JP5854967B2 - Catalyst layer for fuel cell and use thereof - Google Patents

Catalyst layer for fuel cell and use thereof Download PDF

Info

Publication number
JP5854967B2
JP5854967B2 JP2012234869A JP2012234869A JP5854967B2 JP 5854967 B2 JP5854967 B2 JP 5854967B2 JP 2012234869 A JP2012234869 A JP 2012234869A JP 2012234869 A JP2012234869 A JP 2012234869A JP 5854967 B2 JP5854967 B2 JP 5854967B2
Authority
JP
Japan
Prior art keywords
layer
metal
fuel cell
catalyst layer
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012234869A
Other languages
Japanese (ja)
Other versions
JP2013062251A (en
Inventor
安顕 脇坂
安顕 脇坂
門田 隆二
隆二 門田
卓也 今井
卓也 今井
中島 宏
中島  宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2012234869A priority Critical patent/JP5854967B2/en
Publication of JP2013062251A publication Critical patent/JP2013062251A/en
Application granted granted Critical
Publication of JP5854967B2 publication Critical patent/JP5854967B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池用触媒層及びその用途に関する。   The present invention relates to a fuel cell catalyst layer and its use.

燃料電池には、電解質の種類や電極の種類により種々のタイプに分類され、代表的なものとしては、アルカリ型、リン酸型、溶融炭酸塩型、固体電解質型、固体高分子型がある。この中でも低温(−40℃程度)から120℃程度で作動可能な固体高分子型燃料電池が注目を集め、近年、自動車用低公害動力源としての開発・実用化が進んでいる。   Fuel cells are classified into various types depending on the type of electrolyte and the type of electrode, and representative types include alkali type, phosphoric acid type, molten carbonate type, solid electrolyte type, and solid polymer type. Among them, a polymer electrolyte fuel cell that can operate at a low temperature (about −40 ° C.) to about 120 ° C. attracts attention, and in recent years, development and practical application as a low-pollution power source for automobiles is progressing.

固体高分子型燃料電池の用途としては、車両用駆動源や定置型電源が検討されているが、これらの用途に適用されるためには、長期間に渡る耐久性が求められている。
この固体高分子型燃料電池は、固体高分子電解質をアノードとカソードとで挟み、アノードに燃料を供給し、カソードに酸素または空気を供給して、カソードで酸素が還元されて電気を取り出す形式である。燃料には水素またはメタノールなどが主として用いられる。
As a use of the polymer electrolyte fuel cell, a vehicle driving source and a stationary power source are being studied. However, in order to be applied to these uses, durability over a long period of time is required.
In this polymer electrolyte fuel cell, a solid polymer electrolyte is sandwiched between an anode and a cathode, fuel is supplied to the anode, oxygen or air is supplied to the cathode, and oxygen is reduced at the cathode to extract electricity. is there. Hydrogen or methanol is mainly used as the fuel.

従来、燃料電池の反応速度を高め、燃料電池のエネルギー変換効率を高めるために、燃料電池のカソード(空気極)表面やアノード(燃料極)表面には、触媒を含む層(以下「燃料電池用触媒層」とも記す。)が設けられていた。   Conventionally, in order to increase the reaction speed of the fuel cell and increase the energy conversion efficiency of the fuel cell, a layer containing a catalyst (hereinafter referred to as “for fuel cell”) is provided on the cathode (air electrode) surface or anode (fuel electrode) surface of the fuel cell. Also referred to as “catalyst layer”).

この触媒として、一般的に貴金属が用いられており、貴金属の中でも高い電位で安定であり、活性が高い白金が、主として用いられてきた。しかし、白金は価格が高く、また資源量が限られていることから、代替可能な触媒の開発が求められていた。   As this catalyst, a noble metal is generally used, and platinum which is stable at a high potential and has a high activity among noble metals has been mainly used. However, since platinum is expensive and has limited resources, the development of an alternative catalyst has been sought.

白金に代わる触媒として、炭素、窒素、ホウ素等の非金属を含む材料が近年着目されている。これらの非金属を含む材料は、白金などの貴金属と比較して価格が安く、また資源量が豊富である。   In recent years, materials containing nonmetals such as carbon, nitrogen, and boron have attracted attention as catalysts that replace platinum. These non-metal-containing materials are cheaper and have abundant resources than precious metals such as platinum.

非特許文献1では、ジルコニウムをベースとしたZrOxN化合物に、酸素還元能を示すことが報告されている。
特許文献1では、白金代替材料として長周期表4族、5族及び14族の元素群から選ばれる1種以上の窒化物を含む酸素還元電極材料が開示されている。
Non-Patent Document 1 reports that a zirconium-based ZrO x N compound exhibits oxygen reducing ability.
Patent Document 1 discloses an oxygen reduction electrode material containing one or more nitrides selected from the group of elements of Group 4, Group 5 and Group 14 of the long periodic table as a platinum substitute material.

しかしながら、これらの非金属を含む材料は、触媒として実用的に充分な酸素還元能が得られていないという問題点があった。
特許文献2では、二種類の以上の金属を含むペロブスカイト構造をとる酸化物が白金代替触媒となる可能性について検討されているが、実施例に示されているように、効能は白金を補助する担体としての役割を超えるものではなく、充分な活性を持たない。
However, these materials containing non-metals have a problem that practically sufficient oxygen reducing ability is not obtained as a catalyst.
Patent Document 2 discusses the possibility that an oxide having a perovskite structure containing two or more kinds of metals can serve as an alternative catalyst for platinum. However, as shown in Examples, the effect is to assist platinum. It does not exceed the role as a carrier and does not have sufficient activity.

特開2007−31781号公報JP 2007-31781 A 特開2008−4286号公報JP 2008-4286 A

S. Doi,A. Ishihara,S. Mitsushima,N. kamiya,and K. Ota, Journal of The Electrochemical Society, 154 (3) B362−B369 (2007)S. Doi, A .; Ishihara, S .; Mitsushima, N .; Kamiya, and K.K. Ota, Journal of The Electrochemical Society, 154 (3) B362-B369 (2007)

本発明はこのような従来技術における問題点の解決を課題としており、本発明の目的は、白金単独の燃料電池用触媒層と同等以上の触媒能を有し、しかも安価な燃料電池用触媒層を提供することである。   An object of the present invention is to solve such problems in the prior art, and an object of the present invention is to provide a catalyst layer for a fuel cell that has a catalytic capacity equivalent to or higher than that of a platinum-only catalyst layer for a fuel cell and is inexpensive. Is to provide.

本発明者らは、上記従来技術の問題点を解決すべく鋭意検討した結果、金属炭窒酸化物を含む層(I)と白金を含む層(II)とを有する燃料電池用触媒層が、白金単独の燃料電池用触媒層と同等以上の触媒能を有し、しかも安価であることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the problems of the prior art, the present inventors have found that a catalyst layer for a fuel cell having a layer (I) containing a metal carbonitride and a layer (II) containing platinum, It has been found that it has a catalytic ability equivalent to or higher than that of a catalyst layer for fuel cells made of platinum alone and is inexpensive, and has completed the present invention.

本発明は、たとえば以下の(1)〜(17)に関する。
(1)
金属炭窒酸化物を含む層(I)と白金を含む層(II)とを有することを特徴とする燃料電池用触媒層。
The present invention relates to the following (1) to (17), for example.
(1)
A fuel cell catalyst layer comprising a layer (I) containing a metal carbonitride and a layer (II) containing platinum.

(2)
前記層(I)における金属炭窒酸化物と前記層(II)における白金との単位面積当たりの質量比(金属炭窒酸化物/白金)が、2〜500であることを特徴とする(1)に記載の燃料電池用触媒層。
(2)
A mass ratio (metal oxycarbonitride / platinum) per unit area between the metal carbonitride oxide in the layer (I) and platinum in the layer (II) is 2 to 500 (1) The catalyst layer for fuel cells as described in 1).

(3)
前記層(II)における白金の単位面積当たりの質量が、0.005〜0.2mg/cm2であることを特徴とする(1)または(2)に記載の燃料電池用触媒層。
(3)
The catalyst layer for a fuel cell according to (1) or (2), wherein a mass per unit area of platinum in the layer (II) is 0.005 to 0.2 mg / cm 2 .

(4)
前記層(I)における金属炭窒酸化物を構成する金属元素が、アルミニウム、クロム、マンガン、コバルト、ニッケル、銅、ストロンチウム、イットリウム、スズ、タングステン、セリウム、チタン、ニオブ、タンタル、ジルコニウム、バナジウム、ハフニウム、鉄、ランタン、セリウムおよびサマリウムからなる群より選択される少なくとも1種の金属元素であることを特徴とする(1)〜(3)のいずれか一項に記載の燃料電池用触媒層。
(4)
The metal elements constituting the metal carbonitride in the layer (I) are aluminum, chromium, manganese, cobalt, nickel, copper, strontium, yttrium, tin, tungsten, cerium, titanium, niobium, tantalum, zirconium, vanadium, The fuel cell catalyst layer according to any one of (1) to (3), which is at least one metal element selected from the group consisting of hafnium, iron, lanthanum, cerium, and samarium.

(5)
前記層(I)における金属炭窒酸化物を構成する金属元素が、チタン、ニオブ、タンタル、ジルコニウム、バナジウム、ハフニウム、鉄、ランタン、セリウムおよびサマリウムからなる群より選択される少なくとも1種の金属元素であることを特徴とする(1)〜(3)のいずれか一項に記載の燃料電池用触媒層。
(5)
The metal element constituting the metal carbonitride in the layer (I) is at least one metal element selected from the group consisting of titanium, niobium, tantalum, zirconium, vanadium, hafnium, iron, lanthanum, cerium and samarium. The fuel cell catalyst layer according to any one of (1) to (3), wherein:

(6)
前記層(I)における金属炭窒酸化物を構成する金属元素が、チタン、ニオブ、タンタル、ジルコニウム、鉄、ランタン、セリウムおよびサマリウムからなる群より選択される少なくとも1種の金属元素であることを特徴とする(1)〜(3)のいずれか一項に記載の燃料電池用触媒層。
(6)
The metal element constituting the metal carbonitride in the layer (I) is at least one metal element selected from the group consisting of titanium, niobium, tantalum, zirconium, iron, lanthanum, cerium and samarium. The catalyst layer for a fuel cell according to any one of (1) to (3), which is characterized.

(7)
前記層(I)における金属炭窒酸化物を構成する金属元素が、チタンおよびニオブからなる群より選択される少なくとも1種の金属元素であることを特徴とする(1)〜(3)のいずれか一項に記載の燃料電池用触媒層。
(7)
Any of (1) to (3), wherein the metal element constituting the metal carbonitride in the layer (I) is at least one metal element selected from the group consisting of titanium and niobium The fuel cell catalyst layer according to claim 1.

(8)
前記層(I)における金属炭窒酸化物が、フッ素を含有する金属炭窒酸化物であることを特徴とする(1)〜(7)のいずれか一項に記載の燃料電池用触媒層。
(8)
The fuel cell catalyst layer according to any one of (1) to (7), wherein the metal carbonitride oxide in the layer (I) is a metal carbonitride oxide containing fluorine.

(9)
前記層(I)における金属炭窒酸化物が、ホウ素、リンおよび硫黄からなる群から選ばれる少なくとも1種の元素Aならびにフッ素を含有する金属炭窒酸化物であることを特徴とする(1)〜(7)のいずれか一項に記載の燃料電池用触媒層。
(9)
The metal oxycarbonitride in the layer (I) is a metal oxycarbonitride containing at least one element A selected from the group consisting of boron, phosphorus and sulfur and fluorine (1) The catalyst layer for fuel cells as described in any one of-(7).

(10)
前記層(I)および層(II)の少なくとも一方の層が、さらに電子伝導性粒子を含むことを特徴とする(1)〜(9)のいずれか一項に記載の燃料電池用触媒層。
(10)
The fuel cell catalyst layer according to any one of (1) to (9), wherein at least one of the layer (I) and the layer (II) further contains electron conductive particles.

(11)
前記電子伝導性粒子が、前記層(II)における白金の担体として用いられていることを特徴とする(10)に記載の燃料電池用触媒層。
(11)
The catalyst layer for a fuel cell according to (10), wherein the electron conductive particles are used as a platinum carrier in the layer (II).

(12)
燃料電池用触媒層と多孔質支持層とを有する電極であって、前記燃料電池用触媒層が(1)〜(11)のいずれか一項に記載の燃料電池用触媒層であることを特徴とする電極。
(12)
An electrode having a fuel cell catalyst layer and a porous support layer, wherein the fuel cell catalyst layer is the fuel cell catalyst layer according to any one of (1) to (11). Electrode.

(13)
前記多孔質支持層上に、金属炭窒酸化物を含む層(I)と白金を含む層(II)とがこの順で積層されていることを特徴とする(12)に記載の電極。
(13)
The electrode according to (12), wherein a layer (I) containing metal oxycarbonitride and a layer (II) containing platinum are laminated in this order on the porous support layer.

(14)
カソードとアノードと前記カソード及び前記アノードの間に配置された電解質膜とを有する膜電極接合体であって、前記カソード及び/または前記アノードが(12)または(13)に記載の電極であることを特徴とする膜電極接合体。
(14)
A membrane electrode assembly having a cathode, an anode, and an electrolyte membrane disposed between the cathode and the anode, wherein the cathode and / or the anode is an electrode according to (12) or (13) A membrane electrode assembly characterized by the above.

(15)
前記電解質膜上に、白金を含む層(II)と金属炭窒酸化物を含む層(I)とがこの順で積層されていることを特徴とする(14)に記載の膜電極接合体。
(15)
The membrane / electrode assembly according to (14), wherein a layer (II) containing platinum and a layer (I) containing metal oxycarbonitride are laminated in this order on the electrolyte membrane.

(16)
(14)または(15)に記載の膜電極接合体を備えることを特徴とする燃料電池。
(17)
(14)または(15)に記載の膜電極接合体を備えることを特徴とする固体高分子形燃料電池。
(16)
(14) A fuel cell comprising the membrane electrode assembly according to (15).
(17)
A polymer electrolyte fuel cell comprising the membrane electrode assembly according to (14) or (15).

本発明の燃料電池用触媒層によれば、安価で発電特性の優れた電極、膜電極接合体および燃料電池を得ることができる。   According to the catalyst layer for a fuel cell of the present invention, an electrode, a membrane electrode assembly, and a fuel cell that are inexpensive and have excellent power generation characteristics can be obtained.

図1は、燃料電池用触媒層の断面図の一例である。FIG. 1 is an example of a cross-sectional view of a fuel cell catalyst layer. 図2は、電極の断面図の一例である。FIG. 2 is an example of a cross-sectional view of the electrode. 図3は、膜電極接合体(MEA)の断面図の一例である。FIG. 3 is an example of a cross-sectional view of a membrane electrode assembly (MEA). 図4は、固体高分子型燃料電池の単セルの分解断面図の一例である。FIG. 4 is an example of an exploded cross-sectional view of a single cell of a polymer electrolyte fuel cell. 図5は、実施例1、参考例1および比較例1で作製した各単セルにおける電流―電圧特性曲線である。FIG. 5 is a current-voltage characteristic curve of each single cell produced in Example 1, Reference Example 1 and Comparative Example 1. 図6は、実施例1、参考例1および比較例1で作製した各単セルにおける電流―出力密度曲線である。6 is a current-power density curve in each single cell produced in Example 1, Reference Example 1 and Comparative Example 1. FIG.

<燃料電池用触媒層>
本発明の燃料電池用触媒層は、金属炭窒酸化物を含む層(I)と白金を含む層(II)とを有することを特徴としている。なお、本発明の燃料電池用触媒層のもっとも単純な模式図を図1に示す。
<Catalyst layer for fuel cells>
The catalyst layer for a fuel cell of the present invention is characterized by having a layer (I) containing a metal carbonitride and a layer (II) containing platinum. The simplest schematic diagram of the fuel cell catalyst layer of the present invention is shown in FIG.

前記層(I)および前記層(II)を有する燃料電池用触媒層は、白金単独の燃料電池用触媒層と同等以上の触媒能を有し、白金だけでなく金属炭窒酸化物から形成されているので、白金単独の燃料電池用触媒層に比べて非常に安価である。   The fuel cell catalyst layer having the layer (I) and the layer (II) has a catalytic ability equal to or higher than that of a platinum-only fuel cell catalyst layer, and is formed from not only platinum but also a metal carbonitride. Therefore, it is very inexpensive as compared with a catalyst layer for fuel cells made of platinum alone.

前記層(I)における金属炭窒酸化物と前記層(II)における白金との単位面積当たりの質量比(金属炭窒酸化物/白金)は、2〜500であることが好ましく、7〜300であることがより好ましく、20〜200であることがさらに好ましい。   The mass ratio (metal oxycarbonitride / platinum) per unit area between the metal carbonitride oxide in the layer (I) and platinum in the layer (II) is preferably 2 to 500, and 7 to 300. More preferably, it is more preferably 20-200.

