JP5834976B2 - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
JP5834976B2
JP5834976B2 JP2012020778A JP2012020778A JP5834976B2 JP 5834976 B2 JP5834976 B2 JP 5834976B2 JP 2012020778 A JP2012020778 A JP 2012020778A JP 2012020778 A JP2012020778 A JP 2012020778A JP 5834976 B2 JP5834976 B2 JP 5834976B2
Authority
JP
Japan
Prior art keywords
injection
calculated
parameter
pressure
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012020778A
Other languages
Japanese (ja)
Other versions
JP2013160080A (en
Inventor
長谷川 亮
亮 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012020778A priority Critical patent/JP5834976B2/en
Publication of JP2013160080A publication Critical patent/JP2013160080A/en
Application granted granted Critical
Publication of JP5834976B2 publication Critical patent/JP5834976B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、例えば筒内直噴圧縮着火エンジン等の内燃機関を制御する内燃機関制御装置の技術分野に関する。   The present invention relates to a technical field of an internal combustion engine control apparatus that controls an internal combustion engine such as a direct injection compression ignition engine.

この種の装置として、例えば、燃料噴射量に応じて、燃焼室内での燃焼に伴う熱発生率の燃焼重心時刻の適正値を算出し、実際の燃焼重心時刻が、該算出された燃焼重心時刻に略一致するように、燃料噴射時期の補正や筒内酸素濃度の補正を行う装置が提案されている(特許文献1参照)。   As an apparatus of this type, for example, an appropriate value of the combustion center of gravity time of the heat generation rate associated with combustion in the combustion chamber is calculated according to the fuel injection amount, and the actual combustion center of gravity time is calculated as the calculated combustion center of gravity time. Has been proposed to correct the fuel injection timing and the in-cylinder oxygen concentration (see Patent Document 1).

或いは、実着火時期と目標着火時期との差、及び、燃料噴射期間と実着火時期との関係から定まる実拡散燃焼割合と、目標拡散燃焼割合との差、の正負に基づいて、燃料噴射時期とプレ噴射量とを同時に補正する装置が提案されている(特許文献2参照)。   Alternatively, the fuel injection timing is based on the difference between the actual ignition timing and the target ignition timing and the difference between the actual diffusion combustion ratio determined from the relationship between the fuel injection period and the actual ignition timing and the target diffusion combustion ratio. And a device for simultaneously correcting the pre-injection amount have been proposed (see Patent Document 2).

或いは、
実トルク増加量と実噴射量とを比較することにより燃焼割合を算出し、噴射制御用マップのデータ(噴射パターン)を、所望の出力トルク及びエミッション状態となるよう燃焼割合に応じて変更する装置が提案されている(特許文献3参照)。
Or
A device that calculates the combustion ratio by comparing the actual torque increase amount and the actual injection amount, and changes the injection control map data (injection pattern) in accordance with the combustion ratio so as to obtain a desired output torque and emission state. Has been proposed (see Patent Document 3).

特開2011−202629号公報JP 2011-202629 A 特開2010−203343号公報JP 2010-203343 A 特開2009−074499号公報JP 2009-074499 A

しかしながら、上述の背景技術では、例えば燃焼騒音やNOx等の抑制が不十分である可能性があるという技術的問題点がある。   However, the above-described background art has a technical problem that there is a possibility that suppression of combustion noise, NOx, and the like may be insufficient.

本発明は、例えば上記問題点に鑑みてなされたものであり、燃焼騒音やNOxの発生を抑制しつつ、着火性を向上させることができる内燃機関制御装置を提供することを課題とする。   The present invention has been made in view of the above-described problems, for example, and an object of the present invention is to provide an internal combustion engine control device capable of improving ignitability while suppressing the generation of combustion noise and NOx.

