JP5850503B2 - Composition for treating muscular dystrophy - Google Patents

Composition for treating muscular dystrophy Download PDF

Info

Publication number
JP5850503B2
JP5850503B2 JP2012534017A JP2012534017A JP5850503B2 JP 5850503 B2 JP5850503 B2 JP 5850503B2 JP 2012534017 A JP2012534017 A JP 2012534017A JP 2012534017 A JP2012534017 A JP 2012534017A JP 5850503 B2 JP5850503 B2 JP 5850503B2
Authority
JP
Japan
Prior art keywords
rsv
sirt1
muscular dystrophy
tad
skeletal muscle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012534017A
Other languages
Japanese (ja)
Other versions
JPWO2012036168A1 (en
Inventor
嘉幸 堀尾
嘉幸 堀尾
篤史 久野
篤史 久野
佑輔 堀
佑輔 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sapporo Medical Univ
Original Assignee
Sapporo Medical Univ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sapporo Medical Univ filed Critical Sapporo Medical Univ
Priority to JP2012534017A priority Critical patent/JP5850503B2/en
Publication of JPWO2012036168A1 publication Critical patent/JPWO2012036168A1/en
Application granted granted Critical
Publication of JP5850503B2 publication Critical patent/JP5850503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/05Phenols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4985Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/683Diesters of a phosphorus acid with two hydroxy compounds, e.g. phosphatidylinositols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/02Muscle relaxants, e.g. for tetanus or cramps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Neurology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Pain & Pain Management (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Description

本発明は、筋ジストロフィーを処置するための組成物に関する。   The present invention relates to a composition for treating muscular dystrophy.

筋ジストロフィーは、骨格筋の変性および壊死が生じる疾患であり、臨床的には進行性の筋萎縮および筋力低下を呈する遺伝性の疾患である。筋ジストロフィーでは、筋細胞膜タンパク質の欠損および/または変異に起因して細胞膜が破壊され、次いで、筋細胞が崩壊して壊死する。筋ジストロフィーは種々のタイプが知られているが、いずれのタイプにおいても筋細胞の壊死によって特徴付けられる(非特許文献1参照)。   Muscular dystrophy is a disease in which skeletal muscle degeneration and necrosis occur, and clinically an inherited disease that exhibits progressive muscle wasting and weakness. In muscular dystrophy, the cell membrane is destroyed due to the loss and / or mutation of muscle cell membrane proteins, and then the muscle cells collapse and become necrotic. Various types of muscular dystrophy are known, and any type is characterized by myocyte necrosis (see Non-Patent Document 1).

筋ジストロフィーを有する患者では、血中のCK、LDH、GOT、GPT、アルドラーゼなどの筋細胞由来の酵素についての測定値が高い。筋ジストロフィーの患者では、筋細胞の細胞膜の安定化に関わるジストロフィンが欠損している。ジストロフィン以外の筋細胞膜タンパク質は、ジストロフィン結合蛋白質と総称され、ジストログリカン複合体(α、β)、サルコグリカン複合体(α、β、γ、δ)、シントロフィン複合体などが知られており、これらのタンパク質における変異もまた筋ジストロフィーにおいて観察される。   In patients with muscular dystrophy, measured values for enzymes derived from muscle cells such as CK, LDH, GOT, GPT, and aldolase in blood are high. Patients with muscular dystrophy are deficient in dystrophin, which is involved in the stabilization of muscle cell membranes. Muscle cell membrane proteins other than dystrophin are collectively called dystrophin-binding proteins, and dystroglycan complex (α, β), sarcoglycan complex (α, β, γ, δ), syntrophin complex, etc. are known. Mutations in these proteins are also observed in muscular dystrophy.

日本国公開特許公報「特開2007−326872号公報(2007年12月20日公開)」Japanese Patent Publication “JP 2007-326872 A (published on December 20, 2007)” 日本国公開特許公報「特開2006−298876号公報(2006年11月2日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2006-298776 (published on November 2, 2006)” 日本国公表特許公報「特表2008−528510号公報(2008年7月31日公表)」Japanese Patent Gazette “Special Table 2008-528510 (July 31, 2008)”

Gregory Q. Wallace and Elizabeth M. McNally "Mechanisms of Muscle Degeneration, Regeneration, and Repair in the Muscular Dystrophies" Annu. Rev. Physiol. 71: 37−57 (2009)Gregory Q. Wallace and Elizabeth M. McNally "Mechanisms of Muscle Degeneration, Regeneration, and Repair in the Muscular Dystrophies" Annu. Rev. Physiol. 71: 37−57 (2009) Masaya Tanno et al. "Induction of Manganese Superoxide Dismutase by Nuclear Translocation and Activation of SIRT1 Promotes Cell Survival in Chronic Heart Failure" The Journal Of Biological Chemistry 285: 8375−8382 (2010)Masaya Tanno et al. "Induction of Manganese Superoxide Dismutase by Nuclear Translocation and Activation of SIRT1 Promotes Cell Survival in Chronic Heart Failure" The Journal Of Biological Chemistry 285: 8375-8382 (2010)

筋ジストロフィーは、ジストロフィンやサルコグリカンの原因タンパク質の異常によって生じ得る。近年、筋芽細胞の移植または注入、あるいは原因遺伝子の導入などの遺伝子治療が試みられている。しかしながら、筋ジストロフィーの有効な治療法は見出されていない。   Muscular dystrophy can be caused by abnormal dystrophin and sarcoglycan-causing proteins. In recent years, gene therapy such as transplantation or injection of myoblasts or introduction of a causative gene has been attempted. However, no effective treatment for muscular dystrophy has been found.

上記の課題を解決するために、本発明に係る組成物は、SIRT1活性化因子を有効成分として含んでいることを特徴としている。SIRT1活性化因子とは、Sir2ファミリータンパク質(すなわち、サーチュインタンパク質)を活性化する能力を有する因子である。NAD依存性ヒストン脱アセチル化酵素であるSir2ファミリータンパク質は、酵母および線虫において寿命延長作用を有しており、Sir2ファミリータンパク質の1つであるSIRT1は、高等動物において、神経幹細胞、心筋細胞などに発現している。   In order to solve the above-mentioned problems, the composition according to the present invention is characterized by containing a SIRT1 activator as an active ingredient. A SIRT1 activator is a factor having the ability to activate a Sir2 family protein (ie, a sirtuin protein). Sir2 family protein which is NAD-dependent histone deacetylase has a life extension action in yeast and nematode, and SIRT1, which is one of Sir2 family proteins, is used in higher animals such as neural stem cells and cardiomyocytes. Is expressed.

本発明に係る組成物において、SIRT1活性化因子は、ポリフェノールであることが好ましく、フラボン、スティルベン、フラバノン、イソフラボン、カテキン、カルコン、タンニンおよびアントシアニンからなる群より選択される化合物、またはその誘導体であることがより好ましく、レスベラトロール(RSV)、ブテイン、ピセアタンノール、イソリキリチゲニン、フィセチン、ルテオリン、テトラヒドロキシフラボンおよびケルセチンからなる群より選択される化合物、またはその誘導体であることがさらに好ましく、RSV、またはその誘導体であることが最も好ましい。   In the composition according to the present invention, the SIRT1 activator is preferably a polyphenol, and is a compound selected from the group consisting of flavone, stilbene, flavanone, isoflavone, catechin, chalcone, tannin and anthocyanin, or a derivative thereof. More preferably, it is a compound selected from the group consisting of resveratrol (RSV), butein, piceatannol, isoliquiritigenin, fisetin, luteolin, tetrahydroxyflavone and quercetin, or a derivative thereof. RSV or a derivative thereof is most preferable.

上記構成を採用することによって、本発明は、筋ジストロフィーを処置することができる。また、本発明を用いれば、筋ジストロフィーにおける骨格筋の線維化状態を劇的に改善することができる。すなわち、本発明は、筋ジストロフィーにおける骨格筋の線維化を抑制するために用いられることが好ましい。   By adopting the above configuration, the present invention can treat muscular dystrophy. Moreover, if this invention is used, the fibrosis state of the skeletal muscle in a muscular dystrophy can be improved dramatically. That is, the present invention is preferably used for suppressing skeletal muscle fibrosis in muscular dystrophy.

本発明に係る組成物は、SIRT1を核内移行させる因子をさらに含んでいてもよい。本発明に係る組成物において、SIRT1を核内移行させる因子は、細胞内cGMPを増加させる因子であることが好ましく、cGMPの非水解性アナログ、またはホスホジエステラーゼ5(PDE−5)の酵素活性を阻害する因子がより好ましく、CPT−cGMPまたはタダラフィル(Tad)がさらに好ましい。   The composition according to the present invention may further contain a factor that translocates SIRT1 into the nucleus. In the composition according to the present invention, the factor that translocates SIRT1 into the nucleus is preferably a factor that increases intracellular cGMP, and inhibits the non-hydrolyzable analog of cGMP or the enzyme activity of phosphodiesterase 5 (PDE-5). CPT-cGMP or tadalafil (Tad) is more preferable.

本発明に係るキットは、SIRT1活性化因子を備えていることを特徴としている。上記構成を採用することによって、本発明は、筋ジストロフィーを処置することができる。本発明に係るキットは、SIRT1を核内移行させる因子をさらに備えていてもよい。また、本発明に係るキットは、筋ジストロフィーにおける骨格筋の線維化を抑制するために用いられることが好ましい。   The kit according to the present invention is characterized by comprising a SIRT1 activator. By adopting the above configuration, the present invention can treat muscular dystrophy. The kit according to the present invention may further include a factor for translocating SIRT1 into the nucleus. In addition, the kit according to the present invention is preferably used for suppressing skeletal muscle fibrosis in muscular dystrophy.

本発明を用いれば、筋ジストロフィーを処置することができ、特に、筋ジストロフィーにおける骨格筋の線維化状態を劇的に改善する。   With the present invention, muscular dystrophy can be treated, particularly dramatically improving the skeletal muscle fibrosis status in muscular dystrophy.

マウス骨格筋における線維化を示す免疫染色像、ならびに線維化の程度をフィブロネクチンおよび筋線維の断面積にて示したグラフである。It is the graph which showed the immuno-staining image which shows the fibrosis in a mouse | mouth skeletal muscle, and the cross-sectional area of fibronectin and a muscle fiber in the extent of fibrosis. マウス骨格筋における線維化の程度を、フィブロネクチンmRNAの発現量にて示したグラフである。It is the graph which showed the degree of fibrosis in mouse skeletal muscle by the expression level of fibronectin mRNA. 骨格筋細胞(C2C12細胞)におけるSIRT1の細胞内局在を示す免疫染色像、および核画分におけるSIRT1の相対値を示すグラフである。It is a graph which shows the relative value of SIRT1 in the immuno-staining image which shows the intracellular localization of SIRT1 in a skeletal muscle cell (C2C12 cell), and a nuclear fraction. 骨格筋細胞(C2C12細胞)におけるSIRT1の細胞内局在を示すウエスタンブロット、および核画分または細胞質画分におけるSIRT1の相対値を示すグラフである。It is a Western blot which shows the intracellular localization of SIRT1 in a skeletal muscle cell (C2C12 cell), and the graph which shows the relative value of SIRT1 in a nuclear fraction or a cytoplasm fraction. C2C12細胞に対する、SIRT1についてのRT−PCRおよびイムノブロッティングの結果を示す図である。コントロールとしてGAPDHを用いた。It is a figure which shows the result of RT-PCR and immunoblotting about SIRT1 with respect to C2C12 cell. GAPDH was used as a control. マウス骨格筋におけるSIRT1の免疫染色像(左)、およびその結果を数値化したグラフである。It is the graph which digitized the immuno-staining image (left) of SIRT1 in a mouse | mouth skeletal muscle, and the result. RSV、ならびに、RSV配糖体である3−O−β−D−グリコシド(3G−RSV)および4’−O−β−D−グリコシド(4’G−RSV)の構造を示す図である。It is a figure which shows the structure of RSV and 3-O- (beta) -D-glycoside (3G-RSV) and 4'-O- (beta) -D-glycoside (4'G-RSV) which are RSV glycosides. 1,1−ジフェニル−2−ピクリルヒドラジル(DPPH)を用いた、RSV、3G−RSVおよび4’G−RSVのラジカル消去活性を示す図である。It is a figure which shows the radical scavenging activity of RSV, 3G-RSV, and 4'G-RSV using 1,1-diphenyl-2-picrylhydrazyl (DPPH). RSV、3G−RSVおよび4’G−RSVによるヒストンH3脱アセチル化を示す図である。上段に、実験スキームを示し、中段に、ヒストンH3脱アセチル化を示すWestern Blottingの結果を示し、下段に、ヒストンH3脱アセチル化を定量化した結果を示す。FIG. 4 shows histone H3 deacetylation by RSV, 3G-RSV and 4′G-RSV. The upper part shows the experimental scheme, the middle part shows the result of Western blotting showing histone H3 deacetylation, and the lower part shows the result of quantifying histone H3 deacetylation.

〔1〕筋ジストロフィーを処置するための有効成分としてのSIRT1活性化因子
本発明は、細胞レベルおよび動物レベルでの実験系を用いて、SIRT1の活性化が筋ジストロフィーの処置に有効であることを見出して完成されたものである。すなわち、本発明は、筋ジストロフィーを処置するための、SIRT1活性化因子を用いる技術を提供する。本発明は、本発明者ら独自の新知見に基づいて完成されたものであり、従来の技術水準からは容易になし得なかった画期的な発明である。
[1] SIRT1 activator as an active ingredient for treating muscular dystrophy The present invention has found that the activation of SIRT1 is effective for the treatment of muscular dystrophy using experimental systems at the cellular and animal levels. It has been completed. That is, the present invention provides a technique using a SIRT1 activator for treating muscular dystrophy. The present invention has been completed based on the inventors' new original knowledge, and is an epoch-making invention that could not be easily achieved from the prior art.

本発明者らはこれまでに心不全に関する研究を行っている。酸化ストレスは、慢性心不全における主要な役割を担い、NAD依存性ヒストン/タンパク質デアセチラーゼ(SIRT1)は、核内に発現されている場合に酸化ストレス条件下での細胞の生存(抗アポトーシス作用)を促進する。また、本発明者らは、心臓におけるSIRT1の機能的役割、および心不全に対する治療におけるSIRT1の利用を検討し、SIRT1を活性化することが知られているレスベラトロール(RSV)が、酸化ストレスに起因するアポトーシスを抑制するとともに、心不全モデルであるTO−2ハムスターの心不全を抑制し得ることを見出している(非特許文献2参照)。このように、SIRT1を活性化することによって抗アポトーシス効果が得られることが、よく知られている。The present inventors have previously conducted research on heart failure. Oxidative stress plays a major role in chronic heart failure, and NAD + -dependent histone / protein deacetylase (SIRT1) promotes cell survival (anti-apoptotic effect) under oxidative stress conditions when expressed in the nucleus. Facilitate. In addition, the present inventors examined the functional role of SIRT1 in the heart and the use of SIRT1 in the treatment of heart failure, and resveratrol (RSV), which is known to activate SIRT1, is oxidatively stressed. It has been found that the heart failure of TO-2 hamster, which is a heart failure model, can be suppressed while suppressing the resulting apoptosis (see Non-Patent Document 2). Thus, it is well known that an anti-apoptotic effect can be obtained by activating SIRT1.

特許文献1には、SIRT1のデアセチラーゼ活性を増加させる作用物質を用いて、真核細胞内のp53の活性を阻害し、アポトーシスから細胞を保護する方法、および寿命を延長させる方法が開示されている。特許文献2には、サーチュインの活性化を用いた、眼疾患の治療に関する技術が開示されており、サーチュインの活性化が、細胞死の予防、老化の予防、細胞死の治療、延命、寿命延長、癌発生の予防に利用可能であることも記載されている。特許文献3には、サーチュインの活性化を用いた、紅潮または体重増加を処置する技術が開示されている。   Patent Document 1 discloses a method for inhibiting the activity of p53 in a eukaryotic cell by using an agent that increases the deacetylase activity of SIRT1, thereby protecting the cell from apoptosis and a method for extending the life span. . Patent Document 2 discloses a technique related to the treatment of an eye disease using sirtuin activation, and the activation of sirtuin is prevention of cell death, prevention of aging, treatment of cell death, life extension, life extension. It is also described that it can be used for prevention of cancer development. Patent Document 3 discloses a technique for treating flushing or weight gain using sirtuin activation.

上述したように、筋ジストロフィーは、壊死(ネクローシス)によって特徴付けられる疾患である。ネクローシスがアポトーシスと同じ「細胞死」であるとはいえ、その発生機序が大きく異なることは周知である。特許文献1には、サーチュイン活性化化合物を、細胞死に関係する慢性疾患などの治療のために投与することができる旨が示唆されており、細胞死の観点から、筋ジストロフィーを例示されている。しかし、アポトーシスによって特徴付けられる疾患の改善に有効である物質が、壊死(ネクローシス)によって特徴付けられる疾患の状態改善に有効であるなどということは、技術常識でも技術水準でもない。よって、筋ジストロフィーが細胞死に関係する慢性疾患の例として特許文献1に挙げられているに過ぎず、抗アポトーシス技術の適用対象として特許文献1に挙げられているのではないことを、当業者は十分理解している。同様の理由により、当業者は、特許文献2に記載の細胞死がネクローシスではなくアポトーシスであることを、十分理解している。   As mentioned above, muscular dystrophy is a disease characterized by necrosis. Although necrosis is the same “cell death” as apoptosis, it is well known that its developmental mechanism is very different. Patent Document 1 suggests that a sirtuin-activating compound can be administered for the treatment of chronic diseases related to cell death, and muscular dystrophy is exemplified from the viewpoint of cell death. However, it is neither technical nor knowledge nor a state of the art that a substance effective for improving a disease characterized by apoptosis is effective for improving the condition of a disease characterized by necrosis (necrosis). Therefore, those skilled in the art are sufficiently aware that muscular dystrophy is only listed in Patent Document 1 as an example of a chronic disease related to cell death, and is not listed in Patent Document 1 as an application target of anti-apoptotic technology. I understand. For the same reason, those skilled in the art fully understand that the cell death described in Patent Document 2 is not necrosis but apoptosis.

活性化されたSIRT1が筋ジストロフィーの改善に有効であることは、当業者が容易に予測し得ることではない。特に、筋ジストロフィーのモデルマウスにおいて観察される骨格筋の線維化状態が劇的に改善されることは、格別顕著な効果である。   It is not easily predictable by those skilled in the art that activated SIRT1 is effective in improving muscular dystrophy. In particular, the dramatic improvement in the fibrotic state of skeletal muscle observed in muscular dystrophy model mice is a particularly remarkable effect.

本発明者らは、ポリフェノールの1つのRSVが、SIRT1を活性化することによってスーパーオキシドディスムターゼ(MnSOD)を誘導して、細胞の酸化ストレス耐性を向上させ、その結果、遺伝的に心不全を生じるTO−2ハムスターの寿命を優位に延長させることを見出している。すなわち、1つの局面において、「SIRT1活性化因子」は、ポリフェノールであり得、フラボン、スティルベン、フラバノン、イソフラボン、カテキン、カルコン、タンニンおよびアントシアニンからなる群より選択される化合物、またはその誘導体であり得る。好ましくは、「SIRT1活性化因子」は、RSV、ブテイン、ピセアタンノール、イソリキリチゲニン、フィセチン、ルテオリン、テトラヒドロキシフラボンおよびケルセチンからなる群より選択される化合物、またはその誘導体であり、より好ましくは、RSV、またはその誘導体である。RSVの誘導体としては、グリコシド配糖体が好ましく、より好ましくは、RSVの3−O−β−D−グリコシド(3G−RSV)および4’−O−β−D−グリコシド(4’G−RSV)が挙げられ、4’−O−β−D−グリコシド(4’G−RSV)が最も好ましい。   We have found that one RSV of polyphenols induces superoxide dismutase (MnSOD) by activating SIRT1 to improve cellular oxidative stress tolerance, resulting in genetically heart failure -2 It has been found to prolong the life of hamsters. That is, in one aspect, the “SIRT1 activator” can be a polyphenol, and is a compound selected from the group consisting of flavone, stilbene, flavanone, isoflavone, catechin, chalcone, tannin and anthocyanin, or a derivative thereof. obtain. Preferably, the “SIRT1 activator” is a compound selected from the group consisting of RSV, butein, piceatannol, isoliquiritigenin, fisetin, luteolin, tetrahydroxyflavone and quercetin, or a derivative thereof. Is RSV or a derivative thereof. The derivative of RSV is preferably a glycoside glycoside, more preferably RSV 3-O-β-D-glycoside (3G-RSV) and 4′-O-β-D-glycoside (4′G-RSV). 4′-O-β-D-glycoside (4′G-RSV) is most preferable.

なお、他の局面において、SIRT1活性化因子は、天然から分離されたものであっても合成されたものであってもよく、以下に示すSRT1460、SRT1720およびSRT2183、   In another aspect, the SIRT1 activator may be isolated from nature or synthesized, and SRT1460, SRT1720, and SRT2183 shown below,

ならびにSIRT1活性化因子3(2−アミノ−N−シクロペンチル−1−(3−メトキシプロピル)−1H−ピロロ[2,3−b]キノキサリン−3−カルボキサミド)(Nature 450(29): 712−716 (2007)およびJournal of Biomolecular Screening 11(8): 959−967 (2006)参照)、さらには特許文献1においてスクリーニングされたサーチュイン活性化剤もまた、SIRT1活性化因子に包含される。 And SIRT1 activator 3 (2-amino-N-cyclopentyl-1- (3-methoxypropyl) -1H-pyrrolo [2,3-b] quinoxaline-3-carboxamide) (Nature 450 (29): 712-716 (2007) and Journal of Biomolecular Screening 11 (8): 959-967 (2006)), and sirtuin activators screened in Patent Document 1 are also included in the SIRT1 activator.

当業者は、NADおよびSir2ファミリータンパク質(例えば、SIRT1)を含む酵素反応系を用いたスクリーニング法によって、SIRT1活性化因子を容易に取得し得る。   A person skilled in the art can easily obtain an SIRT1 activator by a screening method using an enzyme reaction system containing NAD and a Sir2 family protein (for example, SIRT1).

本発明者らは、SIRT1が核と細胞質との間を移動することによってその活性が調節されることなどを見出している。すなわち、さらなる局面において、「SIRT1活性化因子」は、SIRT1を核内移行させる因子であり得る。本明細書中にて使用される場合、SIRT1を核内移行させる因子は、Sir2ファミリータンパク質(すなわち、サーチュインタンパク質)を細胞質から核内へ移行させる能力を有する因子が意図される。後述する実施例にて示すように、細胞内cGMPを増加させると骨格筋細胞におけるSIRT1の核内移行が増強されて、SIRT1の活性化が促進される。すなわち、一実施形態において、SIRT1を核内移行させる因子は、細胞内cGMPを増加させる因子であり得る。細胞内cGMPを増加させる因子としては、cGMPの非水解性アナログ(例えば、CPT−cGMP)、ホスホジエステラーゼ5(PDE−5)の酵素活性を阻害する因子(例えば、タダラフィル(Tad))が挙げられるが、これらに限定されない。なお、Tadは、生体内でcGMPを分解するホスホジエステラーゼ5(PDE−5)の酵素活性を阻害し、これにより、NO作動性神経に作用して血管を拡張させて、血流量を増加させる。Tadは、***不全の治療薬(Cialis(登録商標))としてもよく知られている。   The present inventors have found that the activity of SIRT1 is regulated by moving between the nucleus and the cytoplasm. That is, in a further aspect, the “SIRT1 activator” can be a factor that translocates SIRT1 into the nucleus. As used herein, a factor that translocates SIRT1 is intended to be a factor that has the ability to translocate a Sir2 family protein (ie, a sirtuin protein) from the cytoplasm into the nucleus. As shown in Examples described later, when intracellular cGMP is increased, SIRT1 translocation into nuclei is enhanced in skeletal muscle cells, and activation of SIRT1 is promoted. That is, in one embodiment, the factor that translocates SIRT1 into the nucleus can be a factor that increases intracellular cGMP. Examples of factors that increase intracellular cGMP include non-hydrolyzable analogs of cGMP (eg, CPT-cGMP) and factors that inhibit the enzyme activity of phosphodiesterase 5 (PDE-5) (eg, tadalafil (Tad)). However, it is not limited to these. Note that Tad inhibits the enzyme activity of phosphodiesterase 5 (PDE-5), which degrades cGMP in vivo, thereby acting on NO-operating nerves to dilate blood vessels and increase blood flow. Tad is also well known as a treatment for erectile dysfunction (Cialis®).

また、当業者は、培養細胞におけるSIRT1の核内移行を検出する系を用いたスクリーニング法によって、SIRT1活性化因子を容易に取得し得る。   Moreover, those skilled in the art can easily obtain a SIRT1 activator by a screening method using a system that detects SIRT1 nuclear translocation in cultured cells.

本発明において、SIRT1活性化因子は単独で用いられても複数組み合わせて用いられてもよい。複数組み合わせて用いられる場合、SIRT1活性化因子の少なくとも1つがSIRT1を核内移行させる因子であってもよい。   In the present invention, SIRT1 activators may be used alone or in combination. When used in combination, at least one of the SIRT1 activators may be a factor that translocates SIRT1 into the nucleus.

〔2〕有効成分の利用
(1)組成物
本発明は、筋ジストロフィーを処置するための有効成分を含有する組成物を提供する。本明細書中にて使用される場合、用語「処置」は、症状の軽減または排除が意図され、治療的(発症後)に行われ得るものだけでなく、予防的(発症前)に行われ得るものもまた包含される。「筋ジストロフィーを処置するための有効成分」は、上述したSIRT1活性化因子が意図され、本明細書中にて「有効成分」と省略され得る。
[2] Utilization of active ingredient (1) Composition The present invention provides a composition containing an active ingredient for treating muscular dystrophy. As used herein, the term “treatment” is intended to alleviate or eliminate symptoms and can be performed prophylactically (before onset) as well as what can be done therapeutically (after onset). What is obtained is also encompassed. The “active ingredient for treating muscular dystrophy” is intended to be the above-mentioned SIRT1 activator, and may be abbreviated as “active ingredient” in the present specification.

本発明に係る組成物中に使用されるキャリアおよび賦形剤は、薬学的に受容可能なものであれば特に限定されない。本明細書中にて使用される場合、「薬学的に受容可能なキャリア」は、組成物を受容した個体において有害な抗体の産生をそれ自体は誘導しない任意のキャリアが意図される。このようなキャリアは当業者に周知である。また、薬学的に受容可能な賦形剤については、当該分野において公知であり、例えば、REMINGTON‘S PHARMACEUTICAL SCIENCES(Merck Pub.Co., N.J.1991)に十分に記載されている。さらに、本発明に係る組成物は、水、生理食塩水、グリセロール、またはエタノールのような1つ以上の成分をさらに含み得る。さらに、湿潤剤または乳化剤、pH緩衝化物質、安定化剤、抗酸化剤などのような補助物質が、本発明に係る組成物中に存在し得る。   The carrier and excipient used in the composition according to the present invention are not particularly limited as long as they are pharmaceutically acceptable. As used herein, “pharmaceutically acceptable carrier” intends any carrier that does not itself induce the production of harmful antibodies in an individual receiving the composition. Such carriers are well known to those skilled in the art. Also, pharmaceutically acceptable excipients are known in the art and are well described, for example, in REMINGTON'S PHARMACEUTICAL SCIENCES (Merck Pub. Co., NJ 1991). Furthermore, the composition according to the present invention may further comprise one or more components such as water, saline, glycerol or ethanol. In addition, auxiliary substances such as wetting or emulsifying agents, pH buffering substances, stabilizers, antioxidants and the like may be present in the composition according to the invention.

本発明に係る組成物は、経口投与に好ましい錠剤、カプセルなどの形態として調製され得る。また、本発明に係る組成物は、液体溶液もしくは懸濁液、または注射のための液体ビヒクル中の溶液もしくは懸濁液のために適切な固体形態、あるいは局所的に塗布されるクリームとしてとして調製され得る。そして、本発明に係る組成物の直接送達は、一般に、経口、注射(皮下、皮内、腹腔内、管腔内、胃内、腸内、静脈内または筋肉内)、または塗布により達成される。経口送達の場合、本発明に係る組成物は、タブレット状、顆粒状、カプセル状などの経口的に摂取可能な形状であり得、所望の作用を発現させる量の有効成分が含有されていれば、その形状が特に限定されない。   The composition according to the present invention can be prepared in the form of tablets, capsules and the like preferred for oral administration. The composition according to the invention is also prepared as a liquid solution or suspension, or a solid form suitable for solution or suspension in a liquid vehicle for injection, or as a topically applied cream. Can be done. And the direct delivery of the composition according to the invention is generally achieved by oral, injection (subcutaneous, intradermal, intraperitoneal, intraluminal, intragastric, intestinal, intravenous or intramuscular) or application. . In the case of oral delivery, the composition according to the present invention may be in an orally ingestible form such as a tablet, granule, capsule, etc., as long as it contains an active ingredient in an amount that exhibits a desired action. The shape is not particularly limited.

本発明に係る組成物は、製薬分野における公知の方法により製造することができる。本発明に係る組成物における有効成分の含有量は、投与形態、投与方法などを考慮し、当該組成物を用いて後述の投与量範囲で有効成分を投与できるような量であれば特に限定されない。また、本発明に係る組成物の投与量は、その製剤形態、投与方法、使用目的、および投与対象である患者の年齢、体重、症状によって適宜設定される。投与は、所望の投与量範囲内において、1日内において単回で、または数回に分けて行われてもよい。   The composition according to the present invention can be produced by a known method in the pharmaceutical field. The content of the active ingredient in the composition according to the present invention is not particularly limited as long as the active ingredient can be administered in the dosage range described later using the composition in consideration of the administration form, administration method and the like. . In addition, the dosage of the composition according to the present invention is appropriately set depending on the preparation form, administration method, purpose of use, and age, weight, and symptoms of the patient to be administered. Administration may be performed in a single dose or divided into several doses within a desired dose range.

(2)キット
本発明はまた、筋ジストロフィーを処置するための有効成分を備えているキットを提供する。本明細書中にて使用される場合、用語「キット」は、特定の材料を内包する容器(例えば、ボトル、プレート、チューブ、ディッシュなど)を備えた包装が意図される。好ましくは、上記材料を使用するための指示書を備えている。本明細書中にてキットの局面において使用される場合、「備えた(備えている)」は、キットを構成する個々の容器のいずれかの中に内包されている状態が意図される。また、本発明に係るキットは、複数の異なる組成物を1つに梱包した包装であってもよく、容器中に内包された溶液形態の組成物を梱包していてもよい。本発明に係るキットは、異なる2つ以上の物質を同一の容器に混合して備えても別々の容器に備えてもよい。「指示書」は、紙またはその他の媒体に書かれていても印刷されていてもよく、あるいは磁気テープ、コンピューター読み取り可能ディスクまたはテープ、CD−ROMなどのような電子媒体に付されてもよい。本発明に係るキットは、上述した組成物を構成するためにもちいられてもよく、上述した組成物に含まれる物質を別々に備えていても、上述した組成物とさらなる成分とを別々に備えていてもよい。
(2) Kit The present invention also provides a kit comprising an active ingredient for treating muscular dystrophy. As used herein, the term “kit” intends a package with a container (eg, bottle, plate, tube, dish, etc.) containing a particular material. Preferably, an instruction for using the material is provided. As used herein in the context of a kit, “comprising” is intended to mean being contained within any of the individual containers that make up the kit. In addition, the kit according to the present invention may be a package in which a plurality of different compositions are packed together, or may be a solution in a form of a solution contained in a container. The kit according to the present invention may be provided with two or more different substances mixed in the same container or in separate containers. “Instructions” may be written or printed on paper or other media, or may be affixed to electronic media such as magnetic tape, computer readable disk or tape, CD-ROM, etc. . The kit according to the present invention may be used to constitute the above-described composition, and may comprise the above-described composition and additional components separately, even if the substance contained in the above-described composition is separately provided. It may be.

(3)筋ジストロフィーを処置する方法
本発明はさらに、筋ジストロフィーを処置するための方法を提供する。本発明に係る方法は、筋ジストロフィーを処置するための有効成分を被験体に投与する工程を包含する。本発明に係る方法における有効成分の適用は、上述した組成物およびキットの使用形態に準じればよいことを、本明細書を読んだ当業者は容易に理解する。
(3) Method for treating muscular dystrophy The present invention further provides a method for treating muscular dystrophy. The method according to the present invention includes the step of administering to a subject an active ingredient for treating muscular dystrophy. Those skilled in the art who have read this specification will easily understand that the application of the active ingredient in the method according to the present invention may be in accordance with the use form of the composition and kit described above.

なお、本明細書中に記載された学術文献および特許文献の全てが、本明細書中にて参考として援用される。   In addition, all the academic literatures and patent literatures described in this specification are incorporated by reference in this specification.

本発明は、以下の実施例によってさらに詳細に説明されるが、これに限定されるべきではない。   The invention is illustrated in more detail by the following examples, but should not be limited thereto.

〔材料および方法〕
C57BL10マウス(C57BL/10−ScN Jic)およびMdxマウス(C57BL/10−mdx Jic)を、株式会社ホクドーより購入した。マウスから単離した大腿二頭筋を液体窒素で凍結した後に、クリオスタットを用いて切片化した。得られた切片を、4%パラホルムアルデヒドを含む中性リン酸ナトリウム緩衝液で固定し、次いで、定法に従ってヒツジ抗フィブロネクチン抗体(AHP08,UK−Serotec Ltd)、およびAlexa Fluor488標識したロバ抗ヒツジIgG抗体(Invitrogen社)を用いて免疫染色し、さらにアクチンをAlexa Fluor594ラベルファロイジンで染色した。染色した切片を、コンフォーカル顕微鏡(Radiance 2100MP BioRad社)を用いて観察した(図1上)。得られた画像をAdobe Photoshop CS3で解析した。コントロールマウスのフィブロネクチン染色像の、1画像あたり蛍光ピクセル数の平均を100として、他の画像の蛍光ピクセル数を表した。筋の横断径は、ファロイジンで染色された部分のピクセル数をAdobe Photoshop Cs3によって解析した。各群に3匹のマウスを用い、一匹のマウス標本について8つの視野を撮影し、合計24視野の平均をグラフに表示した(図1下)。上グラフについて、*,未処置Mdxコントロール群と比較(p<0.05);#,RSV投与Mdx群と比較(p<0.001);+,未処置コントロールマウス群と比較(有意差なし)。下グラフについて、*,未処置Mdxコントロール群と比較(p<0.05);&,未処置コントロールマウス群と比較(p<0.05),#,RSV投与Mdx群と比較(有意差なし);+,未処置コントロールマウス群と比較(有意差なし)。
〔Materials and methods〕
C57BL10 mice (C57BL / 10-ScN Jic) and Mdx mice (C57BL / 10-mdx Jic) were purchased from Hokudo. Biceps femoris isolated from mice were frozen in liquid nitrogen and then sectioned using a cryostat. The obtained sections were fixed with a neutral sodium phosphate buffer containing 4% paraformaldehyde, and then sheep anti-fibronectin antibody (AHP08, UK-Serotec Ltd) and Alexa Fluor 488-labeled donkey anti-sheep IgG antibody according to a conventional method. (Invitrogen) was used for immunostaining, and actin was further stained with Alexa Fluor594 labeled phalloidin. The stained section was observed using a confocal microscope (Radiance 2100MP BioRad) (upper figure 1). The obtained image was analyzed with Adobe Photoshop CS3. The average number of fluorescent pixels per image of the fibronectin-stained image of the control mouse was taken as 100, and the number of fluorescent pixels in other images was expressed. The transverse diameter of the muscle was analyzed by Adobe Photoshop Cs3 based on the number of pixels stained with phalloidin. Three mice were used in each group, and 8 fields of view were taken for one mouse specimen, and the average of a total of 24 fields was displayed on the graph (bottom of FIG. 1). About the upper graph, *, compared with untreated Mdx control group (p <0.05);#, compared with Mdx group treated with RSV (p <0.001); +, compared with untreated control mouse group (no significant difference) ). About the lower graph, *, compared with untreated Mdx control group (p <0.05);&, compared with untreated control mouse group (p <0.05), #, compared with Mdx group treated with RSV (no significant difference) ); +, Compared with untreated control mouse group (no significant difference).

C57BL10マウス(C57BL/10−ScN Jic)およびMdxマウス(C57BL/10−mdx Jic)より単離した大腿二頭筋から、RNeasy(Quiagen社)を用いてRNAを分離した。得られたRNAから逆転写酵素(Invitrogen社)を用いて変換したcDNAに対して、定量的PCR(Applied Biosystems社)を行うことによって、フィブロネクチンmRNA量を定量した。コントロールとして用いたβ−アクチンmRNA量に対する割合を、未処置のコントロールマウスのデータを100として表示した(図2)。それぞれの群に用いたマウスの数は、未処置コントロールマウス群、RSV+Tad投与コントロールマウス群、および未処置Mdxマウス群はn=3、Tad投与Mdxマウス群はn=5、RSV+Tad投与Mdxマウス群はn=6である。*,未処置Mdxコントロール群と比較(p<0.05)。   RNA was isolated from biceps femoris isolated from C57BL10 mice (C57BL / 10-ScN Jic) and Mdx mice (C57BL / 10-mdx Jic) using RNeasy (Qiagen). The amount of fibronectin mRNA was quantified by performing quantitative PCR (Applied Biosystems) on cDNA converted from the obtained RNA using reverse transcriptase (Invitrogen). The ratio with respect to the amount of β-actin mRNA used as a control was displayed with the data of untreated control mice as 100 (FIG. 2). The number of mice used in each group is n = 3 for the untreated control mouse group, the RSV + Tad-administered control mouse group, and the untreated Mdx mouse group, n = 5 for the Tad-administered Mdx mouse group, and the RSV + Tad-administered Mdx mouse group. n = 6. *, Compared with untreated Mdx control group (p <0.05).

C2C12細胞(国立長寿医療研究センター研究所 古山達雄博士(現 香川県立保健医療大学)より供与された。)を、コラーゲン(Koken社)でコートしたガラス板(マツナミ社)上に散布し、次いで培養した。100nM タダラフィル(Toronto Research Chemicals社)または100μM CPT(8−CPT−cGMP,ナトリウム塩(8−(4−クロロフェニルチオ)グアノシン−3’,5’−サイクリックモノホルフェート) Biaffin GmbH & Co KG.社)を培地に添加し、28時間後に4%パラホルムアルデヒドを含む中性リン酸ナトリウム緩衝液を用いて細胞を固定した。コントロールを含め、細胞を、固定24時間前に15μMアンチマイシンA(Sigma社)で処理した。固定した細胞に対して、ウサギ抗マウスSIRT1抗体(Sakamoto et al. FEBS Lett.556,281−286,2004)およびAlexa Fluor488標識したヒツジ抗ウサギ抗体(Invitrogen社)を用いた免疫染色と、ヘキスト33342(Dojindo社)による核染色を行った。染色後の細胞を、コンフォーカル顕微鏡(Radiance 2100MP BioRad社)を用いて観察した(図3上)。得られた画像をAdobe Photoshop CS3を用いて解析した。核領域に存在するAlexa Fluor488蛍光ピクセル数の平均について、コントロール細胞の値を100%として表示した。各実験について8視野からデータを集め、3回同じ実験を繰り返し、合計24視野分からの平均値をそれぞれの棒グラフに表した(図3下)。**,コントロール群と比較(p<0.01)。   C2C12 cells (provided by Dr. Tatsuo Furuyama (currently Kagawa Prefectural University of Health Sciences), National Longevity Medical Research Center) are spread on a glass plate (Matsunami) coated with collagen (Koken) and then cultured. did. 100 nM Tadalafil (Toronto Research Chemicals) or 100 μM CPT (8-CPT-cGMP, sodium salt (8- (4-chlorophenylthio) guanosine-3 ′, 5′-cyclic monoformate) Biaffin GmbH & Co KG. ) Was added to the medium, and after 28 hours, the cells were fixed with a neutral sodium phosphate buffer containing 4% paraformaldehyde. Cells, including controls, were treated with 15 μM antimycin A (Sigma) 24 hours prior to fixation. The fixed cells were immunostained with a rabbit anti-mouse SIRT1 antibody (Sakamoto et al. FEBS Lett. 556, 281-286, 2004) and Alexa Fluor 488-labeled sheep anti-rabbit antibody (Invitrogen), and Hoechst 33342. Nuclear staining with (Dojindo) was performed. The stained cells were observed using a confocal microscope (Radiance 2100MP BioRad) (upper FIG. 3). The obtained image was analyzed using Adobe Photoshop CS3. For the average number of Alexa Fluor 488 fluorescent pixels present in the nuclear region, the value of control cells was expressed as 100%. Data were collected from 8 fields for each experiment, and the same experiment was repeated 3 times, and the average values from a total of 24 fields were represented in each bar graph (bottom of FIG. 3). **, compared with control group (p <0.01).

コントロールC2C12細胞および100nMタダラフィル(Tad)を28時間作用させた細胞について、核分画と細胞質とを分画するキット(ProteoExtract, Calbiochem社)を用いて、各画分を得た。コントロール細胞およびTad処理細胞において、分画24時間前に15μMアンチマイシンA(Sigma社)を作用させ、核内に存在するSIRT1量を増加させた。各画分について、抗SIRT1抗体(Sakamoto et al.)、抗ラミンA/C抗体(Cell Signaling社)、および抗GAPDH抗体(Sigma社)を用いたウエスタンブトット法によって、タンパク質をウエスタンブロットによって検討した(図4上)。画像を、NIH Imageを用いて定量化した。3回の別々の実験を行い、定量化したデータをグラフに表した(図4下)。**,コントロール群と比較(p<0.01)。*,コントロール群と比較(p<0.05)。   For the cells treated with control C2C12 cells and 100 nM tadalafil (Tad) for 28 hours, each fraction was obtained using a kit (ProteoExtract, Calbiochem) for fractionating nuclear fraction and cytoplasm. In control cells and Tad-treated cells, 15 μM antimycin A (Sigma) was allowed to act 24 hours before fractionation to increase the amount of SIRT1 present in the nucleus. For each fraction, the protein was examined by Western blot using the Western Butt method using anti-SIRT1 antibody (Sakamoto et al.), Anti-lamin A / C antibody (Cell Signaling), and anti-GAPDH antibody (Sigma). (FIG. 4 top). Images were quantified using NIH Image. Three separate experiments were performed and the quantified data was represented in a graph (bottom of FIG. 4). **, compared with control group (p <0.01). *, Compared with control group (p <0.05).

C2C12細胞に、100nM タダラフィル(Tad)または100μM CPTを24時間作用させた後に、定法に従ってRNAを分離した。得られたRNAからcDNAに変換し、PCR法を用いてSIRT1とGAPDHを増幅させ、1%アガロースゲルにて電気泳動を行い、ゲルをエチジウムブロマイドで染色した(図5上)。また、細胞のタンパク質を、抗SIRT1抗体(Sakamoto et al.)と抗GAPDH抗体(Sigma社)を用いたウエスタンブトット法で調べた(図5下)。同様の検討を合計3回行い、TadまたはCPTの処理によってSIRT1のmRNA量およびタンパク質量が変化しないことを確認した。   C2C12 cells were allowed to act on 100 nM tadalafil (Tad) or 100 μM CPT for 24 hours, and then RNA was isolated according to a standard method. The obtained RNA was converted to cDNA, SIRT1 and GAPDH were amplified using the PCR method, electrophoresed on a 1% agarose gel, and the gel was stained with ethidium bromide (upper FIG. 5). In addition, cellular proteins were examined by Western Butt method using an anti-SIRT1 antibody (Sakamoto et al.) And an anti-GAPDH antibody (Sigma) (bottom of FIG. 5). The same examination was performed three times in total, and it was confirmed that the amount of mRNA and protein of SIRT1 was not changed by treatment with Tad or CPT.

Tad(70mg/kg粉末飼料)を7日間経口投与したddYマウス(三協ラボサービス(株))、およびコントロールマウスを、麻酔後に4%パラホルムアルデヒドを含む中性リン酸ナトリウム緩衝液で全身還流固定した。固定したマウスから大腿二頭筋を収集した。分離した骨格筋を、同じパラホルムアルデヒド溶液で再度一晩固定した。組織をシュクロース溶液(和光純薬)で脱水した後に凍結し、次いでクリオスタットを用いて切片を作製した。SIRT1抗体による免疫染色、およびヘキスト33342による核染色を行った切片を、コンフォーカル顕微鏡で観察した(図6上)。コントロール群およびTad投与群の各3匹についてそれぞれ6視野を撮影し、SIRT1が核に優位に存在している細胞の数の、全体の細胞数に占める割合の平均を、グラフで表した(図6下)。***,コントロール群と比較(p<0.001)。   DdY mice (Sankyo Lab Service Co., Ltd.) orally administered with Tad (70 mg / kg powdered feed) for 7 days and control mice were fixed with whole body reflux with neutral sodium phosphate buffer containing 4% paraformaldehyde after anesthesia. did. Biceps femoris were collected from fixed mice. The separated skeletal muscle was again fixed overnight with the same paraformaldehyde solution. The tissue was dehydrated with a sucrose solution (Wako Pure Chemical Industries) and then frozen, and then a section was prepared using a cryostat. Sections subjected to immunostaining with SIRT1 antibody and nuclear staining with Hoechst 33342 were observed with a confocal microscope (upper part of FIG. 6). Six fields were photographed for each of three animals in the control group and the Tad administration group, and the average ratio of the number of cells in which SIRT1 predominates in the nucleus to the total number of cells was represented by a graph (Fig. 6 bottom). ***, compared with control group (p <0.001).

〔結果〕
〔1:筋ジストロフィーマウスにおける骨格筋の線維化に対するRSVの効果〕
コントロールマウス(C57BL10)、および筋ジストロフィーのモデルマウスであるドゥシャンヌ筋ジストロフィ(Mdx)マウスから収集した骨格筋をフィブロネクチン染色し、骨格筋にて生じている線維化を観察した(図1)。未処置のMdxマウスでは、線維化された、白くスカスカの、特徴的な筋肉が観察された。RSV(4g/kg粉末飼料)を32週間にわたって経口投与したMdxマウス(Mdx+RSV)では、骨格筋の線維化が抑制されていた。RSV(4g/kg飼料)とTad(70mg/kg飼料)とを併用して32週間にわたって経口投与したMdxマウス(Mdx+RSV+Tad)では、骨格筋の線維化がさらに抑制されており、筋線維の横断径も正常化していた。ただし、筋量においては、RSVによる効果をTadが増強させることはなかった。なお、コントロールマウスでは、未処置のものも、RSVおよびTadを投与したものも、骨格筋の線維化が生じていなかった。上段には、アクチンとフィブロネクチンとの二重染色像を示し、下段には、コントロールに対する、フィブロネクチン染色の割合および骨格筋の断面積の割合を示した。グラフにおいて、1は未処置のコントロールマウス、2はRSVおよびTadで処置したコントロールマウス、3は未処置のMdxマウス、4はRSV投与したMdxマウス、5はRSVとTadとを投与したMdxマウスを示す。
〔result〕
[1: Effect of RSV on skeletal muscle fibrosis in muscular dystrophy mice]
The skeletal muscle collected from the control mouse (C57BL10) and Dushanne muscular dystrophy (Mdx) mouse, which is a model mouse for muscular dystrophy, was stained with fibronectin to observe fibrosis occurring in the skeletal muscle (FIG. 1). In untreated Mdx mice, fibrotic, white, scary, characteristic muscles were observed. Skeletal muscle fibrosis was suppressed in Mdx mice (Mdx + RSV) to which RSV (4 g / kg powder feed) was orally administered for 32 weeks. In Mdx mice (Mdx + RSV + Tad) administered orally for 32 weeks in combination with RSV (4 g / kg diet) and Tad (70 mg / kg diet), skeletal muscle fibrosis is further suppressed, Was also normalizing. However, in muscle mass, Tad did not enhance the effect of RSV. In the control mice, neither untreated nor RSV and Tad administered had skeletal muscle fibrosis. The upper row shows a double-stained image of actin and fibronectin, and the lower row shows the ratio of fibronectin staining and the ratio of the cross-sectional area of skeletal muscle to the control. In the graph, 1 is an untreated control mouse, 2 is a control mouse treated with RSV and Tad, 3 is an untreated Mdx mouse, 4 is an Mdx mouse administered with RSV, 5 is an Mdx mouse administered with RSV and Tad Show.

このように、RSVはMdxマウス骨格筋の線維化を抑制し、筋量を増加させる。そして、TadのRSVとの併用は、RSVによる線維化抑制効果をさらに増強するが、RSVによる筋量増加効果には影響しないといえる。   Thus, RSV inhibits Mdx mouse skeletal muscle fibrosis and increases muscle mass. And, it can be said that the combined use of Tad with RSV further enhances the fibrosis suppression effect by RSV, but does not affect the muscle mass increase effect by RSV.

さらに、未処置のMdxマウス、RSV投与したMdxマウス、およびRSVとTadとを投与したMdxマウスから収集した骨格筋におけるフィブロネクチンmRNAの発現量を調べた。RSVを、単独もしくはTadと併用によって、粉末状にした食餌に混合してMdxマウスに32週間投与し、続いて、大腿二頭筋のフィブロネクチンmRNAの発現量を定量PCR法で検討した(図2)。図は、βアクチンmRNAに対する割合を示すグラフであり、グラフにおいて、1は未処置のコントロールマウス、2はRSVおよびTadで処置したコントロールマウス、3は未処置のMdxマウス、4はRSV投与したMdxマウス、5はRSVとTadとを投与したMdxマウスを示す。示されるように、RSV単独およびRSVとTadとの併用はいずれもフィブロネクチンmRNAレベルを減少させた。1、2、4および5におけるmRNAレベルは、3におけるmRNAレベルと有意に差があった(p<0.05)。   Furthermore, the expression level of fibronectin mRNA in skeletal muscle collected from untreated Mdx mice, Mdx mice administered with RSV, and Mdx mice administered with RSV and Tad was examined. RSV alone or in combination with Tad was mixed with powdered diet and administered to Mdx mice for 32 weeks, and then the expression level of fibronectin mRNA in biceps femoris was examined by quantitative PCR (FIG. 2). ). The figure is a graph showing the ratio to β-actin mRNA, wherein 1 is an untreated control mouse, 2 is a control mouse treated with RSV and Tad, 3 is an untreated Mdx mouse, and 4 is an RSV-administered Mdx. Mice and 5 are Mdx mice administered with RSV and Tad. As shown, both RSV alone and the combination of RSV and Tad reduced fibronectin mRNA levels. The mRNA levels at 1, 2, 4 and 5 were significantly different from the mRNA levels at 3 (p <0.05).

このように、RSVは、タンパク質レベルだけではなくmRNAレベルにおいても、Mdxマウス骨格筋の線維化を抑制する。上述したように、RSVはSIRT1を活性化することが知られている。すなわち、SIRT1が活性化されることによって、Mdxマウス骨格筋の線維化が抑制されたといえる。また、TadのRSVとの併用は、RSVによる線維化抑制効果をさらに増強する。   Thus, RSV suppresses fibrosis of Mdx mouse skeletal muscle not only at the protein level but also at the mRNA level. As described above, RSV is known to activate SIRT1. That is, it can be said that fibrosis of Mdx mouse skeletal muscle was suppressed by activating SIRT1. Moreover, the combined use of Tad with RSV further enhances the fibrosis suppression effect by RSV.

〔2:骨格筋細胞におけるSIRT1の活性化〕
上述したように、SIRT1は、心筋細胞において細胞質から核内へ移行した後にその活性を示すことが知られている。骨格筋細胞においてもまた、SIRT1が細胞質から核内へ移行して活性化している可能性がある。そこで、骨格筋細胞におけるSIRT1の局在およびその変化を調べた。
[2: Activation of SIRT1 in skeletal muscle cells]
As described above, SIRT1 is known to show its activity after translocation from the cytoplasm into the nucleus in cardiomyocytes. In skeletal muscle cells, SIRT1 may also be activated by moving from the cytoplasm into the nucleus. Therefore, the localization of SIRT1 in skeletal muscle cells and changes thereof were examined.

図3に示すように、骨格筋細胞(C2C12細胞)においても、SIRT1は細胞質にて発現していることがわかった。そして、Tadを用いて細胞を前処理することによって核内でのSIRT1の発現が増加した。上述したように、Tadは、生体内でcGMPを分解するホスホジエステラーゼ5(PDE−5)の酵素活性を阻害する。そこで、cGMPキナーゼを活性化させるcGMPアナログであるCPT−cGMP(CPT)を用いて、同様に細胞を前処理したところ、Tadの場合と同様に、核内でのSIRT1の発現が増加した。図には、SIRT1抗体を用いた免疫染色像(上)、および核内のSIRT1の相対値(下)を示した。   As shown in FIG. 3, it was found that SIRT1 was also expressed in the cytoplasm in skeletal muscle cells (C2C12 cells). And the expression of SIRT1 in the nucleus increased by pretreating the cells with Tad. As described above, Tad inhibits the enzyme activity of phosphodiesterase 5 (PDE-5), which degrades cGMP in vivo. Therefore, when CPT-cGMP (CPT), which is a cGMP analog that activates cGMP kinase, was pretreated in the same manner, SIRT1 expression in the nucleus increased as in the case of Tad. The figure shows an immunostained image using SIRT1 antibody (upper) and the relative value of SIRT1 in the nucleus (lower).

さらに、イムノブロッティング法を用いて、図3に示した免疫染色の結果を検証した(図4)。図には、細胞分画法で分画した細胞質画分と核画分とに対するウエスタンブロットの結果(上)、および核画分または細胞質画分におけるSIRT1の相対値(下)を示した。核画分については、ラミニンを核タンパク質のコントロールとして、細胞質画分については、GAPDHを細胞質タンパク質のコントロールとして用いた。示されるように、C2C12細胞に対してTadを前処理しておくことによって細胞質でのSIRT1の発現は有意に減少し、逆に、核でのSIRT1の発現が有意に増加したことがわかる。   Furthermore, the immunostaining results shown in FIG. 3 were verified using an immunoblotting method (FIG. 4). The figure shows the results of Western blotting for the cytoplasmic fraction and the nuclear fraction (top) fractionated by the cell fractionation method, and the relative value of SIRT1 in the nuclear fraction or cytoplasmic fraction (bottom). For the nuclear fraction, laminin was used as a nuclear protein control, and for the cytoplasmic fraction, GAPDH was used as a cytoplasmic protein control. As shown, it can be seen that pretreatment of Tad on C2C12 cells significantly reduced SIRT1 expression in the cytoplasm and conversely increased SIRT1 expression in the nucleus.

これらのことから、細胞内cGMPを増加させると、骨格筋細胞におけるSIRT1の核での発現が増強されるといえる。ただし、TadまたはCPTを前処理しても、細胞全体におけるSIRT1の総発現量(mRNAおよびタンパク質の両方)には変化がない(図5)。これにより、細胞内cGMPを増加させると骨格筋細胞におけるSIRT1の核内移行が増強されており、SIRT1の活性化が促進されているということがわかった。   From these facts, it can be said that increasing intracellular cGMP enhances the expression of SIRT1 in skeletal muscle cells in the nucleus. However, pretreatment with Tad or CPT does not change the total expression level (both mRNA and protein) of SIRT1 in the whole cell (FIG. 5). Thus, it was found that increasing intracellular cGMP enhanced SIRT1 nuclear translocation in skeletal muscle cells and promoted SIRT1 activation.

〔3:マウス骨格筋におけるSIRT1の活性化〕
培養細胞において観察された、TadによるSIRT1の核内移行が、マウス生体内にて生じるか否かを確認した。Tad(70mg/kg粉末飼料)を1週間ddyマウスに経口投与した後に、マウスから骨格筋を収集し、SIRT1による免疫染色を行った(図6)。Aには、骨格筋におけるSIRT1の免疫染色像(左)およびその結果を数値化したグラフを示す。示されるように、マウス骨格筋においても、SIRT1の核での発現量が、コントロールマウスと比較してTad投与マウスにおいて優位に増加していた。これにより、細胞内cGMPを増加させると骨格筋細胞におけるSIRT1の核内移行が増強されており、SIRT1の活性化が促進されているということがわかった。
[3: Activation of SIRT1 in mouse skeletal muscle]
It was confirmed whether SIRT1 translocation into the nucleus by Tad observed in cultured cells occurred in the mouse body. After Tad (70 mg / kg powdered feed) was orally administered to ddy mice for 1 week, skeletal muscle was collected from the mice and immunostained with SIRT1 (FIG. 6). A shows an immunostained image of SIRT1 in skeletal muscle (left) and a graph in which the results are digitized. As shown, also in mouse skeletal muscle, the expression level of SIRT1 in the nucleus was significantly increased in Tad-administered mice compared to control mice. Thus, it was found that increasing intracellular cGMP enhanced SIRT1 nuclear translocation in skeletal muscle cells and promoted SIRT1 activation.

〔4:RSV配糖体の抗酸化活性〕
RSV、ならびにRSV配糖体である3−O−β−D−グリコシド(3G−RSV)および4’−O−β−D−グリコシド(4’G−RSV)の構造を図7に示す。RSVおよびRSV配糖体のラジカル消去活性(抗酸化活性)を調べた。
[4: Antioxidant activity of RSV glycoside]
FIG. 7 shows the structures of RSV and the RSV glycosides 3-O-β-D-glycoside (3G-RSV) and 4′-O-β-D-glycoside (4′G-RSV). The radical scavenging activity (antioxidant activity) of RSV and RSV glycosides was examined.

RSV配糖体を以下のように調製した。Murashige−Skoog(MS)基本培地に、3%スクロース、2,4−dichlorophenoxyacetic acidを最終濃度1ppmで添加した液体培地(100mL)に、新鮮重量20gの植物培養細胞を移し、120rpmにて25℃で4日間振盪培養した。その後、DMSO(100μL)に溶解した40μmol RSV(東京化成)を液体培地に添加し、同一条件下にて2日間培養した。   RSV glycosides were prepared as follows. A 20 g fresh weight of plant culture cells was transferred to a liquid medium (100 mL) to which 3% sucrose and 2,4-dichlorophenoxyacetic acid were added at a final concentration of 1 ppm to a Murashige-Skoog (MS) basic medium, and 120 rpm at 25 ° C. Cultured with shaking for 4 days. Thereafter, 40 μmol RSV (Tokyo Kasei) dissolved in DMSO (100 μL) was added to the liquid medium and cultured under the same conditions for 2 days.

培養後、ナイロンメッシュで培地と培養細胞とを濾別し、濾液を水飽和n−ブタノールで分配抽出し、細胞をホモジナイズした後にメタノールで静置抽出した。それぞれの有機相を減圧下にて濃縮し、メタノールで5.0mLに調製したものをサンプルとした。   After the culture, the medium and the cultured cells were separated by filtration with a nylon mesh, the filtrate was partitioned and extracted with water-saturated n-butanol, and the cells were homogenized and then statically extracted with methanol. Each organic phase was concentrated under reduced pressure and adjusted to 5.0 mL with methanol as a sample.

得られたサンプルを逆相HPLCにて分析し、変換物を確認した。この変換物を分取HPLCで単離・精製し、LC/MSおよびNMRを用いて構造解析を行って、3G−RSVおよび4’G−RSVであることを確認した。   The obtained sample was analyzed by reverse phase HPLC to confirm the conversion product. This converted product was isolated and purified by preparative HPLC, and subjected to structural analysis using LC / MS and NMR, and confirmed to be 3G-RSV and 4'G-RSV.

図8に、1,1−ジフェニル−2−ピクリルヒドラジル(DPPH)を用いた、RSV、3G−RSVおよび4’G−RSVのラジカル消去活性を示す。DPPHは、517nmに特異的な吸収波長を有している。抗酸化物質によってラジカルが奪われると、517nmの吸収が減少する。この反応を用いて、ラジカルの消去率を測定し、測定値に基づいて50%阻害濃度(IC50)を算出し、抗酸化活性を比較した。DDPHをメタノールに溶解し、0.15mMに調整した。RSVおよびRSV配糖体の二倍段階希釈(1/2〜1/512)の希釈系列サンプルを作製し、これらのサンプルとDDPH溶液とを500μLずつ混合/撹拌し、暗所にて室温で30分間反応させた後に、517nmにおける吸収を測定した。FIG. 8 shows the radical scavenging activity of RSV, 3G-RSV and 4′G-RSV using 1,1-diphenyl-2-picrylhydrazyl (DPPH). DPPH has a specific absorption wavelength at 517 nm. When radicals are deprived by antioxidants, the absorption at 517 nm decreases. Using this reaction, the radical scavenging rate was measured, 50% inhibitory concentration (IC 50 ) was calculated based on the measured value, and the antioxidant activity was compared. DDPH was dissolved in methanol and adjusted to 0.15 mM. Dilution series samples of 2-fold serial dilutions (1/2 to 1/512) of RSV and RSV glycosides were prepared, and 500 μL of these samples and DDPH solution were mixed / stirred at room temperature in the dark at room temperature. After reacting for minutes, the absorption at 517 nm was measured.

図8に示すように、RSV、3G−RSVおよび4’G−RSVのIC50は、それぞれ79μM、110μMおよび250μMであった。このように、3G−RSVはRSVに匹敵する高いラジカル消去活性を示すが、4’G−RSVのラジカル消去活性はこれらよりもかなり低いことがわかった。As shown in FIG. 8, the IC 50 of RSV, 3G-RSV and 4′G-RSV was 79 μM, 110 μM and 250 μM, respectively. Thus, although 3G-RSV shows a high radical scavenging activity comparable to RSV, it was found that the radical scavenging activity of 4′G-RSV is considerably lower than these.

〔5:RSV配糖体のヒストンH3脱アセチル化活性〕
RSV配糖体がRSVと同様にヒストンH3脱アセチル化活性を有しているか否かを調べた。
[5: Histone H3 deacetylation activity of RSV glycoside]
It was examined whether RSV glycosides have histone H3 deacetylation activity as in RSV.

マウス由来の筋肉芽細胞であるC2C12細胞を、10% FBS(MP Biomedicals Inc)および1% antibiotic−antimycotic mixed stock solution(Nacalai Tesque)を含む高グルコースのDMEM培地(Wako)を用いて、37℃、5%COの環境下にて培養した。C2C12 cells, which are myoblasts derived from mice, were cultured at 37 ° C. using a high glucose DMEM medium (Wako) containing 10% FBS (MP Biomedicals Inc) and 1% antibiotic-mixed stock solution (Nacalai Tesque). The culture was performed in an environment of 5% CO 2 .

Western Blottingのために、培養したC2C12細胞を、最終濃度100μMのRSVおよびRSV配糖体の存在下にて18時間培養し、100μMアンチマイシン(AA)を添加して6時間培養することによって、酸化ストレスを細胞に与えた。引き続く手順は定法に従った。用いた抗体は以下のとおりである:Monoclonal Anti- GAPDH Clone GAPDH-71.1 (SIGMA)、Anti-Histone H3 Acetylated (1-20) Rabbit pAb (Calbiochem)、Histone H3 antibody-ChIP Grade (ab1791) (Abcam)。   For Western Blotting, cultured C2C12 cells were cultured for 18 hours in the presence of RSV and RSV glycosides at a final concentration of 100 μM, and cultured for 6 hours with the addition of 100 μM antimycin (AA). Stress was applied to the cells. Subsequent procedures followed the standard method. The antibodies used were as follows: Monoclonal Anti-GAPDH Clone GAPDH-71.1 (SIGMA), Anti-Histone H3 Acetylated (1-20) Rabbit pAb (Calbiochem), Histone H3 antibody-ChIP Grade (ab1791) (Abcam) .

図9に示されるように、コントロール群(図中AA)に対して、3G−RSV処置群においてはヒストンH3脱アセチル化の促進作用が確認できなかったが、RSV処置群において、アセチル化ヒストンH3の有意な減少が観察され、4’G−RSV処置群では、RSV処置群よりも優れたヒストンH3脱アセチル化活性が観察された。このように、4’G−RSVが3G−RSVと比較してヒストンH3脱アセチル化を有意に促進することがわかった。   As shown in FIG. 9, the 3G-RSV treatment group did not confirm the action of promoting histone H3 deacetylation relative to the control group (AA in the figure), but the acetylated histone H3 in the RSV treatment group. A significant decrease was observed, and in the 4′G-RSV treatment group, histone H3 deacetylation activity superior to that in the RSV treatment group was observed. Thus, it was found that 4'G-RSV significantly promotes histone H3 deacetylation compared to 3G-RSV.

上述したように、SIRT1活性化因子は、NAD依存性ヒストン脱アセチル化酵素であるSir2ファミリータンパク質(すなわち、サーチュインタンパク質)を活性化する能力を有する因子であり、生体内においてサーチュインタンパク質が活性化されると、ヒストンH3の脱アセチル化が引き起こされる。RSVは、抗酸化物質としても知られているが、RSVと同程度の抗酸化活性を有する3G−RSVによって、ヒストンH3の脱アセチル化は引き起こされない。これらのことは、本実施例にて実証した筋ジストロフィーの治療効果があくまでもRSVのSIRT1活性化因子としての機能に基づくものであり、抗酸化物質としての機能に基づくものではないことを、本明細書を読んだ当業者は容易に理解する。そして、本実施例にてSIRT1活性化因子としてRSVを用いて本発明を説明しているが、本発明に利用可能なSIRT1活性化因子はRSVに限定されないことを、本明細書を読んだ当業者は容易に理解する。   As described above, the SIRT1 activator is a factor having an ability to activate a Sir2 family protein (that is, a sirtuin protein) that is an NAD-dependent histone deacetylase, and the sirtuin protein is activated in vivo. Then, deacetylation of histone H3 is caused. Although RSV is also known as an antioxidant substance, deacetylation of histone H3 is not caused by 3G-RSV having the same level of antioxidant activity as RSV. These facts indicate that the therapeutic effect of muscular dystrophy demonstrated in this example is based solely on the function of RSV as a SIRT1 activator and not on the function as an antioxidant. Those skilled in the art will readily understand. In the present example, the present invention is described using RSV as the SIRT1 activator. However, the present specification has read that the SIRT1 activator usable in the present invention is not limited to RSV. Contractors understand easily.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.

本発明を用いれば、筋ジストロフィーを処置することができ、特に、筋ジストロフィーにおける骨格筋の線維化状態を劇的に改善することができる。このように優れたツールを提供する本発明は、医学、薬学の分野において利用可能であり、医薬品、生化学試薬の開発に大いに寄与することができる。   By using the present invention, muscular dystrophy can be treated, and in particular, the fibrosis state of skeletal muscle in muscular dystrophy can be dramatically improved. The present invention providing such an excellent tool can be used in the fields of medicine and pharmacy and can greatly contribute to the development of pharmaceuticals and biochemical reagents.

Claims (2)

レスベラトロールまたはその4’−O−β−D−グリコシド(4’G−RSV)を有効成分として含んでいる、筋ジストロフィーにおける骨格筋の線維化を改善するための組成物。 A composition for improving fibrosis of skeletal muscle in muscular dystrophy, which contains resveratrol or its 4′-O-β-D-glycoside (4′G-RSV) as an active ingredient. CPT−cGMPまたはタダラフィルをさらに含んでいる、請求項1に記載の組成物。 The composition of claim 1 further comprising CPT-cGMP or tadalafil .
JP2012534017A 2010-09-14 2011-09-13 Composition for treating muscular dystrophy Active JP5850503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012534017A JP5850503B2 (en) 2010-09-14 2011-09-13 Composition for treating muscular dystrophy

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010205453 2010-09-14
JP2010205453 2010-09-14
JP2012534017A JP5850503B2 (en) 2010-09-14 2011-09-13 Composition for treating muscular dystrophy
PCT/JP2011/070894 WO2012036168A1 (en) 2010-09-14 2011-09-13 Composition for treating muscular dystrophy

Publications (2)

Publication Number Publication Date
JPWO2012036168A1 JPWO2012036168A1 (en) 2014-02-03
JP5850503B2 true JP5850503B2 (en) 2016-02-03

Family

ID=45831626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012534017A Active JP5850503B2 (en) 2010-09-14 2011-09-13 Composition for treating muscular dystrophy

Country Status (2)

Country Link
JP (1) JP5850503B2 (en)
WO (1) WO2012036168A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6452104B2 (en) * 2014-05-02 2019-01-16 オリザ油化株式会社 Fibronectin expression promoter
JP2017214322A (en) * 2016-05-31 2017-12-07 森永製菓株式会社 Gapdh gene expression enhancer and gapdh gene expression enhancing food composition
GB201617630D0 (en) 2016-10-18 2016-11-30 Cellcentric Ltd Pharmaceutical compounds
TWI796596B (en) 2018-02-13 2023-03-21 美商基利科學股份有限公司 Pd-1/pd-l1 inhibitors
GB201806320D0 (en) 2018-04-18 2018-05-30 Cellcentric Ltd Process
JP7242702B2 (en) 2018-04-19 2023-03-20 ギリアード サイエンシーズ, インコーポレイテッド PD-1/PD-L1 inhibitor
EP4234030A3 (en) 2018-07-13 2023-10-18 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
CN112955435A (en) 2018-10-24 2021-06-11 吉利德科学公司 PD-1/PD-L1 inhibitors
JP2022081702A (en) * 2019-01-25 2022-06-01 第一三共株式会社 Pyrazole compound

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009500357A (en) * 2005-07-07 2009-01-08 サートリス ファーマシューティカルズ, インコーポレイテッド Methods and related compositions for treating or preventing obesity, insulin resistance disorders and mitochondrial related disorders
JP2009511522A (en) * 2005-10-14 2009-03-19 ディーエスエム アイピー アセッツ ビー.ブイ. New use of nutraceutical composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009500357A (en) * 2005-07-07 2009-01-08 サートリス ファーマシューティカルズ, インコーポレイテッド Methods and related compositions for treating or preventing obesity, insulin resistance disorders and mitochondrial related disorders
JP2009511522A (en) * 2005-10-14 2009-03-19 ディーエスエム アイピー アセッツ ビー.ブイ. New use of nutraceutical composition

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6011054441; Asai Akihiro et al: 'Primary role of functional ischemia, quantitative evidence for the two-hit mechanism, and phosphodie' PloS one Vol. 2, No. 8, 2007, p. e806 *
JPN6012042696; ABDEL SALAM, E. et al: 'Markers of oxidative stress and aging in Duchene muscular dystrophy patients and the possible amelio' Acta Myologica Vol.26, No.1, 2007, p.14-21 *
JPN6012042698; Group Authors: Centers for Disease Control and Prevention (CDC): 'Prevalence of Duchenne/Becker muscular dystrophy among males aged 5-24 years - four states, 2007' MMWR. Morbidity and mortality weekly report Vol.58, No.40, 2009, p.1119-22 *
JPN7012003358; KUNO,A. et al: 'Rasveratrol, an Activator of Protein Deacetylase SIRT1, Suppresses Oxidative Stress-Induced Call Dea' Circulation Vol.118, No.18, 2008, p.S391 *

Also Published As

Publication number Publication date
WO2012036168A1 (en) 2012-03-22
JPWO2012036168A1 (en) 2014-02-03

Similar Documents

Publication Publication Date Title
JP5850503B2 (en) Composition for treating muscular dystrophy
Chen et al. Melatonin restores the osteoporosis-impaired osteogenic potential of bone marrow mesenchymal stem cells by preserving SIRT1-mediated intracellular antioxidant properties
Zheng et al. Hydroxytyrosol improves mitochondrial function and reduces oxidative stress in the brain of db/db mice: Role of AMP-activated protein kinase activation
CA2946825C (en) Muscle atrophy inhibitor containing quercetin glycoside
US20200121620A1 (en) Senolytic compounds
Zhang et al. Beneficial effects of sulforaphane treatment in Alzheimer's disease may be mediated through reduced HDAC1/3 and increased P75NTR expression
US9226937B2 (en) Compositions containing resveratrol and nucleotides
Zhou et al. Morin attenuates pyroptosis of nucleus pulposus cells and ameliorates intervertebral disc degeneration via inhibition of the TXNIP/NLRP3/Caspase-1/IL-1β signaling pathway
EP4233878A1 (en) Administration of nicotinamide mononucleotide in the treatment of dry eye
Liu et al. 6-Gingerol attenuates microglia-mediated neuroinflammation and ischemic brain injuries through Akt-mTOR-STAT3 signaling pathway
KR20130048768A (en) Resveratrol-containing compositions and methods of use
JP2015523362A (en) Administration of urolithin or its precursor enhances autophagy or extends lifespan
AU2021227591A1 (en) Methods of treating tuberous sclerosis complex with cannabidiol and everolimus
CN106456658A (en) Compositions of selenoorganic compounds and methods of use thereof
Zhou et al. SIRT3 retards intervertebral disc degeneration by anti-oxidative stress by activating the SIRT3/FOXO3/SOD2 signaling pathway.
Xiao et al. Reduction of lactoferrin aggravates neuronal ferroptosis after intracerebral hemorrhagic stroke in hyperglycemic mice
KR20020035855A (en) Brain cell or nerve cell protecting agents comprising ginseng
US20230025435A1 (en) Compositions and methods for increasing cellular vitality and longevity and decreasing molecular ageing
Kalvala et al. Role of Cannabidiol and Tetrahydrocannabivarin on Paclitaxel-induced neuropathic pain in rodents
Kim et al. Effect of Hibiscus syriacus Linnaeus extract and its active constituent, saponarin, in animal models of stress-induced sleep disturbances and pentobarbital-induced sleep
Wei et al. Discovery of coumarin-derived imino sulfonates as a novel class of potential cardioprotective agents
Subba et al. Targeting NRF2 in Type 2 diabetes mellitus and depression: Efficacy of natural and synthetic compounds
Punpai et al. HDAC inhibitor cowanin extracted from G. fusca induces apoptosis and autophagy via inhibition of the PI3K/Akt/mTOR pathways in Jurkat cells
Zhou et al. Salidroside protects pancreatic β-cells against pyroptosis by regulating the NLRP3/GSDMD pathway in diabetic conditions
Gong et al. Ononin ameliorates depression-like behaviors by regulating BDNF-TrkB-CREB signaling in vitro and in vivo

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151126

R150 Certificate of patent or registration of utility model

Ref document number: 5850503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250