前記単位面積当たりの質量比(金属炭窒酸化物/白金)が前記範囲内であると、触媒能に優れる傾向がある。また、金属炭窒酸化物の質量を多くして、白金の質量を少なくすることにより、得られる燃料電池用触媒層は極めて安価となる。   When the mass ratio per unit area (metal oxycarbonitride / platinum) is within the above range, the catalytic ability tends to be excellent. Further, by increasing the mass of the metal carbonitride and decreasing the mass of platinum, the resulting fuel cell catalyst layer is extremely inexpensive.

前記層(I)における金属炭窒酸化物中の金属成分と前記層(II)における白金との単位面積当たりの質量比(金属炭窒酸化物中の金属成分/白金)は、1〜250であることが好ましく、5〜200であることがより好ましく、10〜150であることがさらに好ましい。   The mass ratio per unit area of the metal component in the metal carbonitride oxide in the layer (I) and platinum in the layer (II) (metal component / platinum in the metal carbonitride oxide) is 1 to 250. It is preferable that it is 5 to 200, more preferably 10 to 150.

前記質量比(金属炭窒酸化物中の金属成分/白金)が前記範囲内であると、触媒能に優れる傾向がある。また、金属炭窒酸化物の金属成分の質量を多くして、白金の質量を少なくすることにより、得られる燃料電池用触媒層は極めて安価となる。   If the mass ratio (metal component / platinum in the metal carbonitride) is within the above range, the catalytic ability tends to be excellent. Further, by increasing the mass of the metal component of the metal carbonitride and decreasing the mass of platinum, the resulting fuel cell catalyst layer is extremely inexpensive.

前記層(I)における金属炭窒酸化物中の金属成分と前記層(II)における白金との単位面積当たりの質量比(金属炭窒酸化物中の金属成分/白金)を求める方法としては、たとえば以下のような方法が挙げられる。   As a method for determining the mass ratio per unit area of the metal component in the metal carbonitride oxide in the layer (I) and platinum in the layer (II) (metal component in the metal carbonitride oxide / platinum), For example, the following methods are mentioned.

まず、パイレックス(登録商標)製容器中で、あらかじめ面積を測定した前記層(I)および前記層(II)を、硫酸および硝酸を含む水溶液に混合し、過熱する。さらに王水を加えることによって前記層(I)および層(II)を溶解する。得られた溶液をICP分光分析することにより、金属炭窒酸化物中の金属成分の質量と、白金の質量とを測定し、これらの単位面積当たりの質量比(金属炭窒酸化物中の金属成分/白金)を求める。   First, in a Pyrex (registered trademark) container, the layer (I) and the layer (II) whose areas have been measured in advance are mixed in an aqueous solution containing sulfuric acid and nitric acid and heated. Further, the layer (I) and the layer (II) are dissolved by adding aqua regia. The obtained solution was subjected to ICP spectroscopic analysis to measure the mass of the metal component in the metal carbonitride oxide and the mass of platinum, and the mass ratio per unit area (the metal in the metal carbonitride oxide) Component / platinum).

前記層(II)における白金の単位面積当たりの質量は、0.005〜0.2mg/cm2であることが好ましく、0.01〜0.15mg/cm2であることがより好ましく、0.05〜0.1mg/cm2であることがさらに好ましい。 Mass per unit area of platinum in the layer (II) is preferably 0.005~0.2mg / cm 2, more preferably 0.01~0.15mg / cm 2, 0. More preferably, it is 05-0.1 mg / cm < 2 >.

通常、白金の単位面積当たりの質量を少なくすると、燃料電池用触媒層の触媒能は極めて低くなる。したがって、従来、触媒能を高くするために、燃料電池用触媒層での白金の単位面積当たりの質量を、例えば、0.25〜2.00mg/cm2と多くする必要があった。 Usually, when the mass per unit area of platinum is reduced, the catalytic ability of the fuel cell catalyst layer becomes extremely low. Therefore, conventionally, in order to increase the catalytic performance, it was necessary to increase the mass per unit area of platinum in the fuel cell catalyst layer, for example, 0.25 to 2.00 mg / cm 2 .

しかしながら、本発明の燃料電池用触媒層は、金属炭窒酸化物を含む層(I)を有することにより、前記層(II)における白金の単位面積当たりの質量が前記範囲内のように微量であっても、触媒能に優れる傾向がある。また、白金の使用量が微量であるため、極めて安価となる。   However, the catalyst layer for a fuel cell of the present invention has a layer (I) containing a metal oxynitride, so that the mass per unit area of platinum in the layer (II) is so small that it is within the above range. Even if it exists, there exists a tendency which is excellent in a catalyst ability. Further, since the amount of platinum used is very small, it is extremely inexpensive.

前記層(II)における白金の単位面積当たりの質量を求める方法としては、たとえば、上述した方法により白金の質量を求め、前記層(II)における白金の単位面積当たりの質量を求める。   As a method for obtaining the mass per unit area of platinum in the layer (II), for example, the mass of platinum is obtained by the method described above, and the mass per unit area of platinum in the layer (II) is obtained.

前記金属炭窒酸化物は、アルミニウム、クロム、マンガン、コバルト、ニッケル、銅、ストロンチウム、イットリウム、スズ、タングステン、セリウム、チタン、ニオブ、タンタル、ジルコニウム、バナジウム、ハフニウム、鉄、ランタン、セリウムおよびサマリウムからなる群より選択される少なくとも1種の金属元素を含む金属炭窒酸化物であることが好ましく、チタン、ニオブ、タンタル、ジルコニウム、バナジウム、ハフニウム、鉄、ランタン、セリウムおよびサマリウムからなる群より選択される少なくとも1種の金属元素を含む金属炭窒酸化物であることがより好ましく、チタン、ニオブ、タンタル、ジルコニウム、鉄、ランタン、セリウムおよびサマリウムからなる群より選択される少なくとも1種の金属を含む金属炭窒酸化物であることがより好ましく、チタン、ニオブおよびジルコニウムからなる群より選択される少なくとも1種の金属元素を含む金属炭窒酸化物であることがより好ましく、チタンおよびニオブからなる群より選択される少なくとも1種の金属元素を含む金属炭窒酸化物であることが特に好ましい。   The metal carbonitride is made of aluminum, chromium, manganese, cobalt, nickel, copper, strontium, yttrium, tin, tungsten, cerium, titanium, niobium, tantalum, zirconium, vanadium, hafnium, iron, lanthanum, cerium and samarium. It is preferably a metal carbonitride containing at least one metal element selected from the group consisting of: selected from the group consisting of titanium, niobium, tantalum, zirconium, vanadium, hafnium, iron, lanthanum, cerium and samarium. It is more preferable that the metal carbonitride oxide contains at least one metal element, and includes at least one metal selected from the group consisting of titanium, niobium, tantalum, zirconium, iron, lanthanum, cerium, and samarium. Metal carbonitriding More preferably, it is a metal carbonitride containing at least one metal element selected from the group consisting of titanium, niobium and zirconium, and at least selected from the group consisting of titanium and niobium Particularly preferred is a metal carbonitride containing one metal element.

前記金属炭窒酸化物としては、フッ素を含有する金属炭窒酸化物が好ましく、ホウ素、リンおよび硫黄からなる群から選ばれる少なくとも1種の元素Aならびにフッ素を含有する金属炭窒酸化物であることがより好ましい。   The metal oxycarbonitride is preferably a fluorine-containing metal oxycarbonitride, which is at least one element A selected from the group consisting of boron, phosphorus and sulfur, and fluorine-containing metal oxycarbonitride. It is more preferable.

このような金属炭窒酸化物を含む層(I)を有する燃料電池用触媒層は、白金単独の燃料電池用触媒層と比べて非常に安価であり、しかも白金単独の燃料電池用触媒層と同等以上の触媒能を有し、さらに酸性電解質中や高電位での耐久性に優れる傾向がある。   The fuel cell catalyst layer having the layer (I) containing such a metal carbonitrous oxide is very inexpensive as compared with the platinum-only fuel cell catalyst layer, and the platinum-only fuel cell catalyst layer It has a catalytic ability equal to or higher than that, and tends to be excellent in durability in an acidic electrolyte or at a high potential.

前記層(I)の触媒成分としては、金属炭窒酸化物からなることが好ましい。前記層(I)の触媒成分としては、金属炭窒酸化物以外の助触媒があってもかまわないが特に必要ではない。   The catalyst component of the layer (I) is preferably made of a metal oxycarbonitride. As the catalyst component of the layer (I), there may be a co-catalyst other than the metal carbonitride, but it is not particularly necessary.

前記金属炭窒酸化物の組成式は、例えば下記(x)で表わされる組成式となる。
MCxyz ・・・(x)
(ただし、Mは金属原子であり、x、y、zは原子数の比を表し、0<x≦9、0<y≦2、0<z≦5であり、0.05≦x≦2.5、0.01≦y≦1.0、0.1≦z≦2.0 が好ましい。)
前記組成式(x)において、0.05≦x≦9、0.01≦y≦2、0.05≦z≦5であることが好ましく、0.05≦x≦8、0.01≦y≦1.8、0.1≦z≦4であることがより好ましく、0.05≦x≦7、0.01≦y≦1.5、0.1≦z≦3.5であることがより好ましく、0.06≦x≦2.0、0.02≦y≦0.8、 0.2≦z≦1.9であることがより好ましく、0.1≦x≦1.5、0.04≦y≦0.7、0.3≦z≦1.8であることがさらに好ましい。
The composition formula of the metal carbonitride oxide is, for example, a composition formula represented by the following (x).
MC x N y O z (x)
(However, M is a metal atom, x, y, z represents the ratio of the number of atoms, 0 <x ≦ 9, 0 <y ≦ 2, 0 <z ≦ 5, and 0.05 ≦ x ≦ 2. .5, 0.01 ≦ y ≦ 1.0, 0.1 ≦ z ≦ 2.0 are preferred.)
In the composition formula (x), 0.05 ≦ x ≦ 9, 0.01 ≦ y ≦ 2, 0.05 ≦ z ≦ 5 are preferable, 0.05 ≦ x ≦ 8, 0.01 ≦ y. ≦ 1.8 and 0.1 ≦ z ≦ 4 are more preferable, and 0.05 ≦ x ≦ 7, 0.01 ≦ y ≦ 1.5, and 0.1 ≦ z ≦ 3.5. More preferably, 0.06 ≦ x ≦ 2.0, 0.02 ≦ y ≦ 0.8, 0.2 ≦ z ≦ 1.9, more preferably 0.1 ≦ x ≦ 1.5, 0 It is more preferable that .04 ≦ y ≦ 0.7 and 0.3 ≦ z ≦ 1.8.

前記金属炭窒酸化物がフッ素を含有する場合、さらに任意に前記元素Aを含有する場合には、前記金属炭窒酸化物の組成式は、好ましくは下記(y)で表わされる組成式となる。   When the metal carbonitride oxide contains fluorine, and when the element A is optionally contained, the composition formula of the metal carbonitride oxide is preferably a composition formula represented by (y) below. .

MCxyzab ・・・(y)
(ただし、Mは金属原子であり、x、y、z、a、bは原子数の比を表し、0<x≦9、0<y≦2、0<z≦5、0≦a≦1、0<b≦2であり、Aは、ホウ素、リン、および硫黄からなる群から選ばれる少なくとも1種の元素である。)
前記組成式(y)において、xの範囲は、より好ましくは0.15≦x≦9、さらに好ましくは0.2≦x≦8であり、特に好ましくは1≦x≦7であり、yの範囲は、より好ましくは0.01≦y≦2、さらに好ましくは0.02≦y≦1.8であり、特に好ましくは0.03≦y≦1.5であり、zの範囲は、より好ましくは0.05≦z≦5であり、さらに好ましくは0.1≦z≦4であり、特に好ましくは0.2≦z≦3.5であり、aの範囲は、より好ましくは0.001≦a≦1であり、さらに好ましくは0.001≦a≦0.5であり、特に好ましくは0.001≦a≦0.2であり、bの範囲は、より好ましくは0.0001≦b≦2であり、さらに好ましくは0.001≦b≦1であり、特に好ましくは0.001≦b≦0.2である。
MC x N y O z A a F b (y)
(However, M is a metal atom, x, y, z, a, b represent the ratio of the number of atoms, 0 <x ≦ 9, 0 <y ≦ 2, 0 <z ≦ 5, 0 ≦ a ≦ 1. 0 <b ≦ 2, and A is at least one element selected from the group consisting of boron, phosphorus, and sulfur.)
In the composition formula (y), the range of x is more preferably 0.15 ≦ x ≦ 9, further preferably 0.2 ≦ x ≦ 8, and particularly preferably 1 ≦ x ≦ 7. The range is more preferably 0.01 ≦ y ≦ 2, more preferably 0.02 ≦ y ≦ 1.8, particularly preferably 0.03 ≦ y ≦ 1.5, and the range of z is more Preferably 0.05 ≦ z ≦ 5, more preferably 0.1 ≦ z ≦ 4, particularly preferably 0.2 ≦ z ≦ 3.5, and the range of a is more preferably 0.00. 001 ≦ a ≦ 1, more preferably 0.001 ≦ a ≦ 0.5, particularly preferably 0.001 ≦ a ≦ 0.2, and the range of b is more preferably 0.0001 ≦ a ≦ 0.2. b ≦ 2, more preferably 0.001 ≦ b ≦ 1, and particularly preferably 0.001 ≦ b ≦ 1. A .2.

前記組成式(x)および(y)において、Mは、金属原子であり、アルミニウム、クロム、マンガン、コバルト、ニッケル、銅、ストロンチウム、イットリウム、スズ、タングステン、セリウム、チタン、ニオブ、タンタル、ジルコニウム、バナジウム、ハフニウム、鉄、ランタン、セリウムおよびサマリウムからなる群より選択される少なくとも1種の金属であることが好ましく、チタン、ニオブ、タンタル、ジルコニウム、バナジウム、ハフニウム、鉄、ランタン、セリウムおよびサマリウムからなる群より選択される少なくとも1種の金属であることが好ましく、チタン、ニオブ、タンタル、ジルコニウム、鉄、ランタン、セリウムおよびサマリウムからなる群より選択される少なくとも1種の金属であることが好ましく、チタン、ニオブおよびジルコニウムからなる群より選択される少なくとも1種の金属であることがより好ましく、チタンおよびニオブからなる群より選択される少なくとも1種の金属であることがさらに好ましい。   In the composition formulas (x) and (y), M is a metal atom, and is aluminum, chromium, manganese, cobalt, nickel, copper, strontium, yttrium, tin, tungsten, cerium, titanium, niobium, tantalum, zirconium, It is preferably at least one metal selected from the group consisting of vanadium, hafnium, iron, lanthanum, cerium and samarium, and consists of titanium, niobium, tantalum, zirconium, vanadium, hafnium, iron, lanthanum, cerium and samarium. It is preferably at least one metal selected from the group, preferably at least one metal selected from the group consisting of titanium, niobium, tantalum, zirconium, iron, lanthanum, cerium and samarium, , D More preferably at least one metal selected from the blanking and the group consisting of zirconium, more preferably at least one metal selected from the group consisting of titanium and niobium.

このような組成式で表される金属炭窒酸化物を含む層(I)を有する燃料電池用触媒層は、高い触媒能を有し、酸性電解質中や高電位での耐久性に優れる傾向があり、しかも安価である。   The catalyst layer for a fuel cell having the layer (I) containing the metal oxynitride represented by such a composition formula has a high catalytic ability and tends to be excellent in durability in an acidic electrolyte or at a high potential. Yes, and cheap.

本発明において、前記金属炭窒酸化物とは、組成式がMCxyzまたはMCxyzabで表される化合物、または、金属の酸化物、金属の炭化物、金属の窒化物、金属の炭窒化物、金属の炭酸化物、金属の窒酸化物などを含み、組成式が全体としてMCxyzまたはMCxyzabで表される混合物(ただし、MCxyzまたはMCxyzabで表される化合物を含んでいてもいなくてもよい。)、あるいはその両方を意味する。 In the present invention, the A metal oxycarbonitride compound composition formula is represented by MC x N y O z or MC x N y O z A a F b, or oxide of the metal, metal carbide, Including metal nitride, metal carbonitride, metal carbonate, metal nitride oxide, etc., the compositional formula is generally expressed as MC x N y O z or MC x N y O z A a F b (However, it may or may not contain the compound represented by MC x N y O z or MC x N y O z A a F b ), or both.