本発明の内燃機関制御装置は、上記課題を解決するために、燃料の主噴射の前に、前記燃料を複数回パイロット噴射可能な燃料噴射手段と、内燃機関の気筒内の圧力を検出する筒内圧検出手段と、前記検出された圧力に基づいて、前記パイロット噴射に係る噴射圧に関連する第1パラメータを算出し、前記算出された第1パラメータと前記第1パラメータに係る第1目標値との第1偏差を算出する第1算出手段と、前記検出された圧力に基づいて、前記パイロット噴射に係る噴射量に関連する第2パラメータを算出し、前記算出された第2パラメータと、前記第2パラメータに係る第2目標値との第2偏差を算出する第2算出手段と、前記算出された第1偏差が大きいほど前記パイロット噴射に係る噴射圧を補正する噴射圧補正係数を大きくし、且つ、前記算出された第2偏差が小さいほど前記パイロット噴射に係る噴射量を補正する噴射量補正係数を大きくする制御手段と、を備え、前記第1パラメータは、熱発生率の最大傾きであり、前記第2パラメータは、燃焼重心である。 In order to solve the above problems, an internal combustion engine control apparatus according to the present invention includes a fuel injection means capable of performing pilot injection of the fuel a plurality of times and a cylinder for detecting pressure in a cylinder of the internal combustion engine before main fuel injection Based on the detected internal pressure and the detected pressure, a first parameter related to the injection pressure related to the pilot injection is calculated, and the calculated first parameter and the first target value related to the first parameter are calculated. Based on the detected pressure, a second parameter related to the injection amount related to the pilot injection is calculated, the calculated second parameter, and the first parameter are calculated based on the detected pressure. Second calculation means for calculating a second deviation from the second target value relating to two parameters, and an injection pressure correction coefficient for correcting the injection pressure related to the pilot injection is increased as the calculated first deviation is larger. And, and a control means for increasing the injection quantity correction coefficient for correcting the injection amount according to the pilot injection as the second deviation the calculated small, the first parameter is the maximum slope of the heat release rate And the second parameter is a combustion center of gravity.

本発明の内燃機関制御装置によれば、例えばインジェクタ等である燃料噴射手段は、例えばガソリン、軽油等である燃料の主噴射の前に、微量の燃料を複数回パイロット噴射可能に構成されている。例えば筒内圧センサ等である筒内圧検出手段は、内燃機関の気筒内の圧力を検出する。   According to the internal combustion engine control apparatus of the present invention, the fuel injection means such as an injector is configured such that a small amount of fuel can be pilot-injected a plurality of times before the main injection of fuel such as gasoline and light oil. . For example, in-cylinder pressure detecting means such as an in-cylinder pressure sensor detects the pressure in the cylinder of the internal combustion engine.

例えばメモリ、プロセッサ等を備えてなる第1算出手段は、筒内圧検出手段により検出された圧力に基づいて、パイロット噴射に係る噴射圧に関連する第1パラメータを算出する。第1算出手段は、更に、算出された第1パラメータと、該第1パラメータに係る第1目標値との間の偏差である第1偏差を算出する。第1パラメータは、熱発生率の最大傾きである。 For example, a first calculation unit including a memory, a processor, and the like calculates a first parameter related to the injection pressure related to the pilot injection based on the pressure detected by the in-cylinder pressure detection unit. The first calculation means further calculates a first deviation which is a deviation between the calculated first parameter and the first target value related to the first parameter. The first parameter is the maximum slope of the heat generation rate.

ここで、燃料の噴射圧は、燃焼速度に影響を与える。燃焼速度が比較的速い場合には、例えば燃焼騒音が増大することが、本願発明者の研究により判明している。   Here, the fuel injection pressure affects the combustion speed. It has been found by the inventor's research that, for example, combustion noise increases when the combustion rate is relatively high.

例えばメモリ、プロセッサ等を備えてなる第2算出手段は、筒内圧検出手段により検出
された圧力に基づいて、パイロット噴射に係る噴射量に関連する第2パラメータを算出す
る。第2算出手段は、更に、算出された第2パラメータと、該第2パラメータに係る第2
目標値との間の偏差である第2偏差を算出する。第2パラメータは、燃焼重心である。
For example, the second calculation unit including a memory, a processor, and the like calculates a second parameter related to the injection amount related to the pilot injection based on the pressure detected by the in-cylinder pressure detection unit. The second calculation means further includes a calculated second parameter and a second parameter related to the second parameter.
A second deviation which is a deviation from the target value is calculated. The second parameter is the combustion center of gravity.

ここで、パイロット噴射に係る燃料の噴射量は、燃焼重心(つまり、着火時期)に影響を与える。燃焼重心によっては、例えば失火が起きる可能性があることが、本願発明者の研究により判明している。   Here, the fuel injection amount related to pilot injection affects the combustion center of gravity (that is, the ignition timing). Depending on the center of combustion, for example, a misfire may occur, which has been found by the inventor's research.

