JP5842596B2 - Positive electrode composition for non-aqueous electrolyte secondary battery and method for producing positive electrode slurry for non-aqueous electrolyte secondary battery - Google Patents

Positive electrode composition for non-aqueous electrolyte secondary battery and method for producing positive electrode slurry for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5842596B2
JP5842596B2 JP2011281166A JP2011281166A JP5842596B2 JP 5842596 B2 JP5842596 B2 JP 5842596B2 JP 2011281166 A JP2011281166 A JP 2011281166A JP 2011281166 A JP2011281166 A JP 2011281166A JP 5842596 B2 JP5842596 B2 JP 5842596B2
Authority
JP
Japan
Prior art keywords
positive electrode
oxide
transition metal
electrolyte secondary
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011281166A
Other languages
Japanese (ja)
Other versions
JP2013131437A (en
Inventor
勝行 北野
勝行 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2011281166A priority Critical patent/JP5842596B2/en
Publication of JP2013131437A publication Critical patent/JP2013131437A/en
Application granted granted Critical
Publication of JP5842596B2 publication Critical patent/JP5842596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池等の非水電解液二次電池に用いられる正極組成物に関する。また、本発明は、かかる正極組成物を用いた非水電解液二次電池用正極スラリーの製造方法に関する。   The present invention relates to a positive electrode composition used for a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery. Moreover, this invention relates to the manufacturing method of the positive electrode slurry for non-aqueous electrolyte secondary batteries using this positive electrode composition.

近年、VTR、携帯電話、ノートパソコン等の携帯機器の普及及び小型化が進み、その電源用にリチウムイオン二次電池等の非水電解液二次電池が用いられるようになってきている。更に、非水電解液二次電池は、最近の環境問題への対応から、電気自動車等の動力用電池としても注目されている。   In recent years, portable devices such as VTRs, cellular phones, and notebook personal computers have become widespread and miniaturized, and non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have been used for the power supply. Furthermore, non-aqueous electrolyte secondary batteries are attracting attention as power batteries for electric vehicles and the like because of recent responses to environmental problems.

リチウムイオン二次電池用正極活物質としてはLiCoO(コバルト酸リチウム)が4V級の二次電池を構成できるものとして一般的に広く採用されている。LiCoOを正極活物質として用いた場合、放電容量が約160mA/gのリチウムイオン二次電池が実用化されている。 As a positive electrode active material for a lithium ion secondary battery, LiCoO 2 (lithium cobaltate) is generally widely used as a material capable of constituting a 4V class secondary battery. When LiCoO 2 is used as the positive electrode active material, a lithium ion secondary battery having a discharge capacity of about 160 mA / g has been put into practical use.

しかし、LiCoOの原料であるコバルトは希少資源であり且つ偏在しているため、コストがかかり原料供給について不安が生じる。 However, since cobalt, which is a raw material for LiCoO 2 , is a rare resource and is unevenly distributed, it is expensive and anxiety arises regarding the supply of the raw material.

こうした事情に応じ、LiNiO(ニッケル酸リチウム)も検討されている。LiNiOは実用的には4V級で放電容量約200mA/gの二次電池を実現可能である。しかし、充放電時の正極活物質の結晶構造の安定性に難がある。 In response to such circumstances, LiNiO 2 (lithium nickelate) has also been studied. LiNiO 2 can practically realize a secondary battery with a discharge capacity of about 200 mA / g with a 4V class. However, the stability of the crystal structure of the positive electrode active material during charge / discharge is difficult.

そこでLiNiOのニッケル原子を他元素で置換し、結晶構造の安定性を向上させつつLiCoO並みの放電容量を低コストで実現する研究もなされている(特許文献1〜4)。例えばLiNi0.5Mn0.5などニッケルとマンガンを必須元素としたニッケルマンガン酸リチウムの正極活物質では約160mA/gの放電容量が得られている。また、LiNiOのニッケル原子をマンガン及びコバルトで置換したニッケルコバルトマンガン酸リチウムも知られている(特許文献1)。 Therefore, studies have been made to realize a discharge capacity equivalent to LiCoO 2 at low cost while replacing the nickel atom of LiNiO 2 with another element to improve the stability of the crystal structure (Patent Documents 1 to 4). For example, a discharge capacity of about 160 mA / g is obtained with a positive electrode active material of lithium nickel manganate having essential elements of nickel and manganese, such as LiNi 0.5 Mn 0.5 O 2 . Further, nickel cobalt lithium manganate in which nickel atoms of LiNiO 2 are substituted with manganese and cobalt is also known (Patent Document 1).

特開2007−188878号公報JP 2007-188878 A 特開2002−075367号公報Japanese Patent Laid-Open No. 2002-075367 特開2000−106174号公報JP 2000-106174 A 特開2003−142101号公報JP 2003-142101 A

ところで、非水電解液二次電池の正極は、正極活物質と、PVDF(ポリフッ化ビニリデン)等の結着剤と、NMP(ノルマルメチル−2−ピロリドン)等の分散媒とを混合して正極スラリーにし、その正極スラリーをアルミ箔などの集電体に塗布することで形成される。このとき、正極スラリー中の正極活物質からリチウムが遊離し、そのリチウムが正極活物質や結着剤に不純物として含まれる水分と反応して水酸化リチウムが生成する。生成した水酸化リチウムと結着剤との反応は、正極スラリーのゲル化を引き起こし、その結果、取り扱いが困難になり、製造工程において不良品が発生しやすくなるという問題を有する。   By the way, the positive electrode of the non-aqueous electrolyte secondary battery is obtained by mixing a positive electrode active material, a binder such as PVDF (polyvinylidene fluoride), and a dispersion medium such as NMP (normal methyl-2-pyrrolidone). It is formed by forming a slurry and applying the positive electrode slurry to a current collector such as an aluminum foil. At this time, lithium is liberated from the positive electrode active material in the positive electrode slurry, and the lithium reacts with moisture contained as an impurity in the positive electrode active material and the binder to generate lithium hydroxide. The reaction between the generated lithium hydroxide and the binder causes gelation of the positive electrode slurry, and as a result, it becomes difficult to handle and has a problem that defective products are easily generated in the manufacturing process.

一方、ニッケルマンガン酸リチウムは、コバルトを用いないので、コバルト酸リチウムやニッケルコバルトマンガン酸リチウム等に比べて低コストであるが、出力特性が低い傾向にある。ニッケルマンガン酸リチウムがニッケルコバルトマンガン酸リチウム並みの高い出力特性を得るためには、ニッケルマンガン酸リチウム中のニッケルの比率を高くする必要がある。しかし、ニッケル比率を高くすると、正極スラリー作製時における正極活物質からの遊離リチウム量の増加を招き、その結果、正極スラリーのゲル化が顕著となる。そのため、ニッケルマンガン酸リチウムを正極活物質として用いる場合に、高い出力特性と正極スラリーのゲル化回避とを両立することができずにいた。   On the other hand, since lithium nickel manganate does not use cobalt, the cost is lower than lithium cobaltate, nickel cobalt lithium manganate, and the like, but output characteristics tend to be low. In order for lithium nickel manganate to obtain output characteristics as high as those of nickel cobalt lithium manganate, it is necessary to increase the ratio of nickel in the lithium nickel manganate. However, when the nickel ratio is increased, the amount of free lithium from the positive electrode active material at the time of preparing the positive electrode slurry is increased, and as a result, gelation of the positive electrode slurry becomes remarkable. For this reason, when lithium nickel manganate is used as the positive electrode active material, it has been impossible to achieve both high output characteristics and avoidance of gelation of the positive electrode slurry.

本発明はこれらの事情に鑑みてなされたものである。本発明の目的は、低コストであり、取り扱いが容易であり、不良品が発生しにくく、且つ非水電解液二次電池の出力特性を向上させることができる正極組成物を提供することにある。更に、本発明の目的は、低コストであり、ゲル化が抑制されることにより不良品が発生しにくく、且つ非水電解液二次電池の出力特性を向上させることができる正極スラリーの製造方法を提供することにある。   The present invention has been made in view of these circumstances. An object of the present invention is to provide a positive electrode composition that is low in cost, easy to handle, is unlikely to generate defective products, and can improve output characteristics of a nonaqueous electrolyte secondary battery. . Furthermore, an object of the present invention is a method for producing a positive electrode slurry that is low in cost, is less likely to cause defective products due to suppression of gelation, and can improve output characteristics of a non-aqueous electrolyte secondary battery. Is to provide.

本発明者らは、上記目的を達成するために鋭意検討を重ね、正極活物質である特定組成のリチウム遷移金属複合酸化物と、酸性酸化物とを含む正極組成物を用いることによって、正極スラリーのゲル化が抑えられることを見出し、本発明を完成するに至った。   The inventors of the present invention have made extensive studies in order to achieve the above object, and by using a positive electrode composition containing a lithium transition metal composite oxide having a specific composition as a positive electrode active material and an acidic oxide, a positive electrode slurry The present inventors have found that gelation of the resin can be suppressed and have completed the present invention.

本発明の非水電解液二次電池用正極組成物は、正極活物質である一般式LiNiMn1−b(但し1<a<1.2、0.5≦b≦0.9、0≦c≦0.02、MはW、Nb、Zr、Tiからなる群より選択される少なくとも1種の元素)で表されるリチウム遷移金属複合酸化物と、酸性酸化物とを含むことを特徴とする。 Non-aqueous electrolyte secondary battery positive electrode composition of the present invention is a cathode active material formula Li a Ni b Mn 1-b M c O 2 ( where 1 <a <1.2,0.5 ≦ b ≦ 0.9, 0 ≦ c ≦ 0.02, M is at least one element selected from the group consisting of W, Nb, Zr and Ti) and an acidic oxide It is characterized by including.

前記酸性酸化物は、酸化タングステン、酸化モリブデン、酸化スズ及び酸化ホウ素からなる群より選択される少なくとも1種であることが好ましく、酸化タングステンであることがより好ましい。   The acidic oxide is preferably at least one selected from the group consisting of tungsten oxide, molybdenum oxide, tin oxide and boron oxide, and more preferably tungsten oxide.

前記酸性酸化物は金属元素及び/又は半金属元素の酸化物であることが好ましい。前記リチウム遷移金属複合酸化物に対する前記酸性酸化物中の金属元素及び/又は半金属元素の割合は、3.0mol%以下であることが好ましく、0.2mol%〜2.0mol%であることがより好ましい。   The acidic oxide is preferably an oxide of a metal element and / or a metalloid element. The ratio of the metal element and / or metalloid element in the acidic oxide to the lithium transition metal composite oxide is preferably 3.0 mol% or less, and preferably 0.2 mol% to 2.0 mol%. More preferred.

前記一般式中の元素Mは、W(タングステン)であることが好ましい。   The element M in the general formula is preferably W (tungsten).

前記リチウム遷移金属複合酸化物は、中心粒径が4μm〜20μmの粒子の形態を有することが好ましく、前記酸性酸化物は、中心粒径が0.1μm〜2μmの粒子の形態を有することが好ましい。   The lithium transition metal composite oxide preferably has a particle shape with a center particle size of 4 μm to 20 μm, and the acidic oxide preferably has a particle shape with a center particle size of 0.1 μm to 2 μm. .

本発明の非水電解液二次電池用正極スラリーの製造方法は、正極活物質である一般式LiNiMn1−b(但し1<a<1.2、0.5≦b≦0.9、0≦c≦0.02、MはW、Nb、Zr、Tiから選択される少なくとも1種の元素)で表されるリチウム遷移金属複合酸化物粒子と、酸性酸化物粒子とを混合して正極組成物を得る工程と、前記正極組成物を、結着剤及び分散媒と混合して正極スラリーを得る工程とを含むことを特徴とする。 Method of manufacturing a non-aqueous electrolyte cathode slurry for a secondary battery of the present invention is a cathode active material formula Li a Ni b Mn 1-b M c O 2 ( where 1 <a <1.2,0.5 ≦ b ≦ 0.9, 0 ≦ c ≦ 0.02, M is at least one element selected from W, Nb, Zr, and Ti), and an acidic oxide A step of obtaining a positive electrode composition by mixing particles, and a step of obtaining a positive electrode slurry by mixing the positive electrode composition with a binder and a dispersion medium.

本発明の正極組成物は上記の特徴を備えているため、低コストであり、製造時のゲル化が抑制されることにより取り扱いが容易であり、不良品が発生しにくく、且つ非水電解液二次電池の出力特性を向上させることができる。   Since the positive electrode composition of the present invention has the above-described features, it is low in cost, is easy to handle due to suppression of gelation during production, is less likely to cause defective products, and is a non-aqueous electrolyte. The output characteristics of the secondary battery can be improved.

また、本発明の正極スラリーの製造方法は上記の特徴を備えているため、低コストであり、製造時のゲル化が抑制されることにより取り扱いが容易であり、不良品が発生しにくく、且つ非水電解液二次電池の出力特性を向上させることができる。   In addition, since the method for producing a positive electrode slurry of the present invention has the above-described features, it is low in cost, is easy to handle due to suppression of gelation during production, is unlikely to generate defective products, and The output characteristics of the nonaqueous electrolyte secondary battery can be improved.

図1は、正極組成物におけるリチウム遷移金属複合酸化物に対する酸性酸化物中のタングステン元素の割合と、水酸化リチウムの含有量との相関を示すものである。FIG. 1 shows the correlation between the ratio of tungsten element in the acidic oxide to the lithium transition metal composite oxide in the positive electrode composition and the lithium hydroxide content. 図2は、正極組成物におけるリチウム遷移金属複合酸化物に対する酸性酸化物中のタングステン元素の種々の割合に対する、正極スラリー粘度の経時変化を示すものである。FIG. 2 shows changes over time in the viscosity of the positive electrode slurry with respect to various ratios of tungsten element in the acidic oxide to the lithium transition metal composite oxide in the positive electrode composition. 図3は、別の正極組成物におけるリチウム遷移金属複合酸化物に対する酸性酸化物中のタングステン元素の種々の割合に対する、正極スラリー粘度の経時変化を示すものである。FIG. 3 shows changes over time in the viscosity of the positive electrode slurry with respect to various ratios of tungsten element in the acidic oxide to the lithium transition metal composite oxide in another positive electrode composition. 図4は、正極組成物におけるリチウム遷移金属複合酸化物に対する酸性酸化物中のタングステン元素の割合と、−25℃における直流内部抵抗(DC−IR)の相関を示すものである。FIG. 4 shows the correlation between the ratio of the tungsten element in the acidic oxide to the lithium transition metal composite oxide in the positive electrode composition and the direct current internal resistance (DC-IR) at −25 ° C.

以下、本発明の正極組成物について、実施の形態及び実施例を用いて詳細に説明する。但し、本発明はこれら実施の形態及び実施例に限定されるものではない。   Hereinafter, the positive electrode composition of the present invention will be described in detail with reference to embodiments and examples. However, the present invention is not limited to these embodiments and examples.

本発明の非水電解液二次電池用正極組成物は、ニッケル及びマンガンを必須とし且つコバルトを組成中に含有しないリチウム遷移金属複合酸化物の正極活物質と、酸性酸化物とを含むものである。   The positive electrode composition for a non-aqueous electrolyte secondary battery according to the present invention includes a positive electrode active material of a lithium transition metal composite oxide that essentially contains nickel and manganese and does not contain cobalt in the composition, and an acidic oxide.

本発明に係る正極活物質であるリチウム遷移金属複合酸化物の組成は、一般式LiNiMn1−b(1<a<1.2、0.5≦b≦0.9、0≦c≦0.02、MはW、Nb、Zr、Tiから選択される少なくとも1種の元素)で表される。aについては、1より大きいと充放電容量及び出力特性を向上させることができる。また、1.2より小さいと、活物質の焼結を抑制することができる。bについては、0.5以上であると放電容量及び出力特性を向上させることができる。また、0.9以下であると結晶構造が安定化することにより製品の安全性を向上させることができ、且つ製造コストを抑えることができる。cについては、0以上0.02以下であると出力特性を向上させることができる。これらa、b及びcについて、好ましい範囲は、1.12≦a≦1.18、0.58≦b≦0.62、0.007≦c≦0.011であり、充放電容量と出力特性の点で有利である。 The composition of the lithium-transition metal composite oxide is a positive electrode active material according to the present invention have the general formula Li a Ni b Mn 1-b M c O 2 (1 <a <1.2,0.5 ≦ b ≦ 0. 9, 0 ≦ c ≦ 0.02, and M is represented by at least one element selected from W, Nb, Zr, and Ti. When a is larger than 1, charge / discharge capacity and output characteristics can be improved. Moreover, when smaller than 1.2, sintering of an active material can be suppressed. As for b, when it is 0.5 or more, the discharge capacity and the output characteristics can be improved. Further, when it is 0.9 or less, the crystal structure is stabilized, whereby the safety of the product can be improved and the manufacturing cost can be suppressed. As for c, when it is 0 or more and 0.02 or less, the output characteristics can be improved. For these a, b and c, preferred ranges are 1.12 ≦ a ≦ 1.18, 0.58 ≦ b ≦ 0.62, 0.007 ≦ c ≦ 0.011, and the charge / discharge capacity and output characteristics This is advantageous.

前記一般式中の元素MがW(タングステン)であると、過焼結が抑制されるので中心粒径等の物性が制御し易い。ニッケルマンガン酸リチウムはニッケルコバルトマンガン酸リチウムに比べて低温で焼結する傾向にあるので、MがWであることは特に好ましい。   When the element M in the general formula is W (tungsten), oversintering is suppressed, so that physical properties such as the center particle size can be easily controlled. Since nickel nickel manganate tends to sinter at a lower temperature than nickel cobalt lithium manganate, it is particularly preferred that M is W.

本発明に係るリチウム遷移金属複合酸化物は公知の手法で適宜製造することができる。例えば、高温で分解して酸化物となり得る、構成元素を含んだ原料粉末を混合機で混合し、700℃〜1100℃で焼成して得ることができる。   The lithium transition metal composite oxide according to the present invention can be appropriately produced by a known method. For example, it can be obtained by mixing raw material powder containing constituent elements that can be decomposed at high temperatures into oxides, and firing at 700 ° C. to 1100 ° C.

リチウム遷移金属複合酸化物は、一般に粒子の形態を有する。リチウム遷移金属複合酸化物が粒子の形態を有する場合、その中心粒径は、好ましくは4μm〜20μmである。中心粒径が4μm以上であるとハンドリングが容易であるので好ましい。中心粒径が20μm以下であると、放電容量及び出力特性を向上させることができるので好ましい。また、リチウム遷移金属複合酸化物粒子は、その中心粒径が後述の酸性酸化物粒子の中心粒径より相対的に大きいことが好ましい。更に出力特性の点から、リチウム遷移金属複合酸化物粒子の中心粒径は4μm〜7μmであることがより好ましい。本発明に係る「リチウム遷移金属複合酸化物粒子」は、上述のリチウム遷移金属複合酸化物から実質的になる粒子を意味し、リチウム遷移金属複合酸化物に加えて、不可避に混入し得る微量の不純物を含んでもよい。   The lithium transition metal composite oxide generally has a particle form. When the lithium transition metal composite oxide has a particle form, the center particle diameter is preferably 4 μm to 20 μm. A center particle size of 4 μm or more is preferable because handling is easy. A center particle size of 20 μm or less is preferable because the discharge capacity and output characteristics can be improved. Moreover, it is preferable that the center particle diameter of lithium transition metal composite oxide particles is relatively larger than the center particle diameter of acidic oxide particles described later. Furthermore, from the viewpoint of output characteristics, the center particle diameter of the lithium transition metal composite oxide particles is more preferably 4 μm to 7 μm. The “lithium transition metal composite oxide particle” according to the present invention means a particle substantially composed of the above-mentioned lithium transition metal composite oxide, and in addition to the lithium transition metal composite oxide, a trace amount that can be inevitably mixed. Impurities may be included.

本明細書において「中心粒径」とは、体積基準の粒度分布において、その積算値が分布の50%を示す粒子径を意味する(「メディアン径」、「中位径」、「50%径」等とも呼ぶ)。   In the present specification, the “center particle size” means a particle size whose integrated value represents 50% of the distribution in the volume-based particle size distribution (“median diameter”, “median diameter”, “50% diameter”). And so on).

酸性酸化物とは、塩基(アルカリ)と反応して塩を生じる酸化物を指す。本願においては両性酸化物についても、塩基と反応するという点で酸性酸化物に含めるものとする。   An acidic oxide refers to an oxide that reacts with a base (alkali) to form a salt. In the present application, the amphoteric oxide is also included in the acidic oxide in that it reacts with a base.

本発明に係る酸性酸化物は、金属元素及び/又は半金属元素の酸化物であることが好ましい。酸性酸化物を構成する金属元素及び/又は半金属元素としては、タングステン、モリブデン、バナジウム、スズ、ホウ素、マンガン、テルル、アルミニウム、亜鉛、マグネシウムなどがある。水酸化リチウムとの反応性、反応前後の物質の電気伝導性等から、タングステン、モリブデン、スズ、ホウ素が好ましく、その中でもタングステンはニッケルマンガン酸リチウム系のリチウム遷移金属複合酸化物と相性が良く、特に好ましい。本発明において好ましい酸性酸化物は、酸化タングステン、酸化モリブデン、酸化スズ及び酸化ホウ素からなる群より選択される少なくとも1種であり、より好ましくは酸化タングステンである。本発明に係る酸性酸化物として、1種類の酸性酸化物を用いてよく、あるいは2種類以上の酸性酸化物の混合物を用いてもよい。   The acidic oxide according to the present invention is preferably an oxide of a metal element and / or a metalloid element. Examples of the metal element and / or metalloid element constituting the acidic oxide include tungsten, molybdenum, vanadium, tin, boron, manganese, tellurium, aluminum, zinc, and magnesium. Tungsten, molybdenum, tin, and boron are preferred because of their reactivity with lithium hydroxide, the electrical conductivity of the material before and after the reaction, etc. Particularly preferred. A preferable acidic oxide in the present invention is at least one selected from the group consisting of tungsten oxide, molybdenum oxide, tin oxide and boron oxide, and more preferably tungsten oxide. As the acidic oxide according to the present invention, one kind of acidic oxide may be used, or a mixture of two or more kinds of acidic oxides may be used.

酸性酸化物は、一般に粒子の形態を有する。酸性酸化物が粒子の形態を有する場合、その中心粒径は小さいことが好ましいが、小さすぎれば凝集する傾向にあるので適宜調整する。好ましくは0.1μm〜2μm、より好ましくは0.5μm〜1.5μmである。なお、本発明に係る「酸性酸化物粒子」は、上述の酸性酸化物から実質的になる粒子を意味し、酸性酸化物に加えて、不可避に混入し得る微量の不純物を含んでもよい。   Acidic oxides generally have the form of particles. When the acidic oxide has the form of particles, the center particle size is preferably small, but if it is too small, it tends to agglomerate, so it is adjusted appropriately. Preferably they are 0.1 micrometer-2 micrometers, More preferably, they are 0.5 micrometer-1.5 micrometers. The “acidic oxide particles” according to the present invention means particles substantially composed of the above-mentioned acidic oxides, and may contain a trace amount of impurities that can be inevitably mixed in addition to the acidic oxides.

次に本発明の非水電解液二次電池用正極組成物の製造方法について説明する。本発明の正極組成物は、正極活物質であるリチウム遷移金属複合酸化物粒子と酸性酸化物粒子とを混合することによって調製することができる。   Next, the manufacturing method of the positive electrode composition for nonaqueous electrolyte secondary batteries of this invention is demonstrated. The positive electrode composition of the present invention can be prepared by mixing lithium transition metal composite oxide particles that are positive electrode active materials and acidic oxide particles.

混合手法としては、高速撹拌によって酸性酸化物の被覆層をメカノケミカルに正極活物質表面に設けてもよいが、極端な分布の偏りがない程度に混合されれば十分である。   As a mixing method, an acidic oxide coating layer may be mechanochemically provided on the surface of the positive electrode active material by high-speed stirring, but it is sufficient if they are mixed to such an extent that there is no extreme distribution bias.

正極組成物中の酸性酸化物の含有量は特に限定されるものではないが、少なすぎれば正極スラリーのゲル化抑制効果や出力特性が不十分であり、多すぎれば正極中の正極活物質の割合が低下するだけであるので、目的に応じて適宜調整する。   The content of the acidic oxide in the positive electrode composition is not particularly limited, but if it is too small, the gelling suppression effect and output characteristics of the positive electrode slurry are insufficient, and if it is too large, the content of the positive electrode active material in the positive electrode is insufficient. Since the ratio only decreases, it is adjusted as appropriate according to the purpose.

本明細書において、正極組成物中の酸性酸化物の含有量は、リチウム遷移金属複合酸化物に対する酸性酸化物中の金属元素及び/又は半金属元素の割合として表される。リチウム遷移金属複合酸化物に対する酸性酸化物中の金属元素及び/又は半金属元素の割合は、正極スラリー作製時の結着剤および正極活物質の量を考慮すると、3.0mol%以下であると出力特性等の各種特性のバランスがよく好ましい。リチウム遷移金属複合酸化物に対する酸性酸化物中の金属元素及び/又は半金属元素の割合は、より好ましくは0.2mol%以上2.0mol%以下である(図3参照)。なお、2種類以上の酸性酸化物の混合物を本発明に係る酸性酸化物として用いる場合、上述の「リチウム遷移金属複合酸化物に対する酸性酸化物中の金属元素及び/又は半金属元素の割合」は、リチウム遷移金属複合酸化物に対する、酸性酸化物混合物中の全ての金属元素及び/又は半金属元素の合計の割合を意味する。   In this specification, content of the acidic oxide in a positive electrode composition is represented as a ratio of the metal element and / or metalloid element in an acidic oxide with respect to lithium transition metal complex oxide. The ratio of the metal element and / or metalloid element in the acidic oxide to the lithium transition metal composite oxide is 3.0 mol% or less in consideration of the amount of the binder and the positive electrode active material at the time of preparing the positive electrode slurry. Good balance of various characteristics such as output characteristics is preferable. The ratio of the metal element and / or metalloid element in the acidic oxide to the lithium transition metal composite oxide is more preferably 0.2 mol% or more and 2.0 mol% or less (see FIG. 3). When a mixture of two or more kinds of acidic oxides is used as the acidic oxide according to the present invention, the above-mentioned “ratio of metal elements and / or metalloid elements in the acidic oxide to the lithium transition metal composite oxide” is Means the ratio of the sum of all metal elements and / or metalloid elements in the acidic oxide mixture to the lithium transition metal composite oxide.

本発明の非水電解液二次電池用正極スラリーの製造方法は以下の通りである。
上述の方法で製造した正極組成物を、結着剤及び分散媒と混合することによって正極スラリーを製造する。結着剤としては、例えばPVDF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)等を用いることができる。結着剤は、正極スラリー全体の重量を基準として、好ましくは2wt%以上10wt%以下の割合で混合する。分散媒としては、例えばNMP(ノルマルメチル−2−ピロリドン)を用いることができる。分散媒の混合量は製造条件に応じて適宜調節することができるが、正極スラリー全体の重量を基準として30wt%以上70wt%以下であることが好ましい。結着剤及び分散媒に加えて、アセチレンブラック等の導電剤を混合してよい。導電剤は、正極スラリー全体の重量を基準として、好ましくは2wt%以上10wt%以下の割合で混合する。
その他目的に応じて各種添加剤を添加してもよい。
The manufacturing method of the positive electrode slurry for non-aqueous electrolyte secondary batteries of the present invention is as follows.
A positive electrode slurry is manufactured by mixing the positive electrode composition manufactured by the above-mentioned method with a binder and a dispersion medium. As the binder, for example, PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), or the like can be used. The binder is preferably mixed at a ratio of 2 wt% to 10 wt% based on the weight of the whole positive electrode slurry. As the dispersion medium, for example, NMP (normal methyl-2-pyrrolidone) can be used. The mixing amount of the dispersion medium can be appropriately adjusted according to the production conditions, but is preferably 30 wt% or more and 70 wt% or less based on the weight of the entire positive electrode slurry. In addition to the binder and the dispersion medium, a conductive agent such as acetylene black may be mixed. The conductive agent is preferably mixed at a ratio of 2 wt% or more and 10 wt% or less based on the weight of the whole positive electrode slurry.
In addition, various additives may be added according to the purpose.

上述のようにして正極スラリーを製造することにより低コスト化が達成され、また、製造時のゲル化が抑制されることにより取り扱いが容易になり、不良品が発生しにくくなる。更に、本発明に係る正極スラリーを用いて製造した正極を有する非水電解二次電池は高い出力特性を有する。   By producing the positive electrode slurry as described above, cost reduction is achieved, and gelation during production is suppressed, so that handling becomes easy and defective products are less likely to occur. Furthermore, the non-aqueous electrolytic secondary battery having a positive electrode manufactured using the positive electrode slurry according to the present invention has high output characteristics.

上記構成と効果の関係について、特定の理論に限定される訳ではないが凡そ以下の通りであると推測される。まず、正極作製時に正極スラリー中で正極活物質からリチウムが遊離し、その遊離したリチウムが、正極活物質および結着剤に不純物として含まれる水分と反応して水酸化リチウムが生成する。この水酸化リチウムが正極組成物に含まれる酸性酸化物と優先的に反応することにより、水酸化リチウムと結着剤との反応が抑制され、その結果、正極スラリーのゲル化が抑制されると考えられる。その結果、正極スラリーのゲル化が顕著となるニッケル比率の高い正極活物質を用いる場合であっても、正極スラリーのゲル化を抑制することができ、不良品が発生しにくくなる。更に、酸性酸化物は水酸化リチウムと反応する、しないに関わらず、正極内で導電剤としての役割を果たし、正極全体の抵抗を下げ、結果として電池の出力特性向上に寄与する。   Although it is not necessarily limited to a specific theory about the relationship between the said structure and an effect, it is estimated that it is as follows. First, lithium is liberated from the positive electrode active material in the positive electrode slurry during the production of the positive electrode, and the liberated lithium reacts with moisture contained as impurities in the positive electrode active material and the binder to produce lithium hydroxide. When this lithium hydroxide reacts preferentially with the acidic oxide contained in the positive electrode composition, the reaction between the lithium hydroxide and the binder is suppressed, and as a result, the gelation of the positive electrode slurry is suppressed. Conceivable. As a result, even when a positive electrode active material having a high nickel ratio in which gelation of the positive electrode slurry becomes significant, gelation of the positive electrode slurry can be suppressed, and defective products are less likely to occur. Further, regardless of whether or not the acidic oxide reacts with lithium hydroxide, it plays a role as a conductive agent in the positive electrode, lowers the resistance of the entire positive electrode, and consequently contributes to improvement of the output characteristics of the battery.

[実施例1]
反応槽に、硫酸ニッケル、硫酸マンガンから調製したニッケルイオン、マンガンイオンを含有する水溶液を用意した。水溶液中のNi:Mnモル比は、6:4となるように調整した。水溶液のpHが9〜12となるように水酸化ナトリウム水溶液を反応槽に滴下し、ニッケル−マンガン共沈水酸化物を得た。得られた共沈水酸化物をろ過、水洗し、300℃の酸素含有気流中で熱処理することで、ニッケルとマンガンの複合酸化物((Ni0.600Mn0.400)を得た。ニッケルとマンガンの複合酸化物、炭酸リチウム及び酸化タングステン(VI)を、Li:(Ni+Mn):Wモル比=1.18:1:0.01となるように混合し、混合原料を得た。得られた混合原料を大気雰囲気下1020℃で9時間焼成し、焼成物を得た。得られた焼成物を粉砕し、乾式篩にかけ、中心粒径が5.0μmであり組成式Li1.18Ni0.6Mn0.40.01で表されるリチウム遷移金属複合酸化物粒子を得た。
[Example 1]
An aqueous solution containing nickel ions and manganese ions prepared from nickel sulfate and manganese sulfate was prepared in a reaction vessel. The Ni: Mn molar ratio in the aqueous solution was adjusted to 6: 4. A sodium hydroxide aqueous solution was dropped into the reaction vessel so that the aqueous solution had a pH of 9 to 12 to obtain a nickel-manganese coprecipitated hydroxide. The obtained coprecipitated hydroxide is filtered, washed with water, and heat-treated in an oxygen-containing gas stream at 300 ° C. to obtain a composite oxide of nickel and manganese ((Ni 0.600 Mn 0.400 ) 3 O 4 ). It was. A composite oxide of nickel and manganese, lithium carbonate, and tungsten oxide (VI) were mixed at a Li: (Ni + Mn): W molar ratio = 1.18: 1: 0.01 to obtain a mixed raw material. The obtained mixed raw material was fired at 1020 ° C. for 9 hours in an air atmosphere to obtain a fired product. The obtained fired product is pulverized, passed through a dry sieve, a lithium transition metal composite having a center particle size of 5.0 μm and a composition formula of Li 1.18 Ni 0.6 Mn 0.4 W 0.01 O 2 Oxide particles were obtained.

得られたリチウム遷移金属複合酸化物粒子と、酸性酸化物粒子としての中心粒径が1.0μmの酸化タングステン(VI)とを、リチウム遷移金属複合酸化物に対する酸化タングステン(VI)中のタングステン元素の割合が0.2mol%となるよう高速せん断型ミキサーで混合し、実施例1の正極組成物を得た。   The obtained lithium transition metal composite oxide particles and tungsten oxide (VI) having a central particle size of 1.0 μm as acidic oxide particles are converted into tungsten element in tungsten oxide (VI) with respect to the lithium transition metal composite oxide. The positive electrode composition of Example 1 was obtained by mixing with a high-speed shearing mixer so that the ratio of γ was 0.2 mol%.

[実施例2]
酸性酸化物粒子として酸化タングステン(VI)を、リチウム遷移金属複合酸化物に対する酸化タングステン(VI)中のタングステン元素の割合が0.5mol%となるよう混合したこと以外は実施例1と同様にして、実施例2の正極組成物を得た。
[Example 2]
Except that tungsten oxide (VI) was mixed as acidic oxide particles so that the ratio of tungsten element in tungsten oxide (VI) to lithium transition metal composite oxide was 0.5 mol%, the same as in Example 1. The positive electrode composition of Example 2 was obtained.

[実施例3]
酸性酸化物粒子として酸化タングステン(VI)を、リチウム遷移金属複合酸化物に対する酸化タングステン(VI)中のタングステン元素の割合が1.0mol%となるよう混合したこと以外は実施例1と同様にして、実施例3の正極組成物を得た。
[Example 3]
Except that tungsten oxide (VI) was mixed as acidic oxide particles so that the ratio of tungsten element in tungsten oxide (VI) to lithium transition metal composite oxide was 1.0 mol%, the same as in Example 1. The positive electrode composition of Example 3 was obtained.

[実施例4]
酸性酸化物粒子として酸化タングステン(VI)を、リチウム遷移金属複合酸化物に対する酸化タングステン(VI)中のタングステン元素の割合が2.0mol%となるよう混合したこと以外は実施例1と同様にして、実施例4の正極組成物を得た。
[Example 4]
Except that tungsten oxide (VI) was mixed as acidic oxide particles so that the ratio of tungsten element in tungsten oxide (VI) to lithium transition metal composite oxide was 2.0 mol%, the same as in Example 1. The positive electrode composition of Example 4 was obtained.

[実施例5]
酸性酸化物粒子として酸化タングステン(VI)を、リチウム遷移金属複合酸化物に対する酸化タングステン(VI)中のタングステン元素の割合が5.0mol%となるよう混合したこと以外は実施例1と同様にして、実施例5の正極組成物を得た。
[Example 5]
Except that tungsten oxide (VI) was mixed as acidic oxide particles so that the ratio of tungsten element in tungsten oxide (VI) to lithium transition metal composite oxide was 5.0 mol%, the same as in Example 1. Thus, a positive electrode composition of Example 5 was obtained.

[実施例6]
反応槽に、硫酸ニッケル、硫酸マンガンから調製したニッケルイオン、マンガンイオンを含有する水溶液を用意した。水溶液中のNi:Mnモル比は、6:4となるように調整した。水溶液のpHが9〜12となるように水酸化ナトリウム水溶液を反応槽に滴下し、ニッケル−マンガン共沈水酸化物を得た。得られた共沈水酸化物をろ過、水洗し、300℃の酸素含有気流中で熱処理することで、ニッケルとマンガンの複合酸化物((Ni0.600Mn0.400)を得た。ニッケルとマンガンの複合酸化物、水酸化リチウムを、Li:(Ni+Mn)モル比=1.18:1となるように混合し、混合原料を得た。得られた混合原料を大気雰囲気下890℃で9時間焼成し、焼成物を得た。得られた焼成物を粉砕し、乾式篩にかけ、中心粒径が5.0μmであり組成式Li1.18Ni0.6Mn0.4で表されるリチウム遷移金属複合酸化物粒子を得た。
[Example 6]
An aqueous solution containing nickel ions and manganese ions prepared from nickel sulfate and manganese sulfate was prepared in a reaction vessel. The Ni: Mn molar ratio in the aqueous solution was adjusted to 6: 4. A sodium hydroxide aqueous solution was dropped into the reaction vessel so that the aqueous solution had a pH of 9 to 12 to obtain a nickel-manganese coprecipitated hydroxide. The obtained coprecipitated hydroxide is filtered, washed with water, and heat-treated in an oxygen-containing gas stream at 300 ° C. to obtain a composite oxide of nickel and manganese ((Ni 0.600 Mn 0.400 ) 3 O 4 ). It was. A composite oxide of nickel and manganese and lithium hydroxide were mixed so that the Li: (Ni + Mn) molar ratio = 1.18: 1, thereby obtaining a mixed raw material. The obtained mixed raw material was fired at 890 ° C. for 9 hours in an air atmosphere to obtain a fired product. The obtained fired product was pulverized, passed through a dry sieve, and a lithium transition metal composite oxide particle having a center particle size of 5.0 μm and a composition formula of Li 1.18 Ni 0.6 Mn 0.4 O 2 was obtained. Obtained.

得られたリチウム遷移金属複合酸化物粒子と、酸性酸化物粒子としての中心粒径が1.0μmの酸化タングステン(VI)とを、リチウム遷移金属複合酸化物に対する酸化タングステン(VI)中のタングステン元素の割合が0.2mol%となるよう高速せん断型ミキサーで混合し、実施例6の正極組成物を得た。   The obtained lithium transition metal composite oxide particles and tungsten oxide (VI) having a central particle size of 1.0 μm as acidic oxide particles are converted into tungsten element in tungsten oxide (VI) with respect to the lithium transition metal composite oxide. The positive electrode composition of Example 6 was obtained by mixing with a high-speed shearing mixer so that the ratio of A was 0.2 mol%.

[実施例7]
酸性酸化物粒子として酸化タングステン(VI)を、リチウム遷移金属複合酸化物に対する酸化タングステン(VI)中のタングステン元素の割合が1.0mol%となるよう混合したこと以外は実施例6と同様にして、実施例7の正極組成物を得た。
[Example 7]
Except that tungsten oxide (VI) was mixed as acidic oxide particles so that the ratio of tungsten element in tungsten oxide (VI) to lithium transition metal composite oxide was 1.0 mol%, the same as in Example 6. The positive electrode composition of Example 7 was obtained.

[実施例8]
酸性酸化物粒子として酸化タングステン(VI)を、リチウム遷移金属複合酸化物に対する酸化タングステン(VI)中のタングステン元素の割合が2.0mol%となるよう混合したこと以外は実施例6と同様にして、実施例8の正極組成物を得た。
[Example 8]
Except that tungsten oxide (VI) was mixed as acidic oxide particles so that the ratio of tungsten element in tungsten oxide (VI) to lithium transition metal composite oxide was 2.0 mol%, the same as in Example 6. The positive electrode composition of Example 8 was obtained.

[比較例1]
実施例1において得られるリチウム遷移金属複合酸化物粒子(正極活物質)のみを、比較例1の正極組成物とした。
[Comparative Example 1]
Only the lithium transition metal composite oxide particles (positive electrode active material) obtained in Example 1 were used as the positive electrode composition of Comparative Example 1.

[比較例2]
実施例6において得られるリチウム遷移金属複合酸化物(正極活物質)のみを、比較例2の正極組成物とした。
[Comparative Example 2]
Only the lithium transition metal composite oxide (positive electrode active material) obtained in Example 6 was used as the positive electrode composition of Comparative Example 2.

実施例1〜8並びに比較例1及び2の正極組成物の構成を表1に示す。   Table 1 shows the configurations of the positive electrode compositions of Examples 1 to 8 and Comparative Examples 1 and 2.

Figure 0005842596
Figure 0005842596

[水酸化リチウム含有量測定]
実施例1〜4及び6〜8並びに比較例1及び2の正極組成物における水酸化リチウムの含有量を以下の方法で測定した。
[Lithium hydroxide content measurement]
The lithium hydroxide content in the positive electrode compositions of Examples 1 to 4 and 6 to 8 and Comparative Examples 1 and 2 was measured by the following method.

まず、正極組成物10.0gをスチロール製の蓋付瓶に入れ、純水50mlを加えた後、蓋をして1時間振とう撹拌した。撹拌終了後上澄み液を5Cタイプ(JIS P 3801に規定される5種Cに相当)の濾紙で濾過した。最初の濾液数mlは捨て、以降の濾液を試験管に20ml採取した。採取した濾液を200mlコニカルビーカーに移し、純水で50mlに希釈した。希釈液に1%フェノールフタレイン溶液を加え、0.025規定の硫酸を、溶液が無色になるまで滴下した。滴下した0.025規定硫酸の量に基づき、水酸化リチウム含有量を算出した。結果を表2および図1に示す。   First, 10.0 g of the positive electrode composition was put into a bottle with a lid made of styrene, 50 ml of pure water was added, and the lid was covered and stirred for 1 hour with shaking. After completion of the stirring, the supernatant liquid was filtered with a filter paper of 5C type (corresponding to 5 types C defined in JIS P 3801). The first few ml of the filtrate was discarded, and 20 ml of the subsequent filtrate was collected in a test tube. The collected filtrate was transferred to a 200 ml conical beaker and diluted to 50 ml with pure water. A 1% phenolphthalein solution was added to the diluted solution, and 0.025 N sulfuric acid was added dropwise until the solution became colorless. Based on the amount of 0.025 N sulfuric acid dropped, the lithium hydroxide content was calculated. The results are shown in Table 2 and FIG.

Figure 0005842596
Figure 0005842596

表2及び図1より、リチウム遷移金属複合酸化物に対する酸化タングステン(VI)中のタングステン元素の割合が増加するほど、即ち正極組成物中の酸性酸化物含有量が増加するほど、正極スラリーのゲル化の原因となり得る水酸化リチウムの含有量が減少していることが分かる。   From Table 2 and FIG. 1, as the ratio of the tungsten element in the tungsten oxide (VI) to the lithium transition metal composite oxide increases, that is, as the acidic oxide content in the positive electrode composition increases, the gel of the positive electrode slurry. It can be seen that the content of lithium hydroxide, which can cause crystallization, is reduced.

[正極スラリー粘度測定]
実施例3〜5、7及び8並びに比較例1及び2の正極組成物を用いて作製した正極スラリーの粘度を以下のようにして測定した。
[Positive slurry viscosity measurement]
The viscosity of the positive electrode slurry produced using the positive electrode compositions of Examples 3 to 5, 7 and 8 and Comparative Examples 1 and 2 was measured as follows.

正極組成物30g、PVDF(ポリフッ化ビニリデン)1.57g、NMP(ノルマルメチル−2−ピロリドン)12.48gを150mlのポリエチレン容器に入れ、常温(約25℃)下で5分間混練した。混練後、得られたスラリーの粘度を速やかにE型粘度計にて測定した。ブレードタイプはコーンプレートタイプを使用し、ローターの回転速度は5rpmで行った。こうして初期粘度(ゼロ時間における粘度)の測定値を得た。   30 g of the positive electrode composition, 1.57 g of PVDF (polyvinylidene fluoride) and 12.48 g of NMP (normal methyl-2-pyrrolidone) were placed in a 150 ml polyethylene container and kneaded at room temperature (about 25 ° C.) for 5 minutes. After kneading, the viscosity of the obtained slurry was quickly measured with an E-type viscometer. The blade type was a cone plate type, and the rotational speed of the rotor was 5 rpm. Thus, a measured value of the initial viscosity (viscosity at zero time) was obtained.

次に、ポリエチレン容器内のスラリーを60℃恒温槽内に静置し、24時間後、48時間後、72時間後に再度E型粘度計で粘度測定を行った。なお、各測定前に常温下で2分間混練を行った。結果を表3並びに図2及び3に示す。   Next, the slurry in the polyethylene container was left in a constant temperature bath at 60 ° C., and the viscosity was measured again with an E-type viscometer after 24 hours, 48 hours, and 72 hours. In addition, it knead | mixed for 2 minutes under normal temperature before each measurement. The results are shown in Table 3 and FIGS.

Figure 0005842596
Figure 0005842596

図2は、正極活物質組成がLi1.18Ni0.6Mn0.40.01である場合の正極スラリーにおける粘度変化の様子を示している。図3は、正極活物質組成がLi1.18Ni0.6Mn0.4である場合の正極スラリーにおける粘度変化の様子を示している。いずれの場合においても、酸性酸化物を含有していない比較例と比較して、酸性酸化物を含有する実施例の正極スラリーは、粘度増加が抑制された。また、リチウム遷移金属複合酸化物に対する酸化タングステン(VI)中のタングステン元素の割合が増加するほど、即ち正極組成物中の酸性酸化物含有量が増加するほど、粘度増加の抑制効果が大きくなった。これは、酸化タングステン(VI)の添加により、上述のように正極組成物中の水酸化リチウム含有量が減少したことによるものであると考えられる。 FIG. 2 shows a change in viscosity in the positive electrode slurry when the positive electrode active material composition is Li 1.18 Ni 0.6 Mn 0.4 W 0.01 O 2 . FIG. 3 shows a change in viscosity in the positive electrode slurry when the positive electrode active material composition is Li 1.18 Ni 0.6 Mn 0.4 O 2 . In any case, the viscosity increase was suppressed in the positive electrode slurry of the example containing the acidic oxide as compared with the comparative example not containing the acidic oxide. In addition, as the ratio of the tungsten element in the tungsten oxide (VI) to the lithium transition metal composite oxide increases, that is, as the acidic oxide content in the positive electrode composition increases, the effect of suppressing the increase in viscosity becomes larger. . This is considered to be due to the decrease in lithium hydroxide content in the positive electrode composition as described above due to the addition of tungsten oxide (VI).

[非水電解液二次電池の作製]
実施例3〜5、7及び8並びに比較例1及び2の正極組成物を用いて、以下の手順で非水電解液二次電池を作製した。
[Preparation of non-aqueous electrolyte secondary battery]
Using the positive electrode compositions of Examples 3 to 5, 7 and 8, and Comparative Examples 1 and 2, non-aqueous electrolyte secondary batteries were produced by the following procedure.

正極組成物85重量部と、アセチレンブラック10重量部と、PVDF5重量部とをNMPに分散・溶解し、混練して正極スラリーを調製した。得られた正極スラリーをアルミニウム箔に塗布し、乾燥後ロールプレス機で圧縮成形し、所定サイズに裁断することにより正極を得た。   85 parts by weight of the positive electrode composition, 10 parts by weight of acetylene black, and 5 parts by weight of PVDF were dispersed and dissolved in NMP and kneaded to prepare a positive electrode slurry. The obtained positive electrode slurry was applied to an aluminum foil, dried, compression-molded with a roll press, and cut into a predetermined size to obtain a positive electrode.

チタン酸リチウム粉末90重量部と、アセチレンブラック3重量部と、VGCF(気相成長炭素繊維、登録商標)2.0重量部と、PVDF5.0重量部とを、NMPに分散させて負極スラリーを調製した。得られた負極スラリーをアルミニウム箔に塗布し、乾燥後ロールプレス機で圧縮成形し、所定サイズに裁断することにより負極を得た。   90 parts by weight of lithium titanate powder, 3 parts by weight of acetylene black, 2.0 parts by weight of VGCF (vapor-grown carbon fiber, registered trademark) and 5.0 parts by weight of PVDF are dispersed in NMP to form a negative electrode slurry. Prepared. The obtained negative electrode slurry was applied to an aluminum foil, dried, compression-molded with a roll press, and cut into a predetermined size to obtain a negative electrode.

EC(エチレンカーボネート)とMEC(メチルエチルカーボネート)を体積比3:7で混合して混合溶媒とした。得られた混合溶媒に六フッ化リン酸リチウム(LiPF)をその濃度が1mol/lになるよう溶解させて、非水電解液を得た。 EC (ethylene carbonate) and MEC (methyl ethyl carbonate) were mixed at a volume ratio of 3: 7 to obtain a mixed solvent. Lithium hexafluorophosphate (LiPF 6 ) was dissolved in the obtained mixed solvent so as to have a concentration of 1 mol / l to obtain a nonaqueous electrolytic solution.

セパレータとして多孔性ポリエチレンフィルムを用いた。   A porous polyethylene film was used as a separator.

上記正極と負極の集電体に、それぞれリード電極を取り付けたのち120℃で真空乾燥を行った。次いで、正極と負極との間にセパレータを配し、袋状のラミネートパックにそれらを収納した。収納後60℃で真空乾燥して各部材に吸着した水分を除去した。真空乾燥後、ラミネートパック内に、先述の非水電解液を注入し、封止することによって、評価用のラミネートタイプの非水電解液二次電池を得た。   After the lead electrodes were attached to the positive and negative electrode current collectors, vacuum drying was performed at 120 ° C. Next, a separator was disposed between the positive electrode and the negative electrode, and they were stored in a bag-shaped laminate pack. After storage, the moisture adsorbed on each member was removed by vacuum drying at 60 ° C. After the vacuum drying, the above-described non-aqueous electrolyte solution was injected into the laminate pack and sealed to obtain a laminate-type non-aqueous electrolyte secondary battery for evaluation.

[DC−IR測定]
このようにして得られた実施例3〜5、7及び8並びに比較例1及び2に係る非水電解液二次電池の各々について、電流及び電位を以下の要領で測定し、−25℃における直流内部抵抗(DC−IR)を求めた。
[DC-IR measurement]
For each of the non-aqueous electrolyte secondary batteries according to Examples 3 to 5, 7 and 8 and Comparative Examples 1 and 2 thus obtained, the current and potential were measured in the following manner, and at −25 ° C. The direct current internal resistance (DC-IR) was determined.

得られた電池に微弱電流でエージングを行い、正極及び負極に電解質を十分なじませた。その後、高電流を流し、再び微弱電流を流した。計10回、充電−放電を行った。10回目の充電時に出た電池容量を(1)とし、次いで、(1)の4割まで充電した。   The obtained battery was aged with a weak current, and the electrolyte was sufficiently applied to the positive electrode and the negative electrode. Thereafter, a high current was applied and a weak current was applied again. Charge-discharge was performed 10 times in total. The battery capacity output at the time of the 10th charge was set to (1), and then charged to 40% of (1).

充電後の電池を−25℃に設定した恒温槽内に入れ、6時間置いた後、放電方向に0.02A、0.04A、0.06Aの電流を流した。横軸に流した電流値、縦軸に到達した電圧を示し、交点を結んだ直線の傾きを−25℃ DC−IR値とした。結果を表4および図4に示す。   The battery after charging was placed in a thermostat set at −25 ° C. and left for 6 hours, and then currents of 0.02 A, 0.04 A, and 0.06 A were passed in the discharging direction. The value of current flowing on the horizontal axis and the voltage reached on the vertical axis are shown, and the slope of the straight line connecting the intersections is defined as -25 ° C DC-IR value. The results are shown in Table 4 and FIG.

Figure 0005842596
Figure 0005842596

表4及び図4より、正極活物質と酸性酸化物とを混合して正極組成物とすることによって−25℃ DC−IRの値が低下することがわかる。しかし、正極活物質組成がLi1.18Ni0.6Mn0.40.01である場合、リチウム遷移金属複合酸化物に対する酸化タングステン(VI)中のタングステン(W)の割合が3.0mol%を超えると、酸化タングステン(VI)を加えない場合と比較して−25℃ DC−IRの値が増加する傾向にあることが分かる。 From Table 4 and FIG. 4, it can be seen that the value of −25 ° C. DC-IR is lowered by mixing the positive electrode active material and the acidic oxide to form the positive electrode composition. However, when the positive electrode active material composition is Li 1.18 Ni 0.6 Mn 0.4 W 0.01 O 2 , the ratio of tungsten (W) in tungsten oxide (VI) to the lithium transition metal composite oxide is When it exceeds 3.0 mol%, it turns out that the value of -25 degreeC DC-IR tends to increase compared with the case where tungsten oxide (VI) is not added.

正極組成物中の酸性酸化物の適切な含有量は酸性酸化物の種類や正極活物質組成によって異なるが、リチウム遷移金属複合酸化物に対する酸化タングステン(VI)中のタングステン(W)の割合は3.0mol%以下であることが好ましく、0.2mol%以上2.0mol%以下であることがより好ましいことが図3から分かる。   The appropriate content of acidic oxide in the positive electrode composition varies depending on the type of acidic oxide and the composition of the positive electrode active material, but the ratio of tungsten (W) in tungsten oxide (VI) to lithium transition metal composite oxide is 3 3 is preferably 0.0 mol% or less, more preferably 0.2 mol% or more and 2.0 mol% or less.

本発明の非水電解液二次電池用正極組成物は、非水電解液二次電池に利用することができる。本発明によって得られる正極スラリーを用いた非水電液二次電池は、安価で、出力特性が向上し、さらに不良品が発生しにくいので、携帯電話、ノート型パソコン、デジタルカメラ等のモバイル機器だけでなく、電気自動車用バッテリー等の高出力、大型用途の電源に特に好適に利用可能である。   The positive electrode composition for a non-aqueous electrolyte secondary battery of the present invention can be used for a non-aqueous electrolyte secondary battery. The non-aqueous electrolyte secondary battery using the positive electrode slurry obtained by the present invention is inexpensive, has improved output characteristics, and is less likely to cause defective products, so only mobile devices such as mobile phones, notebook computers, digital cameras, etc. In addition, the present invention can be particularly suitably used for a high output power source such as a battery for an electric vehicle and a large-sized power source.

Claims (4)

正極活物質である一般式
LiNiMn1−b
(但し1<a<1.2、0.5≦b≦0.9、0≦c≦0.02、MはW、Nb、Zr、Tiからなる群より選択される少なくとも1種の元素)で表されるリチウム遷移金属複合酸化物と、酸化タングステンとを含み、
前記リチウム遷移金属複合酸化物に対する前記酸化タングステン中のタングステン元素の割合が、0.2mol%〜2.0mol%である非水電解液二次電池用正極組成物。
As a cathode active material formula Li a Ni b Mn 1-b M c O 2
(Where 1 <a <1.2, 0.5 ≦ b ≦ 0.9, 0 ≦ c ≦ 0.02, M is at least one element selected from the group consisting of W, Nb, Zr, and Ti) lithium transition metal composite oxide represented in, and a tungsten oxide seen including,
The positive electrode composition for nonaqueous electrolyte secondary batteries whose ratio of the tungsten element in the said tungsten oxide with respect to the said lithium transition metal complex oxide is 0.2 mol%-2.0 mol% .
前記一般式中の前記MがWである請求項1に記載の非水電解液二次電池用正極組成物。 The positive electrode composition for a non-aqueous electrolyte secondary battery according to claim 1, wherein the M in the general formula is W. 前記リチウム遷移金属複合酸化物は、中心粒径が4μm〜20μmの粒子の形態を有し、前記酸化タングステンは、中心粒径が0.1μm〜2μmの粒子の形態を有する請求項1または2に記載の非水電解液二次電池用正極組成物。 The lithium transition metal composite oxide has the form of a mean particle diameter of 4μm~20μm particles, the tungsten oxide to claim 1 or 2 center particle size is in the form of particles of 0.1μm~2μm The positive electrode composition for nonaqueous electrolyte secondary batteries as described. 正極活物質である一般式
LiNiMn1−b
(但し1<a<1.2、0.5≦b≦0.9、0≦c≦0.02、MはW、Nb、Zr、Tiからなる群より選択される少なくとも1種の元素)で表されるリチウム遷移金属複合酸化物粒子を、リチウム遷移金属複合酸化物に対するタングステン元素の割合が0.2mol%〜2.0mol%である酸化タングステン粒子と混合して正極組成物を得る工程と、
前記正極組成物を、結着剤及び分散媒と混合して正極スラリーを得る工程と
を含む非水電解液二次電池用正極スラリーの製造方法。
As a cathode active material formula Li a Ni b Mn 1-b M c O 2
(Where 1 <a <1.2, 0.5 ≦ b ≦ 0.9, 0 ≦ c ≦ 0.02, M is at least one element selected from the group consisting of W, Nb, Zr, and Ti) Mixing the lithium transition metal composite oxide particles represented by the above with tungsten oxide particles in which the ratio of the tungsten element to the lithium transition metal composite oxide is 0.2 mol% to 2.0 mol% to obtain a positive electrode composition; ,
A method for producing a positive electrode slurry for a non-aqueous electrolyte secondary battery, comprising: mixing the positive electrode composition with a binder and a dispersion medium to obtain a positive electrode slurry.
JP2011281166A 2011-12-22 2011-12-22 Positive electrode composition for non-aqueous electrolyte secondary battery and method for producing positive electrode slurry for non-aqueous electrolyte secondary battery Active JP5842596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011281166A JP5842596B2 (en) 2011-12-22 2011-12-22 Positive electrode composition for non-aqueous electrolyte secondary battery and method for producing positive electrode slurry for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011281166A JP5842596B2 (en) 2011-12-22 2011-12-22 Positive electrode composition for non-aqueous electrolyte secondary battery and method for producing positive electrode slurry for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2013131437A JP2013131437A (en) 2013-07-04
JP5842596B2 true JP5842596B2 (en) 2016-01-13

Family

ID=48908824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011281166A Active JP5842596B2 (en) 2011-12-22 2011-12-22 Positive electrode composition for non-aqueous electrolyte secondary battery and method for producing positive electrode slurry for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5842596B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067522A1 (en) * 2014-10-28 2016-05-06 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JPWO2016136212A1 (en) * 2015-02-27 2017-12-07 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US20180048014A1 (en) * 2015-04-22 2018-02-15 Panasonic Intellectual Property Management Co. Ltd. Non-aqueous electrolyte secondary battery
JP6799813B2 (en) * 2015-11-30 2020-12-16 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
JP6819245B2 (en) * 2016-11-30 2021-01-27 三洋電機株式会社 A method for manufacturing a positive electrode plate for a non-aqueous electrolyte secondary battery, a method for manufacturing a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery.
EP3933983A4 (en) * 2019-02-28 2023-01-11 SM Lab Co., Ltd. Positive active material, method for manufacturing same and lithium secondary battery comprising positive electrode comprising positive active material
CN111430683A (en) 2020-01-17 2020-07-17 蜂巢能源科技有限公司 Cobalt-free cathode material of lithium ion battery, preparation method of cobalt-free cathode material and lithium ion battery
JP2023022611A (en) 2021-08-03 2023-02-15 住友化学株式会社 Manufacturing method for positive electrode active material for lithium secondary battery and manufacturing method for positive electrode for lithium secondary battery
CN116525815B (en) * 2023-06-30 2023-11-17 宜宾锂宝新材料有限公司 Spherical lithium nickel manganese oxide positive electrode material, preparation method thereof and composite positive electrode material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066330A (en) * 2004-08-30 2006-03-09 Shin Kobe Electric Mach Co Ltd Cathode active material for nonaqueous electrolyte solution secondary battery, nonaqueous electrolyte solution secondary battery, and manufacturing method of cathode active material
CN102290573B (en) * 2007-03-30 2015-07-08 索尼株式会社 Cathode active material, cathode and nonaqueous electrolyte battery
JP4920475B2 (en) * 2007-03-30 2012-04-18 ソニー株式会社 Positive electrode active material, positive electrode and non-aqueous electrolyte battery
JP5617663B2 (en) * 2011-01-27 2014-11-05 旭硝子株式会社 Cathode active material for lithium ion secondary battery and method for producing the same
JP2013222305A (en) * 2012-04-16 2013-10-28 Research Organization Of Information & Systems Information management system for emergencies

Also Published As

Publication number Publication date
JP2013131437A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5382061B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery and positive electrode slurry using the positive electrode composition
JP5842596B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery and method for producing positive electrode slurry for non-aqueous electrolyte secondary battery
JP6286855B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery
JP6524651B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP6575048B2 (en) The positive electrode composition for nonaqueous electrolyte secondary batteries, the nonaqueous electrolyte secondary battery, and the manufacturing method of the positive electrode composition for nonaqueous electrolyte secondary batteries.
JP4951638B2 (en) Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
US10516159B2 (en) Positive electrode active material for nonaqueous secondary battery
JP6554780B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery and method for producing the same
JP2011138621A (en) Manufacturing method of positive electrode of nonaqueous electrolyte secondary battery
WO2017034001A1 (en) Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing same, and nonaqueous electrolyte secondary cell
JP7262419B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6624631B2 (en) Lithium transition metal composite oxide and method for producing the same
JP6743920B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP5658058B2 (en) Lithium ion secondary battery
JP6852747B2 (en) A method for producing a positive electrode composition for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, and a positive electrode composition for a non-aqueous electrolyte secondary battery.
JP2015065154A (en) Positive electrode active material for nonaqueous secondary batteries, and method for manufacturing the same
JP6273707B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
CN111788723B (en) Positive electrode slurry for lithium ion battery
JP6156078B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6597167B2 (en) Positive electrode composition for non-aqueous secondary battery
JP2015022913A (en) Method for producing composition for forming negative electrode active material layer
JP5958119B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery
JP2016062788A (en) Positive electrode material for lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

R150 Certificate of patent or registration of utility model

Ref document number: 5842596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250