JP5836823B2 - 燃料電池モジュール - Google Patents

燃料電池モジュール Download PDF

Info

Publication number
JP5836823B2
JP5836823B2 JP2012017309A JP2012017309A JP5836823B2 JP 5836823 B2 JP5836823 B2 JP 5836823B2 JP 2012017309 A JP2012017309 A JP 2012017309A JP 2012017309 A JP2012017309 A JP 2012017309A JP 5836823 B2 JP5836823 B2 JP 5836823B2
Authority
JP
Japan
Prior art keywords
region
fuel cell
gas
condensed water
cell module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012017309A
Other languages
English (en)
Other versions
JP2013157217A (ja
Inventor
如 ▲吉▼峯
如 ▲吉▼峯
哲矢 小川
哲矢 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012017309A priority Critical patent/JP5836823B2/ja
Priority to US14/347,909 priority patent/US9240601B2/en
Priority to PCT/JP2012/083760 priority patent/WO2013114775A1/en
Priority to EP12815859.9A priority patent/EP2810328B1/en
Publication of JP2013157217A publication Critical patent/JP2013157217A/ja
Application granted granted Critical
Publication of JP5836823B2 publication Critical patent/JP5836823B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、燃料ガスと酸化剤ガスとの電気化学反応により発電する燃料電池を複数積層した燃料電池スタックを備える燃料電池モジュールに関する。
通常、固体酸化物形燃料電池(SOFC)は、固体電解質に酸化物イオン導電体、例えば、安定化ジルコニアを用いており、この固体電解質の両側にアノード電極及びカソード電極を配設した電解質・電極接合体(以下、MEAともいう)を、セパレータ(バイポーラ板)によって挟持している。この燃料電池は、通常、電解質・電極接合体とセパレータとが所定数だけ積層された燃料電池スタックとして使用されている。
この種の燃料電池スタックを組み込むシステムとして、例えば、特許文献1に開示された燃料電池バッテリが知られている。この燃料電池バッテリは、図15に示すように、燃料電池スタック1aを備えるとともに、前記燃料電池スタック1aの一端側には、断熱スリーブ2aが取り付けられている。断熱スリーブ2aの内部には、熱交換装置3aが反応装置4a内に組み込まれて配置している。
反応装置4aでは、液体燃料の処理として、水を使用しない部分酸化による改質が行われている。液体燃料は、排ガスにより蒸発された後、熱交換装置3aの一部である送り込み位置5aを通過している。その際、燃料は、排ガスにより加熱された酸素搬送ガスと接触することにより、部分酸化による改質が行われた後、燃料電池スタック1aに供給されている。
また、特許文献2に開示された固体酸化物燃料電池は、図16に示すように、電池コア1bを内装して熱交換器2bが設けられている。そして、熱交換器2bは、排熱によりカソードエアを昇温している。
さらに、特許文献3に開示された燃料電池システムは、図17に示すように、鉛直円柱状の第1領域1c、その外周側に環状の第2領域2c、その外周側に環状の第3領域3c、その外周側に環状の第4領域4cを有している。
第1領域1cには、バーナ5cが設けられるとともに、第2領域2cには、改質管6cが設けられている。第3領域3cには、水蒸発器7cが設けられ、第4領域4cには、CO変成器8cが設けられている。
特開2001−236980号公報 特表2010−504607号公報 特開2004−288434号公報
ところで、上記の特許文献1では、反応装置4aの外方に向かうに従って、排ガスの温度が低下するため、前記排ガスに含まれる水蒸気が冷却されて凝縮水が発生し易い。このため、反応装置4a内に凝縮水が滞留し、機器が劣化するという問題がある。
また、上記の特許文献2及び特許文献3では、同様に、凝縮水の処理が困難になり、前記凝縮水が装置内部に滞留し易い。従って、機器が凝縮水により劣化するという問題がある。
本発明は、この種の問題を解決するものであり、簡単且つコンパクトな構成で、熱効率及び熱自立の促進を図るとともに、凝縮水を確実に回収することが可能な燃料電池モジュールを提供することを目的とする。
本発明は、燃料ガスと酸化剤ガスとの電気化学反応により発電する燃料電池を複数積層した燃料電池スタックと、炭化水素を主体とする原燃料と水蒸気との混合ガスを改質し、前記燃料電池スタックに供給される前記燃料ガスを生成する改質器と、水を蒸発させるとともに、前記水蒸気を前記改質器に供給する蒸発器と、燃焼ガスとの熱交換により前記酸化剤ガスを昇温させるとともに、前記燃料電池スタックに前記酸化剤ガスを供給する熱交換器と、前記燃料電池スタックから排出される前記燃料ガスである燃料排ガスと前記酸化剤ガスである酸化剤排ガスとを燃焼させ、前記燃焼ガスを発生させる排ガス燃焼器と、それぞれ前記燃料電池スタックとは個別に供給される前記原燃料と前記酸化剤ガスとを燃焼させて前記燃焼ガスを発生させる起動用燃焼器とを備える燃料電池モジュールに関するものである。
この燃料電池モジュールでは、排ガス燃焼器及び起動用燃焼器が構成される第1領域と、改質器又は熱交換器の一方が構成されるとともに、前記第1領域を環状に周回する第2領域と、前記改質器又は前記熱交換器の他方が構成されるとともに、前記第2領域を環状に周回する第3領域と、蒸発器が構成されるとともに、前記第3領域を環状に周回する第4領域と、前記燃焼ガス中の水蒸気が凝縮した凝縮水を、前記第4領域、前記第3領域、前記第2領域及び前記第1領域の順に流通させて回収する凝縮水回収機構とを備えている。
また、この燃料電池モジュールでは、好ましくは、改質器は、混合ガスが供給される環状の混合ガス供給室、生成された燃料ガスが排出される環状の改質ガス排出室、一端が前記混合ガス供給室に連通し且つ他端が前記改質ガス排出室に連通する複数本の改質管路、及び前記改質管路間に燃焼ガスを供給する燃焼ガス通路を備えている。
蒸発器は、水が供給される環状の水供給室、水蒸気が排出される環状の水蒸気排出室、一端が前記水供給室に連通し且つ他端が前記水蒸気排出室に連通する複数本の蒸発管路、及び前記蒸発管路間に燃焼ガスを供給する燃焼ガス通路を備えている。
熱交換器は、酸化剤ガスが供給される環状の酸化剤ガス供給室、昇温された前記酸化剤ガスが排出される環状の酸化剤ガス排出室、一端が前記酸化剤ガス供給室に連通し且つ他端が前記酸化剤ガス排出室に連通する複数本の熱交換管路、及び前記熱交換管路間に燃焼ガスを供給する燃焼ガス通路を備えている。
このように、環状の供給室、環状の排出室及び複数本の管路を基本的な構成にすることにより、構造の簡素化が容易に図られる。従って、製造コストが有効に削減される。しかも、供給室及び排出室の容積や管路長、管路径及び管路数を変更することにより、広範な運転条件に良好に対応することができ、設計自由度の向上が図られる。
さらに、この燃料電池モジュールでは、燃焼ガスは、第1領域の燃焼ガス通路、第2領域の燃焼ガス通路、第3領域の燃焼ガス通路及び第4領域の燃焼ガス通路の順に流通した後、前記燃料電池モジュールの外部に排出されることが好ましい。これにより、FC周辺機器を構成する排ガス燃焼器、改質器、熱交換器及び蒸発器に効果的に熱を供給することが可能になり、熱効率が向上して熱自立の促進が図られる。
さらにまた、この燃料電池モジュールでは、混合ガス供給室及び改質ガス排出室は、それぞれ高さ方向に離間して配置され、改質管路の端部が挿入される一対の内側リングと前記一対の内側リングよりも高さ方向外側に配置される一対の外側リングとの間に形成され、水供給室及び水蒸気排出室は、それぞれ高さ方向に離間して配置され、蒸発管路の端部が挿入される一対の内側リングと前記一対の内側リングよりも高さ方向外側に配置される一対の外側リングとの間に形成され、酸化剤ガス供給室及び酸化剤ガス排出室は、それぞれ高さ方向に離間して配置され、熱交換管路の端部が挿入される一対の内側リングと前記一対の内側リングよりも高さ方向外側に配置される一対の外側リングとの間に形成されることが好ましい。
このため、混合ガス供給室、改質ガス排出室、水供給室、水蒸気排出室、酸化剤ガス供給室及び酸化剤ガス排出室は、それぞれ内側リングと外側リングとにより形成され、構成が有効に簡素化される。従って、製造コストが有効に削減されるとともに、コンパクト化が容易に遂行される。
また、この燃料電池モジュールでは、改質ガス排出室、水蒸気排出室及び酸化剤ガス排出室は、燃料電池スタックに近接する上方の端部側に設けられる一方、混合ガス供給室、水供給室及び酸化剤ガス供給室は、前記燃料電池スタックとは反対の下方の端部側に設けられることが好ましい。
これにより、昇温及び改質直後の反応ガスを燃料電池スタックに迅速に供給することが可能になる。一方、燃料電池スタックからの排ガスは、放熱による降温を最小限に抑制しながら、FC周辺機器を構成する排ガス燃焼器、改質器、熱交換器及び蒸発器に供給することができ、熱効率が向上して熱自立の促進が図られる。ここで、熱自立とは、外部から熱を加えることなく自ら発生する熱のみで燃料電池の動作温度を維持することをいう。
さらに、この燃料電池モジュールでは、凝縮水回収機構は、第2領域の底部を構成する第1内側リング面、第3領域の底部を構成する第2内側リング面及び第4領域を構成する第3内側リング面を備えるとともに、前記第2内側リング面の底面高さは、前記第1内側リング面の底面高さよりも高く設定される一方、前記第3内側リング面の底面高さは、前記第2内側リング面の底面高さよりも高く設定されることが好ましい。
このため、凝縮水は、FC周辺機器の外側(低温側)から内側(高温側)に流通することが可能になり、前記凝縮水が再度、気相状態に変化することを促進することができる。従って、FC周辺機器内に凝縮水が滞留することがなく、前記FC周辺機器の耐久性への影響を可及的に抑制することが可能になるとともに、回収された凝縮水を、改質用水蒸気として利用することができる。
さらにまた、この燃料電池モジュールは、第1領域と第2領域との間に鉛直方向に配置される第1仕切り板、前記第2領域と第3領域との間に鉛直方向に配置される第2仕切り板及び前記第3領域と第4領域との間に鉛直方向に配置される第3仕切り板を備え、凝縮水回収機構は、燃料電池スタックが配置される上部側とは反対の前記第1仕切り板の下部側に形成される第1凝縮水流通孔部、前記第2仕切り板の下部側に形成される第2凝縮水流通孔部及び前記第3仕切り板の下部側に形成される第3凝縮水流通孔部を有し、且つ、前記第2凝縮水流通孔部は、前記第1凝縮水流通孔部よりも高さ方向に高く設定される一方、前記第3凝縮水流通孔部は、前記第2凝縮水流通孔部よりも高さ方向に高く設定されることが好ましい。
これにより、燃焼ガスの吹き抜けを良好に抑制することができ、熱効率が一層向上し、熱自立の促進が確実に図られる。しかも、第1仕切り板、第2仕切り板及び第3仕切り板に設けられる第1凝縮水流通孔部、第2凝縮水流通孔部及び第3凝縮水流通孔部を通って、凝縮水は、FC周辺機器の外側(低温側)から内側(高温側)に流通することが可能になる。このため、凝縮水は、再度、気相状態に変化することを促進され、FC周辺機器内に凝縮水が滞留することがない。従って、FC周辺機器の耐久性への影響を可及的に抑制することができるとともに、回収された凝縮水を、改質用水蒸気として利用することが可能になる。
また、この燃料電池モジュールでは、第1凝縮水流通孔部、第2凝縮水流通孔部及び第3凝縮水流通孔部は、それぞれ環状方向に3つ以上に設定されることが好ましい。これにより、FC周辺機器の設置状態等により、前記FC周辺機器に傾斜が生じても、凝縮水を確実に回収することができる。このため、FC周辺機器の耐久性への影響を可及的に抑制することが可能になる。
さらに、この燃料電池モジュールでは、第1凝縮水流通孔部、第2凝縮水流通孔部及び第3凝縮水流通孔部は、開口直径が8mm以上に設定されることが好ましい。従って、凝縮水の表面張力により前記凝縮水の流通が阻止されることがなく、前記凝縮水を確実に回収することができる。これにより、FC周辺機器の耐久性への影響を可及的に抑制することが可能になる。
さらにまた、この燃料電池モジュールでは、少なくとも蒸発管路の1本以上は、水蒸気排出室と混合ガス供給室とを連通し、水蒸気を前記混合ガス供給室に供給する蒸発リターン管路を構成することが好ましい。このため、水蒸気は、高温を維持した状態で、改質器の混合ガス供給室で原燃料と混合されて混合ガスが得られる。従って、改質効率の向上が図られる。
また、この燃料電池モジュールでは、燃料電池モジュールは、固体酸化物形燃料電池モジュールであることが好ましい。従って、特にSOFC等の高温型燃料電池に最適である。
本発明によれば、排ガス燃焼器及び起動用燃焼器が構成される第1領域を中心にして、それぞれ環状の第2領域、第3領域及び第4領域が外方向に向かって、順次、設けられている。このため、高温及び熱需要が大きな機器を内側に設置する一方、低温及び熱需要の小さな機器を外側に設定することができる。従って、熱効率の向上が図られて熱自立が促進されるとともに、簡単且つコンパクトに構成することが可能になる。
しかも、凝縮水回収機構を備えることにより、燃焼ガス中の水蒸気が凝縮した凝縮水は、第4領域、第3領域、第2領域及び第1領域の順に、すなわち、低温側から高温側に流通することができる。これにより、凝縮水は、再度、気相状態に変化することを促進され、FC周辺機器内に凝縮水が滞留することがない。従って、FC周辺機器の耐久性への影響を可及的に抑制することができるとともに、回収された凝縮水を、改質用水蒸気として利用することが可能になる。
本発明の第1の実施形態に係る燃料電池モジュールが組み込まれる燃料電池システムの概略構成説明図である。 前記燃料電池モジュールを構成するFC周辺機器の一部省略斜視説明図である。 前記FC周辺機器の要部分解斜視説明図である。 前記FC周辺機器の要部拡大斜視説明図である。 前記FC周辺機器内の燃焼ガス流通状態の説明図である。 前記FC周辺機器を構成する凝縮水回収機構の説明図である。 前記凝縮水回収機構の平面説明図である。 前記凝縮水回収機構を構成する凝縮水流通孔部の説明図である。 本発明の第2の実施形態に係る燃料電池モジュールが組み込まれる燃料電池システムの概略構成説明図である。 前記燃料電池モジュールを構成するFC周辺機器の一部省略斜視説明図である。 前記FC周辺機器内の燃焼ガス流通状態の説明図である。 他の構成を有する内側リングの説明図である。 本発明の第3の実施形態に係る燃料電池モジュールを構成するFC周辺機器の一部省略斜視説明図である。 本発明の第4の実施形態に係る燃料電池モジュールを構成するFC周辺機器の一部省略斜視説明図である。 特許文献1に開示されている燃料電池バッテリの概略説明図である。 特許文献2に開示されている固体酸化物燃料電池の一部切り欠き斜視説明図である。 特許文献3に開示されている燃料電池システムの概略説明図である。
図1に示すように、燃料電池システム10は、本発明の第1の実施形態に係る燃料電池モジュール12を組み込むとともに、定置用の他、車載用等の種々の用途に用いられる。
燃料電池システム10は、燃料ガス(水素ガスにメタン、一酸化炭素が混合した気体)と酸化剤ガス(空気)との電気化学反応により発電する燃料電池モジュール(SOFCモジュール)12と、前記燃料電池モジュール12に原燃料(例えば、都市ガス)を供給する原燃料供給装置(燃料ガスポンプを含む)14と、前記燃料電池モジュール12に前記酸化剤ガスを供給する酸化剤ガス供給装置(空気ポンプを含む)16と、前記燃料電池モジュール12に水を供給する水供給装置(水ポンプを含む)18と、前記燃料電池モジュール12の発電量を制御する制御装置20とを備える。
燃料電池モジュール12は、複数の固体酸化物形の燃料電池22が鉛直方向(又は水平方向)に積層される固体酸化物形の燃料電池スタック24を備える。燃料電池22は、例えば、安定化ジルコニア等の酸化物イオン導電体で構成される電解質26の両面に、カソード電極28及びアノード電極30が設けられた電解質・電極接合体(MEA)32を備える。
電解質・電極接合体32の両側には、カソード側セパレータ34とアノード側セパレータ36とが配設される。カソード側セパレータ34には、カソード電極28に酸化剤ガスを供給する酸化剤ガス流路38が形成されるとともに、アノード側セパレータ36には、アノード電極30に燃料ガスを供給する燃料ガス流路40が形成される。なお、燃料電池22としては、従来より使用されている種々のSOFCを用いることができる。
燃料電池22は、作動温度が数百℃と高温であり、アノード電極30では、燃料ガス中のメタンが改質されて水素、COが得られ、この水素、COが電解質26の前記アノード電極30側に供給される。
燃料電池スタック24には、各酸化剤ガス流路38の入口側に一体に連通する酸化剤ガス入口連通孔42a、前記酸化剤ガス流路38の出口側に一体に連通する酸化剤ガス出口連通孔42b、各燃料ガス流路40の入口側に一体に連通する燃料ガス入口連通孔44a、及び前記燃料ガス流路40の出口側に一体に連通する燃料ガス出口連通孔44bが設けられる。
燃料電池モジュール12は、炭化水素を主体とする原燃料(例えば、都市ガス)と水蒸気との混合ガスを改質し、燃料電池スタック24に供給される燃料ガスを生成する改質器46と、水を蒸発させるとともに、前記水蒸気を前記改質器46に供給する蒸発器48と、燃焼ガスとの熱交換により酸化剤ガスを昇温させるとともに、前記燃料電池スタック24に前記酸化剤ガスを供給する熱交換器50と、前記燃料電池スタック24から排出される前記燃料ガスである燃料排ガスと前記酸化剤ガスである酸化剤排ガスとを燃焼させ、前記燃焼ガスを発生させる排ガス燃焼器52と、前記原燃料と前記酸化剤ガスとを燃焼させて前記燃焼ガスを発生させる起動用燃焼器54とを備える。
燃料電池モジュール12は、基本的には、燃料電池スタック24とFC周辺機器56とにより構成される。このFC周辺機器56は、改質器46、蒸発器48、熱交換器50、排ガス燃焼器52及び起動用燃焼器54を備える。
図2に示すように、FC周辺機器56は、排ガス燃焼器52及び起動用燃焼器54が構成される、例えば、開口形状円形の第1領域R1と、熱交換器50が構成されるとともに、前記第1領域R1を環状に周回する第2領域R2と、改質器46が構成されるとともに、前記第2領域R2を環状に周回する第3領域R3と、蒸発器48が構成されるとともに、前記第3領域R3を環状に周回する第4領域R4とを備える。
図2及び図3に示すように、起動用燃焼器54は、空気供給管57及び原燃料供給管58を備える。起動用燃焼器54は、エゼクタ機能を有し、空気供給管57から導入される空気流により原燃料供給管58に負圧を発生させて、原燃料を吸引する。
FC周辺機器56は、図2及び図4に示すように、第1領域R1と第2領域R2との間に配置される第1仕切り板60a、前記第2領域R2と第3領域R3との間に配置される第2仕切り板60b及び前記第3領域R3と第4領域R4との間に配置される第3仕切り板60cとを備える。第4領域R4の外周には、外板である第4仕切り板60dが設けられる。
図2及び図3に示すように、排ガス燃焼器52は、起動用燃焼器54を収容する第1仕切り板60a内に構成される。第1仕切り板60aは、円筒形状を有しており、前記第1仕切り板60aの外周部には、燃料電池スタック24側の端部に近接して複数の第1燃焼ガス連通孔62aが形成される。
第2仕切り板60bには、燃料電池スタック24とは反対側の端部に近接して複数の第2燃焼ガス連通孔62bが形成される。第3仕切り板60cには、燃料電池スタック24側の端部に近接して複数の第3燃焼ガス連通孔62cが形成される。第4仕切り板60dには、燃料電池スタック24とは反対側の端部に近接して複数の第4燃焼ガス連通孔62dが形成される。第4燃焼ガス連通孔62dは、燃焼ガスを外部に排出する。
第1仕切り板60aには、酸化剤排ガス通路63aの一端と燃料排ガス通路63bの一端とが配置される。第1仕切り板60a内では、燃料ガス(具体的には、燃料排ガス)と酸化剤ガス(具体的には、酸化剤排ガス)との燃焼反応により、燃焼ガスが生成される。
図1に示すように、酸化剤排ガス通路63aの他端は、燃料電池スタック24の酸化剤ガス出口連通孔42bに接続されるとともに、燃料排ガス通路63bの他端は、前記燃料電池スタック24の燃料ガス出口連通孔44bに接続される。
図2及び図3に示すように、熱交換器50は、第1仕切り板60aの外周に配設される複数本の熱交換管路(伝熱パイプ)64を備える。熱交換管路64の一端部(燃料電池スタック24とは反対側の他方の端部、以下同様)は、第1内側リング66aに固定されるとともに、前記熱交換管路64の他端部(燃料電池スタック24側の一方の端部、以下同様)は、第1内側リング66bに固定される。
第1内側リング66a、66bの外方には、第1外側リング68a、68bが配設される。第1内側リング66a、66b及び第1外側リング68a、68bは、第1仕切り板60aの外周面と第2仕切り板60bの内周面とに固着される。
第1内側リング66aと第1外側リング68aとの間には、酸化剤ガスが供給される環状の酸化剤ガス供給室70aが形成される。第1内側リング66bと第1外側リング68bとの間には、昇温された酸化剤ガスが排出される環状の酸化剤ガス排出室70bが形成される(図2〜図4参照)。熱交換管路64の両端は、酸化剤ガス供給室70aと酸化剤ガス排出室70bとに開放される。
酸化剤ガス供給室70aには、酸化剤ガス供給管72が配設される。酸化剤ガス排出室70bには、酸化剤ガス通路74の一端が配設されるとともに、前記酸化剤ガス通路74の他端は、燃料電池スタック24の酸化剤ガス入口連通孔42aに接続される(図1参照)。
改質器46は、都市ガス(原燃料)中に含まれるエタン(C)、プロパン(C)及びブタン(C10)等の高級炭化水素(C2+)を、主としてメタン(CH)、水素、COを含む燃料ガスに水蒸気改質するための予備改質器であり、数百℃の作動温度に設定される。
改質器46は、図2及び図3に示すように、熱交換器50の外周に配設される複数本の改質管路(伝熱パイプ)76を備える。改質管路76の一端部は、第2内側リング78aに固定されるとともに、前記改質管路76の他端部は、第2内側リング78bに固定される。
第2内側リング78a、78bの外方には、第2外側リング80a、80bが配設される。第2内側リング78a、78b及び第2外側リング80a、80bは、第2仕切り板60bの外周面と第3仕切り板60cの内周面とに固着される。
第2内側リング78aと第2外側リング80aとの間には、混合ガス(原燃料と水蒸気)が供給される環状の混合ガス供給室82aが形成される。第2内側リング78bと第2外側リング80bとの間には、生成された燃料ガス(改質ガス)が排出される環状の改質ガス排出室82bが形成される。
改質管路76の両端は、混合ガス供給室82aと改質ガス排出室82bとに開放される。各改質管路76内には、改質用のペレット状触媒84が充填される。改質管路76の両端には、ペレット状触媒84を保持するための金網86が配設される。
混合ガス供給室82aには、原燃料供給路88が接続されるとともに、前記原燃料供給路88の途上には、後述する蒸発リターン管路102が接続される。改質ガス排出室82bには、燃料ガス通路90の一端が連通するとともに、前記燃料ガス通路90の他端は、燃料電池スタック24の燃料ガス入口連通孔44aに連通する(図1参照)。
蒸発器48は、改質器46の外周に配設される複数本の蒸発管路(伝熱パイプ)92を備える。蒸発管路92の一端部は、第3内側リング94aに固定されるとともに、前記蒸発管路92の他端部は、第3内側リング94bに固定される。
第3内側リング94a、94bの外方には、第3外側リング96a、96bが配設される。第3内側リング94a、94b及び第3外側リング96a、96bは、第3仕切り板60cの外周面と第4仕切り板60dの内周面とに固着される。
第3内側リング94aと第3外側リング96aとの間には、水が供給される環状の水供給室98aが形成される。第3内側リング94bと第3外側リング96bとの間には、水蒸気が排出される環状の水蒸気排出室98bが形成される。蒸発管路92の両端は、水供給室98aと水蒸気排出室98bとに開放される。
水供給室98aには、水通路100が配設される。水蒸気排出室98bには、少なくとも1本以上の蒸発管路92により構成される蒸発リターン管路102の一端が配設されるとともに、前記蒸発リターン管路102の他端は、原燃料供給路88の途上に接続される(図1参照)。原燃料供給路88は、エゼクタ機能を有しており、流通される原燃料によって負圧を発生させ、水蒸気の吸引を行う。
図2及び図6に示すように、FC周辺機器56は、燃焼ガス中の水蒸気が凝縮した凝縮水を、第4領域R4、第3領域R3、第2領域R2及び第1領域R1の順に流通させて回収する凝縮水回収機構103を備える。
凝縮水回収機構103は、第1内側リング66aの上面、第2内側リング78aの上面及び第3内側リング94aの上面を備えるとともに、前記第1内側リング66aの上面、前記第2内側リング78aの上面及び前記第3内側リング94aの上面の順に、底面高さ(図6中、矢印H方向)が高く設定される。なお、第1内側リング66aの上面、第2内側リング78aの上面及び第3内側リング94aの上面は、同一の高さに設定されてもよい。
凝縮水回収機構103は、燃料電池スタック24が配置される上部側とは反対の第1仕切り板60aの下部側に形成される第1凝縮水流通孔部103a、第2仕切り板60bの下部側に形成される第2凝縮水流通孔部103b及び第3仕切り板60cの下部側に形成される第3凝縮水流通孔部103cを有する。第1凝縮水流通孔部103a、第2凝縮水流通孔部103b及び第3凝縮水流通孔部103cの高さ位置は、それぞれ、順次、高く設定される。
第1凝縮水流通孔部103aは、最も低い位置に設定される一方、第3凝縮水流通孔部103cは、最も高い位置に設定される。図7に示すように、第1凝縮水流通孔部103a、第2凝縮水流通孔部103b及び第3凝縮水流通孔部103cは、それぞれ環状方向に3つ以上に設定される。第1実施形態では、第1凝縮水流通孔部103a、第2凝縮水流通孔部103b及び第3凝縮水流通孔部103cは、FC周辺機器56の中心から径方向に延在する仮想直線上に配列されるとともに、それぞれ等角度間隔ずつ離間する。
第1凝縮水流通孔部103a、第2凝縮水流通孔部103b及び第3凝縮水流通孔部103cは、開口直径(2r)が8mm以上に設定される。図8に示すように、凝縮水が、第1凝縮水流通孔部103a、第2凝縮水流通孔部103b及び第3凝縮水流通孔部103cを流通するためには、開口面積に発生する全圧力Pと表面張力Tとが、全圧力P>表面張力Tの関係を有する必要がある。
そこで、開口半径をr、水の密度をρ、重力加速度をg、水の表面張力をTとすると、r×ρg×πr>2πr×Tとなり、r>3.85mmが得られる。このため、2r>7.7となることから、開口直径は、8mm以上に設定される。
一方、第1燃焼ガス連通孔62aの圧損に対して、第1凝縮水流通孔部103aの圧損が、例えば、10%以下になるように、開口直径の上限値を設定することが好ましい。第1燃焼ガス連通孔62aの個数及び開口直径と第1凝縮水流通孔部103aの個数及び開口直径とにより算出され、前記第1燃焼ガス連通孔62aの断面積:前記第1凝縮水流通孔部103aの断面積=10:1から求めることができる。
図2に示すように、第1仕切り板60aの内部には、第1領域R1の下部に位置して回収管路105が配設される。回収管路105は、例えば、原燃料供給路88の途上に接続されることにより、第1領域R1の排ガスで再度蒸気化した水蒸気を回収し、改質用水蒸気として使用することができる。
図1に示すように、原燃料供給装置14は、原燃料通路104を備える。原燃料通路104は、原燃料用調整弁106を介して原燃料供給路88と原燃料供給管58とに分岐する。原燃料供給路88には、都市ガス(原燃料)中に含まれる硫黄化合物を除去するための脱硫器108が配設される。
酸化剤ガス供給装置16は、酸化剤ガス通路110を備える。酸化剤ガス通路110は、酸化剤ガス用調整弁112を介して酸化剤ガス供給管72と空気供給管57とに分岐する。水供給装置18は、水通路100を介して蒸発器48に接続される。
第1の実施形態では、図5に概略的に示すように、第1領域R1には、燃焼ガスが流通する第1燃焼ガス通路116aが形成され、第2領域R2には、前記燃焼ガスが矢印A1方向に流通する第2燃焼ガス通路116bが形成され、第3領域R3には、前記燃焼ガスが矢印A2方向に流通する第3燃焼ガス通路116cが形成され、第4領域R4には、前記燃焼ガスが矢印A1方向に流通する第4燃焼ガス通路116dが形成される。
このように構成される燃料電池システム10の動作について、以下に説明する。
燃料電池システム10の起動時には、空気(酸化剤ガス)及び原燃料が起動用燃焼器54に供給される。具体的には、酸化剤ガス供給装置16では、空気ポンプの駆動作用下に酸化剤ガス通路110に空気が供給される。この空気は、酸化剤ガス用調整弁112の開度調整作用下に、空気供給管57に供給される。
一方、原燃料供給装置14では、燃料ガスポンプの駆動作用下に原燃料通路104に、例えば、都市ガス(CH、C、C、C10を含む)等の原燃料が供給される。原燃料は、原燃料用調整弁106の開度調整作用下に、原燃料供給管58に導入される。この原燃料は、空気と混合されるとともに、起動用燃焼器54内に供給される(図2参照)。
このため、起動用燃焼器54内には、原燃料と空気との混合ガスが供給され、この混合ガスが着火されることにより、燃焼が開始される。従って、起動用燃焼器54に直接接続されている排ガス燃焼器52では、前記起動用燃焼器54から第1仕切り板60a内に燃焼ガスが導入される。
図5に示すように、第1仕切り板60aには、燃料電池スタック24側の端部に近接して複数の第1燃焼ガス連通孔62aが形成されている。これにより、第1仕切り板60aの内部に供給された燃焼ガスは、複数の第1燃焼ガス連通孔62aを通過して、第1領域R1から第2領域R2に導入される。
燃焼ガスは、第2領域R2を矢印A1方向に流通した後、第2仕切り板60bに形成された複数の第2燃焼ガス連通孔62bを通って第3領域R3に導入される。第3領域R3では、燃焼ガスは、矢印A2方向に流通した後、第3仕切り板60cに形成された複数の第3燃焼ガス連通孔62cを通って第4領域R4に導入される。燃焼ガスは、第4領域R4を矢印A1方向に流通した後、第4仕切り板60dに形成された第4燃焼ガス連通孔62dから外部に排出される。
その際、第2領域R2には、熱交換器50が配置されており、第3領域R3には、改質器46が配置されており、第4領域R4には、蒸発器48が配置されている。このため、第1領域R1から排出される燃焼ガスは、熱交換器50、改質器46及び蒸発器48の順に加熱する。
そして、燃料電池モジュール12が設定温度に昇温されると、熱交換器50に酸化剤ガスが供給される一方、改質器46には、原燃料及び水蒸気の混合ガスが供給される。
具体的には、酸化剤ガス用調整弁112の開度が調整されて、酸化剤ガス供給管72への空気供給量が増加されるとともに、原燃料用調整弁106の開度が調整されて、原燃料供給路88への原燃料供給量が増加される。また、水供給装置18の作用下に、水通路100に水が供給される。
従って、図2及び図3に示すように、熱交換器50に導入された空気は、酸化剤ガス供給室70aに一旦供給された後、複数の熱交換管路64内を移動する間に、第2領域R2に導入された燃焼ガスにより加熱(熱交換)される。加熱された空気は、一旦酸化剤ガス排出室70bに供給された後、酸化剤ガス通路74を介して燃料電池スタック24の酸化剤ガス入口連通孔42aに供給される(図1参照)。
燃料電池スタック24では、加熱された空気は、酸化剤ガス流路38を流通した後、酸化剤ガス出口連通孔42bから酸化剤排ガス通路63aに排出される。酸化剤排ガス通路63aは、排ガス燃焼器52を構成する第1仕切り板60aの内部に開口しており、前記第1仕切り板60a内に酸化剤排ガスが導入される。
また、図1に示すように、水供給装置18から供給される水は、蒸発器48に供給されるとともに、脱硫器108で脱硫された原燃料は、原燃料供給路88を流通して改質器46に向かう。
蒸発器48では、水が一旦水供給室98aに供給された後、複数本の蒸発管路92内を移動する間、第4領域R4を流通する燃焼ガスにより昇温されて、水蒸気化される。この水蒸気は、水蒸気排出室98bに一旦導入された後、前記水蒸気排出室98bに連通する蒸発リターン管路102に供給される。これにより、水蒸気は、蒸発リターン管路102内を流通して原燃料供給路88に導入され、原燃料と混合して混合ガスが得られる。
混合ガスは、原燃料供給路88から改質器46を構成する混合ガス供給室82aに一旦供給される。混合ガスは、複数の改質管路76内を移動する。その間に、混合ガスは、第3領域R3を流通する燃焼ガスにより加熱されるとともに、ペレット状触媒84を介して水蒸気改質され、C2+の炭化水素が除去(改質)されてメタンを主成分とする改質ガスが得られる。
この改質ガスは、加熱された燃料ガスとして、一旦改質ガス排出室82bに供給された後、燃料ガス通路90を介して燃料電池スタック24の燃料ガス入口連通孔44aに供給される(図1参照)。
燃料電池スタック24では、加熱された燃料ガスは、燃料ガス流路40を流通した後、燃料ガス出口連通孔44bから燃料排ガス通路63bに排出される。燃料排ガス通路63bは、排ガス燃焼器52を構成する第1仕切り板60aの内部に開口しており、前記第1仕切り板60a内に燃料排ガスが導入される。
なお、起動用燃焼器54による昇温作用下に、排ガス燃焼器52内が燃料ガスの自己着火温度を超えると、第1仕切り板60a内で酸化剤排ガスと燃料排ガスとによる燃焼が開始される。
FC周辺機器56内では、燃焼ガスが、第1領域R1、第2領域R2、第3領域R3及び第4領域R4に、順次、流通して熱交換を行った後、前記燃焼ガスが外部に排出されている。その際、燃焼ガス中に含有されている水蒸気は、前記燃焼ガスの温度が低下することにより凝縮し、特に温度が比較的低温になる第4領域R4に滞留し易い。
図6に示すように、第4領域R4に滞留する凝縮水は、凝縮水回収機構103を構成し、第3仕切り板60cの下部側に形成される第3凝縮水流通孔部103cを通って第3領域R3に移動する。次いで、第3領域R3に滞留する凝縮水の量が規定量以上になると、前記凝縮水は、第2仕切り板60bの下部側に形成される第2凝縮水流通孔部103bを通って第2領域R2に移動する。
そして、第2領域R2に滞留する凝縮水が規定量以上になると、前記凝縮水は、第1仕切り板60aに形成される第1凝縮水流通孔部103aを通って第1領域R1に移動する。第1領域R1では、高温の排ガスが発生しており、凝縮水は蒸気化されて水蒸気が生成され、この水蒸気(凝縮水を含む)は、回収管路105によって回収される。
この場合、第1の実施形態では、FC周辺機器56は、排ガス燃焼器52及び起動用燃焼器54が構成される第1領域R1と、熱交換器50が構成されるとともに、前記第1領域R1を環状に周回する第2領域R2と、改質器46が構成されるとともに、前記第2領域R2を環状に周回する第3領域R3と、蒸発器48が構成されるとともに、前記第3領域R3を環状に周回する第4領域R4とを備えている。
すなわち、第1領域R1を中心にして、それぞれ環状の第2領域R2、第3領域R3及び第4領域R4が外方向に向かって、順次、設けられている。このため、高温及び熱需要が大きな機器、例えば、熱交換器50(及び改質器46)を内側に設置する一方、低温及び熱需要の小さな機器、例えば、蒸発器48を外側に設定することができる。
熱交換器50は、例えば、550℃〜650℃の温度が必要であるとともに、改質器46は、550℃〜600℃の温度が必要である。一方、蒸発器48は、150℃〜200℃の温度が必要である。
従って、熱効率の向上が図られて熱自立が促進されるとともに、簡単且つコンパクトに構成することが可能になるという効果が得られる。特に、改質器46の内方に熱交換器50が配設されるため、前記改質器46は、比較的A/F(空気/燃料ガス)が低い環境で、低温改質に適した前記改質器46が良好に使用される。ここで、熱自立とは、外部から熱を加えることなく自ら発生する熱のみで燃料電池22の動作温度を維持することをいう。
しかも、FC周辺機器56は、凝縮水回収機構103を備えている。これにより、燃焼ガス中の水蒸気が凝縮した凝縮水は、第4領域R4、第3領域R3、第2領域R2及び第1領域R1の順に、すなわち、低温側から高温側に流通することができる。
このため、凝縮水は、再度、気相状態に変化することを促進され、FC周辺機器56内に凝縮水が滞留することがない。従って、FC周辺機器56の耐久性への影響を可及的に抑制することができるとともに、回収された凝縮水を、改質用水蒸気として利用することが可能になる。
また、第1の実施形態では、図2、図3及び図5に示すように、改質器46は、混合ガスが供給される環状の混合ガス供給室82a、生成された燃料ガスが排出される環状の改質ガス排出室82b、一端が前記混合ガス供給室82aに連通し且つ他端が前記改質ガス排出室82bに連通する複数本の改質管路76、及び前記改質管路76間に燃焼ガスを供給する第3燃焼ガス通路116cを備えている。
蒸発器48は、水が供給される環状の水供給室98a、水蒸気が排出される環状の水蒸気排出室98b、一端が前記水供給室98aに連通し且つ他端が前記水蒸気排出室98bに連通する複数本の蒸発管路92、及び前記蒸発管路92間に燃焼ガスを供給する第4燃焼ガス通路116dを備えている。
熱交換器50は、酸化剤ガスが供給される環状の酸化剤ガス供給室70a、昇温された前記酸化剤ガスが排出される環状の酸化剤ガス排出室70b、一端が前記酸化剤ガス供給室70aに連通し且つ他端が前記酸化剤ガス排出室70bに連通する複数本の熱交換管路64、及び前記熱交換管路64間に燃焼ガスを供給する第2燃焼ガス通路116bを備えている。
このように、環状の供給室(混合ガス供給室82a、水供給室98a及び酸化剤ガス供給室70a)、環状の排出室(改質ガス排出室82b、水蒸気排出室98b及び酸化剤ガス排出室70b)及び複数本の管路(改質管路76、蒸発管路92及び熱交換管路64)を基本的な構成にすることにより、構造の簡素化が容易に図られる。これにより、燃料電池モジュール12全体の製造コストが有効に削減される。しかも、供給室及び排出室の容積や管路長、管路径及び管路数を変更することにより、広範な運転条件に良好に対応することができ、設計自由度の向上が図られる。
さらに、燃焼ガスは、第1領域R1の第1燃焼ガス通路116a、第2領域R2の第2燃焼ガス通路116b、第3領域R3の第3燃焼ガス通路116c及び第4領域R4の第4燃焼ガス通路116dの順に流通した後、燃料電池モジュール12の外部に排出されている。このため、FC周辺機器56を構成する排ガス燃焼器52、熱交換器50、改質器46及び蒸発器48に効果的に熱を供給することが可能になり、熱効率が向上して熱自立の促進が図られる。
さらにまた、酸化剤ガス供給室70a及び酸化剤ガス排出室70bは、それぞれ熱交換管路64の端部が挿入される第1内側リング66a、66bと前記第1内側リング66a、66bから離間して配置される第1外側リング68a、68bとの間に形成されている。混合ガス供給室82a及び改質ガス排出室82bは、それぞれ改質管路76の端部が挿入される第2内側リング78a、78bと前記第2内側リング78a、78bから離間して配置される第2外側リング80a、80bとの間に形成されている。水供給室98a及び水蒸気排出室98bは、それぞれ蒸発管路92の端部が挿入される第3内側リング94a、94bと前記第3内側リング94a、94bから離間して配置される第3外側リング96a、96bとの間に形成されている。
従って、酸化剤ガス供給室70a、酸化剤ガス排出室70b、混合ガス供給室82a、改質ガス排出室82b、水供給室98a及び水蒸気排出室98b、は、それぞれ第1内側リング66a、66b、第2内側リング78a、78b及び第3内側リング94a、94bと第1外側リング68a、68b、第2内側リング80a、80b及び第3内側リング96a、96bとにより形成され、構成が有効に簡素化される。これにより、燃料電池モジュール12は、製造コストが有効に削減されるとともに、コンパクト化が容易に遂行される。
また、改質ガス排出室82b、水蒸気排出室98b及び酸化剤ガス排出室70bは、燃料電池スタック24に近接する上方の端部側に設けられるとともに、混合ガス供給室82a、水供給室98a及び酸化剤ガス供給室70aは、前記燃料電池スタック24とは反対の下方の端部側に設けられている。
このため、昇温及び改質直後の反応ガス(燃料ガス及び酸化剤ガス)を燃料電池スタック24に迅速に供給することが可能になる。一方、燃料電池スタック24からの排ガスは、放熱による降温を最小限に抑制しながら、FC周辺機器56を構成する改質器46、蒸発器48、熱交換器50及び排ガス燃焼器52に供給することができ、熱効率が向上して熱自立の促進が図られる。
さらに、FC周辺機器56は、第1領域R1と第2領域R2との間に鉛直方向に配置される第1仕切り板60a、前記第2領域R2と第3領域R3との間に鉛直方向に配置される第2仕切り板60b及び前記第3領域R3と第4領域R4との間に鉛直方向に配置される第3仕切り板60cを備えている。
そして、凝縮水回収機構103は、燃料電池スタック24が配置される上部側とは反対の第1仕切り板60aの下部側に形成される第1凝縮水流通孔部103a、第2仕切り板60bの下部側に形成される第2凝縮水流通孔部103b及び第3仕切り板60cの下部側に形成される第3凝縮水流通孔部103cを有している。第1凝縮水流通孔部103a、第2凝縮水流通孔部103b及び第3凝縮水流通孔部103cの高さ位置は、それぞれ、順次、高く設定されている。すなわち、第2凝縮水流通孔部103bは、第1凝縮水流通孔部103aよりも高さ方向に高く設定される一方、第3凝縮水流通孔部103cは、前記第2凝縮水流通孔部103bよりも高さ方向に高く設定されている。
従って、燃焼ガスの吹き抜けを良好に抑制することができ、熱効率が一層向上し、熱自立の促進が確実に図られる。しかも、第1仕切り板60a、第2仕切り板60b及び第3仕切り板60cに設けられる第1凝縮水流通孔部103a、第2凝縮水流通孔部103b及び第3凝縮水流通孔部103cを通って、凝縮水は、FC周辺機器56の外側(低温側)から内側(高温側)に流通することが可能になる。これにより、凝縮水は、再度、気相状態に変化することを促進され、FC周辺機器56内に凝縮水が滞留することがない。このため、FC周辺機器56の耐久性への影響を可及的に抑制することができるとともに、回収された凝縮水を、改質用水蒸気として利用することが可能になる。
また、図7に示すように、第1凝縮水流通孔部103a、第2凝縮水流通孔部103b及び第3凝縮水流通孔部103cは、それぞれ環状方向に3つ以上に設定されている。従って、FC周辺機器56の設置状態等により、前記FC周辺機器56に傾斜が生じても、凝縮水を確実に回収することができる。これにより、FC周辺機器56の耐久性への影響を可及的に抑制することが可能になる。
さらに、第1凝縮水流通孔部103a、第2凝縮水流通孔部103b及び第3凝縮水流通孔部103cは、開口直径が8mm以上に設定されている。このため、凝縮水の表面張力により前記凝縮水の流通が阻止されることがなく、凝縮水を確実に回収することができる。従って、FC周辺機器56の耐久性への影響を可及的に抑制することが可能になる。
さらにまた、蒸発器48では、少なくとも蒸発管路92の1本以上は、水蒸気排出室98bと改質器46の混合ガス供給室82aとを連通する蒸発リターン管路102を構成している。これにより、水蒸気は、高温を維持した状態で、改質器46の混合ガス供給室82aで原燃料と混合されて混合ガスが得られる。このため、改質効率の向上が図られる。
また、燃料電池モジュール12は、固体酸化物形燃料電池モジュールである。従って、特にSOFC等の高温型燃料電池に最適である。
図9に示すように、燃料電池システム130は、本発明の第2の実施形態に係る燃料電池モジュール132を組み込む。なお、第1の実施形態に係る燃料電池モジュール12と同一の構成要素には、同一の参照符号を付して、その詳細な説明は省略する。また、以下に説明する第3以降の実施形態においても同様に、その詳細な説明は省略する。
燃料電池モジュール132を構成するFC周辺機器56は、図10に示すように、排ガス燃焼器52及び起動用燃焼器54が構成される、例えば、開口形状円形の第1領域R1と、改質器46が構成されるとともに、前記第1領域R1を環状に周回する第2領域R2と、熱交換器50が構成されるとともに、前記第2領域R2を環状に周回する第3領域R3と、蒸発器48が構成されるとともに、前記第3領域R3を環状に周回する第4領域R4とを備える。
FC周辺機器56は、第1領域R1と第2領域R2との間に配置される第1仕切り板134a、前記第2領域R2と第3領域R3との間に配置される第2仕切り板134b、前記第3領域R3と第4領域R4との間に配置される第3仕切り板134c、及び前記第4領域R4の外周に配置される第4仕切り板134dを備える。
図10及び図11に示すように、第1燃焼ガス連通孔62aは、第1仕切り板134aの燃料電池スタック24とは反対側の端部に近接して設けられ、第2燃焼ガス連通孔62bは、第2仕切り板134bの前記燃料電池スタック24側の端部に近接して設けられ、第3燃焼ガス連通孔62cは、第3仕切り板134cの前記燃料電池スタック24とは反対側の端部に近接して設けられ、第4燃焼ガス連通孔62dは、第4仕切り板134dの前記燃料電池スタック24側の端部に近接して設けられる。
第1仕切り板134aには、第1燃焼ガス連通孔62aとは反対側に且つ前記第1燃焼ガス連通孔62aよりも小さな開口面積を有する複数の抽気孔部136aが形成される。抽気孔部136aは、第2仕切り板134bに形成された第2燃焼ガス連通孔62bに対向する位置に設定される。第2仕切り板134bには、第3仕切り板134cに形成された第3燃焼ガス連通孔62cに対向する位置に複数の抽気孔部136bが形成される。第3仕切り板134cには、第4仕切り板134dに形成された第4燃焼ガス連通孔62dに対向する位置に複数の抽気孔部136cが形成される。なお、抽気孔部136b、136cは、必要に応じて設けられていればよい。
FC周辺機器56は、燃焼ガス中の水蒸気が凝縮した凝縮水を、第4領域R4、第3領域R3、第2領域R2及び第1領域R1の順に流通させて回収する凝縮水回収機構103を備える。
このように構成される第2の実施形態では、燃料電池モジュール132は、排ガス燃焼器52及び起動用燃焼器54が構成される第1領域R1と、改質器46が構成されるとともに、前記第1領域R1を環状に周回する第2領域R2と、熱交換器50が構成されるとともに、前記第2領域R2を環状に周回する第3領域R3と、蒸発器48が構成されるとともに、前記第3領域R3を環状に周回する第4領域R4とを備えている。
このため、高温及び熱需要が大きな機器、例えば、改質器46(及び熱交換器50)を内側に設置する一方、低温及び熱需要の小さな機器、例えば、蒸発器48を外側に設定することができる。従って、熱効率の向上が図られて熱自立が促進されるとともに、簡単且つコンパクトに構成することが可能になる。
しかも、FC周辺機器56は、凝縮水回収機構103を備えている。これにより、燃焼ガス中の水蒸気が凝縮した凝縮水は、第4領域R4、第3領域R3、第2領域R2及び第1領域R1の順に、すなわち、低温側から高温側に流通することができる。このため、凝縮水は、再度、気相状態に変化することを促進され、FC周辺機器56内に凝縮水が滞留することがない。従って、FC周辺機器56の耐久性への影響を可及的に抑制することができるとともに、回収された凝縮水を、改質用水蒸気として利用することが可能になる等、上記の第1の実施形態と同様の効果が得られる。
図12には、他の構成を有する内側リング138が示される。この内側リング138は、熱交換管路64が接合される平面部138aを有するとともに、前記平面部138aの内周側には、下方に傾斜する傾斜円筒部138bが一体に設けられる。傾斜円筒部138bの端部には、第1仕切り板60aに接合される筒状部138cが設けられ、前記筒状部138cと前記傾斜円筒部138bとの境界近傍に第1凝縮水流通孔部103aが配置される。
このように、内側リング138では、第2領域R2から第1凝縮水流通孔部103aに凝縮水を円滑且つ確実に案内するとともに、弾性を有し、例えば、熱による応力を緩和する機能を有することができる。
図13に示すように、本発明の第3の実施形態に係る燃料電池モジュール140では、FC周辺機器56は、第2仕切り板60b、第3仕切り板60c及び第4仕切り板60dを用いていない。
FC周辺機器56は、第1の実施形態と同様に、排ガス燃焼器52及び起動用燃焼器54が構成される、例えば、開口形状円形の第1領域R1と、熱交換器50が構成されるとともに、前記第1領域R1を環状に周回する第2領域R2と、改質器46が構成されるとともに、前記第2領域R2を環状に周回する第3領域R3と、蒸発器48が構成されるとともに、前記第3領域R3を環状に周回する第4領域R4とを備える。
FC周辺機器56は、燃焼ガス中の水蒸気が凝縮した凝縮水を、第4領域R4、第3領域R3、第2領域R2及び第1領域R1の順に流通させて回収する凝縮水回収機構142を備える。凝縮水回収機構142は、第1内側リング66aの上面、第2内側リング78aの上面及び第3内側リング94aの上面を備えるとともに、前記第1内側リング66aの上面、前記第2内側リング78aの上面及び前記第3内側リング94aの上面の順に、底面高さが高く設定される。すなわち、第2内側リング78aの底面高さは、第1内側リング66aの底面高さよりも高く設定される一方、第3内側リング94aの底面高さは、前記第2内側リング78aの底面高さよりも高く設定される。
このように構成される第3の実施形態では、第4領域R4に滞留する凝縮水は、高さの最も高い第3内側リング94aの上面から第3領域R3の第2内側リング78aの上面に移動する。次いで、凝縮水は、第2内側リング78aの上面よりも高さの低い第1内側リング66aの上面に、すなわち、第2領域R2に移動した後、第1領域R1に流入して回収管路105に回収される。
このため、凝縮水は、FC周辺機器56の外側(低温側)から内側(高温側)に流通することが可能になり、前記凝縮水が再度、気相状態に変化することを促進することができる。従って、FC周辺機器56内に凝縮水が滞留することがなく、前記FC周辺機器56の耐久性への影響を可及的に抑制することが可能になるとともに、回収された凝縮水を、改質用水蒸気として利用することができる。
図14に示すように、本発明の第4の実施形態に係る燃料電池モジュール150では、FC周辺機器56は、第2の実施形態と同様に、排ガス燃焼器52及び起動用燃焼器54が構成される、例えば、開口形状円形の第1領域R1と、改質器46が構成されるとともに、前記第1領域R1を環状に周回する第2領域R2と、熱交換器50が構成されるとともに、前記第2領域R2を環状に周回する第3領域R3と、蒸発器48が構成されるとともに、前記第3領域R3を環状に周回する第4領域R4とを備える。
FC周辺機器56は、燃焼ガス中の水蒸気が凝縮した凝縮水を、第4領域R4、第3領域R3、第2領域R2及び第1領域R1の順に流通させて回収する凝縮水回収機構142を備える。
従って、第4の実施形態では、上記の第1〜第3の実施形態と同様の効果を得ることができる。
10、130…燃料電池システム
12、132、140、150…燃料電池モジュール
14…原燃料供給装置 16…酸化剤ガス供給装置
18…水供給装置 20…制御装置
22…燃料電池 24…燃料電池スタック
26…電解質 28…カソード電極
30…アノード電極 32…電解質・電極接合体
38…酸化剤ガス流路 40…燃料ガス流路
46…改質器 48…蒸発器
50…熱交換器 52…排ガス燃焼器
54…起動用燃焼器 56…FC周辺機器
57…空気供給管 58…原燃料供給管
60a〜60d、134a〜134d…仕切り板
62a〜62d…燃焼ガス連通孔 64…熱交換管路
66a、66b、78a、78b、94a、94b、138…内側リング
68a、68b、80a、80b、96a、96b…外側リング
70a…酸化剤ガス供給室 70b…酸化剤ガス排出室
74、110…酸化剤ガス通路 76…改質管路
82a…混合ガス供給室 82b…改質ガス排出室
84…ペレット状触媒 88…原燃料供給路
90…燃料ガス通路 92…蒸発管路
98a…水供給室 98b…水蒸気排出室
100…水通路 102…蒸発リターン管路
103、142…凝縮水回収機構 103a〜103c…凝縮水流通孔部
105…回収管路 116a〜116d…燃焼ガス通路
136a〜136c…抽気孔部

Claims (11)

  1. 燃料ガスと酸化剤ガスとの電気化学反応により発電する燃料電池を複数積層した燃料電池スタックと、
    炭化水素を主体とする原燃料と水蒸気との混合ガスを改質し、前記燃料電池スタックに供給される前記燃料ガスを生成する改質器と、
    水を蒸発させるとともに、前記水蒸気を前記改質器に供給する蒸発器と、
    燃焼ガスとの熱交換により前記酸化剤ガスを昇温させるとともに、前記燃料電池スタックに前記酸化剤ガスを供給する熱交換器と、
    前記燃料電池スタックから排出される前記燃料ガスである燃料排ガスと前記酸化剤ガスである酸化剤排ガスとを燃焼させ、前記燃焼ガスを発生させる排ガス燃焼器と、
    それぞれ前記燃料電池スタックとは個別に供給される前記原燃料と前記酸化剤ガスとを燃焼させて前記燃焼ガスを発生させる起動用燃焼器と、
    を備える燃料電池モジュールであって、
    前記排ガス燃焼器及び前記起動用燃焼器が構成される第1領域と、
    前記改質器又は前記熱交換器の一方が構成されるとともに、前記第1領域を環状に周回する第2領域と、
    前記改質器又は前記熱交換器の他方が構成されるとともに、前記第2領域を環状に周回する第3領域と、
    前記蒸発器が構成されるとともに、前記第3領域を環状に周回する第4領域と、
    前記燃焼ガス中の前記水蒸気が凝縮した凝縮水を、前記第4領域、前記第3領域、前記第2領域及び前記第1領域の順に流通させて回収する凝縮水回収機構と、
    を備えることを特徴とする燃料電池モジュール。
  2. 請求項1記載の燃料電池モジュールにおいて、前記改質器は、前記混合ガスが供給される環状の混合ガス供給室、生成された前記燃料ガスが排出される環状の改質ガス排出室、一端が前記混合ガス供給室に連通し且つ他端が前記改質ガス排出室に連通する複数本の改質管路、及び前記改質管路間に前記燃焼ガスを供給する燃焼ガス通路を備え、
    前記蒸発器は、前記水が供給される環状の水供給室、前記水蒸気が排出される環状の水蒸気排出室、一端が前記水供給室に連通し且つ他端が前記水蒸気排出室に連通する複数本の蒸発管路、及び前記蒸発管路間に前記燃焼ガスを供給する燃焼ガス通路を備え、
    前記熱交換器は、前記酸化剤ガスが供給される環状の酸化剤ガス供給室、昇温された前記酸化剤ガスが排出される環状の酸化剤ガス排出室、一端が前記酸化剤ガス供給室に連通し且つ他端が前記酸化剤ガス排出室に連通する複数本の熱交換管路、及び前記熱交換管路間に前記燃焼ガスを供給する燃焼ガス通路を備えることを特徴とする燃料電池モジュール。
  3. 請求項2記載の燃料電池モジュールにおいて、前記燃焼ガスは、前記第1領域の燃焼ガス通路、前記第2領域の前記燃焼ガス通路、前記第3領域の前記燃焼ガス通路及び前記第4領域の前記燃焼ガス通路の順に流通した後、前記燃料電池モジュールの外部に排出されることを特徴とする燃料電池モジュール。
  4. 請求項2又は3記載の燃料電池モジュールにおいて、前記混合ガス供給室及び前記改質ガス排出室は、それぞれ高さ方向に離間して配置され、前記改質管路の端部が挿入される一対の内側リングと前記一対の内側リングよりも高さ方向外側に配置される一対の外側リングとの間に形成され、
    前記水供給室及び前記水蒸気排出室は、それぞれ高さ方向に離間して配置され、前記蒸発管路の端部が挿入される内側リング一対の内側リングと前記一対の内側リングよりも高さ方向外側に配置される一対の外側リングとの間に形成され、
    前記酸化剤ガス供給室及び前記酸化剤ガス排出室は、それぞれ高さ方向に離間して配置され、前記熱交換管路の端部が挿入される一対の内側リングと前記一対の内側リングよりも高さ方向外側に配置される一対の外側リングとの間に形成されることを特徴とする燃料電池モジュール。
  5. 請求項4記載の燃料電池モジュールにおいて、前記改質ガス排出室、前記水蒸気排出室及び前記酸化剤ガス排出室は、前記燃料電池スタックに近接する上方の端部側に設けられる一方、
    前記混合ガス供給室、前記水供給室及び前記酸化剤ガス供給室は、前記燃料電池スタックとは反対の下方の端部側に設けられることを特徴とする燃料電池モジュール。
  6. 請求項5記載の燃料電池モジュールにおいて、前記凝縮水回収機構は、前記第2領域の底部を構成する第1内側リング面、前記第3領域の底部を構成する第2内側リング面及び前記第4領域を構成する第3内側リング面を備えるとともに、
    前記第2内側リング面の底面高さは、前記第1内側リング面の底面高さよりも高く設定される一方、前記第3内側リング面の底面高さは、前記第2内側リング面の底面高さよりも高く設定されることを特徴とする燃料電池モジュール。
  7. 請求項5又は6記載の燃料電池モジュールにおいて、前記燃料電池モジュールは、前記第1領域と前記第2領域との間に鉛直方向に配置される第1仕切り板、前記第2領域と前記第3領域との間に鉛直方向に配置される第2仕切り板及び前記第3領域と前記第4領域との間に鉛直方向に配置される第3仕切り板を備え、
    前記凝縮水回収機構は、前記燃料電池スタックが配置される上部側とは反対の前記第1仕切り板の下部側に形成される第1凝縮水流通孔部、前記第2仕切り板の下部側に形成される第2凝縮水流通孔部及び前記第3仕切り板の下部側に形成される第3凝縮水流通孔部を有し、且つ、前記第2凝縮水流通孔部は、前記第1凝縮水流通孔部よりも高さ方向に高く設定される一方、前記第3凝縮水流通孔部は、前記第2凝縮水流通孔部よりも高さ方向に高く設定されることを特徴とする燃料電池モジュール。
  8. 請求項7記載の燃料電池モジュールにおいて、前記第1凝縮水流通孔部、前記第2凝縮水流通孔部及び前記第3凝縮水流通孔部は、それぞれ環状方向に3つ以上に設定されることを特徴とする燃料電池モジュール。
  9. 請求項7又は8記載の燃料電池モジュールにおいて、前記第1凝縮水流通孔部、前記第2凝縮水流通孔部及び前記第3凝縮水流通孔部は、開口直径が8mm以上に設定されることを特徴とする燃料電池モジュール。
  10. 請求項2〜9のいずれか1項に記載の燃料電池モジュールにおいて、少なくとも前記蒸発管路の1本以上は、前記水蒸気排出室と前記混合ガス供給室とを連通し、前記水蒸気を前記混合ガス供給室に供給する蒸発リターン管路を構成することを特徴とする燃料電池モジュール。
  11. 請求項1〜10のいずれか1項に記載の燃料電池モジュールにおいて、前記燃料電池モジュールは、固体酸化物形燃料電池モジュールであることを特徴とする燃料電池モジュール。
JP2012017309A 2012-01-30 2012-01-30 燃料電池モジュール Active JP5836823B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012017309A JP5836823B2 (ja) 2012-01-30 2012-01-30 燃料電池モジュール
US14/347,909 US9240601B2 (en) 2012-01-30 2012-12-19 Fuel cell module
PCT/JP2012/083760 WO2013114775A1 (en) 2012-01-30 2012-12-19 Fuel cell module
EP12815859.9A EP2810328B1 (en) 2012-01-30 2012-12-19 Fuel cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012017309A JP5836823B2 (ja) 2012-01-30 2012-01-30 燃料電池モジュール

Publications (2)

Publication Number Publication Date
JP2013157217A JP2013157217A (ja) 2013-08-15
JP5836823B2 true JP5836823B2 (ja) 2015-12-24

Family

ID=47559629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012017309A Active JP5836823B2 (ja) 2012-01-30 2012-01-30 燃料電池モジュール

Country Status (4)

Country Link
US (1) US9240601B2 (ja)
EP (1) EP2810328B1 (ja)
JP (1) JP5836823B2 (ja)
WO (1) WO2013114775A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5990397B2 (ja) * 2012-04-24 2016-09-14 本田技研工業株式会社 燃料電池モジュール
JP5813617B2 (ja) * 2012-11-07 2015-11-17 本田技研工業株式会社 燃料電池モジュール
JP5860382B2 (ja) 2012-11-07 2016-02-16 本田技研工業株式会社 燃料電池モジュール
JP5813616B2 (ja) 2012-11-07 2015-11-17 本田技研工業株式会社 燃料電池モジュール
JP6051063B2 (ja) * 2013-01-30 2016-12-21 本田技研工業株式会社 燃料電池モジュール
JP5981872B2 (ja) 2013-04-18 2016-08-31 本田技研工業株式会社 燃料電池モジュール
JP5981873B2 (ja) 2013-04-18 2016-08-31 本田技研工業株式会社 燃料電池モジュール
JP5981871B2 (ja) 2013-04-18 2016-08-31 本田技研工業株式会社 燃料電池モジュール
JP6122360B2 (ja) * 2013-07-19 2017-04-26 本田技研工業株式会社 燃料電池モジュール
JP6175010B2 (ja) * 2014-02-13 2017-08-02 本田技研工業株式会社 燃料電池モジュール
JP6530915B2 (ja) * 2015-01-09 2019-06-12 本田技研工業株式会社 燃料電池モジュール
JP7296975B2 (ja) 2018-02-16 2023-06-23 フィッシャー エコ ソリューションズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 燃料電池システム及びその作動方法
CN109037731B (zh) * 2018-06-25 2023-11-10 华南理工大学 一种用于大功率燃料电池传热均温的液冷式模块
CN112615022B (zh) * 2020-12-08 2022-02-01 国家能源集团宁夏煤业有限责任公司 Sofc发电模块集成阳极的布气底座

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223144A (ja) * 1999-01-27 2000-08-11 Aisin Seiki Co Ltd 燃料電池システム及びその制御方法
KR20010076243A (ko) 2000-01-25 2001-08-11 요트 루나우 액체 연료용 연료 전지
JP2002284506A (ja) 2001-03-23 2002-10-03 Aisin Seiki Co Ltd 燃料改質装置の支持構造
US20030096147A1 (en) 2001-11-21 2003-05-22 Badding Michael E. Solid oxide fuel cell stack and packet designs
JP4056755B2 (ja) 2002-02-05 2008-03-05 東京瓦斯株式会社 固体酸化物形燃料電池用触媒燃焼一体型熱交換器
JP4161612B2 (ja) 2002-05-15 2008-10-08 株式会社Ihi 燃料改質装置の起動方法
JP4520100B2 (ja) 2003-03-20 2010-08-04 新日本石油株式会社 水素製造装置および燃料電池システム
JP4981280B2 (ja) * 2005-08-23 2012-07-18 本田技研工業株式会社 燃料電池
JP5021237B2 (ja) * 2006-05-18 2012-09-05 本田技研工業株式会社 燃料電池システム
FR2906407B1 (fr) 2006-09-21 2008-11-14 Commissariat Energie Atomique Pile a combustible a oxyde solide, incorporant un echangeur thermique
JP5230958B2 (ja) 2006-09-28 2013-07-10 アイシン精機株式会社 改質装置の制御方法及び改質装置並びに燃料電池システム
JP4922029B2 (ja) 2007-03-15 2012-04-25 東芝燃料電池システム株式会社 水素生成装置
JP2010238651A (ja) * 2009-03-31 2010-10-21 Honda Motor Co Ltd 燃料電池システム

Also Published As

Publication number Publication date
JP2013157217A (ja) 2013-08-15
US20140287332A1 (en) 2014-09-25
EP2810328B1 (en) 2016-04-27
US9240601B2 (en) 2016-01-19
WO2013114775A1 (en) 2013-08-08
EP2810328A1 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5836823B2 (ja) 燃料電池モジュール
JP5851863B2 (ja) 燃料電池モジュール
JP5990397B2 (ja) 燃料電池モジュール
JP5881440B2 (ja) 燃料電池モジュール
JP5981872B2 (ja) 燃料電池モジュール
JP5848197B2 (ja) 燃料電池モジュール
JP5902027B2 (ja) 燃料電池モジュール
JP5851968B2 (ja) 燃料電池モジュール
JP5813617B2 (ja) 燃料電池モジュール
JP5860382B2 (ja) 燃料電池モジュール
JP5815476B2 (ja) 燃料電池モジュール
JP5981871B2 (ja) 燃料電池モジュール
JP6051063B2 (ja) 燃料電池モジュール
JP6051064B2 (ja) 燃料電池モジュール
JP5860376B2 (ja) 燃料電池モジュール
JP2013157216A (ja) 燃料電池モジュール
JP5981873B2 (ja) 燃料電池モジュール
JP5789533B2 (ja) 燃料電池モジュール
JP2013229142A (ja) 燃料電池モジュール
JP2014078348A (ja) 燃料電池モジュール
JP2013157215A (ja) 燃料電池モジュール
JP2013258028A (ja) 燃料電池モジュール
JP2013229141A (ja) 燃料電池モジュール
JP2013258027A (ja) 燃料電池モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151104

R150 Certificate of patent or registration of utility model

Ref document number: 5836823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250