第1目標値及び第2目標値は、内燃機関の運転状態等に応じて、随時決定される値である。   The first target value and the second target value are values determined at any time according to the operating state of the internal combustion engine.

例えばメモリ、プロセッサ等を備えてなる制御手段は、算出された第1偏差が大きいほどパイロット噴射に係る噴射圧を補正する噴射圧補正係数を大きくし、且つ、算出された第2偏差が小さいほどパイロット噴射に係る噴射量を補正する噴射量補正係数を大きくする。 For example the memory control means comprising a processor and the like, the injection pressure of the first deviation calculated is according to the more pilot injection larger by increasing the injection pressure correction coefficient for correcting, and, as the second deviation calculated is small The injection amount correction coefficient for correcting the injection amount related to the pilot injection is increased .

制御手段は、噴射圧補正係数に基づいて、補正後の噴射圧に係る目標値を求めると共に、噴射量補正係数に基づいて補正後の噴射量に係る目標値を求める。そして、制御手段は、補正後の噴射圧に係る目標値及び補正後の噴射量に係る目標値に基づいて、燃料噴射手段を制御する。   The control means obtains a target value related to the corrected injection pressure based on the injection pressure correction coefficient and obtains a target value related to the corrected injection quantity based on the injection amount correction coefficient. The control means controls the fuel injection means based on the target value related to the corrected injection pressure and the target value related to the corrected injection amount.

この結果、燃焼騒音やNOxの発生を抑制しつつ、着火性を向上させることができることが、本願発明者の研究により判明している。   As a result, it has been found by the inventor's research that the ignitability can be improved while suppressing the generation of combustion noise and NOx.

本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。   The effect | action and other gain of this invention are clarified from the form for implementing demonstrated below.

実施形態に係るエンジンの構成を示すブロック図である。It is a block diagram which shows the structure of the engine which concerns on embodiment. 実施形態に係るエンジン制御の概念を示す概念図である。It is a conceptual diagram which shows the concept of the engine control which concerns on embodiment. 実施形態に係るエンジン制御処理を示すフローチャートである。It is a flowchart which shows the engine control process which concerns on embodiment. 実施形態に係る補正割合係数等の概念を示す概念図である。It is a conceptual diagram which shows concepts, such as a correction | amendment ratio coefficient based on embodiment.

本発明の内燃機関制御装置に係る実施形態を、図面に基づいて説明する。   An embodiment according to an internal combustion engine control device of the present invention will be described with reference to the drawings.

本発明に係る「内燃機関」の一例としてのエンジンの構成について、図1を参照して説明する。図1は、実施形態に係るエンジンの構成を示すブロック図である。   The configuration of an engine as an example of the “internal combustion engine” according to the present invention will be described with reference to FIG. FIG. 1 is a block diagram illustrating a configuration of an engine according to the embodiment.

図1において、エンジン1は、気筒11、ピストン12、吸気通路13、吸気弁14、排気通路15、排気弁16及び燃料噴射弁17を備えて構成されている。エンジン1は、気筒11内に吸入した空気を圧縮し、圧縮されて高温になった空気中に燃料を噴射して自己着火させる圧縮着火方式のエンジン(所謂、筒内直噴圧縮着火エンジン)である。   In FIG. 1, the engine 1 includes a cylinder 11, a piston 12, an intake passage 13, an intake valve 14, an exhaust passage 15, an exhaust valve 16, and a fuel injection valve 17. The engine 1 is a compression ignition type engine (a so-called in-cylinder direct injection compression ignition engine) that compresses air taken into a cylinder 11 and injects fuel into the compressed and heated air to self-ignite. is there.

ECU(Electronic Control Unit:電子制御ユニット)21は、例えば燃料噴射弁17から噴射される燃料等、エンジン1、及び該エンジン1を備える車両(図示せず)の各種電子制御を行う。   An ECU (Electronic Control Unit: electronic control unit) 21 performs various types of electronic control of the engine 1 and a vehicle (not shown) including the engine 1 such as fuel injected from the fuel injection valve 17.

制御装置100は、燃料噴射弁17と、気筒11内の圧力を検出する筒内圧センサ22と、ECU21とを備えて構成されている。つまり、本実施形態では、各種電子制御用のECU21の機能の一部を、制御装置100の一部として用いている。   The control device 100 includes a fuel injection valve 17, an in-cylinder pressure sensor 22 that detects the pressure in the cylinder 11, and an ECU 21. That is, in the present embodiment, some of the functions of the various electronic control ECUs 21 are used as part of the control device 100.

ECU21は、燃料の主噴射の前に、微小燃料を複数回パイロット噴射するように、燃料噴射弁17を制御する。パイロット噴射により噴射された燃料はピストン12の上昇に伴う気筒11内(燃焼室)の温度上昇によって燃える。この予備的な燃焼によって、主噴射時の拡散燃料が活発化され、燃料を噴射してから着火するまでの着火遅れ時間を短縮することができる(即ち、着火性を向上することができる)。   The ECU 21 controls the fuel injection valve 17 so that minute fuel is pilot-injected a plurality of times before the main fuel injection. The fuel injected by the pilot injection burns when the temperature in the cylinder 11 (combustion chamber) rises as the piston 12 rises. By this preliminary combustion, the diffusion fuel at the time of main injection is activated, and the ignition delay time from when the fuel is injected to when it is ignited can be shortened (that is, the ignitability can be improved).

ところで、厳しい排出規制を満たすためには、過渡時に燃焼状態量(例えば、筒内圧力、温度、熱伝達等)が変化した場合でも、燃焼状態の全てを狙い値に補正する精密制御が必須となる。特に、燃焼時刻の制御と、燃焼状態の制御との両立が重要となる。具体的には、燃焼重心の制御と熱発生率傾きの制御との両立が重要となる。   By the way, in order to satisfy strict emission regulations, precise control that corrects all combustion states to target values is essential even when the amount of combustion state (for example, in-cylinder pressure, temperature, heat transfer, etc.) changes during transition. Become. In particular, it is important to achieve both combustion time control and combustion state control. Specifically, it is important to achieve both control of the combustion center of gravity and control of the heat release rate gradient.

そこで、ECU21は、筒内圧センサ22により検出された気筒11内の圧力に基づいて、下記式(1)により、熱発生率dQを求める。   Therefore, the ECU 21 obtains the heat generation rate dQ by the following equation (1) based on the pressure in the cylinder 11 detected by the in-cylinder pressure sensor 22.

Figure 0005834976
(1)
ここで、κは比熱比であり、Vはシリンダ容積であり、pは筒内圧力である。
Figure 0005834976
(1)
Here, κ is a specific heat ratio, V is a cylinder volume, and p is an in-cylinder pressure.

次に、ECU21は、燃焼時刻に関連するパラメータである燃焼重心を、式(1)に基づいて算出する。具体的には、ECU21は、式(1)の熱発生率dQの積分値が50%の値に到達する時刻を算出する。   Next, the ECU 21 calculates the combustion center of gravity, which is a parameter related to the combustion time, based on the equation (1). Specifically, the ECU 21 calculates the time at which the integrated value of the heat release rate dQ in Expression (1) reaches a value of 50%.

また、ECU21は、燃焼状態に関連するパラメータである熱発生率の最大傾きを、式(1)に基づいて算出する。具体的には、ECU21は、式(1)をクランクアングル毎に微分した値から最大値を抽出することにより、熱発生率の最大傾きを算出する。   Moreover, ECU21 calculates the maximum inclination of the heat release rate which is a parameter relevant to a combustion state based on Formula (1). Specifically, the ECU 21 calculates the maximum slope of the heat release rate by extracting the maximum value from the value obtained by differentiating the equation (1) for each crank angle.

続いて、ECU21は、算出された燃焼重心と、該燃焼重心に係る目標値との差分(図2の“ΔCA50”参照)、及び、算出された熱発生率の最大傾きと、該熱発生率の最大傾きに係る目標値との差分(図2の“Δ傾き”参照)、に応じて、次回のサイクルのパイロット噴射に係る燃料噴射量、及び燃料噴射圧を補正する。   Subsequently, the ECU 21 calculates the difference between the calculated combustion center of gravity and the target value related to the combustion center of gravity (see “ΔCA50” in FIG. 2), the calculated maximum slope of the heat generation rate, and the heat generation rate. The fuel injection amount and fuel injection pressure related to pilot injection in the next cycle are corrected according to the difference (see “Δ slope” in FIG. 2) from the target value related to the maximum inclination.

ここで、燃焼重心は、失火、燃費に影響し、熱発生率の最大傾きは、燃焼騒音に影響することが、本願発明者の研究により判明している。このため、燃焼重心及び熱発生率の最大傾き各々を適切に制御することによって、燃焼騒音を抑制しつつ、着火性を向上することができる。   Here, it has been found by the inventor's research that the combustion center of gravity affects misfire and fuel consumption, and that the maximum slope of the heat generation rate affects combustion noise. For this reason, ignitability can be improved while suppressing combustion noise by appropriately controlling the combustion gravity center and the maximum inclination of the heat generation rate.

制御装置100が実行する制御処理について、図3のフローチャートを参照して、より具体的に説明する。   The control process executed by the control device 100 will be described more specifically with reference to the flowchart of FIG.

図3において、ECU21は、先ず、筒内圧センサ22により検出された気筒11内の圧力と、上記式(1)とに基づいて、今回のサイクルにおける燃焼重心を算出する(ステップS101)。   In FIG. 3, the ECU 21 first calculates the combustion center of gravity in the current cycle based on the pressure in the cylinder 11 detected by the in-cylinder pressure sensor 22 and the above equation (1) (step S101).

ステップS101の処理と並行して、ECU21は、筒内圧センサ22により検出された気筒11内の圧力と、上記式(1)とに基づいて、今回のサイクルにおける熱発生率の最大傾きを算出する(ステップS102)。   In parallel with the processing in step S101, the ECU 21 calculates the maximum slope of the heat release rate in the current cycle based on the pressure in the cylinder 11 detected by the in-cylinder pressure sensor 22 and the above equation (1). (Step S102).

次に、ECU21は、算出された燃焼重心に基づいて、補正割合係数を算出する(ステップS103)。具体的には、ECU21は、算出された燃焼重心が遅くなるほど、補正割合係数を大きくする。尚、この補正割合係数は、図4(a)に示すように、0から1までの範囲内の値である。   Next, the ECU 21 calculates a correction ratio coefficient based on the calculated combustion center of gravity (step S103). Specifically, the ECU 21 increases the correction ratio coefficient as the calculated combustion center of gravity becomes slower. The correction ratio coefficient is a value within a range from 0 to 1, as shown in FIG.

次に、ECU21は、算出された(即ち、現在の)燃焼重心と、該燃焼重心に係る目標値との差分(目標値−現在の燃焼重心)に基づいて、噴射量補正係数を算出する。具体的には、ECU21は、差分が小さいほど、噴射量補正係数を大きくする。そして、ECU21は、次回のサイクルの前段噴射(即ち、主噴射の直前に行われるパイロット噴射)に係る燃料噴射量を、次式(2)により決定する(ステップS104)。
(前段の噴射量)=(目標値)×(噴射量補正係数)×(補正割合係数) (2)
次に、ECU21は、算出された(即ち、現在の)熱発生率の最大傾きと、該熱発生率の最大傾きに係る目標値との差分(目標値−現在の熱発生率の最大傾き)に基づいて、噴射圧補正係数を算出する。具体的には、ECU21は、差分が大きいほど、噴射圧補正係数を大きくする。そして、ECU21は、次回のサイクルの燃料噴射圧を、次式(3)により決定する(ステップS105)。
(噴射圧)=(目標値)×(噴射圧補正係数)×{1−(補正割合係数)} (3)
本実施形態では、上述の如く、算出された燃焼重心が遅くなるほど、補正割合係数が大きくなる。このため、算出された燃焼重心が遅くなるほど、前段の噴射量の重みが増し、噴射圧の重みが減る(式(2)及び(3)参照)。他方、算出された燃焼重心が早くなる(上死点TDCに近づく)ほど、前段の噴射量の重みが減り、噴射圧の重みが増す。
Next, the ECU 21 calculates an injection amount correction coefficient based on a difference (target value−current combustion center of gravity) between the calculated (that is, current) combustion center of gravity and a target value related to the combustion center of gravity. Specifically, the ECU 21 increases the injection amount correction coefficient as the difference is smaller. Then, the ECU 21 determines the fuel injection amount related to the pre-stage injection of the next cycle (that is, the pilot injection performed immediately before the main injection) by the following equation (2) (step S104).
(Pre-stage injection amount) = (Target value) × (Injection amount correction coefficient) × (Correction ratio coefficient) (2)
Next, the ECU 21 calculates the difference between the calculated (that is, current) maximum slope of the heat generation rate and the target value related to the maximum slope of the heat generation rate (target value—maximum slope of the current heat generation rate). Based on the above, an injection pressure correction coefficient is calculated. Specifically, the ECU 21 increases the injection pressure correction coefficient as the difference increases. Then, the ECU 21 determines the fuel injection pressure for the next cycle according to the following equation (3) (step S105).
(Injection pressure) = (target value) × (injection pressure correction coefficient) × {1− (correction ratio coefficient)} (3)
In the present embodiment, as described above, the correction ratio coefficient increases as the calculated combustion center of gravity becomes slower. For this reason, as the calculated combustion center of gravity becomes slower, the weight of the injection amount in the previous stage increases and the weight of the injection pressure decreases (see equations (2) and (3)). On the other hand, as the calculated combustion center of gravity becomes earlier (closer to the top dead center TDC), the weight of the previous injection amount decreases and the weight of the injection pressure increases.

燃焼重心が上死点近傍になる場合には、燃費感度が比較的低く失火もしにくいため、熱発生率の最大傾きの制御(即ち、噴射圧の制御)を優先することで、燃焼騒音を効果的に抑制することができる。他方、燃焼重心が遅くなる場合には、失火を優先して回避するために、燃焼重心の制御(即ち、前段の噴射量の制御)を優先する。この結果、燃焼重心の制御と熱発生率傾きの制御との両立が可能となる。   When the center of gravity of combustion is near top dead center, fuel efficiency is relatively low and misfires are difficult to make. Therefore, priority is given to the control of the maximum slope of the heat release rate (ie, control of the injection pressure), and the combustion noise is effective. Can be suppressed. On the other hand, when the combustion center of gravity is delayed, priority is given to the control of the combustion center of gravity (that is, the control of the injection amount in the preceding stage) in order to avoid misfire with priority. As a result, it is possible to achieve both control of the combustion center of gravity and control of the heat release rate gradient.

実施形態に係る「燃料噴射弁17」及び「筒内圧センサ22」は、夫々、本発明に係る「燃料噴射手段」及び「筒内圧検出手段」の一例である。実施形態に係る「ECU21」は、本発明に係る「第1算出手段」、「第2算出手段」及び「制御手段」の一例である。実施形態に係る「熱発生率の最大傾き」及び「燃焼重心」は、夫々、本発明に係る「第1パラメータ」及び「第2パラメータ」の一例である。   The “fuel injection valve 17” and the “in-cylinder pressure sensor 22” according to the embodiment are examples of the “fuel injection unit” and the “in-cylinder pressure detection unit” according to the present invention, respectively. “ECU 21” according to the embodiment is an example of “first calculation means”, “second calculation means”, and “control means” according to the present invention. The “maximum slope of heat generation rate” and “combustion center of gravity” according to the embodiment are examples of the “first parameter” and the “second parameter” according to the present invention, respectively.

本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う内燃機関制御装置もまた本発明の技術的範囲に含まれるものである。   The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification. The apparatus is also included in the technical scope of the present invention.

1…エンジン、11…気筒、12…ピストン、13…吸気通路、14…吸気弁、15…排気通路、16…排気弁、17…燃料噴射弁、21…ECU、22…筒内圧センサ、100…制御装置   DESCRIPTION OF SYMBOLS 1 ... Engine, 11 ... Cylinder, 12 ... Piston, 13 ... Intake passage, 14 ... Intake valve, 15 ... Exhaust passage, 16 ... Exhaust valve, 17 ... Fuel injection valve, 21 ... ECU, 22 ... In-cylinder pressure sensor, 100 ... Control device

Claims (1)