前記金属炭窒酸化物を得る方法は特に限定されないが、例えば、金属炭窒化物を酸素ガス含有不活性ガス中で加熱する方法、液相で合成した前駆体を不活性ガス中で加熱する方法などが挙げられる。例えば、液相中で加熱する方法とは、少なくとも金属含有化合物と、窒素含有有機化合物と、溶媒とを混合して触媒前駆体溶液を得る工程(1)、前記触媒前駆体溶液から溶媒を除去する工程(2)、および工程(2)で得られた固形分残渣を500〜1300℃の温度で熱処理して電極触媒を得る工程(3)を含む方法が挙げられる。また、前記工程(1)〜(3)を含む方法の前記工程(1)において、フッ素を含有する化合物をさらに混合する工程を含む方法、前記工程(1)において、ホウ素、リンおよび硫黄からなる群から選ばれる少なくとも1種の元素Aならびにフッ素を含有する化合物をさらに混合する工程を含む方法などが挙げられる。   The method for obtaining the metal carbonitride is not particularly limited. For example, the method for heating the metal carbonitride in an oxygen gas-containing inert gas, or the method for heating a precursor synthesized in a liquid phase in an inert gas. Etc. For example, the method of heating in a liquid phase is a step (1) of obtaining a catalyst precursor solution by mixing at least a metal-containing compound, a nitrogen-containing organic compound, and a solvent, and removing the solvent from the catalyst precursor solution. And a step including the step (2) and the step (3) of obtaining the electrode catalyst by heat-treating the solid residue obtained in the step (2) at a temperature of 500 to 1300 ° C. Further, in the step (1) of the method including the steps (1) to (3), the method further includes a step of further mixing a compound containing fluorine, and in the step (1), boron, phosphorus and sulfur are included. Examples thereof include a method including a step of further mixing at least one element A selected from the group and a compound containing fluorine.

前記金属炭窒化物を構成する金属元素は、アルミニウム、クロム、マンガン、コバルト、ニッケル、銅、ストロンチウム、イットリウム、スズ、タングステン、セリウム、チタン、ニオブ、タンタル、ジルコニウム、バナジウム、ハフニウム、鉄、ランタン、セリウムおよびサマリウムからなる群より選択される少なくとも1種の金属元素であることが好ましく、チタン、ニオブ、タンタル、ジルコニウム、バナジウム、ハフニウム、鉄、ランタン、セリウムおよびサマリウムからなる群より選択される少なくとも1種の金属元素であることが好ましく、チタン、ニオブ、タンタル、ジルコニウム、鉄、ランタン、セリウムおよびサマリウムからなる群より選択される少なくとも1種の金属元素であることが好ましく、チタン、ニオブおよびジルコニウムからなる群より選択される少なくとも1種の金属元素であることがより好ましく、チタンおよびニオブからなる群より選択される少なくとも1種の金属元素であることがさらに好ましい。   The metal elements constituting the metal carbonitride are aluminum, chromium, manganese, cobalt, nickel, copper, strontium, yttrium, tin, tungsten, cerium, titanium, niobium, tantalum, zirconium, vanadium, hafnium, iron, lanthanum, It is preferably at least one metal element selected from the group consisting of cerium and samarium, and at least one selected from the group consisting of titanium, niobium, tantalum, zirconium, vanadium, hafnium, iron, lanthanum, cerium and samarium. It is preferably a metal element of a kind, and is preferably at least one metal element selected from the group consisting of titanium, niobium, tantalum, zirconium, iron, lanthanum, cerium and samarium, and titanium, niobium and More preferably at least one metal element selected from the group consisting of Rukoniumu, more preferably at least one metal element selected from the group consisting of titanium and niobium.

前記窒素含有有機化合物は、アミノ基、ニトリル基、イミド基、イミン基、ニトロ基、アミド基、アジド基、アジリジン基、アゾ基、イソシアネート基、イソチオシアネート基、オキシム基、ジアゾ基、ニトロソ基などの官能基、またはピロール環、ポルフィリン環、ピロリジン環、イミダゾール環、トリアゾール環、ピリジン環、ピペリジン環、ピリミジン環、ピラジン環、プリン環等の環(これらの官能基および環をまとめて「含窒素分子団」ともいう。)を有することが好ましい。   The nitrogen-containing organic compound includes amino group, nitrile group, imide group, imine group, nitro group, amide group, azide group, aziridine group, azo group, isocyanate group, isothiocyanate group, oxime group, diazo group, nitroso group, etc. Or pyrrole ring, porphyrin ring, pyrrolidine ring, imidazole ring, triazole ring, pyridine ring, piperidine ring, pyrimidine ring, pyrazine ring, purine ring, etc. It is also preferable to have a molecular group ”.

前記金属含有化合物は、前記金属炭窒酸化物を構成する金属元素を含む化合物で有ればよく、金属含有化合物は1種のみ用いても、2種以上用いてもよい。特に2種以上の金属含有化合物を用いる場合には、便宜上第1、第2と番号を付する場合がある。例えば3種類の金属含有化合物を用いる場合、第1の金属含有化合物、第2の金属含有化合物、第3の金属含有化合物と記載する。   The said metal containing compound should just be a compound containing the metal element which comprises the said metal carbonitrous oxide, and a metal containing compound may be used only 1 type or may be used 2 or more types. In particular, when two or more kinds of metal-containing compounds are used, the first and second numbers may be attached for convenience. For example, when three kinds of metal-containing compounds are used, they are described as a first metal-containing compound, a second metal-containing compound, and a third metal-containing compound.

以下、金属炭窒化物を酸素ガス含有不活性ガス中で加熱する方法について説明する。
前記不活性ガスとしては、窒素ガス、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガス、キセノンガスまたはラドンガスが挙げられる。不活性ガスとしては、窒素ガスまたはアルゴンガスが、比較的入手しやすい点で特に好ましい。
Hereinafter, a method for heating the metal carbonitride in an oxygen gas-containing inert gas will be described.
Examples of the inert gas include nitrogen gas, helium gas, neon gas, argon gas, krypton gas, xenon gas, and radon gas. Nitrogen gas or argon gas is particularly preferable as the inert gas because it is relatively easily available.

前記不活性ガス中の酸素ガスの濃度範囲は、加熱時間および加熱温度に依存するが、0.1〜5容量%であることが好ましく、0.1〜2容量%であることがさらに好ましい。前記酸素ガス濃度が前記範囲内であると、均一な金属炭窒酸化物が形成される傾向がある。また、前記酸素ガス濃度が、0.1容量%未満であると未酸化状態になる傾向があり、5容量%を超えると酸化が進み過ぎる傾向がある。   The concentration range of the oxygen gas in the inert gas depends on the heating time and the heating temperature, but is preferably 0.1 to 5% by volume, and more preferably 0.1 to 2% by volume. When the oxygen gas concentration is within the above range, uniform metal oxycarbonitride tends to be formed. Further, when the oxygen gas concentration is less than 0.1% by volume, it tends to be in an unoxidized state, and when it exceeds 5% by volume, oxidation tends to proceed excessively.

前記加熱の温度範囲は600〜1300℃であることが好ましく、600〜1200℃であることがさらに好ましく、700〜1100℃であることがさらに好ましい。また、前記加熱温度が前記範囲内であると、均一な金属炭窒酸化物が形成される傾向がある。前記加熱温度が600℃未満であると酸化が進まない傾向があり、酸素ガスを共存させる場合には、1200℃を超えると酸化が進み過ぎる傾向がある。   The heating temperature range is preferably 600 to 1300 ° C, more preferably 600 to 1200 ° C, and still more preferably 700 to 1100 ° C. Moreover, when the heating temperature is within the above range, uniform metal oxycarbonitride tends to be formed. When the heating temperature is less than 600 ° C., oxidation tends not to proceed. When oxygen gas coexists, when it exceeds 1200 ° C., oxidation tends to proceed excessively.

また、前記不活性ガスは、水素ガスを含有していてもよい。該水素ガスの濃度範囲は、加熱時間および加熱温度に依存するが、0.01〜4容量%であることが好ましく、0.1〜4容量%であることがより好ましい。前記不活性ガス中に水素ガスを前記範囲で含有していると、最終的に得られる燃料電池用触媒層の触媒能が高くなる傾向がある。また、前記水素ガス濃度が4容量%を超えると、爆発の危険性が高くなる傾向がある。   The inert gas may contain hydrogen gas. The concentration range of the hydrogen gas depends on the heating time and the heating temperature, but is preferably 0.01 to 4% by volume, more preferably 0.1 to 4% by volume. When the inert gas contains hydrogen gas in the above range, the catalytic performance of the finally obtained fuel cell catalyst layer tends to be high. If the hydrogen gas concentration exceeds 4% by volume, the risk of explosion tends to increase.

なお、本発明におけるガス濃度(容量%)は、標準状態における値である。
前記加熱方法としては、静置法、攪拌法、落下法、粉末捕捉法などが挙げられる。
静置法とは、静置式の電気炉などに、金属炭窒化物を置き、加熱する方法である。また、金属炭窒化物を量りとったアルミナボード、石英ボードなどを置いて加熱する方法もある。静置法の場合は、大量の金属炭窒化物を加熱することができる点で好ましい。
Note that the gas concentration (volume%) in the present invention is a value in a standard state.
Examples of the heating method include a stationary method, a stirring method, a dropping method, and a powder trapping method.
The stationary method is a method in which a metal carbonitride is placed in a stationary electric furnace or the like and heated. There is also a method of heating by placing an alumina board, a quartz board or the like weighing metal carbonitride. The stationary method is preferable in that a large amount of metal carbonitride can be heated.

攪拌法とは、ロータリーキルンなどの電気炉中に金属炭窒化物を入れ、これを攪拌しながら加熱する方法である。攪拌法の場合は、大量の金属炭窒化物を加熱することができ、金属炭窒化物の粒子の凝集および成長を抑制することができる点で好ましい。   The stirring method is a method in which a metal carbonitride is placed in an electric furnace such as a rotary kiln and heated while stirring. The stirring method is preferable in that a large amount of metal carbonitride can be heated and aggregation and growth of metal carbonitride particles can be suppressed.

静置法、攪拌法などの管状炉で行なう場合、金属炭窒化物の加熱時間は、0.1〜20時間であることが好ましく、1〜10時間であることがより好ましい。前記加熱時間が前記範囲内であると、均一な金属炭窒酸化物が形成される傾向がある。前記加熱時間が0.1時間未満であると金属炭窒酸化物が部分的に形成される傾向があり、20時間を超えると酸化が進みすぎる傾向がある。   When performing in a tubular furnace such as a stationary method or a stirring method, the heating time of the metal carbonitride is preferably 0.1 to 20 hours, and more preferably 1 to 10 hours. When the heating time is within the above range, a uniform metal oxycarbonitride tends to be formed. When the heating time is less than 0.1 hour, metal carbonitride oxide tends to be partially formed, and when it exceeds 20 hours, oxidation tends to proceed excessively.

落下法とは、誘導炉中に微量の酸素ガスを含む不活性ガスを流しながら、炉を所定の加熱温度まで加熱し、該温度で熱的平衡を保った後、炉の加熱区域である坩堝中に金属炭窒化物を落下させ、加熱する方法である。落下法の場合は、金属炭窒化物の粒子の凝集および成長を最小限度に抑制することができる点で好ましい。   The dropping method is a method of heating a furnace to a predetermined heating temperature while flowing an inert gas containing a small amount of oxygen gas in an induction furnace, maintaining a thermal equilibrium at the temperature, and then a crucible which is a heating area of the furnace. In this method, metal carbonitride is dropped and heated. The dropping method is preferable in that aggregation and growth of metal carbonitride particles can be suppressed to a minimum.

落下法の場合、金属炭窒化物の加熱時間は、通常0.5〜10分であり、好ましくは1〜3分である。前記加熱時間が前記範囲内であると、均一な金属炭窒酸化物が形成される傾向があり好ましい。前記加熱時間が0.5分未満であると金属炭窒酸化物が部分的に形成される傾向があり、10分を超えると酸化が進みすぎる傾向がある。   In the case of the dropping method, the heating time of the metal carbonitride is usually 0.5 to 10 minutes, preferably 1 to 3 minutes. It is preferable that the heating time be within the above range because a uniform metal oxycarbonitride tends to be formed. When the heating time is less than 0.5 minutes, metal oxycarbonitride tends to be partially formed, and when it exceeds 10 minutes, oxidation tends to proceed excessively.

粉末捕捉法とは、微量の酸素ガスを含む不活性ガス雰囲気中で、金属炭窒化物を飛沫にして浮遊させ、所定の加熱温度に保たれた垂直の管状炉中に金属炭窒化物を捕捉して、加熱する方法である。   The powder trapping method captures metal carbonitride in a vertical tube furnace maintained at a specified heating temperature by floating the metal carbonitride in an inert gas atmosphere containing a trace amount of oxygen gas. And heating.

粉末捕捉法の場合、金属炭窒化物の加熱時間は、0.2秒〜1分、好ましくは0.5〜10秒である。前記加熱時間が前記範囲内であると、均一な金属炭窒酸化物が形成される傾向があり好ましい。前記加熱時間が0.2秒未満であると金属炭窒酸化物が部分的に形成される傾向があり、1分を超えると酸化が進みすぎる傾向がある。   In the case of the powder trapping method, the heating time of the metal carbonitride is 0.2 seconds to 1 minute, preferably 0.5 to 10 seconds. It is preferable that the heating time be within the above range because a uniform metal oxycarbonitride tends to be formed. When the heating time is less than 0.2 seconds, metal oxycarbonitride tends to be partially formed, and when it exceeds 1 minute, oxidation tends to proceed excessively.

本発明の燃料電池用触媒層において、上述の製造方法により得られる金属炭窒酸化物を、そのまま用いてもよいが、得られる金属有炭窒酸化物をさらに解砕し、より微細な粉末にしたものを用いてもよい。   In the catalyst layer for a fuel cell of the present invention, the metal carbonitrous oxide obtained by the above-described production method may be used as it is, but the obtained metal carbonitrous oxide is further crushed to obtain a finer powder. You may use what you did.

金属炭窒酸化物を解砕する方法としては、例えば、ロール転動ミル、ボールミル、媒体撹拌ミル、気流粉砕機、乳鉢、槽解機による方法等が挙げられ、中でも遊星ボールミルによる方法が好ましい。   Examples of the method for pulverizing the metal carbonitride include a roll rolling mill, a ball mill, a medium stirring mill, an airflow pulverizer, a mortar, a tank disintegrator, and the like. Among these, a planetary ball mill is preferable.

解砕後の金属炭窒酸化物は、より微細な粒子となるため、好適に分散して均一な前記層(I)を形成する傾向がある。また、解砕後の金属炭窒酸化物は、解砕前よりBET比表面積が大きくなり、最終的に得られる燃料電池用触媒層の触媒能が向上する傾向がある。   Since the metal carbonitrous oxide after pulverization becomes finer particles, it tends to be suitably dispersed to form the uniform layer (I). Moreover, the metal carbonitrous oxide after pulverization has a BET specific surface area larger than that before pulverization, and the catalytic performance of the finally obtained fuel cell catalyst layer tends to be improved.

前記金属炭窒酸化物のBET比表面積は、1m2/g以上であることが好ましく、1〜1000m2/gであることがより好ましく、1〜350m2/gであることがより好ましく、1〜300m2/gであることがより好ましく、5〜300m2/gであることがより好ましく、5〜250m2/gであることが特に好ましい。 BET specific surface area of the metal oxycarbonitride is preferably at 1 m 2 / g or more, more preferably 1 to 1,000 m 2 / g, more preferably 1~350m 2 / g, 1 more preferably ~300m is 2 / g, more preferably 5 to 300 m 2 / g, particularly preferably 5~250m 2 / g.

なお、本発明におけるBET比表面積の値は、市販のBET測定装置で測定可能であり、たとえば、島津製作所株式会社製 マイクロメリティクス ジェミニ2360を用いて測定することができる。   In addition, the value of the BET specific surface area in this invention can be measured with a commercially available BET measuring apparatus, for example, can be measured using Micromeritics Gemini 2360 by Shimadzu Corporation.

前記金属炭窒酸化物の一次粒子径は、5nm〜1.5μmであることが好ましく、6nm〜1μmであることがより好ましく、8nm〜500nmであることがさらに好ましい。   The primary particle diameter of the metal oxycarbonitride is preferably 5 nm to 1.5 μm, more preferably 6 nm to 1 μm, and further preferably 8 nm to 500 nm.

本発明において、前記金属炭窒酸化物の一次粒子径は、下記式(1)を用いてBET比表面積から換算した値である。
d=6/(p×S) ・・・(1)
d;金属炭窒酸化物の一次粒子径(μm)
p;金属炭窒酸化物の密度(g/cm3
S;金属炭窒酸化物のBET比表面積(m2/g)
なお、前記金属炭窒化物を得る方法は特に限定されず、例えば、金属酸化物と炭素との混合物を、窒素雰囲気または窒素を含有する不活性ガス中で加熱することにより金属炭窒化物を製造する方法(i)、金属含有化合物(例えば有機酸塩、塩化物、錯体など)、金属炭化物および金属窒化物の混合物を、窒素ガスなどの不活性ガス中で加熱することにより金属炭窒化物を製造する方法(ii)等が挙げられる。
In the present invention, the primary particle size of the metal oxycarbonitride is a value converted from the BET specific surface area using the following formula (1).
d = 6 / (p × S) (1)
d: Primary particle size of metal carbonitride (μm)
p: Density of metal carbonitride (g / cm 3 )
S: BET specific surface area of metal carbonitride (m 2 / g)
The method for obtaining the metal carbonitride is not particularly limited. For example, the metal carbonitride is produced by heating a mixture of a metal oxide and carbon in a nitrogen atmosphere or an inert gas containing nitrogen. Process (i), heating a mixture of metal-containing compounds (eg, organic acid salts, chlorides, complexes, etc.), metal carbides and metal nitrides in an inert gas such as nitrogen gas to produce metal carbonitrides. The manufacturing method (ii) etc. are mentioned.

金属炭窒化物を製造する際の加熱の温度は600〜1800℃の範囲であり、好ましくは800〜1600℃の範囲である。前記加熱温度が前記範囲内であると、結晶性および均一性が良好となる傾向がある。前記加熱温度が600℃未満であると結晶性が悪く、均一性が悪くなる傾向があり、1800℃を超えると焼結しやすくなる傾向がある。   The heating temperature when producing the metal carbonitride is in the range of 600 to 1800 ° C, preferably in the range of 800 to 1600 ° C. When the heating temperature is within the above range, crystallinity and uniformity tend to be good. When the heating temperature is less than 600 ° C., the crystallinity is poor and the uniformity tends to be poor, and when it exceeds 1800 ° C., it tends to be sintered.

前記加熱方法としては、上述した静置法、攪拌法、落下法、粉末捕捉法などが挙げられる。
前記製造方法で得られた金属炭窒化物は、粉砕されることが好ましい。金属炭窒化物を粉砕する方法としては、例えば、ロール転動ミル、ボールミル、媒体撹拌ミル、気流粉砕機、乳鉢、槽解機による方法等が挙げられ、金属炭窒化物をより微粒とすることができる点では、気流粉砕機が好ましく、少量処理が容易となる点では、乳鉢による方法が好ましい。
Examples of the heating method include the above-described stationary method, stirring method, dropping method, and powder trapping method.
The metal carbonitride obtained by the production method is preferably pulverized. Examples of the method for pulverizing the metal carbonitride include a roll rolling mill, a ball mill, a medium agitation mill, an airflow pulverizer, a mortar, a method using a tank disintegrator, and the like. However, an airflow pulverizer is preferable, and a method using a mortar is preferable in that a small amount can be easily processed.

本発明の燃料電池用触媒層は、前記層(I)および層(II)の少なくとも一方の層が、さらに電子伝導性粒子を含むことが好ましい。また、前記層(I)および層(II)の少なくとも一方の層が、さらに高分子電解質を含むことも好ましい。電子伝導性粒子は、前記層(I)および/または前記層(II)に含めることができるが、少なくとも前記層(I)に含めることが好ましい。前記触媒を含む燃料電池用触媒層がさらに電子伝導性粒子を含む場合には、還元電流をより高めることができる。電子伝導性粒子は、前記触媒に、電気化学的反応を誘起させるための電気的接点を生じさせるため、還元電流を高めると考えられる。   In the fuel cell catalyst layer of the present invention, it is preferable that at least one of the layer (I) and the layer (II) further contains electron conductive particles. Moreover, it is also preferable that at least one of the layer (I) and the layer (II) further contains a polymer electrolyte. Although the electron conductive particles can be included in the layer (I) and / or the layer (II), it is preferable to include at least the layer (I). When the fuel cell catalyst layer containing the catalyst further contains electron conductive particles, the reduction current can be further increased. The electron conductive particles are considered to increase the reduction current because they generate an electrical contact for inducing an electrochemical reaction in the catalyst.

前記電子伝導性粒子は通常、前記金属炭窒酸化物および/または白金の担体として用いることができる。前記電子伝導性粒子は、前記層(II)における白金の担体として用いられていることが好ましい。   The electron conductive particles can usually be used as a support for the metal carbonitride and / or platinum. The electron conductive particles are preferably used as a platinum carrier in the layer (II).

電子伝導性粒子を構成する材料としては、炭素、導電性高分子、導電性セラミクス、金属または酸化タングステンもしくは酸化イリジウムなどの導電性無機酸化物が挙げられ、それらを単独または組み合わせて用いることができる。特に、比表面積の大きい炭素粒子単独または比表面積の大きい炭素粒子とその他の電子伝導性粒子との混合物が好ましい。
すなわち燃料電池用触媒層としては、比表面積の大きい炭素粒子とを含むことが好ましい。
Examples of the material constituting the electron conductive particles include carbon, conductive polymers, conductive ceramics, metals, and conductive inorganic oxides such as tungsten oxide or iridium oxide, which can be used alone or in combination. . In particular, carbon particles having a large specific surface area alone or a mixture of carbon particles having a large specific surface area and other electron conductive particles are preferable.
That is, the fuel cell catalyst layer preferably contains carbon particles having a large specific surface area.

炭素としては、カーボンブラック、グラファイト、黒鉛、活性炭、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、フラーレンなどが使用できる。カーボンの粒径は、小さすぎると電子伝導パスが形成されにくくなり、また大きすぎると燃料電池用触媒層のガス拡散性が低下したり、触媒層の利用率が低下する傾向があるため、10〜1000nmの範囲であることが好ましく、15〜100nmの範囲であることがよりに好ましい。   As carbon, carbon black, graphite, graphite, activated carbon, carbon nanotube, carbon nanofiber, carbon nanohorn, fullerene and the like can be used. If the particle size of the carbon is too small, it is difficult to form an electron conduction path. If the particle size is too large, the gas diffusibility of the fuel cell catalyst layer tends to decrease or the utilization rate of the catalyst layer tends to decrease. It is preferably in the range of ˜1000 nm, and more preferably in the range of 15 to 100 nm.

電子伝導性粒子を構成する材料が、炭素であり、層(I)に炭素が含まれる場合には、前記金属炭窒酸化物と、層(I)に含まれる炭素との質量比(金属炭窒酸化物:電子伝導性粒子)は、好ましくは4:1〜1000:1である。また、電子伝導性粒子を構成する材料が、炭素であり、層(II)に炭素が含まれる場合には、前記白金と、層(II)に含まれる炭素との質量比(白金:電子伝導性粒子)は、好ましくは4:1〜1000:1である。   When the material constituting the electron conductive particles is carbon and the layer (I) contains carbon, the mass ratio of the metal carbonitride oxide to carbon contained in the layer (I) (metal carbon (Nitride oxide: electron conductive particles) is preferably 4: 1 to 1000: 1. When the material constituting the electron conductive particles is carbon and the layer (II) contains carbon, the mass ratio of platinum to carbon contained in the layer (II) (platinum: electron conduction) The conductive particles are preferably 4: 1 to 1000: 1.

導電性高分子としては特に限定は無いが、例えばポリアセチレン、ポリ−p−フェニレン、ポリアニリン、ポリアルキルアニリン、ポリピロール、ポリチオフェン、ポリインドール、ポリ−1,5−ジアミノアントラキノン、ポリアミノジフェニル、ポリ(o−フェニレンジアミン)、ポリ(キノリニウム)塩、ポリピリジン、ポリキノキサリン、ポリフェニルキノキサリン等が挙げられる。これらの中でも、ポリピロール、ポリアニリン、ポリチオフェンが好ましく、ポリピロールがより好ましい。   The conductive polymer is not particularly limited. For example, polyacetylene, poly-p-phenylene, polyaniline, polyalkylaniline, polypyrrole, polythiophene, polyindole, poly-1,5-diaminoanthraquinone, polyaminodiphenyl, poly (o- Phenylenediamine), poly (quinolinium) salts, polypyridine, polyquinoxaline, polyphenylquinoxaline and the like. Among these, polypyrrole, polyaniline, and polythiophene are preferable, and polypyrrole is more preferable.

高分子電解質としては、燃料電池用触媒層において一般的に用いられているものであれば特に限定されない。具体的には、スルホン酸基を有するパーフルオロカーボン重合体(例えば、NAFION(登録商標)(デュポン社 5%NAFION(登録商標)溶液(DE521))など)、スルホン酸基を有する炭化水素系高分子化合物、リン酸などの無機酸をドープさせた高分子化合物、一部がプロトン伝導性の官能基で置換された有機/無機ハイブリッドポリマー、高分子マトリックスにリン酸溶液や硫酸溶液を含浸させたプロトン伝導体などが挙げられる。これらの中でも、NAFION(登録商標)(デュポン社 5%NAFION(登録商標)溶液(DE521))が好ましい。   The polymer electrolyte is not particularly limited as long as it is generally used in a fuel cell catalyst layer. Specifically, a perfluorocarbon polymer having a sulfonic acid group (for example, NAFION (registered trademark) (DuPont 5% NAFION (registered trademark) solution (DE521))), a hydrocarbon polymer having a sulfonic acid group. Compound, polymer compound doped with inorganic acid such as phosphoric acid, organic / inorganic hybrid polymer partially substituted with proton conductive functional group, proton impregnated with phosphoric acid solution or sulfuric acid solution in polymer matrix A conductor etc. are mentioned. Among these, NAFION (registered trademark) (DuPont 5% NAFION (registered trademark) solution (DE521)) is preferable.

本発明の燃料電池用触媒層は、アノード触媒層またはカソード触媒層のいずれにも用いることができる。本発明の燃料電池用触媒層は、高い酸素還元能を有し、酸性電解質中において高電位であっても腐蝕しがたい金属炭窒酸化物を含むため、燃料電池のカソードに設けられる触媒層(カソード用触媒層)として有用である。特に固体高分子形燃料電池が備える膜電極接合体のカソードに設けられる触媒層に好適に用いられる。本発明の触媒層を、酸素還元電極として用いた場合には、アノードで発生した水素イオンおよび回路から供給される電子と酸素とが反応して、水が発生する。   The catalyst layer for a fuel cell of the present invention can be used for either an anode catalyst layer or a cathode catalyst layer. The catalyst layer for a fuel cell of the present invention has a high oxygen reducing ability and contains a metal carbonitride that is not easily corroded even in a high potential in an acidic electrolyte. It is useful as a (cathode catalyst layer). In particular, it is suitably used for a catalyst layer provided on the cathode of a membrane electrode assembly provided in a polymer electrolyte fuel cell. When the catalyst layer of the present invention is used as an oxygen reduction electrode, water reacts with hydrogen ions generated at the anode, electrons supplied from the circuit, and oxygen.

前記金属炭窒酸化物を、担体である前記電子伝導性粒子上に分散させる方法としては、気流分散、液中分散等の方法が挙げられる。液中分散は、溶媒中に金属炭窒酸化物と、電子伝導性粒子とを分散したものを、前記層(I)の形成工程に使用できるため好ましい。
液中分散としては、オリフィス収縮流による方法、回転せん断流による方法または超音波による方法等があげられる。液中分散の際、使用される溶媒は、金属炭窒酸化物や電子伝導性粒子を浸食することがなく、分散できるものであれば特に制限はないが、揮発性の液体有機溶媒または水等が一般に使用される。
Examples of a method for dispersing the metal carbonitride oxide on the electron conductive particles as a carrier include air flow dispersion and dispersion in liquid. Dispersion in the liquid is preferable because a metal carbonitride and electron conductive particles dispersed in a solvent can be used in the step of forming the layer (I).
Examples of the dispersion in the liquid include a method using an orifice contraction flow, a method using a rotating shear flow, and a method using an ultrasonic wave. The solvent used for dispersion in the liquid is not particularly limited as long as it can disperse without eroding the metal carbonitride oxide or the electron conductive particles, but a volatile liquid organic solvent or water, etc. Is commonly used.

また、金属炭窒酸化物を、前記電子伝導性粒子上に分散させる際、さらに上記電解質と分散剤とを同時に分散させてもよい。
白金を、担体である前記電子伝導性粒子上に分散させる方法としては、特に限定されないが、例えば、白金化合物を含有する溶液と電子伝導性粒子とを撹拌・混合した後、還元剤を加えて、さらに撹拌・混合して白金を電子伝導性粒子上に分散させる方法が挙げられる。
Further, when the metal carbonitride oxide is dispersed on the electron conductive particles, the electrolyte and the dispersant may be further dispersed simultaneously.
A method for dispersing platinum on the electron conductive particles as a carrier is not particularly limited. For example, after stirring and mixing a solution containing a platinum compound and electron conductive particles, a reducing agent is added. Further, there is a method of further stirring and mixing to disperse platinum on the electron conductive particles.

前記層(II)を形成する材料として、白金を電子伝導性粒子上に担持させた市販品を用いてもよい。このような市販品としては、例えば、Pt担持カーボン(TEC10E60E(田中貴金属工業製)、HiSPEC4000(ジョンソンマッセイ製))などが挙げられる。   As a material for forming the layer (II), a commercial product in which platinum is supported on electron conductive particles may be used. Examples of such commercially available products include Pt-supported carbon (TEC10E60E (manufactured by Tanaka Kikinzoku Kogyo), HiSPEC4000 (manufactured by Johnson Matthey)).

燃料電池用触媒層の形成方法としては、特に制限はないが、たとえば、前記金属炭窒酸化物と電子伝導性粒子と電解質とを含み、更に必要に応じてポリテトラフルオロエチレン、ポリフッ化ビニリデン、スチレンブタジエンコポリマー、ポリアクリレート、ナフィオン(登録商標)(テトラフルオロエチレン(tetrafluoroethylene)とパーフルオロ(フルオロスルホニルエトキシ)プロピルビニルエーテル(perfluoro[2−(fluorosulfonylethoxy)propylvinyl ether])との共重合体)等のバインダーを含む懸濁液を、後述するガス拡散層に塗布することにより前記層(I)を形成し、さらにその上に白金と電子伝導性粒子と電解質とを含む懸濁液を塗布することより、前記層(II)を形成する方法が挙げられる。   The method for forming the fuel cell catalyst layer is not particularly limited, and includes, for example, the metal carbonitride, the electron conductive particles, and the electrolyte, and if necessary, polytetrafluoroethylene, polyvinylidene fluoride, Binders such as styrene-butadiene copolymer, polyacrylate, Nafion (registered trademark) (a copolymer of tetrafluoroethylene and perfluoro (fluorosulfonylethoxy) propyl vinyl ether (perfluoro [2- (fluoroosulphonyloxy) propylvinyl ether)), etc. The above-mentioned layer (I) is formed by applying a suspension containing a gas diffusion layer to be described later, and further a suspension containing platinum, electron conductive particles, and an electrolyte is applied thereon. Ri, a method of forming the layer (II).

別の方法としては、後述する電解質膜上に白金と電子伝導性粒子と電解質とを含む懸濁液を塗布することより、前記層(II)を形成し、さらにその上に前記金属炭窒酸化物と電子伝導性粒子と電解質とを含み、更に必要に応じてナフィオン(登録商標)等のバインダーを含む懸濁液を塗布することより、前記層(I)を形成する方法が挙げられる。   As another method, the layer (II) is formed by applying a suspension containing platinum, electron conductive particles, and an electrolyte onto an electrolyte membrane, which will be described later, and the metal carbonitriding oxidation is further formed thereon. There is a method of forming the layer (I) by applying a suspension containing a substance, electron conductive particles and an electrolyte, and further containing a binder such as Nafion (registered trademark) as necessary.

前記バインダーとしては、水素イオン伝導度が高いナフィオン(登録商標)が好ましい。
前記塗布する方法としては、ディッピング法、スクリーン印刷法、ロールコーティング法、フローコート法、ドクターブレード法、スキージ法、スプレー法などが挙げられる。
As the binder, Nafion (registered trademark) having high hydrogen ion conductivity is preferable.
Examples of the application method include a dipping method, a screen printing method, a roll coating method, a flow coating method, a doctor blade method, a squeegee method, and a spray method.

<用途>
本発明の電極は、燃料電池用触媒層と多孔質支持層とを有する電極であって、前記燃料電池用触媒層が、上述した燃料電池用触媒層であることを特徴としている。
<Application>
The electrode of the present invention is an electrode having a fuel cell catalyst layer and a porous support layer, wherein the fuel cell catalyst layer is the above-described fuel cell catalyst layer.

本発明の電極は、前記多孔質支持層上に、金属炭窒酸化物を含む層(I)と白金を含む層(II)とがこの順で積層されていることが好ましい(例えば、図2参照)。このような構成の電極は、耐久性に優れ、発電性能に極めて優れる傾向がある。   In the electrode of the present invention, a layer (I) containing a metal carbonitride oxide and a layer (II) containing platinum are preferably laminated in this order on the porous support layer (for example, FIG. 2). reference). The electrode having such a configuration tends to be excellent in durability and extremely excellent in power generation performance.

本発明の電極はカソードまたはアノードのいずれの電極にも用いることができる。本発明の電極は、耐久性に優れ、発電性能が大きいので、カソードに用いるとより産業上の優位性が高い。   The electrode of the present invention can be used as either a cathode or an anode. Since the electrode of the present invention is excellent in durability and has a large power generation performance, it is more industrially superior when used as a cathode.

多孔質支持層とは、ガスを拡散する層(以下「ガス拡散層」とも記す。)である。ガス拡散層としては、電子伝導性を有し、ガスの拡散性が高く、耐食性の高いものであれば何であっても構わないが、一般的にはカーボンペーパー、カーボンクロスなどの炭素系多孔質材料や、軽量化のためにステンレス、耐食材を被服したアルミニウム箔が用いられる。   The porous support layer is a layer that diffuses gas (hereinafter also referred to as “gas diffusion layer”). The gas diffusion layer may be anything as long as it has electron conductivity, high gas diffusibility, and high corrosion resistance. Generally, carbon-based porous materials such as carbon paper and carbon cloth are used. Materials and aluminum foil coated with stainless steel and corrosion-resistant materials for weight reduction are used.

本発明の膜電極接合体は、カソードとアノードと前記カソード及び前記アノードの間に配置された電解質膜とを有する膜電極接合体であって、前記カソード及び/または前記アノードが、上述した電極であることを特徴としている。   The membrane electrode assembly of the present invention is a membrane electrode assembly comprising a cathode, an anode, and an electrolyte membrane disposed between the cathode and the anode, wherein the cathode and / or the anode is the electrode described above. It is characterized by being.

本発明の膜電極接合体は、前記電解質膜上に、白金を含む層(II)と金属炭窒酸化物を含む層(I)とがこの順で積層されていることが好ましい(例えば、図3参照)。このような構成の膜電極接合体は、発電性能に極めて優れる傾向がある。   In the membrane / electrode assembly of the present invention, it is preferable that a layer (II) containing platinum and a layer (I) containing a metal oxycarbonitride are laminated in this order on the electrolyte membrane (for example, FIG. 3). The membrane electrode assembly having such a configuration tends to be extremely excellent in power generation performance.

前記膜電極接合体は、電解質膜および/またはガス拡散層に前記燃料電池用触媒層を形成後、カソード触媒層およびアノード触媒層を内側として電解質膜の両面をガス拡散層で挟み、ホットプレスすることで得ることができる。   The membrane electrode assembly is hot-pressed after forming the fuel cell catalyst layer on the electrolyte membrane and / or gas diffusion layer, sandwiching both surfaces of the electrolyte membrane with the gas diffusion layer with the cathode catalyst layer and anode catalyst layer inside Can be obtained.

ホットプレス時の温度は、使用する電解質膜および/または触媒層中の成分によって適宜選択されるが、100〜160℃であることが好ましく、120〜160℃であることがより好ましく、120〜140℃であることがさらに好ましい。ホットプレス時の温度が前記下限値未満であると接合が不充分となるおそれがあり、前記上限値を超えると電解質膜および/または触媒層中の成分が劣化するおそれがある。   The temperature at the time of hot pressing is appropriately selected depending on the components in the electrolyte membrane and / or catalyst layer to be used, but is preferably 100 to 160 ° C, more preferably 120 to 160 ° C, and 120 to 140 More preferably, the temperature is C. If the temperature during hot pressing is less than the lower limit, bonding may be insufficient, and if it exceeds the upper limit, components in the electrolyte membrane and / or the catalyst layer may be deteriorated.

ホットプレス時の圧力は、電解質膜および/または触媒層中の成分、ガス拡散層の種類によって適宜選択されるが、10〜1000kg/cm2であることが好ましく、20〜500kg/cm2であることがより好ましく、40〜250kg/cm2であることがさらに好ましい。ホットプレス時の圧力が前記下限値未満であると接合が不充分となるおそれがあり、前記上限値を超えると触媒層やガス拡散層の空孔度が減少し、性能が劣化するおそれがある。 The pressure during hot pressing, the component in the electrolyte membrane and / or the catalyst layer, is appropriately selected depending on the type of gas diffusion layer is preferably 10~1000kg / cm 2, is 20~500kg / cm 2 More preferably, it is more preferable that it is 40-250 kg / cm < 2 >. If the pressure during hot pressing is less than the lower limit, bonding may be insufficient, and if the pressure exceeds the upper limit, the porosity of the catalyst layer and the gas diffusion layer may be reduced and performance may be deteriorated. .

ホットプレスの時間は、ホットプレス時の温度および圧力によって適宜選択されるが、1〜20分であることが好ましく、3〜15分であることがより好ましく、5〜10分であることがさらに好ましい。   The hot pressing time is appropriately selected depending on the temperature and pressure during hot pressing, but is preferably 1 to 20 minutes, more preferably 3 to 15 minutes, and further preferably 5 to 10 minutes. preferable.

前記膜電極接合体における発電性能は、たとえば、以下のように算出される最大出力密度により評価することができる。
まず、前記膜電極接合体をシール材(ガスケット)、ガス流路付きセパレーターと、集電板を挟んでボルトで固定し、所定の面圧(4N)になるように締め付けて、固体高分子形燃料電池の単セルを作成する。セル温度が著しく低い場合には、ラバーヒーターなどを用いて、測定温度まで昇温を行う。(図4参照)
アノード側に燃料として水素を流量100ml/分で供給し、カソード側に酸化剤として空気を流量100ml/分で供給し、アノード側およびカソード側の両側とも常圧で、前記単セル温度25℃における電流―電圧特性を測定する。得られる電流―電圧特性の各測定点において、積算により最大出力密度を算出する。最大出力密度が大きいほど、前記膜電極接合体における発電性能が高いことを示す。当該最大出力密度は、6mW/cm2以上であることが好ましく、10mW/cm2以上であることがより好ましく、20mW/cm2以上であることがさらに好ましい。
The power generation performance in the membrane electrode assembly can be evaluated by, for example, the maximum output density calculated as follows.
First, the membrane electrode assembly is fixed with a bolt with a sealing material (gasket), a separator with a gas flow path, and a current collector plate, and tightened to a predetermined surface pressure (4N). Create a single cell of the fuel cell. When the cell temperature is extremely low, the temperature is raised to the measurement temperature using a rubber heater or the like. (See Figure 4)
Hydrogen is supplied as a fuel to the anode side at a flow rate of 100 ml / min, air is supplied as an oxidant to the cathode side at a flow rate of 100 ml / min, and both the anode side and the cathode side are at normal pressure at the single cell temperature of 25 ° C. Measure current-voltage characteristics. The maximum output density is calculated by integration at each measurement point of the obtained current-voltage characteristics. It shows that the power generation performance in the said membrane electrode assembly is so high that a maximum output density is large. The maximum power density is preferably 6 mW / cm 2 or more, more preferably 10 mW / cm 2 or more, and further preferably 20 mW / cm 2 or more.

前記電解質膜としては、例えば、パーフルオロスルホン酸系を用いた電解質膜または炭化水素系電解質膜などが一般的に用いられるが、高分子微多孔膜に液体電解質を含浸させた膜または多孔質体に高分子電解質を充填させた膜などを用いてもよい。   As the electrolyte membrane, for example, a perfluorosulfonic acid-based electrolyte membrane or a hydrocarbon-based electrolyte membrane is generally used, but a membrane or porous body in which a polymer microporous membrane is impregnated with a liquid electrolyte. A membrane filled with a polymer electrolyte may be used.

本発明の燃料電池は、上述した膜電極接合体を備えることを特徴としている。
燃料電池の電極反応はいわゆる3相界面(電解質−電極触媒−反応ガス)で起こる。燃料電池は、使用される電解質などの違いにより数種類に分類され、溶融炭酸塩型(MCFC)、リン酸型(PAFC)、固体酸化物型(SOFC)、固体高分子型(PEFC)等がある。中でも、本発明の膜電極接合体は、固体高分子形燃料電池に使用することが好ましい。
The fuel cell of the present invention is characterized by including the membrane electrode assembly described above.
The electrode reaction of the fuel cell occurs at a so-called three-phase interface (electrolyte-electrode catalyst-reaction gas). Fuel cells are classified into several types depending on the electrolyte used, etc., and include molten carbonate type (MCFC), phosphoric acid type (PAFC), solid oxide type (SOFC), and solid polymer type (PEFC). . Especially, it is preferable to use the membrane electrode assembly of this invention for a polymer electrolyte fuel cell.

以下に、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されない。
また、実施例における各種測定は、下記の方法により行なった。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
Various measurements in the examples were performed by the following methods.

[分析方法]
1.元素分析
<炭素、硫黄>
試料約0.01gを量り取り、炭素硫黄分析装置(堀場製作所製EMIA−920V)にて測定を行った。
[Analysis method]
1. Elemental analysis <carbon, sulfur>
About 0.01 g of a sample was weighed and measured with a carbon sulfur analyzer (EMIA-920V manufactured by Horiba, Ltd.).

<窒素・酸素>
試料約0.01gを量り取り、Niカプセルに試料を封入して、酸素窒素分析装置(LECO製TC600)にて測定を行った。
<Nitrogen / Oxygen>
About 0.01 g of a sample was weighed, sealed in a Ni capsule, and measured with an oxygen-nitrogen analyzer (TC600 manufactured by LECO).

<金属(チタン等)>
試料約0.1gを石英ビーカーに量り取り、硫酸,硝酸およびフッ酸を用いて試料を完全に加熱分解する。冷却後、この溶液を100mlに定容する。この溶液を適宜希釈しICP−OES(SII社製VISTA−PRO)またはICP−MS(Agilent社製HP7500)を用いて定量を行った。
<Metal (titanium, etc.)>
About 0.1 g of a sample is weighed into a quartz beaker, and the sample is completely thermally decomposed using sulfuric acid, nitric acid and hydrofluoric acid. After cooling, the solution is made up to 100 ml. This solution was appropriately diluted and quantified using ICP-OES (VISA-PRO manufactured by SII) or ICP-MS (HP7500 manufactured by Agilent).

<フッ素>
試料数mgを、酸素気流下、水蒸気を通気しながら燃焼分解した。発生したガスを10mM Na2CO3(過酸化水素を含む。補正用標準Br‐:5ppm)に吸収させ、イオンクロマトグラフィーでフッ素の量を測定した。
<Fluorine>
A few mg of the sample was combusted and decomposed while flowing water vapor in an oxygen stream. The generated gas was absorbed into 10 mM Na 2 CO 3 (containing hydrogen peroxide. Correction standard Br—: 5 ppm), and the amount of fluorine was measured by ion chromatography.

燃焼分解条件:
試料燃焼装置:AQF−100((株)三菱化学アナリテック社製)
燃焼管温度:950℃(試料ボード移動による昇温分解)
イオンクロマトグラフィー測定条件
測定装置:DIONEX DX−500
溶離液:1.8mM Na2CO3+1.7mM NaHCO3
カラム(温度):ShodexSI−90(室温)
流速:1.0ml/分
注入量:25μl
検出器:電気伝導度検出器
サプレッサー:DIONEX ASRS−300
<ホウ素>
試料数十mgを、リン酸を加えた後、硫酸を加えて硫酸の白煙を発生するまで加熱し、放冷した。その後、硝酸添加→加熱→放冷の操作を数回繰り返した。これらの操作後の試料をポリ容器中で純水で50mlに定容後、定容物を(ただし、沈殿物が生じた場合には上澄み液を)純水で10倍希釈した。その後、ICP発光分析でホウ素量を測定した。
Combustion decomposition conditions:
Sample combustion apparatus: AQF-100 (Mitsubishi Chemical Analytech Co., Ltd.)
Combustion tube temperature: 950 ° C (temperature decomposition by moving the sample board)
Ion chromatography measurement conditions Measuring device: DIONEX DX-500
Eluent: 1.8 mM Na 2 CO 3 +1.7 mM NaHCO 3
Column (temperature): Shodex SI-90 (room temperature)
Flow rate: 1.0 ml / min Injection volume: 25 μl
Detector: Electrical conductivity detector Suppressor: DIONEX ASRS-300
<Boron>
After adding phosphoric acid, several tens mg of the sample was heated until sulfuric acid was added and white smoke of sulfuric acid was generated, and the mixture was allowed to cool. Thereafter, the operation of adding nitric acid → heating → cooling was repeated several times. The sample after these operations was made up to a volume of 50 ml with pure water in a plastic container, and the constant volume was diluted 10 times with pure water (however, when the precipitate was formed, the supernatant liquid). Thereafter, the amount of boron was measured by ICP emission analysis.

<リン>
試料約0.02gを、硫酸を加え、硫酸の白煙が発生するまで加熱し、放冷後、硝酸を加え、完全分解するまで、硝酸添加→加熱→放冷の操作を繰り返した。これらの操作後の試料をポリ容器中で純水で100mlに定容した。白濁が認めた場合には、白濁が認められなくなるまでフッ酸を添加した。定容物を純水でさらに50倍に希釈し、ICP発光分析でリン量を測定した。
<Phosphorus>
About 0.02 g of the sample was added with sulfuric acid and heated until white smoke of sulfuric acid was generated. After standing to cool, nitric acid was added and the operation of adding nitric acid → heating → cooling was repeated until complete decomposition. The sample after these operations was made up to 100 ml with pure water in a plastic container. When cloudiness was observed, hydrofluoric acid was added until cloudiness was not observed. The fixed volume was further diluted 50 times with pure water, and the amount of phosphorus was measured by ICP emission analysis.

2.BET比表面積測定
島津製作所株式会社製 マイクロメリティクス ジェミニ2360を用いてBET比表面積を測定した。
2. BET specific surface area measurement BET specific surface area was measured using Micromeritics Gemini 2360 manufactured by Shimadzu Corporation.

3.一次粒子径
金属炭窒酸化物の一次粒子径は、下記式(1)を用いてBET比表面積から換算した値とした。
3. Primary particle diameter The primary particle diameter of the metal carbonitrous oxide was a value converted from the BET specific surface area using the following formula (1).

d=6/(p×S) ・・・(1)
d;金属炭窒酸化物の一次粒子径(μm)
p;金属炭窒酸化物の密度(g/cm3
S;金属炭窒酸化物のBET比表面積(m2/g)
[調製例1]
1.白金を含むインクの調製
Pt担持カーボン(TEC10E60E、田中貴金属工業製)0.6gを純水50mlに加え、さらにNAFION(登録商標)を含有する水溶液(NAFION5%水溶液、和光純薬工業製)5gを入れて、超音波分散機(UT−106H型シャープマニファクチャリングシステム社製)で1時間混合することにより、白金を含むインクを調製した。
d = 6 / (p × S) (1)
d: Primary particle size of metal carbonitride (μm)
p: Density of metal carbonitride (g / cm 3 )
S: BET specific surface area of metal carbonitride (m 2 / g)
[Preparation Example 1]
1. Preparation of ink containing platinum 0.6 g of Pt-supported carbon (TEC10E60E, manufactured by Tanaka Kikinzoku Kogyo) was added to 50 ml of pure water, and 5 g of an aqueous solution containing NAFION (registered trademark) (NAFION 5% aqueous solution, manufactured by Wako Pure Chemical Industries, Ltd.) Then, an ink containing platinum was prepared by mixing with an ultrasonic disperser (UT-106H type Sharp Manufacturing System Co., Ltd.) for 1 hour.

2.白金を含む層の形成
ガス拡散層(カーボンペーパーTGP−H−060、東レ社製)を、アセトンに30秒間浸漬し、脱脂を行った。乾燥後、10%のポリテトラフルオロエチレン(以下「PTFE」とも記す。)水溶液に30秒間浸漬した。室温乾燥後、350℃で1時間加熱することにより、カーボンペーパー内部にPTFEを分散させ、撥水性を持たせたガス拡散層(以下「GDL」とも記す。)を得た。
2. Formation of a layer containing platinum A gas diffusion layer (carbon paper TGP-H-060, manufactured by Toray Industries, Inc.) was immersed in acetone for 30 seconds for degreasing. After drying, it was immersed in a 10% polytetrafluoroethylene (hereinafter also referred to as “PTFE”) aqueous solution for 30 seconds. After drying at room temperature, heating was performed at 350 ° C. for 1 hour to disperse PTFE inside the carbon paper to obtain a gas diffusion layer (hereinafter also referred to as “GDL”) having water repellency.

次に、5cm×5cmの大きさとした前記GDLの表面に、自動スプレー塗布装置(サンエイテック社製)により、80℃で、上記1で調製した白金を含むインクを塗布した。繰り返しスプレー塗布することにより、GDL上に白金を含む層(a)を、白金の単位面積当たりの質量が、1mg/cm2となるように形成した。 Next, the platinum-containing ink prepared in 1 above was applied to the surface of the GDL having a size of 5 cm × 5 cm at 80 ° C. by an automatic spray coating apparatus (manufactured by Sanei Tech Co., Ltd.). By repeating spray coating, a layer (a) containing platinum was formed on the GDL so that the mass per unit area of platinum was 1 mg / cm 2 .

上記のとおりGDL上に白金を含む層(a)を形成したものを、電極(A)とした。
[実施例1]
1.金属炭窒酸化物の調製
炭化チタン(TiC)5.10g(85mmol)、酸化チタン(TiO2)0.80g(10mmol)、窒化チタン(TiN)0.31g(5mmol)をよく混合して、1800℃で3時間、窒素雰囲気中で加熱することにより、炭窒化チタン5.73gが得られた。この炭窒化チタンは、焼結体になるため、自動乳鉢で粉砕した。
As described above, the electrode (A) was formed by forming the platinum-containing layer (a) on the GDL.
[Example 1]
1. Preparation of Metal Carbonitride Oxide 5.10 g (85 mmol) of titanium carbide (TiC), 0.80 g (10 mmol) of titanium oxide (TiO 2 ), 0.31 g (5 mmol) of titanium nitride (TiN) were mixed well, and 1800 By heating in a nitrogen atmosphere at 3 ° C. for 3 hours, 5.73 g of titanium carbonitride was obtained. Since this titanium carbonitride became a sintered body, it was pulverized with an automatic mortar.

粉砕した炭窒化チタン298mgを、1容量%の酸素ガスおよび4%容量%の水素ガスを含む窒素ガスを流しながら、管状炉で、1000℃で6時間加熱することにより、チタン含有炭窒酸化物(以下「金属炭窒酸化物(1)」とも記す。)380mgが得られた。金属炭窒酸化物(1)の元素分析結果を表1に示す。   By heating 298 mg of pulverized titanium carbonitride in a tubular furnace at 1000 ° C. for 6 hours while flowing nitrogen gas containing 1% by volume of oxygen gas and 4% by volume of hydrogen gas, titanium-containing carbonitride oxide (Hereinafter also referred to as “metal oxycarbonitride (1)”.) 380 mg was obtained. Table 1 shows the results of elemental analysis of the metal carbonitride (1).

また、金属炭窒酸化物(1)のBET比表面積は、10m2/gであり、金属炭窒酸化物(1)の一次粒子径は、150nmであった。
2.金属炭窒酸化物を含むインクの調製
上記1で調製した金属炭窒酸化物(1)0.24gと、電子伝導性粒子としてカーボンブラック(ケッチェンブラックEC600JD、LION社製)0.12gとを、2−プロパノール(和光純薬工業製)50mlに加え、さらにNAFION(登録商標)を含有する水溶液(NAFION5%水溶液、和光純薬工業製)2.8gを入れて、超音波分散機(UT−106H型シャープマニファクチャリングシステム社製)で1時間混合することにより、金属炭窒酸化物を含むインク(1)を調製した。
Further, the BET specific surface area of the metal carbonitride oxide (1) was 10 m 2 / g, and the primary particle size of the metal carbonitride oxide (1) was 150 nm.
2. Preparation of Ink Containing Metal Carbonitride Oxide 0.24 g of metal carbonitride oxide (1) prepared in 1 above and 0.12 g of carbon black (Ketjen Black EC600JD, manufactured by LION) as electron conductive particles. In addition to 50 ml of 2-propanol (manufactured by Wako Pure Chemical Industries), 2.8 g of an aqueous solution containing NAFION (registered trademark) (NAFION 5% aqueous solution, manufactured by Wako Pure Chemical Industries, Ltd.) was added, and an ultrasonic disperser (UT- An ink (1) containing a metal carbonitride was prepared by mixing for 1 hour using a 106H type Sharp Manufacturing System.

3.白金を含むインクの調製
Pt担持カーボン(TEC10E60E、田中貴金属工業製)1.2gを純水2.4gとイソプロピルアルコール2.4g(特級、和光純薬工業製)に加え、さらにNAFION(登録商標)を含有する水溶液(NAFION5%水溶液、和光純薬工業製)13gを入れて、超音波分散機(UT−106H型シャープマニファクチャリングシステム社製)で1時間混合することにより、白金を含むインク(2)を調製した。
3. Preparation of ink containing platinum 1.2 g of Pt-supported carbon (TEC10E60E, manufactured by Tanaka Kikinzoku Kogyo) was added to 2.4 g of pure water and 2.4 g of isopropyl alcohol (special grade, manufactured by Wako Pure Chemical Industries), and NAFION (registered trademark). Ink containing platinum by adding 13 g of an aqueous solution (NAFION 5% aqueous solution, manufactured by Wako Pure Chemical Industries, Ltd.) and mixing with an ultrasonic disperser (UT-106H type Sharp Manufacturing System) for 1 hour. 2) was prepared.

4.燃料電池用触媒層の形成
ガス拡散層(カーボンペーパーTGP−H−060、東レ社製)を、アセトンに30秒間浸漬し、脱脂を行った。乾燥後、10%のポリテトラフルオロエチレン(以下「PTFE」とも記す。)水溶液に30秒間浸漬した。
4). Formation of Fuel Cell Catalyst Layer A gas diffusion layer (carbon paper TGP-H-060, manufactured by Toray Industries, Inc.) was immersed in acetone for 30 seconds for degreasing. After drying, it was immersed in a 10% polytetrafluoroethylene (hereinafter also referred to as “PTFE”) aqueous solution for 30 seconds.

室温乾燥後、350℃で1時間加熱することにより、カーボンペーパー内部にPTFEを分散させ、撥水性を持たせたガス拡散層(以下「GDL」とも記す。)を得た。
次に、5cm×5cmの大きさとした前記GDLの表面に、自動スプレー塗布装置(サンエイテック社製)により、80℃で、上記2で調製した金属炭窒酸化物を含むインク(1)を塗布した。繰り返しスプレー塗布することにより、前記GDL上に、金属炭窒酸化物を含む層(I)を、金属炭窒酸化物の単位面積当たりの質量が、5mg/cm2となるように形成した。
After drying at room temperature, heating was performed at 350 ° C. for 1 hour to disperse PTFE inside the carbon paper to obtain a gas diffusion layer (hereinafter also referred to as “GDL”) having water repellency.
Next, on the surface of the GDL having a size of 5 cm × 5 cm, the ink (1) containing the metal oxycarbonitride prepared in 2 above was applied at 80 ° C. by an automatic spray coating apparatus (manufactured by Saneitec Co., Ltd.). did. By repeating spray coating, a layer (I) containing metal carbonitride oxide was formed on the GDL so that the mass per unit area of the metal carbonitride oxide was 5 mg / cm 2 .

次に、前記層(I)の表面に、自動スプレー塗布装置(サンエイテック社製)により、80℃で、上記3で調製した白金を含むインク(2)を塗布した。繰り返しスプレー塗布することにより、前記層(I)上に、白金を含む層(II)を、白金の単位面積当たりの質量が、0.1mg/cm2となるように形成した。 Next, the platinum-containing ink (2) prepared in 3 above was applied to the surface of the layer (I) at 80 ° C. by an automatic spray coating apparatus (manufactured by Sanei Tech Co., Ltd.). By repeating spray coating, a layer (II) containing platinum was formed on the layer (I) so that the mass per unit area of platinum was 0.1 mg / cm 2 .

このようにしてガス拡散層(GDL)上に、金属炭窒酸化物を含む層(I)と白金を含む層(II)とをこの順で積層した燃料電池用触媒層(1)を形成したものを、電極(B)とした(図2参照)。   Thus, the fuel cell catalyst layer (1) was formed on the gas diffusion layer (GDL) by laminating the layer (I) containing metal carbonitride and the layer (II) containing platinum in this order. This was used as an electrode (B) (see FIG. 2).

5.膜電極接合体(以下「MEA」とも記す。)の作製
電解質膜として、NAFION膜N−115(デュポン社製)を用い、アノードとして、調製例1で作製した電極(A)を用い、カソードとして、上記4で作製した電極(B)を用いた。
5). Fabrication of membrane electrode assembly (hereinafter also referred to as “MEA”) NAFION membrane N-115 (manufactured by DuPont) was used as the electrolyte membrane, the anode (A) produced in Preparation Example 1 was used as the cathode, and the cathode The electrode (B) produced in 4 above was used.

前記カソード及び前記アノードの間に前記電解質膜を配置したMEA(1)を以下のように作製した。
まず、前記電解質膜を、3%過酸化水素水中、80℃で1時間加熱し、その後、純水中、80℃で1時間加熱した。続いて、1M硫酸水溶液中、80℃で1時間加熱し、その後、純水中、80℃で1時間加熱した。
An MEA (1) in which the electrolyte membrane was disposed between the cathode and the anode was produced as follows.
First, the electrolyte membrane was heated in 3% hydrogen peroxide water at 80 ° C. for 1 hour, and then heated in pure water at 80 ° C. for 1 hour. Then, it heated at 80 degreeC for 1 hour in 1M sulfuric acid aqueous solution, and was then heated at 80 degreeC for 1 hour in pure water.

このようにして水分を取り除いた前記電解質膜を前記カソードおよび前記アノードで挟み、ホットプレス機を用いて、130℃、100kg/cm2で1分間熱圧着して、MEA(1)を作製した(図3参照)。なお、前記電解質膜を前記カソードおよび前記アノードで挟む際、前記カソードにおける燃料電池用触媒層(1)および前記アノードにおける白金を含む層(a)が前記電解質膜に密着するようにした。 The electrolyte membrane from which moisture was removed in this way was sandwiched between the cathode and the anode, and thermocompression bonded at 130 ° C. and 100 kg / cm 2 for 1 minute using a hot press machine, to produce MEA (1) ( (See FIG. 3). When the electrolyte membrane was sandwiched between the cathode and the anode, the fuel cell catalyst layer (1) on the cathode and the platinum-containing layer (a) on the anode were in close contact with the electrolyte membrane.

6.単セルの作製
図4に示すように、上記5で作製したMEA(1)を、2つシール材(ガスケット)、2つのガス流路付きセパレーター、2つの集電板およびで2つのラバーヒーターで挟んでボルトで固定し、所定の面圧(4N)になるように締め付けて、固体高分子形燃料電池の単セル(1)(25cm2)を作製した。
6). 4. Production of Single Cell As shown in FIG. 4, the MEA (1) produced in 5 above is composed of two sealing materials (gaskets), two separators with gas flow paths, two current collector plates, and two rubber heaters. A single cell (1) (25 cm 2 ) of a polymer electrolyte fuel cell was produced by sandwiching and fixing with bolts and tightening to a predetermined surface pressure (4N).

7.発電性能の評価
上記6で作製した単セル(1)を25℃に維持し、アノード側に燃料として水素を流量100ml/分で供給し、カソード側に酸化剤として空気を流量100ml/分で供給し、アノード側およびカソード側の両側とも常圧で、単セル(1)(温度25℃)における電流―電圧特性を測定した。得られた電流―電圧特性曲線から最大出力密度を算出した。当該最大出力密度が大きいほど、MEAにおける発電性能が高く、MEAを構成する燃料電池用触媒層の触媒能が高いことを示す。MEA(1)における発電性能、すなわち最大出力密度は、45mW/cm2であった。
7). Evaluation of power generation performance The single cell (1) produced in 6 above is maintained at 25 ° C., hydrogen is supplied as fuel to the anode side at a flow rate of 100 ml / min, and air is supplied as oxidant to the cathode side at a flow rate of 100 ml / min. The current-voltage characteristics of the single cell (1) (temperature 25 ° C.) were measured at normal pressure on both the anode side and the cathode side. The maximum output density was calculated from the obtained current-voltage characteristic curve. It shows that the power generation performance in MEA is so high that the said maximum output density is large, and the catalyst ability of the catalyst layer for fuel cells which comprises MEA is high. The power generation performance, that is, the maximum power density in the MEA (1) was 45 mW / cm 2 .

[実施例2]
1.金属炭窒酸化物の調製
チタンテトライソプロポキシド(純正化学(株)製)9.37g及びアセチルアセトン(純正化学)5.12gをエタノール(和光純薬(株)製)15mLと酢酸(和光純薬(株)製)5mLとの溶液に加え、室温で攪拌しながらチタン含有混合物溶液を作成した。また、グリシン(和光純薬(株)製)10g及び酢酸鉄(Aldrich社製)0.582gを純水20mLに加え、室温で攪拌して完全に溶解させてグリシン含有混合物溶液を作成した。
[Example 2]
1. Preparation of metal carbonitride oxide 9.37 g of titanium tetraisopropoxide (manufactured by Junsei Chemical Co., Ltd.) and 5.12 g of acetylacetone (Junsei Chemical Co., Ltd.) 15 mL of ethanol (manufactured by Wako Pure Chemical Industries, Ltd.) and acetic acid (Wako Pure Chemical Industries, Ltd.) In addition to 5 mL solution, a titanium-containing mixture solution was prepared while stirring at room temperature. Further, 10 g of glycine (manufactured by Wako Pure Chemical Industries, Ltd.) and 0.582 g of iron acetate (manufactured by Aldrich) were added to 20 mL of pure water, and the mixture was stirred and completely dissolved at room temperature to prepare a glycine-containing mixture solution.

チタン含有混合物溶液をグリシン含有混合物溶液にゆっくり添加し、透明な触媒前駆体溶液を得た。ロータリーエバポレーターを用い、窒素雰囲気の減圧下で、ホットスターラーの温度を約100℃に設定し、前記触媒前駆体溶液を加熱かつ攪拌しながら、溶媒をゆっくり蒸発させた。完全に溶媒を蒸発させて得られた固形分残渣を乳鉢で細かく均一に潰して、粉末を得た。   The titanium-containing mixture solution was slowly added to the glycine-containing mixture solution to obtain a transparent catalyst precursor solution. Using a rotary evaporator, the temperature of the hot stirrer was set to about 100 ° C. under reduced pressure in a nitrogen atmosphere, and the solvent was slowly evaporated while heating and stirring the catalyst precursor solution. The solid residue obtained by completely evaporating the solvent was finely and uniformly crushed in a mortar to obtain a powder.

この粉末を管状炉に入れ、4容量%水素と窒素との混合ガス雰囲気下で昇温速度10℃/minで900℃まで加熱し、900℃で1時間保持し、自然冷却することにより粉末(以下「金属炭窒酸化物(2)」または「熱処理物(2)」とも記す。)を得た。   This powder is put into a tubular furnace, heated to 900 ° C. at a heating rate of 10 ° C./min in a mixed gas atmosphere of 4% by volume hydrogen and nitrogen, held at 900 ° C. for 1 hour, and naturally cooled to give a powder ( (Hereinafter also referred to as “metal oxycarbonitride (2)” or “heat-treated product (2)”).

また、金属炭窒酸化物(2)の元素分析結果を表4に示す。炭素、窒素及び酸素の存在が確認された。
金属炭窒酸化物(2)のBET比表面積は230m2/gであった。
In addition, Table 4 shows the results of elemental analysis of the metal carbonitride oxide (2). The presence of carbon, nitrogen and oxygen was confirmed.
The BET specific surface area of the metal carbonitride (2) was 230 m 2 / g.

2.金属炭窒酸化物を含むインクの調製
上記1で調製した金属炭窒酸化物(2)を用いた以外は実施例1と同様の方法により、インク(2)を調製した。
2. Preparation of ink containing metal carbonitride oxide Ink (2) was prepared in the same manner as in Example 1 except that the metal carbonitride oxide (2) prepared in 1 above was used.

3.白金を含むインクの調製
実施例1と同様の方法により、白金を含むインク(2)を調製した。
4.燃料電池用触媒層の形成
前記金属炭窒酸化物を含むインク(2)を用いた以外は、実施例1と同様の方法により、燃料電池用触媒層(2)を形成したものを、電極(B)とした。
3. Preparation of ink containing platinum Ink (2) containing platinum was prepared in the same manner as in Example 1.
4). Formation of fuel cell catalyst layer A fuel cell catalyst layer (2) was formed in the same manner as in Example 1 except that the ink (2) containing the metal carbonitride oxide was used. B).

5.膜電極接合体(以下「MEA」とも記す。)の作製
前記燃料電池用触媒層(2)を用いた以外は、実施例1と同様の方法により、電解質膜を配置したMEA(2)を作製した。
5). Fabrication of Membrane / Electrode Assembly (hereinafter, also referred to as “MEA”) Fabrication of MEA (2) in which an electrolyte membrane is disposed by the same method as Example 1 except that the fuel cell catalyst layer (2) was used. did.

6.単セルの作製
前記MEA(2)を用いた以外は、実施例1と同様の方法により、固体高分子形燃料電池の単セル(2)(25cm2)を作製した。
6). Production of single cell A single cell (2) (25 cm 2 ) of a polymer electrolyte fuel cell was produced in the same manner as in Example 1 except that the MEA (2) was used.

7.発電性能の評価
上記6で作製した単セル(2)を用いた以外は、実施例1と同様の方法により、発電性能の評価を行った。MEA(2)における触媒能、すなわち最大出力密度は、50mW/cm2であった。
7). Evaluation of power generation performance The power generation performance was evaluated by the same method as in Example 1 except that the single cell (2) produced in 6 above was used. The catalytic ability, that is, the maximum power density in MEA (2) was 50 mW / cm 2 .

実施例2の実験条件および結果を表3、4に記載した。
[実施例3]
1.金属炭窒酸化物の調製
ビーカーに、アセチルアセトン2.60g(25.94mmol)を入れ、これを攪拌しながらチタニウムテトライソプロポキシド5ml(17.59mmol)を加え、さらに酢酸8ml(140.00mmol)を2分間かけて滴下し、チタン溶液を調製した。
The experimental conditions and results of Example 2 are shown in Tables 3 and 4.
[Example 3]
1. Preparation of metal carbonitride oxide 2.60 g (25.94 mmol) of acetylacetone was placed in a beaker, and 5 ml (17.59 mmol) of titanium tetraisopropoxide was added while stirring this, and 8 ml (140.00 mmol) of acetic acid was further added. The solution was dropped over 2 minutes to prepare a titanium solution.

ビーカーに水60ml、エタノール50ml、および酢酸60mlを入れ、ここにピラジンカルボン酸8.74g(70.36mmol)を加えて完全に溶解させた。得られた溶液に、これを攪拌しながら、5%ナフィオン(NAFION(登録商標))溶液(DE521、デュポン社)10mlを加え、さらに酢酸鉄291mg(1.67mmol)を少量ずつ加えて溶解させた。次に温度を室温に保ちながら、かつ攪拌しながら、上記のチタン溶液を10分間かけて滴下し、滴下後さらに30分間攪拌を行い、触媒前駆体溶液(3)を得た。   In a beaker, 60 ml of water, 50 ml of ethanol, and 60 ml of acetic acid were added, and 8.74 g (70.36 mmol) of pyrazinecarboxylic acid was added and completely dissolved. While stirring this, 10 ml of 5% NAFION (registered trademark) solution (DE521, DuPont) was added to the obtained solution, and 291 mg (1.67 mmol) of iron acetate was added in small portions to dissolve. . Next, while maintaining the temperature at room temperature and stirring, the above titanium solution was added dropwise over 10 minutes, and after the addition, the mixture was further stirred for 30 minutes to obtain a catalyst precursor solution (3).

ロータリーエバポレーターを用い、窒素雰囲気の減圧下で、ホットスターラーの温度を約100℃に設定し、前記触媒前駆体溶液(3)を加熱かつ攪拌しながら、溶媒をゆっくり蒸発させた。完全に溶媒を蒸発させて得られた固形物残渣を自動乳鉢ですり潰して、11.7gの焼成用粉末(3)を得た。   Using a rotary evaporator, the temperature of the hot stirrer was set to about 100 ° C. under reduced pressure in a nitrogen atmosphere, and the solvent was slowly evaporated while heating and stirring the catalyst precursor solution (3). The solid residue obtained by completely evaporating the solvent was crushed with an automatic mortar to obtain 11.7 g of powder (3) for firing.

同様にして得られた12gの焼成用粉末(3)を、ロータリーキルン炉に水素ガスを4体積%含む窒素ガス(すなわち、水素ガス:窒素ガス=4体積%:96体積%の混合ガス)を20ml/分の速度で流しながら、昇温速度10℃/分で890℃まで加熱し、890℃で0.5時間焼成し、自然冷却することにより、粉末状の金属炭窒酸化物(3)2.08gを得た。   20 ml of 12 g of the powder for firing (3) obtained in the same manner was mixed with nitrogen gas containing 4% by volume of hydrogen gas in a rotary kiln furnace (ie, hydrogen gas: nitrogen gas = 4% by volume: 96% by volume of mixed gas). The powdered metal carbonitride oxide (3) 2 is heated to 890 ° C. at a heating rate of 10 ° C./min while being flowed at a rate of / min, fired at 890 ° C. for 0.5 hour, and naturally cooled. 0.08 g was obtained.

上記2で作製した金属炭窒酸化物(3)を用いた以外は、実施例1と同様の方法により、発電性能の評価を行った。MEA(3)における触媒能、すなわち最大出力密度は、52mW/cm2であった。 The power generation performance was evaluated by the same method as in Example 1 except that the metal carbonitride oxide (3) produced in 2 above was used. The catalytic ability, that is, the maximum power density in MEA (3) was 52 mW / cm 2 .

実施例3の実験条件および結果を表3、4に記載した。
[実施例4〜7]
第1の金属含有化合物、窒素含有有機化合物および第2の金属含有化合物として表3に記載した化合物を表3に記載した質量で用いたこと以外は、実施例2と同様の手順で金属炭窒酸化物を製造し、その分析を行い、さらに実施例1と同様の方法により、発電性能の評価を行った。
The experimental conditions and results of Example 3 are shown in Tables 3 and 4.
[Examples 4 to 7]
The metal carbonitride was prepared in the same procedure as in Example 2 except that the compounds described in Table 3 were used in the masses described in Table 3 as the first metal-containing compound, nitrogen-containing organic compound, and second metal-containing compound. An oxide was produced and analyzed, and the power generation performance was evaluated by the same method as in Example 1.

実施例4〜7の実験条件および結果を表3、4に記載した。
[実施例8〜10]
第1の金属含有化合物、窒素含有有機化合物、第2の金属含有化合物、第3の金属含有化合物およびホウ素、りん、イオウから選択された元素およびフッ素を含有する化合物として表3に記載した化合物を表3に記載した質量で用いたこと以外は、実施例3と同様の手順で金属炭窒酸化物を製造し、その分析を行い、さらに実施例1と同様の方法により、発電性能の評価を行った。
The experimental conditions and results of Examples 4 to 7 are shown in Tables 3 and 4.
[Examples 8 to 10]
The compounds described in Table 3 as the first metal-containing compound, nitrogen-containing organic compound, second metal-containing compound, third metal-containing compound, and an element selected from boron, phosphorus, sulfur and a compound containing fluorine. Except having been used in the mass described in Table 3, metal oxycarbonitride was produced in the same procedure as in Example 3, analyzed, and further evaluated for power generation performance by the same method as in Example 1. went.

実施例8〜10の実験条件および結果を表3、4に記載した。
[実施例11]
ビーカーに、メタノール50mlを入れ、これを撹拌しながら二塩化銅2.75g(20.45mmol)、5%ナフィオン(NAFION(登録商標))溶液(DE521、デュポン社)10ml、酢酸鉄(II)355mg(2.045mmol)を順次加えた。得られた溶液にピラジンカルボン酸10.15g(81.80mmol)を少量ずつ加えた後、3時間の攪拌を行い触媒前駆体溶液(11)を得た。
The experimental conditions and results of Examples 8 to 10 are shown in Tables 3 and 4.
[Example 11]
In a beaker, 50 ml of methanol was added, and while stirring, 2.75 g (20.45 mmol) of copper dichloride, 10 ml of a 5% Nafion (NAFION®) solution (DE521, DuPont), 355 mg of iron (II) acetate (2.045 mmol) was added sequentially. After adding 10.15 g (81.80 mmol) of pyrazinecarboxylic acid little by little to the obtained solution, the mixture was stirred for 3 hours to obtain a catalyst precursor solution (11).

ロータリーエバポレーターを用い、窒素雰囲気の減圧下で、ホットスターラーの温度を約100℃に設定し、前記触媒前駆体溶液(11)を加熱かつ撹拌しながら、溶媒をゆっくり蒸発させ、さらに窒素気流下、300℃で1時間の加熱を行うことにより、塩化物残渣などを除去し、3.56gの焼成用粉末(11)を得た。   Using a rotary evaporator, the temperature of the hot stirrer was set to about 100 ° C. under reduced pressure in a nitrogen atmosphere, the solvent was slowly evaporated while heating and stirring the catalyst precursor solution (11), and further under a nitrogen stream, By heating at 300 ° C. for 1 hour, chloride residues and the like were removed, and 3.56 g of powder for firing (11) was obtained.

同様にして得られた12gの焼成用粉末(11)を、ロータリーキルン炉に水素ガスを4体積%含む窒素ガス(すなわち、水素ガス:窒素ガス=4体積%:96体積%の混合ガス)を20ml/分の速度で流しながら、昇温速度10℃/分で890℃まで加熱し、890℃で0.5時間焼成し、自然冷却することにより、粉末状の金属炭窒酸化物(11)5.62gを得た。   In the same manner, 12 g of the obtained powder for firing (11) was charged with 20 ml of nitrogen gas containing 4% by volume of hydrogen gas (that is, hydrogen gas: nitrogen gas = 4% by volume: 96% by volume of mixed gas) in a rotary kiln furnace. The powdered metal carbonitride oxide (11) 5 is heated to 890 ° C. at a rate of temperature increase of 10 ° C./min while being flowed at a rate of / min, calcined at 890 ° C. for 0.5 hours, and naturally cooled. .62 g was obtained.

上記1で作製した金属炭窒酸化物(11)を用いた以外は、実施例2と同様の方法により、発電性能の評価を行った。MEA(11)における触媒能、すなわち最大出力密度は、59mW/cm2であった。 The power generation performance was evaluated by the same method as in Example 2 except that the metal carbonitride (11) produced in 1 above was used. The catalytic ability, that is, the maximum power density in MEA (11) was 59 mW / cm 2 .

実施例11の実験条件および結果を表3、4に記載した。
[実施例12〜15]
第1の金属含有化合物、窒素含有有機化合物、第2の金属含有化合物およびホウ素、りん、イオウから選択された元素およびフッ素を含有する化合物として表3に記載した化合物を表3に記載した質量で用いたこと以外は、実施例3と同様の手順で金属炭窒酸化物を製造し、その分析を行い、さらに実施例1と同様の方法により、発電性能の評価を行った。
The experimental conditions and results of Example 11 are shown in Tables 3 and 4.
[Examples 12 to 15]
The compounds listed in Table 3 as the first metal-containing compound, the nitrogen-containing organic compound, the second metal-containing compound, and the element selected from boron, phosphorus and sulfur, and the compound containing fluorine, in the mass described in Table 3. Except for the use, metal oxycarbonitride was produced and analyzed in the same procedure as in Example 3, and the power generation performance was evaluated by the same method as in Example 1.

実施例12〜15の実験条件および結果を表3、4に記載した。
[実施例16]
ビーカーに、酢酸58mlを入れ、これを撹拌しながらクロム(III)アセチルアセトナート6.14g(17.54mmol)を加え、クロム溶液(16)を調製した。
The experimental conditions and results of Examples 12 to 15 are shown in Tables 3 and 4.
[Example 16]
Into a beaker, 58 ml of acetic acid was added, and 6.14 g (17.54 mmol) of chromium (III) acetylacetonate was added with stirring to prepare a chromium solution (16).

チタン溶液(3)に替えてクロム溶液(16)を用いた以外は実施例3と同様の操作を行い、粉末状の金属炭窒酸化物前駆体(16)14.7gを得た。
同様にして得られた12gの金属炭窒酸化物前駆体(16)を、ロータリーキルン炉に水素ガスを4体積%含む窒素ガス(すなわち、水素ガス:窒素ガス=4体積%:96体積%の混合ガス)を20ml/分の速度で流しながら、昇温速度10℃/分で890℃まで加熱し、890℃で0.5時間焼成し、自然冷却することにより、粉末状の金属炭窒酸化物(16)2.57gを得た。
The same operation as in Example 3 was performed except that the chromium solution (16) was used in place of the titanium solution (3) to obtain 14.7 g of a powdered metal carbonitride oxide precursor (16).
12 g of the metal carbonitride oxide precursor (16) obtained in the same manner was mixed with nitrogen gas containing 4% by volume of hydrogen gas in a rotary kiln furnace (that is, hydrogen gas: nitrogen gas = 4% by volume: 96% by volume). Gas) at a rate of 20 ml / min, heated to 890 ° C. at a heating rate of 10 ° C./min, calcined at 890 ° C. for 0.5 hours, and naturally cooled to form powdered metal carbonitride oxide (16) 2.57 g was obtained.

上記1で作製した金属炭窒酸化物(16)を用いた以外は、実施例2と同様の方法により、発電性能の評価を行った。
実施例16の実験条件および結果を表3、4に記載した。
The power generation performance was evaluated by the same method as in Example 2 except that the metal oxycarbonitride (16) prepared in 1 above was used.
The experimental conditions and results of Example 16 are shown in Tables 3 and 4.

[実施例17〜20]
第1の金属含有化合物、窒素含有有機化合物、第2の金属含有化合物およびホウ素、りん、イオウから選択された元素およびフッ素を含有する化合物として表3に記載した化合物を表3に記載した質量で用いたこと以外は、実施例16と同様の手順で金属炭窒酸化物を製造し、その分析を行い、さらに実施例1と同様の方法により、発電性能の評価を行った。
[Examples 17 to 20]
The compounds listed in Table 3 as the first metal-containing compound, the nitrogen-containing organic compound, the second metal-containing compound, and the element selected from boron, phosphorus and sulfur, and the compound containing fluorine, in the mass described in Table 3. Except for the use, metal oxycarbonitride was produced and analyzed in the same procedure as in Example 16, and the power generation performance was evaluated by the same method as in Example 1.

実施例17〜20の実験条件および結果を表3、4に記載した。
[参考例1]
1.MEAの作製
カソードとして、調製例1で作製した電極(A)を用いた以外は、実施例1の5と同様にしてMEA(2)を作製した。
The experimental conditions and results of Examples 17 to 20 are shown in Tables 3 and 4.
[Reference Example 1]
1. Production of MEA MEA (2) was produced in the same manner as in Example 1 except that the electrode (A) produced in Preparation Example 1 was used as the cathode.

なお、電解質膜をカソードおよびアノードで挟む際、前記カソードおよびアノードにおける白金を含む層(a)が前記電解質膜に密着するようにした。
2.単セルの作製
MEA(1)の代わりにMEA(2)を用いた以外は、実施例1の6と同様にして、固体高分子形燃料電池の単セル(2)を作製した。
When sandwiching the electrolyte membrane between the cathode and the anode, the layer (a) containing platinum in the cathode and the anode was in close contact with the electrolyte membrane.
2. Production of unit cell A unit cell (2) of a polymer electrolyte fuel cell was produced in the same manner as in Example 1 except that MEA (2) was used instead of MEA (1).

3.発電性能の評価
単セル(1)の代わりに単セル(2)を用いた以外は、実施例1の7と同様にして、単セル(2)における電流―電圧特性を測定し、最大出力密度を算出した。MEA(2)における発電性能、すなわち最大出力密度は、40mW/cm2であった。
3. Evaluation of power generation performance Except for using the single cell (2) instead of the single cell (1), the current-voltage characteristics in the single cell (2) were measured in the same manner as in Example 1 to obtain the maximum output density. Was calculated. The power generation performance, that is, the maximum power density in MEA (2) was 40 mW / cm 2 .

[比較例1]
1.白金を含むインクの調製
Pt担持カーボン(TEC10E60E、田中貴金属工業製)1.2gを純水2.4gとイソプロピルアルコール2.4g(特級、和光純薬工業製)に加え、さらにNAFION(登録商標)を含有する水溶液(NAFION5%水溶液、和光純薬工業製)13gを入れて、超音波分散機(UT−106H型シャープマニファクチャリングシステム社製)で1時間混合することにより、白金を含むインク(3)を調製した。
[Comparative Example 1]
1. Preparation of ink containing platinum 1.2 g of Pt-supported carbon (TEC10E60E, manufactured by Tanaka Kikinzoku Kogyo) was added to 2.4 g of pure water and 2.4 g of isopropyl alcohol (special grade, manufactured by Wako Pure Chemical Industries), and NAFION (registered trademark). Ink containing platinum by adding 13 g of an aqueous solution (NAFION 5% aqueous solution, manufactured by Wako Pure Chemical Industries, Ltd.) and mixing with an ultrasonic disperser (UT-106H type Sharp Manufacturing System) for 1 hour. 3) was prepared.

2.白金を含む層の形成
ガス拡散層(カーボンペーパーTGP−H−060、東レ社製)を、アセトンに30秒間浸漬し、脱脂を行った。乾燥後、10%のポリテトラフルオロエチレン(以下「PTFE」とも記す。)水溶液に30秒間浸漬した。室温乾燥後、350℃で1時間加熱することにより、カーボンペーパー内部にPTFEを分散させ、撥水性を持たせたガス拡散層(以下「GDL」とも記す。)を得た。
2. Formation of a layer containing platinum A gas diffusion layer (carbon paper TGP-H-060, manufactured by Toray Industries, Inc.) was immersed in acetone for 30 seconds for degreasing. After drying, it was immersed in a 10% polytetrafluoroethylene (hereinafter also referred to as “PTFE”) aqueous solution for 30 seconds. After drying at room temperature, heating was performed at 350 ° C. for 1 hour to disperse PTFE inside the carbon paper to obtain a gas diffusion layer (hereinafter also referred to as “GDL”) having water repellency.

次に、5cm×5cmの大きさとした前記GDLの表面に、自動スプレー塗布装置(サンエイテック社製)により、80℃で、上記1で調製した白金を含むインク(3)を塗布した。繰り返しスプレー塗布することにより、GDL上に白金を含む層(c)を、白金の単位面積当たりの質量が、0.1mg/cm2となるように形成した。 Next, on the surface of the GDL having a size of 5 cm × 5 cm, the ink (3) containing platinum prepared in 1 above was applied at 80 ° C. by an automatic spray coating apparatus (manufactured by Saneitec Co., Ltd.). By repeating spray coating, a layer (c) containing platinum was formed on the GDL so that the mass per unit area of platinum was 0.1 mg / cm 2 .

上記のとおりGDL上に白金を含む層(c)を形成したものを、電極(C)とした。
3.MEAの作製
カソードとして、上記2で作製した電極(C)を用いた以外は、実施例1の5と同様にしてMEA(3)を作製した。
As described above, the electrode (C) was formed by forming the platinum-containing layer (c) on the GDL.
3. Production of MEA MEA (3) was produced in the same manner as in Example 1 except that the electrode (C) produced in 2 above was used as the cathode.

なお、電解質膜をカソードおよびアノードで挟む際、前記アノードにおける白金を含む層(a)および前記カソードにおける白金を含む層(c)が前記電解質膜に密着するようにした。   When sandwiching the electrolyte membrane between the cathode and the anode, the layer (a) containing platinum in the anode and the layer (c) containing platinum in the cathode were in close contact with the electrolyte membrane.

4.単セルの作製
MEA(1)の代わりにMEA(3)を用いた以外は、実施例1の6と同様にして、固体高分子形燃料電池の単セル(3)を作製した。
4). Production of unit cell A unit cell (3) of a polymer electrolyte fuel cell was produced in the same manner as in Example 1 except that MEA (3) was used instead of MEA (1).

5.発電性能の評価
単セル(1)の代わりに単セル(3)を用いた以外は、実施例1の7と同様にして、単セル(3)における電流―電圧特性を測定し、最大出力密度を算出した。MEA(3)における発電性能、すなわち最大出力密度は、5mW/cm2であった。
5). Evaluation of power generation performance Except that the single cell (3) was used instead of the single cell (1), the current-voltage characteristics in the single cell (3) were measured and the maximum output density was measured in the same manner as in Example 1. Was calculated. The power generation performance, that is, the maximum power density in MEA (3) was 5 mW / cm 2 .

[比較例2]
Pt担持カーボンの代わりに実施例1で用いた金属炭窒酸化物(1)を用いた以外は、比較例1と同様にして、単セルにおける電流―電圧特性を測定し、最大出力密度を算出した。MEAにおける発電性能、すなわち最大出力密度は、1mW/cm2であった。
[Comparative Example 2]
Except for using the metal carbonitride (1) used in Example 1 instead of Pt-supported carbon, the current-voltage characteristics in a single cell were measured and the maximum output density was calculated in the same manner as in Comparative Example 1. did. The power generation performance, that is, the maximum power density in the MEA was 1 mW / cm 2 .

[比較例3]
Pt担持カーボンの代わりに実施例2で用いた金属炭窒酸化物(2)を用いた以外は、比較例1と同様にして、単セルにおける電流―電圧特性を測定し、最大出力密度を算出した。MEAにおける発電性能、すなわち最大出力密度は、2mW/cm2であった。
[Comparative Example 3]
The current-voltage characteristics in a single cell were measured and the maximum output density was calculated in the same manner as in Comparative Example 1 except that the metal carbonitride (2) used in Example 2 was used instead of Pt-supported carbon. did. The power generation performance, that is, the maximum power density in the MEA was 2 mW / cm 2 .

[比較例4]
Pt担持カーボンの代わりに実施例3で用いた金属炭窒酸化物(3)を用いた以外は、比較例1と同様にして、単セルにおける電流―電圧特性を測定し、最大出力密度を算出した。MEAにおける発電性能、すなわち最大出力密度は、3mW/cm2であった。
[Comparative Example 4]
Except for using the metal carbonitride (3) used in Example 3 instead of Pt-supported carbon, the current-voltage characteristics in a single cell were measured and the maximum output density was calculated in the same manner as in Comparative Example 1. did. The power generation performance in the MEA, that is, the maximum power density was 3 mW / cm 2 .

Figure 0005854967
Figure 0005854967

Figure 0005854967
参考例1および比較例1の結果から、白金の使用量を少なくすると、燃料電池用触媒層の触媒能が低くなり、MEAにおける発電性能が低くなることがわかった。
Figure 0005854967
From the results of Reference Example 1 and Comparative Example 1, it was found that when the amount of platinum used was reduced, the catalytic ability of the fuel cell catalyst layer was lowered and the power generation performance in the MEA was lowered.

一方、実施例1で得られた燃料電池用触媒層は、白金の使用量を少なくしているにもかかわらず、金属炭窒酸化物を含む層(I)を有することにより、触媒能に優れ、該燃料電池用触媒層を有するMEAは、発電性能に優れることがわかった。   On the other hand, the fuel cell catalyst layer obtained in Example 1 has excellent catalytic ability by having the layer (I) containing the metal carbonitrous oxide even though the amount of platinum used is reduced. The MEA having the fuel cell catalyst layer was found to have excellent power generation performance.

Figure 0005854967
Figure 0005854967

Figure 0005854967
Figure 0005854967

1 金属炭窒酸化物を含む層(I)
2 白金を含む層(II)
3 ガス拡散層(GDL)
4 電解質膜
5 アノード触媒層
5' カソード触媒層
11 膜電極接合体(MEA)
12 ガスケット
13 セパレーター
14 集電板
15 ラバーヒーター
1 Layer containing metal carbonitride (I)
2 Layer containing platinum (II)
3 Gas diffusion layer (GDL)
4 Electrolyte membrane 5 Anode catalyst layer 5 ′ Cathode catalyst layer 11 Membrane electrode assembly (MEA)
12 Gasket 13 Separator 14 Current collector 15 Rubber heater

Claims (15)

金属炭窒酸化物を含む層(I)と白金を含む層(II)とが積層されていることを特徴とする燃料電池用触媒層。   A catalyst layer for a fuel cell, wherein a layer (I) containing a metal carbonitride and a layer (II) containing platinum are laminated. 前記層(I)における金属炭窒酸化物と前記層(II)における白金との単位面積当たりの質量比(金属炭窒酸化物/白金)が、2〜500であることを特徴とする請求項1に記載の燃料電池用触媒層。   The mass ratio (metal oxycarbonitride / platinum) per unit area between the metal carbonitride oxide in the layer (I) and platinum in the layer (II) is 2 to 500. 2. The fuel cell catalyst layer according to 1. 前記層(II)における白金の単位面積当たりの質量が、0.005〜0.2mg/cm2であることを特徴とする請求項1または2に記載の燃料電池用触媒層。 3. The fuel cell catalyst layer according to claim 1, wherein a mass per unit area of platinum in the layer (II) is 0.005 to 0.2 mg / cm 2. 4 . 前記層(I)における金属炭窒酸化物を構成する金属元素が、アルミニウム、クロム、マンガン、コバルト、ニッケル、銅、ストロンチウム、イットリウム、スズ、タングステン、セリウム、チタン、ニオブ、タンタル、ジルコニウム、バナジウム、ハフニウム、鉄、ランタン、セリウムおよびサマリウムからなる群より選択される少なくとも1種の金属元素であり、
前記金属炭窒酸化物のBET比表面積が、1〜1000m 2 /gであることを特徴とする請求項1〜3のいずれか一項に記載の燃料電池用触媒層。
The metal elements constituting the metal carbonitride in the layer (I) are aluminum, chromium, manganese, cobalt, nickel, copper, strontium, yttrium, tin, tungsten, cerium, titanium, niobium, tantalum, zirconium, vanadium, hafnium, iron, lanthanum, at least one metal element der selected from the group consisting of cerium and samarium is,
The metal oxycarbonitride BET specific surface area of the product is, the fuel cell catalyst layer according to any one of claims 1 to 3, wherein 1 to 1,000 m 2 / g der Rukoto.
前記層(I)における金属炭窒酸化物を構成する金属元素が、チタン、ニオブ、タンタル、ジルコニウム、バナジウム、ハフニウム、鉄、ランタン、セリウムおよびサマリウムからなる群より選択される少なくとも1種の金属元素であり、
前記金属炭窒酸化物のBET比表面積が、1〜1000m 2 /gであることを特徴とする請求項1〜3のいずれか一項に記載の燃料電池用触媒層。
The metal element constituting the metal carbonitride in the layer (I) is at least one metal element selected from the group consisting of titanium, niobium, tantalum, zirconium, vanadium, hafnium, iron, lanthanum, cerium and samarium. der is,
The metal oxycarbonitride BET specific surface area of the product is, the fuel cell catalyst layer according to any one of claims 1 to 3, wherein 1 to 1,000 m 2 / g der Rukoto.
前記層(I)における金属炭窒酸化物を構成する金属元素が、チタン、ニオブ、タンタル、ジルコニウム、鉄、ランタン、セリウムおよびサマリウムからなる群より選択される少なくとも1種の金属元素であり、
前記金属炭窒酸化物のBET比表面積が、1〜1000m 2 /gであることを特徴とする請求項1〜3のいずれか一項に記載の燃料電池用触媒層。
The metal element constituting the metal oxycarbonitride in the layer (I) is selected from the group consisting of titanium, niobium, tantalum, zirconium, iron, lanthanum, at least one metal element der selected from the group consisting of cerium and samarium is,
The metal oxycarbonitride BET specific surface area of the product is, the fuel cell catalyst layer according to any one of claims 1 to 3, wherein 1 to 1,000 m 2 / g der Rukoto.
前記層(I)における金属炭窒酸化物を構成する金属元素が、チタンおよびニオブからなる群より選択される少なくとも1種の金属元素であり、
前記金属炭窒酸化物のBET比表面積が、1〜1000m 2 /gであることを特徴とする請求項1〜3のいずれか一項に記載の燃料電池用触媒層。
The metal element constituting the metal oxycarbonitride in the layer (I) is Ri least one metal element der selected from the group consisting of titanium and niobium,
The metal oxycarbonitride BET specific surface area of the product is, the fuel cell catalyst layer according to any one of claims 1 to 3, wherein 1 to 1,000 m 2 / g der Rukoto.
前記層(I)および層(II)の少なくとも一方の層が、さらに電子伝導性粒子を含むことを特徴とする請求項1〜7のいずれか一項に記載の燃料電池用触媒層。   The fuel cell catalyst layer according to any one of claims 1 to 7, wherein at least one of the layer (I) and the layer (II) further contains electron conductive particles. 前記電子伝導性粒子が、前記層(II)における白金の担体として用いられていることを特徴とする請求項8に記載の燃料電池用触媒層。   9. The fuel cell catalyst layer according to claim 8, wherein the electron conductive particles are used as a platinum carrier in the layer (II). 燃料電池用触媒層と多孔質支持層とを有する電極であって、前記燃料電池用触媒層が請求項1〜9のいずれか一項に記載の燃料電池用触媒層であることを特徴とする電極。   An electrode having a fuel cell catalyst layer and a porous support layer, wherein the fuel cell catalyst layer is the fuel cell catalyst layer according to any one of claims 1 to 9. electrode. 前記多孔質支持層上に、金属炭窒酸化物を含む層(I)と白金を含む層(II)とがこの順で積層されていることを特徴とする請求項10に記載の電極。   11. The electrode according to claim 10, wherein a layer (I) containing a metal carbonitride oxide and a layer (II) containing platinum are laminated in this order on the porous support layer. カソードとアノードと前記カソード及び前記アノードの間に配置された電解質膜とを有する膜電極接合体であって、前記カソード及び/または前記アノードが請求項10または11に記載の電極であることを特徴とする膜電極接合体。   A membrane electrode assembly comprising a cathode, an anode, and an electrolyte membrane disposed between the cathode and the anode, wherein the cathode and / or the anode is an electrode according to claim 10 or 11. Membrane electrode assembly. 前記電解質膜上に、白金を含む層(II)と金属炭窒酸化物を含む層(I)とがこの順で積層されていることを特徴とする請求項12に記載の膜電極接合体。   13. The membrane / electrode assembly according to claim 12, wherein a layer (II) containing platinum and a layer (I) containing metal oxycarbonitride are laminated in this order on the electrolyte membrane. 請求項12または13に記載の膜電極接合体を備えることを特徴とする燃料電池。   A fuel cell comprising the membrane electrode assembly according to claim 12 or 13. 請求項12または13に記載の膜電極接合体を備えることを特徴とする固体高分子形燃料電池。   A polymer electrolyte fuel cell comprising the membrane electrode assembly according to claim 12 or 13.
JP2012234869A 2012-10-24 2012-10-24 Catalyst layer for fuel cell and use thereof Expired - Fee Related JP5854967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012234869A JP5854967B2 (en) 2012-10-24 2012-10-24 Catalyst layer for fuel cell and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012234869A JP5854967B2 (en) 2012-10-24 2012-10-24 Catalyst layer for fuel cell and use thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012537041A Division JP5126864B1 (en) 2011-09-09 2011-09-09 Catalyst layer for fuel cell and use thereof

Publications (2)

Publication Number Publication Date
JP2013062251A JP2013062251A (en) 2013-04-04
JP5854967B2 true JP5854967B2 (en) 2016-02-09

Family

ID=48186710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012234869A Expired - Fee Related JP5854967B2 (en) 2012-10-24 2012-10-24 Catalyst layer for fuel cell and use thereof

Country Status (1)

Country Link
JP (1) JP5854967B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5706595B1 (en) * 2013-07-12 2015-04-22 昭和電工株式会社 Oxygen reduction catalyst, its use and production method thereof
JP6297939B2 (en) * 2014-07-03 2018-03-20 帝人株式会社 Cathode electrode structure and membrane / electrode assembly

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855453B2 (en) * 2002-12-30 2005-02-15 Utc Fuel Cells, Llc Fuel cell having a corrosion resistant and protected cathode catalyst layer
CN101959599B (en) * 2008-02-28 2013-05-15 昭和电工株式会社 Catalyst, method for producing the same, and use of the same
JP5428493B2 (en) * 2009-04-23 2014-02-26 凸版印刷株式会社 Method for producing polymer electrolyte fuel cell
JP5574765B2 (en) * 2010-03-11 2014-08-20 昭和電工株式会社 Catalyst layer for fuel cell and use thereof

Also Published As

Publication number Publication date
JP2013062251A (en) 2013-04-04

Similar Documents

Publication Publication Date Title
JP5126864B1 (en) Catalyst layer for fuel cell and use thereof
JP5855023B2 (en) Method for producing catalyst carrier, method for producing composite catalyst, composite catalyst, and fuel cell using the same
US7175930B2 (en) Conducting polymer-grafted carbon material for fuel cell applications
US8496903B2 (en) Catalyst, production process therefor and use thereof
US7459103B2 (en) Conducting polymer-grafted carbon material for fuel cell applications
KR101610560B1 (en) Oxygen reduction catalyst, process for producing same, and polymer electrolyte membrane fuel cell
KR20100115809A (en) Catalyst, method for producing the same, and use of the same
US7195834B2 (en) Metallized conducting polymer-grafted carbon material and method for making
KR101544330B1 (en) Fuel cell electrode catalyst and method for producing same
JP5755177B2 (en) Ink, fuel cell catalyst layer formed using the ink, and use thereof
JP5574765B2 (en) Catalyst layer for fuel cell and use thereof
JP5854967B2 (en) Catalyst layer for fuel cell and use thereof
JP5916528B2 (en) Ink, electrode catalyst layer formed using the ink, and use thereof
KR101627441B1 (en) Method for manufacturing catalyst for direct-liquid fuel cell, catalyst manufactured thereby and application thereof
WO2004107359A1 (en) Metallized conducting polymer-grafted carbon material and method for making
JP6212278B2 (en) Electrode material and fuel cell
JP2005174834A (en) Catalyst carried electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151208

R150 Certificate of patent or registration of utility model

Ref document number: 5854967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees