sectional area of the stress absorption space on the outer peripheral side is larger than the central portion serving as the main heat transfer path, heat can be radiated efficiently, and the heat dissipation device The heat dissipation performance can be maintained.

本発明の放熱装置の一実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Embodiment of the thermal radiation apparatus of this invention. 図1Aにおける1B−1B線断面視図である。It is the 1B-1B sectional view taken on the line in FIG. 1A. 応力緩和材における案内部の他の例を示す要部斜視図である。It is a principal part perspective view which shows the other example of the guide part in a stress relaxation material. 応力吸収空間および案内部の他の形状例を示す横断面図である。It is a cross-sectional view showing another shape example of the stress absorption space and the guide portion. 応力吸収空間および案内部の他の形状例を示す横断面図である。It is a cross-sectional view showing another shape example of the stress absorption space and the guide portion. 応力吸収空間および案内部の他の形状例を示す横断面図である。It is a cross-sectional view showing another shape example of the stress absorption space and the guide portion. 応力吸収空間に凹部を有する応力緩和材を示す断面図である。It is sectional drawing which shows the stress relaxation material which has a recessed part in stress absorption space. 凹部の他の形状を示す断面図である。It is sectional drawing which shows the other shape of a recessed part. 溝を有する凹部を示す断面図である。It is sectional drawing which shows the recessed part which has a groove | channel. 応力緩和材における応力吸収空間の配置例を示す斜視図であるIt is a perspective view which shows the example of arrangement | positioning of the stress absorption space in a stress relaxation material. 図9Aの部分断面図である。It is a fragmentary sectional view of FIG. 9A. 従来の放熱装置を示す断面図である。It is sectional drawing which shows the conventional heat radiating device.

[放熱装置の構成]
図1Aは本発明の放熱装置の一実施形態を、構成部材が積層する方向で切断した断面で示している。以下の説明において、構成部材が積層する方向を縦または縦方向、縦方向の断面を縦断面と称し、この縦断面と直交する面で切断した断面を横断面と称する。
[Configuration of heat dissipation device]
FIG. 1A shows an embodiment of a heat dissipation device of the present invention in a cross section cut in a direction in which constituent members are stacked. In the following description, the direction in which the constituent members are laminated is referred to as the vertical or vertical direction, the cross section in the vertical direction is referred to as the vertical cross section, and the cross section cut along a plane orthogonal to the vertical cross section is referred to as the horizontal cross section.

放熱装置(1)は、絶縁基板(11)の一面側に電子素子搭載用の回路層(12)が接合され、他面側には応力緩和材(20)を介して複数の中空部を有するチューブ型のヒートシンク(13)が接合されている。(14)は回路層に接合された電子素子である。前記放熱装置(1)において、絶縁基板(11)とヒートシンク(13)とは応力緩和材(20)を介して熱的に結合され、電子素子(14)が発する熱はヒートシンク(13)に排熱される。   The heat dissipation device (1) has a circuit layer (12) for mounting an electronic element on one surface side of an insulating substrate (11), and has a plurality of hollow portions on the other surface side through stress relaxation materials (20). A tube-type heat sink (13) is joined. (14) is an electronic element bonded to the circuit layer. In the heat dissipation device (1), the insulating substrate (11) and the heat sink (13) are thermally coupled via the stress relaxation material (20), and the heat generated by the electronic element (14) is discharged to the heat sink (13). Be heated.

前記放熱装置(1)を構成する各層の好ましい材料は以下のとおりである。   Preferred materials for each layer constituting the heat dissipation device (1) are as follows.

絶縁基板(11)を構成する材料としては、窒化アルミニウム、酸化アルミニウム、窒化ケイ素、酸化ジルコニウム等のセラミックを例示できる。これらのセラミックは電気絶縁性が優れていることはもとより、熱伝導性が良く放熱性が優れている点で推奨できる。   Examples of the material constituting the insulating substrate (11) include ceramics such as aluminum nitride, aluminum oxide, silicon nitride, and zirconium oxide. These ceramics are recommended not only because of their excellent electrical insulation, but also because they have good thermal conductivity and excellent heat dissipation.

回路層(12)を構成する金属としては、導電性が高くかつ絶縁基板(11)とろう付またははんだ付が可能な金属を用いるものとし、特に高純度アルミニウムを推奨できる。   As a metal constituting the circuit layer (12), a metal having high conductivity and capable of being brazed or soldered to the insulating substrate (11) is used, and particularly high purity aluminum can be recommended.

応力緩和材(20)は、剛性の高いセラミック製の絶縁基板(11)とヒートシンク(15)との接合界面に発生する熱応力を緩和するための層であるから、軟質の金属を用いることが好ましく、特に高純度アルミニウムが好ましい。   Since the stress relieving material (20) is a layer for relieving the thermal stress generated at the bonding interface between the ceramic insulating substrate (11) having high rigidity and the heat sink (15), it is necessary to use a soft metal. High purity aluminum is particularly preferable.

ヒートシンク(13)を構成する金属は、軽量性、強度維持、成形性、耐食性に優れた材料を用いることが好ましく、これらの特性を有するものとしてAl−Mn系合金やAl−Fe系合金等のアルミニウム合金を推奨できる。ヒートシンク(13)は応力緩和材(20)側の外面がフラットであれば応力緩和材(20)と広い面積でろう付して高い放熱性能が得られるので、応力緩和材(20)側の面以外の外部形状や内部形状は問わない。ヒートシンクの他の形状として、平板、平板の他方の面にフィンをろう付したヒートシンク、平板の他方の面にフィンを立設したヒートシンク、中空部内にフィンを設けたチューブ型ヒートシンク等を例示できる。   As the metal constituting the heat sink (13), it is preferable to use a material excellent in lightness, strength maintenance, formability, and corrosion resistance. As those having these characteristics, an Al-Mn alloy, an Al-Fe alloy, or the like is used. Aluminum alloy can be recommended. If the heat sink (13) has a flat outer surface on the stress relieving material (20) side, it can be brazed in a wide area with the stress relieving material (20) to obtain high heat dissipation performance. Any other external shape or internal shape may be used. Other shapes of the heat sink include a flat plate, a heat sink in which fins are brazed to the other surface of the flat plate, a heat sink in which fins are erected on the other surface of the flat plate, a tube heat sink in which fins are provided in the hollow portion, and the like.

前記放熱装置(1)は、各部材をろう材(図示省略)を介して重ねて仮組し、一括してろう付することによって作製することができる。ろう材はAl−Si系合金、Al−Si−Mg系合金等のろう材を用いる。ろう材はろう材箔として層間に配置しても良いし、回路層(12)、応力緩和材(20)、ヒートシンク(13)を構成する金属と一体化したブレージングシートとして用いることもできる。   The heat radiating device (1) can be manufactured by temporarily assembling each member via a brazing material (not shown) and brazing them together. As the brazing material, a brazing material such as an Al—Si based alloy or an Al—Si—Mg based alloy is used. The brazing material may be disposed between the layers as a brazing material foil, or may be used as a brazing sheet integrated with the metal constituting the circuit layer (12), the stress relaxation material (20), and the heat sink (13).

[応力緩和材]
図1Aおよび図1Bに示した応力緩和材(20)は応力吸収空間として複数の円形貫通穴(21)を有するパンチングメタルであり、前記貫通穴(21)は絶縁基板(11)側の面およびヒートシンク(13)側の面の両方に開口している。前記貫通穴(21)の内壁面(22)には、応力緩和材(20)を厚み方向(縦方向)に貫き、絶縁基板(11)側の面およびヒートシンク(13)側の面の両方に開口する断面V字形の縦溝(23)が形成されている。前記縦溝(23)は本発明における案内部に対応し、貫通穴(21)にはかかる4本の縦溝(23)が周方向に等間隔で設けられている。
[Stress relaxation material]
The stress relaxation material (20) shown in FIGS. 1A and 1B is a punching metal having a plurality of circular through holes (21) as stress absorbing spaces, and the through holes (21) are formed on the surface on the insulating substrate (11) side and Open on both sides of the heat sink (13) side. The inner wall surface (22) of the through hole (21) is penetrated by a stress relaxation material (20) in the thickness direction (longitudinal direction), on both the insulating substrate (11) side surface and the heat sink (13) side surface. An open vertical groove (23) having a V-shaped cross section is formed. The vertical groove (23) corresponds to the guide portion in the present invention, and the four vertical grooves (23) are provided at equal intervals in the circumferential direction in the through hole (21).

前記放熱装置(1)のろう付時、絶縁基板(11)と応力緩和材(20)との間に配置されたろう材のうちで、接合界面に供給されない余剰のろう材は毛細管力によって前記縦溝(23)の絶縁基板(11)側の開口部から縦溝(23)内に引き込まれ、縦溝(23)に誘導されてヒートシンク(13)側に流れ、縦溝(23)内に溜まる。また、絶縁基板(11)側の開口部から縦溝(23)内に引き込まれず貫通穴(21)の内壁面(22)に流れ出た余剰ろう材も、内壁面(22)から縦溝(23)に引き込まれ、縦溝(23)に誘導されてヒートシンク(13)側に流れる。従って、余剰のろう材が貫通穴(21)に流れ込んで応力吸収空間を塞ぐことが防がれ、本来の貫通穴(21)の容積、即ち縦溝(23)を含まない貫通穴(21)の容積を維持して貫通穴(21)による応力緩和力を確保できる。また、余剰ろう材の一部がヒートシンク(13)側の端部で縦溝(23)から溢れ出たとしても、絶縁基板(11)側では応力吸収空間が確保されているので応力緩和力を確保できる。絶縁基板(11)と応力緩和材(20)とはセラミックと金属という異種材料であり、これらの界面に発生する応力は金属同士であるヒートシンク(13)と応力緩和材(20)の間に発生する応力よりも大きいため、絶縁基板(11)側の空間を優先的に確保することで接合部の剥離を防止できる。   Of the brazing materials disposed between the insulating substrate (11) and the stress relaxation material (20) during brazing of the heat dissipation device (1), excess brazing material that is not supplied to the joining interface is It is drawn into the vertical groove (23) from the opening on the insulating substrate (11) side of the groove (23), guided to the vertical groove (23), flows to the heat sink (13) side, and accumulates in the vertical groove (23). . In addition, surplus brazing material that has not been drawn into the longitudinal groove (23) from the opening on the insulating substrate (11) side and has flowed to the inner wall surface (22) of the through hole (21) is also removed from the inner wall surface (22) to the longitudinal groove (23 ), Is guided to the longitudinal groove (23), and flows toward the heat sink (13). Therefore, surplus brazing material is prevented from flowing into the through hole (21) and blocking the stress absorbing space, and the original volume of the through hole (21), that is, the through hole (21) not including the vertical groove (23). The stress relaxation force by the through hole (21) can be ensured while maintaining the volume of. Even if a part of the surplus brazing material overflows from the longitudinal groove (23) at the end of the heat sink (13), the stress absorbing space is secured on the insulating substrate (11) side, so that the stress relaxation force is increased. It can be secured. The insulating substrate (11) and stress relieving material (20) are dissimilar materials of ceramic and metal, and the stress generated at these interfaces is generated between the heat sink (13) and the stress relieving material (20), which are metals. Therefore, it is possible to prevent separation of the joint portion by preferentially securing the space on the insulating substrate (11) side.

本発明において、案内部は余剰ろう材をヒートシンク側に流すことができれば良いので、貫通穴に形成する溝は応力緩和材の両面に開口していれば良く、応力緩和材を厚み方向に最短距離で貫く縦溝に限定されるものではない。他の溝形状として螺旋状や蛇行状の溝を例示できる。図2の応力緩和材(25)は、貫通穴(21)の内壁面(22)に応力緩和材(25)の両面に開口し、内壁面(22)上を螺旋状に進んでいく螺旋状の溝(26)を形成した例である。螺旋状の溝(26)は、貫通穴(20)の内壁面(22)を周方向に進みながらヒートシンク(13)側に進んでいくので、図1の縦溝(23)よりも内壁面(22)の広い範囲から余剰ろう材を溝(26)内に引き込むことができ、ひいては応力吸収空間内に残る余剰ろう材量を減らすことができる。しかも、螺旋状の溝(26)は縦溝(23)よりも長さが長くより多くの余剰ろう材を溜めることができるので、余剰ろう材による応力吸収空間の閉塞を防止する効果が大きい。なお、図2は応力緩和材(25)を透視した状態で貫通穴(21)および螺旋状の溝(26)のみを示した図であり、金属部分の図示を省略している。   In the present invention, since the guide portion only needs to allow excess brazing material to flow toward the heat sink, the groove formed in the through hole only needs to be opened on both sides of the stress relaxation material, and the stress relaxation material is the shortest distance in the thickness direction. It is not limited to the vertical groove that runs through. Examples of other groove shapes include spiral and serpentine grooves. The stress relieving material (25) in FIG. 2 has a spiral shape that opens on both sides of the stress relieving material (25) on the inner wall surface (22) of the through hole (21) and advances spirally on the inner wall surface (22). This is an example in which a groove (26) is formed. Since the spiral groove (26) advances toward the heat sink (13) while proceeding in the circumferential direction on the inner wall surface (22) of the through hole (20), the inner wall surface ( The surplus brazing material can be drawn into the groove (26) from a wide range of 22), so that the surplus brazing material amount remaining in the stress absorbing space can be reduced. Moreover, since the spiral groove (26) is longer than the longitudinal groove (23) and can accumulate more surplus brazing material, the effect of preventing the clogging of the stress absorption space by the surplus brazing material is great. FIG. 2 is a view showing only the through hole (21) and the spiral groove (26) in a state where the stress relieving material (25) is seen through, and the illustration of the metal portion is omitted.

前記溝(23)(26)の深さ(t)は0.01〜2mmの範囲に設定することが好ましい。深さ(t)が0.01mm未満の浅い溝では毛細管力による余剰ろう材の引き込み力が弱く、また容積が小さいので余剰ろう材の収容量が少ない。また、2mmあれば十分に余剰ろう材を誘導でき、かつ多くのろう材を溜めることができる。特に好ましい溝の深さは0.05〜1.5mmである。   The depth (t) of the grooves (23) and (26) is preferably set in the range of 0.01 to 2 mm. In a shallow groove having a depth (t) of less than 0.01 mm, the pull-in force of the surplus brazing material due to the capillary force is weak and the capacity is small, so that the amount of surplus brazing material accommodated is small. Moreover, if it is 2 mm, a surplus brazing material can fully be induced | guided | derived and many brazing materials can be collected. A particularly preferable groove depth is 0.05 to 1.5 mm.

また、貫通穴(21)の内壁面(22)に設ける溝の数は限定されないが、余剰ろう材は貫通穴(21)の全周で生じるので、複数の溝を等間隔で設けることが好ましい。溝の断面形状も限定されず、図示例の断面V字形の溝の他、U字形の溝を例示できる。   Further, the number of grooves provided in the inner wall surface (22) of the through hole (21) is not limited. However, since surplus brazing material is generated all around the through hole (21), it is preferable to provide a plurality of grooves at equal intervals. . The cross-sectional shape of the groove is not limited, and a U-shaped groove can be exemplified in addition to the V-shaped cross section of the illustrated example.

上述した応力緩和材(20)(25)は、例えば材料の平板を円形に打ち抜いて貫通穴(21)を形成し、この貫通穴(21)の内壁面(22)に追加工で溝(23)(26)を形成することによって作製できる。また、図1の貫通穴(21)と縦溝(23)であれば、これらを同時に打ち抜くこともできる。   The stress relieving materials (20) and (25) described above are formed by, for example, punching a flat plate of material into a circular shape to form a through hole (21), and adding a groove (23 to the inner wall surface (22) of the through hole (21). ) (26). Moreover, if it is the through-hole (21) and vertical groove | channel (23) of FIG. 1, these can also be pierce | punched simultaneously.

(案内部の他の形状例)
本発明においては、ろう材を誘導する案内部として応力吸収空間そのものの形状を利用することができる。
(Other examples of guide section)
In the present invention, the shape of the stress absorbing space itself can be used as a guide for guiding the brazing material.

図3〜5は応力緩和材(30)(40)(50)に設けた貫通穴(応力緩和空間)(31)(41)(51)の横断面図である。これらの貫通穴(31)(41)(51)は内壁面(32)(42)(52)が周方向に屈曲したものであり、屈曲によって複数の入隅部(33)(43)(44)(53)が形成されている。これらの入隅部の(33)(43)(44)(53)においては毛細管力によって余剰ろう材が入隅部(33)(43)(44)(53)の中心部に引き込まれ、入隅部(33)(43)(44)(53)が貫通穴(31)(41)(51)の貫通方向に形成されていることによって、余剰ろう材が入隅部(33)(43)(44)(53)に誘導されてヒートシンク(13)側に流れていく。上述した全ての入隅部(33)(43)(44)(53)を案内部として利用できるが、毛細管力による引き込み力を得るには入隅角度が小さいことが好ましい。案内部として好適に利用できる入隅角度は90°以下であり、特に10〜70°が好ましい。図3の貫通穴(31)は横断面形状が正三角形であり、全ての入隅部(33)の入隅角度(α)が鋭角であって案内部として好適に利用できる。図4の貫通穴(41)は横断面形状が2本の対角線が異なる長さで形成された菱形であり、長い方の対角線の両端に形成された2つの入隅部(43)の入隅角度(α1)が鋭角であって、案内部として好適に利用できる。図5の貫通穴(51)は横断面形状が星形であり、全ての入隅部(53)の入隅角度(α)が鋭角であって案内部として好適に利用できる。   3 to 5 are cross-sectional views of through holes (stress relaxation spaces) (31), (41) and (51) provided in the stress relaxation materials (30), (40) and (50). These through holes (31) (41) (51) are obtained by bending the inner wall surfaces (32) (42) (52) in the circumferential direction, and a plurality of corners (33) (43) (44) are bent by bending. ) (53) is formed. In (33), (43), (44), and (53) at these corners, excess brazing material is drawn into the center of the corners (33), (43), (44), and (53) by capillary force. Since the corners (33), (43), (44), and (53) are formed in the through direction of the through holes (31), (41), and (51), surplus brazing material is inserted into the corners (33) and (43). (44) Directed by (53) and flows toward the heat sink (13). All the corners (33), (43), (44), and (53) described above can be used as a guide, but it is preferable that the corner angle is small in order to obtain a pull-in force by a capillary force. The corner angle that can be suitably used as the guide portion is 90 ° or less, particularly preferably 10 to 70 °. The through hole (31) in FIG. 3 has a regular triangular cross-sectional shape, and all the corners (33) have acute angles (α) and can be suitably used as guides. The through hole (41) in FIG. 4 is a rhombus in which the cross-sectional shape is formed with two diagonals having different lengths, and the corners of the two corners (43) formed at both ends of the longer diagonal. The angle (α1) is an acute angle and can be suitably used as a guide part. The through-hole (51) of FIG. 5 has a star-shaped cross section, and all the corners (53) have an acute angle (α) and can be suitably used as a guide.

前記入隅部(33)(43)(44)(53)による案内部は貫通穴(31)(41)(51)を形成する加工を行えば同時に形成されるので、追加工なしで案内部を形成できる。なお、余剰ろう材の誘導を促進するために、これらの貫通穴(31)(41)(51)の内壁面(32)(42)(52)にも図1および図2に示した溝(23)(26)を形成することができる。   Since the guide portion by the corners (33), (43), (44), and (53) is formed at the same time when the through holes (31), (41), and (51) are formed, the guide portion is formed without additional machining. Can be formed. In addition, in order to accelerate | stimulate the induction | guidance | derivation of an excess brazing material, the groove | channel (FIG. 1 and FIG. 2) also shows in the inner wall surface (32) (42) (52) of these through-holes (31) (41) (51). 23) (26) can be formed.

(応力吸収空間における凹部)
図6の応力緩和材(60)は、図1と同様の円形の貫通穴(21)の内壁面(22)に縦溝(23)を設け、さらに貫通穴(21)の穴径をヒートシンク(13)側の開口面に向かって連続的に拡大したものである。この穴径の拡大により、貫通穴(21)の開口縁部の全周において、貫通穴(21)の横断面積を拡大する凹部(61)が形成されている。縦断面において、前記凹部(61)の内壁面(62)の形状はヒートシンク(13)に対して一定の角度(θ)で傾斜する直線で表されるテーパー面である。また、前記縦溝(23)は凹部(61)に連通している。
(Concavity in stress absorption space)
The stress relieving material (60) in FIG. 6 is provided with a vertical groove (23) on the inner wall surface (22) of a circular through hole (21) similar to that in FIG. 13) It is continuously enlarged toward the opening surface on the side. Due to the enlargement of the hole diameter, a recess (61) that enlarges the cross-sectional area of the through hole (21) is formed on the entire circumference of the opening edge of the through hole (21). In the longitudinal section, the shape of the inner wall surface (62) of the recess (61) is a tapered surface represented by a straight line inclined at a constant angle (θ) with respect to the heat sink (13). The longitudinal groove (23) communicates with the recess (61).

前記応力緩和材(60)を用いた放熱装置のろう付においては、縦溝(23)に誘導されてヒートシンク(13)側に流れたろう材は縦溝(23)から凹部(61)に流れ込み、さらに凹部(61)に誘導されて周方向に流れていく。凹部(61)に流れ込んだろう材は毛細管力によって凹部(61)内に引き込まれるので、ろう材を応力吸収空間に流出させることなく凹部(61)内に留まらせることができる。以上のように、貫通穴(21)のヒートシンク(13)側に凹部(61)を形成することによって余剰ろう材の収容量が増えるので、余剰ろう材が多い場合でも、本来の貫通穴(21)の容積、即ち凹部(61)および溝(23)を含まない貫通穴(21)の容積を維持して貫通穴(21)による応力緩和力を確保できる。   In brazing of the heat dissipation device using the stress relieving material (60), the brazing material guided to the longitudinal groove (23) and flowing toward the heat sink (13) flows into the recess (61) from the longitudinal groove (23), Further, it is guided by the recess (61) and flows in the circumferential direction. Since the brazing material that has flowed into the recess (61) is drawn into the recess (61) by capillary force, the brazing material can remain in the recess (61) without flowing out into the stress absorbing space. As described above, by forming the recess (61) on the heat sink (13) side of the through hole (21), the amount of surplus brazing material increases, so even if there is a large amount of surplus brazing material, the original through hole (21 ), That is, the volume of the through hole (21) not including the recess (61) and the groove (23), and the stress relaxation force by the through hole (21) can be secured.

前記ヒートシンク(13)に対する凹部(61)の内壁面(62)の傾斜角度(θ)は、余剰ろう材による応力吸収空間の閉塞を効果的に防止できる角度として10〜80°の間に設定することが好ましい。前記傾斜角度(θ)が10°未満では余剰ろう材を溜めるための容量が小さくなるので、閉塞防止効果が小さくなる。一方、80°を超えると毛細管力が小さくなってろう材の引き込み力が低下するので、閉塞防止効果が小さくなる。また、前記凹部(61)の内壁面(62)は縦断面において直線で形成されたものであり、直線で表される内壁面(62)の傾斜角度(θ)は、強い引き込み力を得るために、上記範囲内でも特に角度の小さい範囲に設定することが好ましい。具体的には10〜40°が好ましく、特に15〜35°が好ましい。   The inclination angle (θ) of the inner wall surface (62) of the recess (61) with respect to the heat sink (13) is set between 10 ° and 80 ° as an angle that can effectively prevent the stress absorbing space from being blocked by excess brazing material. It is preferable. When the inclination angle (θ) is less than 10 °, the capacity for storing the excess brazing material is small, so that the blocking prevention effect is small. On the other hand, when it exceeds 80 °, the capillary force is reduced and the pulling force of the brazing material is reduced, so that the blocking prevention effect is reduced. Further, the inner wall surface (62) of the recess (61) is formed in a straight line in the longitudinal section, and the inclination angle (θ) of the inner wall surface (62) represented by the straight line is for obtaining a strong pulling force. Even within the above range, it is preferable to set a range with a particularly small angle. Specifically, 10 to 40 ° is preferable, and 15 to 35 ° is particularly preferable.

また、図7に示す応力緩和材(70)のように、応力吸収空間のヒートシンク(13)側に設ける凹部(71)は、縦断面において内壁面(72)の形状を貫通穴(21)内に突出する方向に湾曲する曲線で形成することもできる。内壁面(72)がこのような曲線で形成された凹部(71)は、直線で形成された図6の凹部(61)よりも毛細管力が高くろう材の引き込み力も強い。一方、図6の内壁面(62)が直線で形成された凹部(61)は曲線で形成された凹部(71)よりも容量が大きいので、余剰ろう材をより多く溜めることができる。   Further, as in the stress relaxation material (70) shown in FIG. 7, the recess (71) provided on the heat sink (13) side of the stress absorption space has a shape of the inner wall surface (72) in the through hole (21) in the longitudinal section. It can also be formed by a curve that curves in the direction of projecting. The concave portion (71) in which the inner wall surface (72) is formed in such a curve has a higher capillary force than the concave portion (61) in FIG. On the other hand, since the concave portion (61) in which the inner wall surface (62) in FIG. 6 is formed in a straight line has a larger capacity than the concave portion (71) in which the inner wall surface (62) is formed in a curved line, more surplus brazing material can be stored.

図7の曲線で形成された凹部(32)において、絶縁基板(11)に対する内壁面(33)の傾斜角度(θ)を以下のとおりに定義する。   In the recess (32) formed by the curve of FIG. 7, the inclination angle (θ) of the inner wall surface (33) with respect to the insulating substrate (11) is defined as follows.

前記凹部(71)の内壁面(72)を形成する曲線の両端点のうちのヒートシンク(13)から遠い方の端点をP1とする。この端点P1からヒートシンク(13)までの距離(h)を2等分する直線が内壁面(72)と交わる点をP2とし、交点P2における接線とヒートシンク(13)とが成す角度(θ)を内壁面(72)の傾斜角度とする。前記定義において、端点P1からヒートシンク(13)までの距離(h)は凹部(71)の高さである。曲線で形成された内壁面(72)についても前記傾斜角度(θ)の好ましい範囲は10〜80°である。曲線で表される内壁面(72)の場合は、強い引き込み力を得るために、傾斜角度(θ)を上記範囲内でも特に角度の大きい範囲に設定することが好ましい。具体的には、30〜80°が好ましく、特に40〜75°が好ましい。   Of the two end points of the curve forming the inner wall surface (72) of the recess (71), the end point far from the heat sink (13) is defined as P1. A point where a straight line that bisects the distance (h) from the end point P1 to the heat sink (13) intersects the inner wall surface (72) is defined as P2, and an angle (θ) formed by the tangent at the intersection P2 and the heat sink (13) is defined. The inclination angle of the inner wall surface (72). In the above definition, the distance (h) from the end point P1 to the heat sink (13) is the height of the recess (71). For the inner wall surface (72) formed by a curve, the preferable range of the inclination angle (θ) is 10 to 80 °. In the case of the inner wall surface (72) represented by a curve, in order to obtain a strong pulling force, it is preferable to set the inclination angle (θ) within the above range, particularly within a large angle range. Specifically, 30 to 80 ° is preferable, and 40 to 75 ° is particularly preferable.

さらに、前記凹部(61)(71)に流入したろう材の周方向の流れを促す手段として、図8に示す応力緩和材(80)のように、凹部(61)の内壁面(62)に周方向に沿った環状の溝(81)を設ける方法がある。凹部(61)に引き込まれた余剰ろう材は溝(81)に導かれて周方向に流れるので、周方向において均一に余剰ろう材を溜めことができる。また、溝(81)によって凹部(61)の容積が拡大するので、より多くの余剰ろう材を溜めることができる。溝(81)の数は限定されず、1本でも複数本であっても良い。また、溝は周方向で閉じられた環状溝である必要はなく、螺旋状の溝であっても良い。また、溝の断面形状も限定されず、図示例のV字形の溝(81)の他、U字形の溝を例示できる。   Further, as means for encouraging the circumferential flow of the brazing material that has flowed into the recesses (61) and (71), the inner wall surface (62) of the recess (61), as in the stress relaxation material (80) shown in FIG. There is a method of providing an annular groove (81) along the circumferential direction. Since the surplus brazing material drawn into the recess (61) is guided to the groove (81) and flows in the circumferential direction, the surplus brazing material can be uniformly accumulated in the circumferential direction. Moreover, since the volume of the recessed part (61) is expanded by the groove (81), more surplus brazing material can be stored. The number of grooves (81) is not limited and may be one or more. Further, the groove need not be an annular groove closed in the circumferential direction, and may be a spiral groove. Further, the cross-sectional shape of the groove is not limited, and a U-shaped groove can be exemplified in addition to the V-shaped groove (81) in the illustrated example.

図8は、図6の内壁面(62)と同じく縦断面において直線で形成された内壁面(62)に溝(81)を設けた例を示したものであるが、図7の曲線で形成された内壁面(72)にも溝を設けることができる。   FIG. 8 shows an example in which the groove (81) is provided on the inner wall surface (62) formed in a straight line in the longitudinal section similar to the inner wall surface (62) of FIG. A groove can also be provided in the inner wall surface (72) formed.

また、凹部の内壁面は図7および図8に示す傾斜面で形成されたものに限定されない。他の凹部形状として、内壁面が側面と底面との2つの面によって段状に形成されたものを例示できる。前記側面はヒートシンクに対して垂直な面であっても良いし、ヒートシンクに対して傾斜する面であっても良い。このような段状の凹部は容積が大きいので、多くの余剰ろう材を溜めることができる。   Further, the inner wall surface of the recess is not limited to the one formed by the inclined surfaces shown in FIGS. Examples of the other concave shape include those in which the inner wall surface is formed in a step shape by two surfaces of a side surface and a bottom surface. The side surface may be a surface perpendicular to the heat sink or a surface inclined with respect to the heat sink. Since such a step-shaped recess has a large volume, a large amount of excess brazing material can be stored.

ヒートシンク側に形成する凹部は、応力吸収空間(貫通穴)および案内部の形状に関わらず形成することができる。案内部として螺旋状の溝(26)を有する応力緩和材(25)(図2参照)や、案内部として貫通穴(31)(41)(51)の入隅部(33)(43)(44)(53)を利用した応力緩和材(30)(40)(50)においても凹部を形成することができる(図3〜5参照)。図9Aおよび図9Bは、横断面菱形の貫通穴(91)(92)(93)の入隅部を案内部とする応力緩和材(90)に凹部(94)(95)(96)を設けた例である。   The concave portion formed on the heat sink side can be formed regardless of the shape of the stress absorbing space (through hole) and the guide portion. Stress relieving material (25) (see FIG. 2) having a spiral groove (26) as a guide portion, and corners (33) (43) (through holes (31) (41) (51)) as guide portions ( 44) The recessed part can be formed also in the stress relaxation material (30) (40) (50) using (53) (refer FIGS. 3-5). 9A and 9B show that the recesses (94), (95), and (96) are provided in the stress relieving material (90) with the corners of the through holes (91), (92), and (93) having a rhombic cross section as a guide portion. This is an example.

[応力緩和空間の配置]
本発明において、応力緩和材の応力吸収空間は、積層方向に貫通している限りその形状や数は限定されない。また、複数の応力吸収空間を有する応力緩和材においては、複数の応力吸収空間で形状および寸法、案内部の数および形状を変えることもできる。
[Arrangement of stress relaxation space]
In the present invention, the shape and number of the stress absorbing space of the stress relaxation material is not limited as long as it penetrates in the stacking direction. Moreover, in the stress relaxation material which has several stress absorption space, a shape and a dimension and the number and shape of a guide part can also be changed in several stress absorption space.

応力緩和材と絶縁基板との接合面において、溶融したろう材は中央部から外周側に向かって流れる傾向があり、余剰ろう材量は中心部で少なく外周側にいくほど増えていく。このため、応力緩和材が複数の応力吸収空間を有する場合、外周側に位置する応力吸収空間ほど余剰ろう材によって塞がれ易いという状況がある。   At the joint surface between the stress relaxation material and the insulating substrate, the molten brazing material tends to flow from the central portion toward the outer peripheral side, and the amount of surplus brazing material is small in the central portion and increases toward the outer peripheral side. For this reason, when the stress relaxation material has a plurality of stress absorption spaces, there is a situation in which the stress absorption space located on the outer peripheral side is more likely to be blocked by the excess brazing material.

このような状況に対し、応力吸収空間に設ける案内部または凹部の容積を余剰ろう材量分布に対応させて、これらの容積を中心部から外周側にいくほど大きくなるように設定して余剰ろう材の収容可能量を増大させることによって、どの位置にある応力吸収空間においても余剰ろう材が応力吸収空間を塞がないようにすることができる。   For such a situation, the volume of the guide portion or the recess provided in the stress absorption space is made to correspond to the surplus brazing material amount distribution, and these volumes are set so as to increase from the central portion to the outer peripheral side, thereby surplus brazing. By increasing the amount of material that can be accommodated, it is possible to prevent the surplus brazing material from blocking the stress absorbing space in any position of the stress absorbing space.

外周側に行くほど余剰ろう材の収容量を増やす方法の一つとして、外周側に位置する応力吸収空間の凹部の断面積が中心側に位置する応力吸収空間の凹部の断面積よりも大きくなるように設定する方法を推奨できる。凹部の断面積に差をつける方法として、外周側に位置する応力吸収空間の断面積を中心側に位置する応力吸収空間の断面積よりも大きくなるように形成する方法を推奨できる。凹部は応力吸収空間の開口周縁部に設けられるので、応力吸収空間の断面積が大きくなれば自ずと凹部の断面積も大きくすることができる。また、電子素子は応力緩和材の中心部上に取り付けられることが多く、熱の主たる伝達経路となる中心部よりも外周側の応力吸収空間の断面積が大きくなるように設定した方が効率良く放熱できるので、放熱性能を維持するという観点から、中心側よりも外周側に位置する応力吸収空間の断面積を大きくすることが好ましい。   As one method of increasing the amount of excess brazing material as it goes to the outer peripheral side, the cross-sectional area of the concave portion of the stress absorbing space located on the outer peripheral side becomes larger than the sectional area of the concave portion of the stress absorbing space located on the central side. It is possible to recommend the setting method. As a method of making a difference in the cross-sectional area of the recess, a method of forming the cross-sectional area of the stress absorption space located on the outer peripheral side so as to be larger than the cross-sectional area of the stress absorption space located on the center side can be recommended. Since the concave portion is provided at the peripheral edge of the opening of the stress absorbing space, the sectional area of the concave portion can be naturally increased if the sectional area of the stress absorbing space is increased. In addition, the electronic element is often mounted on the central part of the stress relaxation material, and it is more efficient to set the cross-sectional area of the stress absorption space on the outer peripheral side to be larger than the central part that is the main heat transfer path. Since heat can be radiated, it is preferable to increase the cross-sectional area of the stress absorption space located on the outer peripheral side rather than the center side from the viewpoint of maintaining the heat radiating performance.

図9Aおよび図9Bに示す応力緩和材(90)は、寸法の異なる3種類の第1〜第3貫通穴(91)(92)(93)を有し、上述した凹部の断面積の大小差を実現したものである。前記第1〜第3貫通穴(91)(92)(93)の横断面形状はいずれも菱形であり、入隅部の角度が等しく対角線寸法(d1)(d2)(d3)が異なる相似形である。前記応力緩和材(90)において、中心に位置する1個の第1貫通穴(91)が最も小さく、この第1貫通穴(91)を取り囲んで第1貫通穴(91)よりも大きい4個の第2貫通穴(92)が位置し、さらにこれらの第2貫通穴(92)を取り囲んで最も大きい8個の第3貫通穴(93)が位置している。また、第1〜第3貫通穴(91)(92)(93)のヒートシンク(13)側の開口周縁部には、第1〜第3内壁面(97)(98)(99)がヒートシンク(13)に対して傾斜するテーパー面で形成された第1〜第3凹部(94)(95)(96)が設けられている。第1〜第3凹部(94)(95)(96)の高さ(h)および第1〜第3内壁面(97)(98)(99)の傾斜角度(θ)は共通であるが、第1〜第3貫通穴(91)(92)(93)の対角線寸法(d1)(d2)(d3)の差に伴って第1〜第3凹部(94)(95)(96)の対角線寸法が異なり、これらの断面積は、第1凹部(94)が最も小さく、第2凹部(95)は第1凹部(94)よりも大きく、第3凹部(96)は第2凹部(95)よりもさらに大きく設定されている。   The stress relieving material (90) shown in FIGS. 9A and 9B has three types of first to third through holes (91), (92), and (93) having different dimensions, and the difference in the cross-sectional area of the recesses described above. Is realized. The first to third through holes (91), (92), and (93) have a rhombus cross-sectional shape, and are similar in shape with the same corner angle and different diagonal dimensions (d1), (d2), and (d3). It is. In the stress relieving material (90), one first through hole (91) located at the center is the smallest, and four pieces surround the first through hole (91) and are larger than the first through hole (91). The second through holes (92) are positioned, and the eight largest third through holes (93) are positioned so as to surround the second through holes (92). In addition, the first to third inner wall surfaces (97), (98), and (99) are connected to the heat sinks (97), (98), and (99) on the opening peripheral edge of the first to third through holes (91), (92), and (93). First to third recesses (94), (95), and (96) formed with tapered surfaces inclined with respect to 13) are provided. The height (h) of the first to third recesses (94), (95), and (96) and the inclination angle (θ) of the first to third inner wall surfaces (97), (98), and (99) are the same, Diagonal lines of the first to third recesses (94), (95), and (96) according to the difference in the diagonal dimension (d1), (d2), and (d3) of the first to third through holes (91), (92), and (93) The dimensions are different, and these cross-sectional areas are the smallest in the first recess (94), the second recess (95) is larger than the first recess (94), and the third recess (96) is the second recess (95). It is set even larger than.

また、凹部を設けずに外周側でより多くの余剰ろう材を収容するには、外周側の応力吸収空間で案内部の数や容積を増やせば良い。例えば、図1の円形の貫通穴(21)であれば外周側に配置した貫通穴で縦溝(23)の数を増やすか、あるいは縦溝(23)の深さを深くすることで余剰ろう材の収容量を増やすことができる。また、貫通穴の直径を拡大すればより多くの溝を設けることができるので、溝数を増やすために外周側ほど穴径を大きくすることは放熱性能を維持するという観点からも好ましい。   Further, in order to accommodate more surplus brazing material on the outer peripheral side without providing the concave portion, the number and volume of the guide portions may be increased in the stress absorbing space on the outer peripheral side. For example, in the case of the circular through hole (21) in FIG. 1, the surplus will be achieved by increasing the number of vertical grooves (23) or increasing the depth of the vertical grooves (23) in the through holes arranged on the outer peripheral side. The capacity of the material can be increased. Further, since the larger number of grooves can be provided if the diameter of the through hole is increased, it is preferable to increase the hole diameter toward the outer peripheral side in order to increase the number of grooves from the viewpoint of maintaining the heat dissipation performance.

本発明において応力吸収空間の形状は図1〜図9に示したものに限定されず、楕円形やスリット状の貫通穴等であっても良い。また、凹部は応力吸収空間の開口縁部の全周に形成することに限定されるものではなく、一部にのみ形成されている場合も本発明に含まれる。ただし、凹部を開口縁部の全周に形成すればより多くの余剰ろう材を引き込むことによって、余剰ろう材の応力吸収空間への流出を防ぐことができる。   In the present invention, the shape of the stress absorption space is not limited to that shown in FIGS. 1 to 9, and may be an elliptical or slit-like through hole. Moreover, a recessed part is not limited to forming in the perimeter of the opening edge part of stress absorption space, The case where it forms in only one part is also contained in this invention. However, if the concave portion is formed on the entire periphery of the opening edge portion, it is possible to prevent the excess brazing material from flowing out into the stress absorption space by drawing more surplus brazing material.

図1および図10に参照される積層構造の放熱装置(1)(100)において、応力吸収空間、案内部および凹部をの形状を変えた種々の応力緩和材を用いて製作した。   In the heat dissipation device (1) (100) having a laminated structure referred to FIG. 1 and FIG. 10, the stress absorbing space, the guide portion, and the concave portion were manufactured using various stress relaxation materials.

応力緩和材を除く部材は各例で共通のものを用いた。絶縁基板(11)は窒化アルミニウムからなる30mm×30mm×厚さ0.6mmの平板である。回路層(12)は99.99%以上の高純度アルミニウムからなる厚さ0.6mmの板である。ヒートシンク(13)はAl−1質量%Mn合金からなる扁平多穴チューブである。ろう材はAl−10質量%Si−1質量%Mg合金からなる厚さ40μmの箔である。   The members excluding the stress relieving material were the same in each example. The insulating substrate (11) is a flat plate made of aluminum nitride and having a size of 30 mm × 30 mm × thickness 0.6 mm. The circuit layer (12) is a 0.6 mm thick plate made of 99.99% or more high-purity aluminum. The heat sink (13) is a flat multi-hole tube made of an Al-1 mass% Mn alloy. The brazing material is a 40 μm thick foil made of an Al-10 mass% Si-1 mass% Mg alloy.

また、熱応力緩和材は、99.99%以上の高純度アルミニウムからなり、28mm×28mm×厚さ1.6mmの平板に切削加工を施して貫通穴からなる応力吸収空間を形成したものである。応力吸収空間の数は13個であり、13個の応力吸収空間の位置は図9Aに参照される配置であって各例で共通である。各例の応力吸収空間はいずれも貫通穴であるが、貫通穴の形状、貫通穴に形成される案内部の形状、貫通穴のヒートシンク側に形成される凹部の有無が異なる。   The thermal stress relaxation material is made of high-purity aluminum of 99.99% or more, and is formed by cutting a flat plate having a size of 28 mm × 28 mm × thickness 1.6 mm to form a stress absorption space including a through hole. . The number of stress absorption spaces is 13, and the positions of the 13 stress absorption spaces are the arrangements referred to in FIG. 9A and are common to the examples. The stress absorbing spaces in each example are all through holes, but the shape of the through hole, the shape of the guide portion formed in the through hole, and the presence or absence of a recess formed on the heat sink side of the through hole are different.

[実施例1]
図1に示す応力緩和材(20)を用いた。13個の応力吸収空間は同一形状であり、横断面形状が直径(d):2mmの円形の貫通穴(21)である。案内部として、前記貫通穴(21)の内壁面(22)に、応力緩和材(20)を厚み方向に貫く断面V字形の4本の縦溝(23)が周方向に等間隔で設けられている。前記縦溝(23)の深さ(t)は0.3mmである。
[Example 1]
The stress relaxation material (20) shown in FIG. 1 was used. The thirteen stress absorbing spaces have the same shape and are circular through holes (21) having a cross-sectional shape of a diameter (d): 2 mm. As guide portions, four vertical grooves (23) having a V-shaped cross section penetrating the stress relaxation material (20) in the thickness direction are provided at equal intervals in the circumferential direction on the inner wall surface (22) of the through hole (21). ing. The depth (t) of the longitudinal groove (23) is 0.3 mm.

[実施例2]
図2に示す応力緩和材(25)を用いた。実施例1の応力緩和材(20)とは、前記貫通穴(21)の内壁面(22)に設けた案内部の形状のみが異なる。案内部は内壁面(22)に設けた4本の螺旋状の溝(26)であり、周方向に等間隔で設けられている。これらの螺旋状の溝(26)の両端は絶縁基板(11)側の面およびヒートシンク(13)側の面の両方に開口している。また、前記螺旋状の溝(26)の深さ(t)は実施例1と同じである。
[Example 2]
The stress relaxation material (25) shown in FIG. 2 was used. Only the shape of the guide portion provided on the inner wall surface (22) of the through hole (21) is different from the stress relaxation material (20) of the first embodiment. The guide portions are four spiral grooves (26) provided on the inner wall surface (22), and are provided at equal intervals in the circumferential direction. Both ends of these spiral grooves (26) are open to both the surface on the insulating substrate (11) side and the surface on the heat sink (13) side. The depth (t) of the spiral groove (26) is the same as that of the first embodiment.

参考例3]
図3に示す応力緩和材(30)を用いた。13個の応力吸収空間は同一形状であり、横断面形状が一辺3mmの正三角形の貫通穴(31)である。案内部は、貫通穴(31)の屈曲する内壁面(32)によって形成される3個の入隅部(33)であり、これらの入隅部(33)の入隅角度(α)は60°である。
[ Reference Example 3]
The stress relaxation material (30) shown in FIG. 3 was used. The thirteen stress absorption spaces have the same shape and are through-holes (31) of a regular triangle whose cross-sectional shape is 3 mm on a side. The guide portions are three corners (33) formed by the inner wall surface (32) where the through hole (31) is bent, and the corner angle (α) of these corners (33) is 60. °.

参考例4]
図4に示す応力緩和材(40)を用いた。13個の応力吸収空間は同一形状であり、横断面形状が菱形の貫通穴(41)である。前記菱形の長い方の対角線(符号なし)は3mmであり、案内部は屈曲する内壁面(42)によって形成される4個の入隅部(43)(44)である。4個の入隅部(43)(44)のうち、前記長い方の対角線の両端の2つの鋭角の入隅部(43)の入隅角度(α1)は60°あり、他の2つの鈍角の入隅部(44)の入隅角度(α2)は120°である。
[ Reference Example 4]
The stress relaxation material (40) shown in FIG. 4 was used. The thirteen stress absorbing spaces have the same shape, and the through hole (41) has a rhombic cross section. The longer diagonal line (not shown) of the rhombus is 3 mm, and the guide portions are four corners (43) and (44) formed by the bent inner wall surface (42). Of the four corners (43) and (44), the corner angle (α1) of two acute corners (43) at both ends of the longer diagonal is 60 °, and the other two obtuse angles The corner angle (α2) of the corner portion (44) is 120 °.

参考例5]
図5に示す応力緩和材(50)を用いた。13個の応力吸収空間は同一形状であり、横断面形状が直径3mmの円に内接する星形の貫通穴(51)である。案内部は、屈曲する内壁面(52)によって形成される5つの入隅部(53)であり、これらの入隅部(53)の入隅角度(α)は36°である。
[ Reference Example 5]
The stress relaxation material (50) shown in FIG. 5 was used. The thirteen stress absorbing spaces have the same shape and are star-shaped through holes (51) inscribed in a circle having a cross-sectional shape of 3 mm in diameter. The guide portions are five corners (53) formed by the bent inner wall surface (52), and the corner angle (α) of these corners (53) is 36 °.

[実施例6]
図6に示す応力緩和材(60)を用いた。この応力緩和材(60)は実施例1の応力緩和材(20)の貫通穴(21)のヒートシンク(13)側の開口縁部の全周に凹部(61)を設けたものである。前記凹部(61)は、内壁面(62)がヒートシンク(13)に対して傾斜角度(θ)が30°で傾斜するテーパー面であり、板厚方向の高さ(h)は0.2mmである。また、案内部としての4本の縦溝(23)は前記凹部(61)に連通している。
[Example 6]
The stress relaxation material (60) shown in FIG. 6 was used. This stress relaxation material (60) is provided with a recess (61) on the entire periphery of the opening edge of the through hole (21) of the stress relaxation material (20) of Example 1 on the heat sink (13) side. The recess (61) is a tapered surface in which the inner wall surface (62) is inclined at an inclination angle (θ) of 30 ° with respect to the heat sink (13), and the height (h) in the plate thickness direction is 0.2 mm. is there. Further, the four longitudinal grooves (23) as the guide portions communicate with the concave portion (61).

[実施例7]
図7に示す応力緩和材(70)を用いた。この応力緩和材(70)は実施例6の応力緩和材(60)とはヒートシンク(13)側の開口縁部に設けた凹部(71)の形状のみが異なる。前記凹部(71)は、内壁面(72)が凹部(71)内に突出する方向に湾曲する曲線で構成されている。前記内壁面(72)のヒートシンク(13)に対する傾斜角度(θ)は60°である。
[Example 7]
The stress relaxation material (70) shown in FIG. 7 was used. This stress relieving material (70) differs from the stress relieving material (60) of Example 6 only in the shape of the recess (71) provided at the opening edge on the heat sink (13) side. The recess (71) is configured by a curve that curves in a direction in which the inner wall surface (72) protrudes into the recess (71). The inclination angle (θ) of the inner wall surface (72) with respect to the heat sink (13) is 60 °.

[実施例8]
図8に示す応力緩和材(80)を用いた。この応力緩和材(80)は実施例6の応力緩和材(60)の凹部(61)の内壁面(62)に全周に亘って溝(81)を形成したものである。
[Example 8]
The stress relaxation material (80) shown in FIG. 8 was used. This stress relaxation material (80) is formed by forming a groove (81) over the entire circumference on the inner wall surface (62) of the recess (61) of the stress relaxation material (60) of Example 6.

[実施例9]
図9Aおよび9Bに示す応力緩和材(90)を用いた。13個の応力吸収空間は横断面寸法の異なる3種類の菱形の第1〜第3貫通穴(91)(92)(93)であり、これらの貫通穴のヒートシンク(13)側の開口縁部の全周に第1〜第3凹部(94)(95)(96)が形成されている。各貫通穴(91)(92)(93)の横断面形状は実施例4の貫通穴(41)と相似形の菱形であり、入隅部(符号なし)の入隅角度は実施例4と同じである。また、菱形の長い方の対角線寸法は第1〜第3貫通穴(91)(92)(93)で差があり、中心に位置する最小の第1貫通穴(91)の対角線寸法(d1)が2mm、中間に位置する第2貫通穴(92)の対角線寸法(d2)が3mm、外周側に位置する最大の第3貫通穴(93)が対角線寸法が(d3)が4mmである。また、前記第1〜第3凹部(94)(95)(96)は、いずれも内壁面(97)(98)(99)がヒートシンク(13)に対して傾斜角度(θ)が30°で傾斜するテーパー面であり、板厚方向の高さ(h)は0.2mmである。また、第1〜第3貫通穴(91)(92)(93)の案内部としての入隅部は前記凹部(94)(95)(96)に連通している。
[Example 9]
The stress relaxation material (90) shown in FIGS. 9A and 9B was used. The thirteen stress absorbing spaces are three types of rhomboid first to third through holes (91), (92), and (93) having different cross-sectional dimensions, and the opening edges of these through holes on the heat sink (13) side 1st-3rd recessed part (94) (95) (96) is formed in the perimeter of. The cross-sectional shape of each through hole (91), (92) and (93) is a rhombus similar to the through hole (41) of Example 4, and the corner angle of the corner (no symbol) is the same as that of Example 4. The same. In addition, the longer diagonal dimension of the rhombus differs between the first to third through holes (91), (92), and (93), and the diagonal dimension (d1) of the smallest first through hole (91) located at the center. Is 2 mm, the diagonal dimension (d2) of the second through hole (92) located in the middle is 3 mm, and the largest third through hole (93) located on the outer peripheral side is 4 mm in the diagonal dimension (d3). The first to third recesses (94), (95), and (96) all have an inner wall surface (97), (98), and (99) with an inclination angle (θ) of 30 ° with respect to the heat sink (13). It is an inclined tapered surface, and the height (h) in the thickness direction is 0.2 mm. Further, the corners of the first through third through holes (91), (92), and (93) as the guide portions communicate with the recesses (94), (95), and (96).

[比較例]
図10に示す応力緩和材(101)を用いた。この応力緩和材(101)は実施例1の応力緩和材(20)とは貫通穴(102)に縦溝(23)が設けられていないことのみが異なる。
[Comparative example]
The stress relaxation material (101) shown in FIG. 10 was used. This stress relieving material (101) differs from the stress relieving material (20) of Example 1 only in that the longitudinal groove (23) is not provided in the through hole (102).

[ろう付]
実施例1〜9および比較例の応力緩和材を、図1および図10に示すように、回路層(12)、ろう材箔、絶縁基板(11)、ろう材箔、応力緩和材(20)(25)(30)(40)(50)(60)(70)(80)(90)(101)、ろう材箔、ヒートシンク(13)の順に積層した放熱装置(1)(100)を仮組みし、7×10−4Paの真空中で600℃×20分で真空ろう付した。
[Brazing]
As shown in FIGS. 1 and 10, the stress relaxation materials of Examples 1 to 9 and the comparative example are the circuit layer (12), the brazing material foil, the insulating substrate (11), the brazing material foil, and the stress relaxation material (20). (25) (30) (40) (50) (60) (70) (80) (90) (101), brazing material foil, heat sink (13) are stacked in this order. These were assembled and vacuum brazed in a vacuum of 7 × 10 −4 Pa at 600 ° C. for 20 minutes.

ろう付した放熱装置(1)(100)を切断して目視観察したところ、全ての放熱装置(1)(100)の全ての接合部分が良好にろう付されていた。また、実施例1〜9において、絶縁基板(11)と応力緩和材(20)(25)(30)(40)(50)(70)(80)(90)の接合面の余剰ろう材は案内部としての溝または入隅部に誘導されてヒートシンク(13)側に流れ、これらの案内部内および凹部(61)(71)(94)(95)(96)内に溜まっており、貫通穴(21)(31)(41)(51)(91)(92)(93)が余剰ろう材によって塞がれることなく応力吸収空間の容積が確保されていた。一方、比較例は余剰ろう材が貫通穴(102)内に流れ込み、応力吸収空間の容積が減少していた。   When the brazed heat radiating device (1) (100) was cut and visually observed, all the joining portions of all the heat radiating devices (1) (100) were brazed well. Moreover, in Examples 1-9, the surplus brazing material on the joint surface of the insulating substrate (11) and the stress relaxation material (20) (25) (30) (40) (50) (70) (80) (90) is It is guided to the groove or corner of the guide as it flows into the heat sink (13), and accumulates in these guides and in the recesses (61) (71) (94) (95) (96). (21) (31) (41) (51) (91) (92) (93) was secured by the surplus brazing material, and the volume of the stress absorbing space was secured. On the other hand, in the comparative example, surplus brazing material flowed into the through hole (102), and the volume of the stress absorption space was reduced.

本発明は、セラミック製の絶縁基板とアルミニウム製ヒートシンクとが応力緩和材を介してろう付された放熱装置に好適に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be suitably used for a heat dissipation device in which a ceramic insulating substrate and an aluminum heat sink are brazed via a stress relaxation material.

1、100…放熱装置
11…絶縁基板
12…回路層
13…ヒートシンク
14…電子素子
20、25、30、40、50、60、70、80、90、101…応力緩和材
21、31、41、51、91、92、93、102…貫通穴(応力吸収空間)
23…縦溝(案内部)
26…螺旋状の溝(案内部)
33、43、44、53…入隅部(案内部)
61、71、94、95、96…凹部
62、72、97、98、99…凹部の内壁面
81…溝
θ…凹部の内壁面の傾斜角度
α、α1、α2…入隅部の入隅角度
h…凹部の高さ
d…円形の貫通穴の直径
d1、d2、d3…菱形の貫通穴の対角線寸法
1, 100… Heat dissipation device
11… Insulating substrate
12 ... Circuit layer
13… Heatsink
14 ... Electronic elements
20, 25, 30, 40, 50, 60, 70, 80, 90, 101 ... Stress relieving material
21, 31, 41, 51, 91, 92, 93, 102 ... through hole (stress absorption space)
23 ... Vertical groove (guide section)
26 ... Helical groove (guide)
33, 43, 44, 53 ... Corner (guide)
61, 71, 94, 95, 96 ... recess
62, 72, 97, 98, 99 ... inner wall surface of the recess
81... Groove .theta .. Inclination angles .alpha., .Alpha.1, .alpha.2 of the inner wall surface of the recess. Diagonal dimension

Claims (17)

絶縁基板の一面側に電子素子搭載用の回路層が接合され、他面側に応力緩和材を介してヒートシンクが接合された放熱装置であって、
前記応力緩和材は、絶縁基板側およびヒートシンク側の両面に開口する少なくとも1つの応力吸収空間を有し、前記応力吸収空間の内壁面に、絶縁基板側およびヒートシンク側の両方の開口部に通じて、応力緩和材と絶縁基板との接合部の余剰ろう材をヒートシンク側に誘導する案内部として応力吸収空間の内壁面に溝が設けられていることを特徴とする放熱装置。
A heat dissipation device in which a circuit layer for mounting an electronic element is bonded to one surface side of an insulating substrate, and a heat sink is bonded to the other surface side via a stress relaxation material,
The stress relieving material has at least one stress absorption space that opens on both sides of the insulating substrate side and the heat sink side, and communicates with an inner wall surface of the stress absorption space through openings on both the insulating substrate side and the heat sink side. A heat dissipating device characterized in that a groove is provided on the inner wall surface of the stress absorbing space as a guide portion for guiding the surplus brazing material at the joint portion between the stress relaxation material and the insulating substrate to the heat sink side.
前記溝は螺旋状の溝である請求項に記載の放熱装置。 The heat dissipation device according to claim 1 , wherein the groove is a spiral groove. 前記溝の深さが0.01〜2mmである請求項1または2に記載の放熱装置。 The heat dissipation device according to claim 1 or 2 , wherein the groove has a depth of 0.01 to 2 mm. 前記応力吸収空間のヒートシンク側の開口縁部に、前記絶縁基板、応力緩和材およびヒートシンクが積層する方向に直交する面で切断した断面において応力吸収空間の断面積を拡大する凹部が前記案内部に連通して形成されている請求項1〜3のいずれかに記載の放熱装置。 A recess that expands the cross-sectional area of the stress absorption space in the cross section cut at a plane orthogonal to the direction in which the insulating substrate, the stress relaxation material, and the heat sink are laminated is formed in the guide edge at the opening edge of the stress absorption space on the heat sink side. The heat radiating device according to claim 1 , wherein the heat radiating device is formed in communication. 前記凹部の断面積は開口面に向かって連続的に拡大され、かつ前記絶縁基板、応力緩和材およびヒートシンクが積層する方向の断面において、前記凹部の内壁面形状が直線また応力吸収空間内に突出する方向に湾曲する曲線で形成されている請求項に記載の放熱装置。 The cross-sectional area of the recess is continuously enlarged toward the opening surface, and the inner wall surface shape of the recess protrudes straight or into the stress absorption space in the cross-section in the direction in which the insulating substrate, the stress relaxation material, and the heat sink are stacked. The heat dissipating device according to claim 4 , wherein the heat dissipating device is formed with a curved curve. 前記凹部の内壁面とヒートシンクとの成す角度が10〜80°である請求項に記載の放熱装置。 The heat dissipation device according to claim 5 , wherein an angle formed by the inner wall surface of the recess and the heat sink is 10 to 80 °. 前記凹部の内壁面に周方向に沿った溝が形成されている請求項4〜6のいずれかに記載の放熱装置。 The heat radiating device according to any one of claims 4 to 6 , wherein a groove along the circumferential direction is formed on an inner wall surface of the concave portion. 前記応力緩和材は複数の応力吸収空間を有し、前記絶縁基板、応力緩和材およびヒートシンクが積層する方向に直交する面で切断した断面において、ヒートシンクとの接合面の外周側に位置する応力吸収空間の凹部の断面積が、中心側に位置する応力吸収空間の凹部の断面積よりも大きく形成されている請求項4〜7のいずれかに記載の放熱装置。 The stress relaxation material has a plurality of stress absorption spaces, and the stress absorption located on the outer peripheral side of the joint surface with the heat sink in a cross section cut along a plane orthogonal to the direction in which the insulating substrate, the stress relaxation material, and the heat sink are stacked. The heat dissipation device according to any one of claims 4 to 7 , wherein a cross-sectional area of the concave portion of the space is formed to be larger than a cross-sectional area of the concave portion of the stress absorption space located on the center side. 前記複数の応力吸収空間は、前記絶縁基板、応力緩和材およびヒートシンクが積層する方向に直交する面で切断した断面において、外周側に位置する応力吸収空間の断面積が、中心側に位置する応力吸収空間の断面積よりも大きく形成されている請求項に記載の放熱装置。 The plurality of stress absorption spaces are stresses in which a cross-sectional area of the stress absorption space located on the outer peripheral side is a central side in a cross section cut by a plane orthogonal to a direction in which the insulating substrate, the stress relaxation material, and the heat sink are stacked. The heat radiating device according to claim 8 , wherein the heat radiating device is formed larger than a cross-sectional area of the absorption space. 絶縁基板の一面側に電子素子搭載用の回路層が接合され、他面側に応力緩和材を介してヒートシンクが接合された放熱装置であって、
前記応力緩和材は、絶縁基板側およびヒートシンク側の両面に開口する少なくとも1つの応力吸収空間を有し、前記応力吸収空間の内壁面に、絶縁基板側およびヒートシンク側の両方の開口部に通じて、応力緩和材と絶縁基板との接合部の余剰ろう材をヒートシンク側に誘導する案内部が形成され、かつ前記応力吸収空間のヒートシンク側の開口縁部に、前記絶縁基板、応力緩和材およびヒートシンクが積層する方向に直交する面で切断した断面において応力吸収空間の断面積を拡大する凹部が前記案内部に連通して形成されていることを特徴とする放熱装置。
A heat dissipation device in which a circuit layer for mounting an electronic element is bonded to one surface side of an insulating substrate, and a heat sink is bonded to the other surface side via a stress relaxation material,
The stress relieving material has at least one stress absorption space that opens on both sides of the insulating substrate side and the heat sink side, and communicates with an inner wall surface of the stress absorption space through openings on both the insulating substrate side and the heat sink side. A guide portion for guiding an excessive brazing material at a joint portion between the stress relaxation material and the insulating substrate to the heat sink side is formed, and the insulating substrate, the stress relaxation material, and the heat sink are formed at an opening edge portion on the heat sink side of the stress absorption space. A heat dissipation device is characterized in that a recess that enlarges the cross-sectional area of the stress absorption space is formed in communication with the guide portion in a cross section cut by a plane orthogonal to the direction in which the layers are stacked .
前記凹部の断面積は開口面に向かって連続的に拡大され、かつ前記絶縁基板、応力緩和材およびヒートシンクが積層する方向の断面において、前記凹部の内壁面形状が直線また応力吸収空間内に突出する方向に湾曲する曲線で形成されている請求項10に記載の放熱装置。  The cross-sectional area of the recess is continuously enlarged toward the opening surface, and the inner wall surface shape of the recess protrudes straight or into the stress absorption space in the cross-section in the direction in which the insulating substrate, the stress relaxation material, and the heat sink are stacked. The heat dissipating device according to claim 10, wherein the heat dissipating device is formed with a curved curve. 前記凹部の内壁面とヒートシンクとの成す角度が10〜80°である請求項11に記載の放熱装置。  The heat dissipation device according to claim 11, wherein an angle formed between the inner wall surface of the recess and the heat sink is 10 to 80 °. 前記凹部の内壁面に周方向に沿った溝が形成されている請求項10〜12のいずれかに記載の放熱装置。  The heat radiating device according to claim 10, wherein a groove along the circumferential direction is formed on an inner wall surface of the concave portion. 前記応力緩和材は複数の応力吸収空間を有し、前記絶縁基板、応力緩和材およびヒートシンクが積層する方向に直交する面で切断した断面において、ヒートシンクとの接合面の外周側に位置する応力吸収空間の凹部の断面積が、中心側に位置する応力吸収空間の凹部の断面積よりも大きく形成されている請求項10〜13のいずれかに記載の放熱装置。  The stress relaxation material has a plurality of stress absorption spaces, and the stress absorption located on the outer peripheral side of the joint surface with the heat sink in a cross section cut along a plane orthogonal to the direction in which the insulating substrate, the stress relaxation material, and the heat sink are stacked. The heat dissipation device according to any one of claims 10 to 13, wherein a cross-sectional area of the concave portion of the space is formed larger than a cross-sectional area of the concave portion of the stress absorption space located on the center side. 前記複数の応力吸収空間は、前記絶縁基板、応力緩和材およびヒートシンクが積層する方向に直交する面で切断した断面において、外周側に位置する応力吸収空間の断面積が、中心側に位置する応力吸収空間の断面積よりも大きく形成されている請求項14に記載の放熱装置。  The plurality of stress absorption spaces are stresses in which a cross-sectional area of the stress absorption space located on the outer peripheral side is a central side in a cross section cut by a plane orthogonal to a direction in which the insulating substrate, the stress relaxation material, and the heat sink are stacked. The heat radiating device according to claim 14, wherein the heat radiating device is formed larger than a cross-sectional area of the absorption space. 前記案内部は、応力吸収空間の内壁面が周方向に屈曲することによって形成された入隅部である請求項10〜15のいずれかに記載の放熱装置。  The heat radiating device according to claim 10, wherein the guide portion is a corner portion formed by bending an inner wall surface of the stress absorption space in a circumferential direction. 前記入隅部の入隅角度が90°以下である請求項16に記載の放熱装置。  The heat radiating device according to claim 16, wherein the corner angle of the corner portion is 90 ° or less.
JP2011093206A 2011-04-19 2011-04-19 Heat dissipation device Expired - Fee Related JP5856750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011093206A JP5856750B2 (en) 2011-04-19 2011-04-19 Heat dissipation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011093206A JP5856750B2 (en) 2011-04-19 2011-04-19 Heat dissipation device

Publications (2)

Publication Number Publication Date
JP2012227341A JP2012227341A (en) 2012-11-15
JP5856750B2 true JP5856750B2 (en) 2016-02-10

Family

ID=47277170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011093206A Expired - Fee Related JP5856750B2 (en) 2011-04-19 2011-04-19 Heat dissipation device

Country Status (1)

Country Link
JP (1) JP5856750B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190291A1 (en) * 2015-05-27 2016-12-01 コニカミノルタ株式会社 Portable terminal
CN111447793B (en) * 2020-04-08 2022-05-13 Oppo广东移动通信有限公司 Heat dissipation device, preparation method of heat dissipation device and electronic equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038929A (en) * 2003-07-16 2005-02-10 Alps Electric Co Ltd Surface-mounting electronic circuit module
JP4759384B2 (en) * 2005-12-20 2011-08-31 昭和電工株式会社 Semiconductor module
JP5072555B2 (en) * 2006-12-12 2012-11-14 パナソニック株式会社 Electronic device package
JP5114323B2 (en) * 2008-07-04 2013-01-09 株式会社豊田自動織機 Semiconductor device
JP2010171279A (en) * 2009-01-23 2010-08-05 Toyota Motor Corp Heat radiator
EP2442358A4 (en) * 2009-06-10 2014-04-16 Toyota Motor Co Ltd Semiconductor device

Also Published As

Publication number Publication date
JP2012227341A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
EP1995772B1 (en) Semiconductor device
JP6738226B2 (en) Cooling system
JP5213519B2 (en) Liquid cooling system
US20170299239A1 (en) Microchannel evaporators with reduced pressure drop
JP2008294280A (en) Semiconductor device
JP2006294699A (en) Heat sink
US10598441B2 (en) Heat sink
WO2018123387A1 (en) Radiator for liquid cooling type cooling device and manufacturing method therefor
JP6349161B2 (en) Liquid cooling system
JP7097308B2 (en) Wick structure and heat pipe containing the wick structure
EP2654079A2 (en) Heat dissipation device and method for manufacturing the same
US11732978B2 (en) Laminated microchannel heat exchangers
JP5856750B2 (en) Heat dissipation device
EP3446059B1 (en) Laminated microchannel heat exchangers
JP6201490B2 (en) Semiconductor device
JP6054423B2 (en) Channel member, heat exchanger using the same, and semiconductor device
JP4752785B2 (en) Manufacturing method of power module substrate with heat sink
JP2013030609A (en) Substrate for mounting electronic elements
JP5194557B2 (en) Liquid-cooled cooler for power element mounting and manufacturing method thereof
EP3772629A1 (en) Heat dissipating fin with thermosiphon
JP2008294281A (en) Semiconductor device and manufacturing method therefor
JP5773703B2 (en) Heat dissipation device
JP6738193B2 (en) Heat transfer structure, insulating laminated material, insulating circuit board and power module base
JP4605009B2 (en) Power module manufacturing method
JP5282075B2 (en) Heat dissipation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R150 Certificate of patent or registration of utility model

Ref document number: 5856750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

LAPS Cancellation because of no payment of annual fees