燃料の主噴射の前に、前記燃料を複数回パイロット噴射可能な燃料噴射手段と、
内燃機関の気筒内の圧力を検出する筒内圧検出手段と、
前記検出された圧力に基づいて、前記パイロット噴射に係る噴射圧に関連する第1パラメータを算出し、前記算出された第1パラメータと前記第1パラメータに係る第1目標値との第1偏差を算出する第1算出手段と、
前記検出された圧力に基づいて、前記パイロット噴射に係る噴射量に関連する第2パラメータを算出し、前記算出された第2パラメータと、前記第2パラメータに係る第2目標値との第2偏差を算出する第2算出手段と、
前記算出された第1偏差が大きいほど前記パイロット噴射に係る噴射圧を補正する噴射圧補正係数を大きくし、且つ、前記算出された第2偏差が小さいほど前記パイロット噴射に係る噴射量を補正する噴射量補正係数を大きくする制御手段と、
を備え、
前記第1パラメータは、熱発生率の最大傾きであり、
前記第2パラメータは、燃焼重心である
ことを特徴とする内燃機関制御装置。
Fuel injection means capable of pilot injection of the fuel a plurality of times before the main injection of fuel;
In-cylinder pressure detecting means for detecting the pressure in the cylinder of the internal combustion engine;
A first parameter related to the injection pressure related to the pilot injection is calculated based on the detected pressure, and a first deviation between the calculated first parameter and the first target value related to the first parameter is calculated. First calculating means for calculating;
Based on the detected pressure, a second parameter related to the injection amount related to the pilot injection is calculated, and a second deviation between the calculated second parameter and a second target value related to the second parameter. Second calculating means for calculating
The injection pressure correction coefficient for correcting the injection pressure related to the pilot injection is increased as the calculated first deviation is larger, and the injection amount related to the pilot injection is corrected as the calculated second deviation is smaller. Control means for increasing the injection amount correction coefficient;
With
The first parameter is a maximum slope of heat generation rate,
The internal combustion engine control device, wherein the second parameter is a combustion center of gravity.
JP2012020778A 2012-02-02 2012-02-02 Internal combustion engine control device Expired - Fee Related JP5834976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012020778A JP5834976B2 (en) 2012-02-02 2012-02-02 Internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012020778A JP5834976B2 (en) 2012-02-02 2012-02-02 Internal combustion engine control device

Publications (2)

Publication Number Publication Date
JP2013160080A JP2013160080A (en) 2013-08-19
JP5834976B2 true JP5834976B2 (en) 2015-12-24

Family

ID=49172563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012020778A Expired - Fee Related JP5834976B2 (en) 2012-02-02 2012-02-02 Internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP5834976B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6507703B2 (en) * 2015-02-19 2019-05-08 株式会社デンソー Fuel injection control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07127506A (en) * 1993-10-20 1995-05-16 Honda Motor Co Ltd Air-fuel ratio control device for internal combustion engine
JP2006183466A (en) * 2004-12-24 2006-07-13 Nissan Motor Co Ltd Fuel combustion device for internal combustion engine

Also Published As

Publication number Publication date
JP2013160080A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
US8463531B2 (en) System and method for controlling exhaust gas recirculation systems
JP2018091267A (en) Controller of internal combustion engine
US10495021B2 (en) Engine control device
JP5206799B2 (en) Fuel injection control device
WO2014057825A1 (en) Engine control device, and engine control method
JP2012002088A (en) Control device of internal combustion engine
JP2018071485A (en) Device for controlling internal combustion engine
US20120222407A1 (en) Catalyst warming-up controller for internal combustion engine
JP2008267293A (en) Control system of internal combustion engine
JP2012122404A (en) Control system of internal combustion engine
JP5304581B2 (en) Internal combustion engine fuel injection control device
JP2011099344A (en) Fuel injection control device for internal combustion engine
JP5834976B2 (en) Internal combustion engine control device
JP6237659B2 (en) Control device for spark ignition internal combustion engine
JP2010196581A (en) Fuel injection control device of internal combustion engine
JP5158245B1 (en) Combustion control device
JP5796503B2 (en) Fuel injection control device
JP5692130B2 (en) Internal combustion engine control device
JP5514635B2 (en) Control device for internal combustion engine
JP6339554B2 (en) Direct injection internal combustion engine
JP2008202461A (en) Fuel injection control device for internal combustion engine
JP6283959B2 (en) Engine control device
JP6167659B2 (en) Fuel injection control device for internal combustion engine
JP2012180817A (en) Device for calculating air-fuel ratio of internal combustion engine
JP5045494B2 (en) Fuel injection control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151019

R151 Written notification of patent or utility model registration

Ref document number: 5834976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees