JP5828652B2 - Plasma mig welding torch - Google Patents

Plasma mig welding torch Download PDF

Info

Publication number
JP5828652B2
JP5828652B2 JP2011065137A JP2011065137A JP5828652B2 JP 5828652 B2 JP5828652 B2 JP 5828652B2 JP 2011065137 A JP2011065137 A JP 2011065137A JP 2011065137 A JP2011065137 A JP 2011065137A JP 5828652 B2 JP5828652 B2 JP 5828652B2
Authority
JP
Japan
Prior art keywords
plasma
tip
insulating member
notch
plasma electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011065137A
Other languages
Japanese (ja)
Other versions
JP2012200734A (en
Inventor
貢平 小野
貢平 小野
恵良 哲生
哲生 恵良
大 西村
大 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2011065137A priority Critical patent/JP5828652B2/en
Publication of JP2012200734A publication Critical patent/JP2012200734A/en
Application granted granted Critical
Publication of JP5828652B2 publication Critical patent/JP5828652B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、1つの溶接トーチでミグアークとプラズマアークとを同時に発生させるプラズマミグ溶接トーチに関するものである。   The present invention relates to a plasma MIG welding torch that simultaneously generates a MIG arc and a plasma arc with one welding torch.

従来から、プラズマ溶接方法とミグ溶接方法とを組み合わせたプラズマミグ溶接方法が提案されている。このプラズマミグ溶接方法は、溶接トーチを通して送給される溶接ワイヤと母材との間にミグ溶接電流を通電することによってミグアークを発生させる。そして、中空形状のプラズマ電極が溶接ワイヤを囲むように配置されており、アルゴンなどのガスを供給し、このガスを介してプラズマ電極と母材との間にプラズマ溶接電流を通電することによってプラズマアークを発生させる。   Conventionally, a plasma MIG welding method combining a plasma welding method and a MIG welding method has been proposed. In this plasma MIG welding method, a MIG arc is generated by passing a MIG welding current between a welding wire fed through a welding torch and a base material. A hollow plasma electrode is arranged so as to surround the welding wire, and a gas such as argon is supplied, and a plasma welding current is passed between the plasma electrode and the base material through this gas to generate plasma. Generate an arc.

ミグアークは、溶接トーチの軸心部に送給される溶接ワイヤと母材との間に発生し、このミグアークを囲むようにプラズマアークが発生している。従って、ミグアークはプラズマアークに包まれた状態になる。溶接ワイヤはミグアークを発生させる電極として機能すると共に、その先端部が溶融することによって溶滴となって母材の接合を補助する。従って、プラズマミグ溶接方法は、厚板の高効率溶接や薄板の高速溶接等に使用されることが多い。(例えば、特許文献1参照。)。 The MIG arc is generated between the welding wire fed to the axial center portion of the welding torch and the base material, and a plasma arc is generated so as to surround the MIG arc. Therefore, the MIG arc is wrapped in the plasma arc. The welding wire functions as an electrode for generating a MIG arc, and the tip portion melts to form a droplet to assist the joining of the base materials. Therefore, the plasma MIG welding method is often used for high-efficiency welding of thick plates and high-speed welding of thin plates. (For example, refer to Patent Document 1).

図3は、従来技術のプラズマミグ溶接装置の構成図であり、図4は、従来技術のプラズマミグ溶接トーチの断面図である。図3及び図4において、プラズマミグ溶接装置21は、プラズマミグ溶接トーチ23、ミグ溶接電源PSM及びプラズマ溶接電源PSPを備えている。プラズマミグ溶接トーチ23は、シールドガスノズル9内に、プラズマノズル8、プラズマ電極7及び給電チップ6が同軸心に配置された構造となっている。シールドガスノズル9とプラズマノズル8との隙間からはシールドガス12が供給される。プラズマノズル8とプラズマ電極7との間にはプラズマガス11が供給される。プラズマ電極7と給電チップ6との間にはセンターガス10が供給される。   FIG. 3 is a configuration diagram of a conventional plasma MIG welding apparatus, and FIG. 4 is a cross-sectional view of a conventional plasma MIG welding torch. 3 and 4, the plasma MIG welding device 21 includes a plasma MIG welding torch 23, a MIG welding power source PSM, and a plasma welding power source PSP. The plasma MIG welding torch 23 has a structure in which a plasma nozzle 8, a plasma electrode 7, and a power feed tip 6 are arranged coaxially in a shield gas nozzle 9. A shield gas 12 is supplied from the gap between the shield gas nozzle 9 and the plasma nozzle 8. A plasma gas 11 is supplied between the plasma nozzle 8 and the plasma electrode 7. A center gas 10 is supplied between the plasma electrode 7 and the power feed tip 6.

給電チップ6に設けられた貫通孔からは、溶接ワイヤ4が送給される。給電チップ6は溶接ワイヤ4と接触しており、ミグアークを発生させるための電力を供給している。溶接ワイヤ4は、送給モータWMを駆動源とする送給ロール5の回転によって送給される。プラズマ電極7は、たとえば銅又は銅合金からなり、プラズマ電極本体22にねじ込まれている。プラズマ電極7は消耗部品であって頻繁に交換されるために、内部に冷却水が流れる経路を形成することができない。そのために、プラズマ電極本体22の内部に冷却水が流れる経路が形成されて冷却され、プラズマ電極7はプラズマ電極本体22によって間接的に水冷されている。プラズマ電極7と給電チップ6との間でアーキングが発生しないように、プラズマ電極7と給電チップ6との間にセラミックからなる絶縁部材13を設けている。この絶縁部材13は加工が困難であることと、消耗部品であるために交換を容易にするために、通常、固定されていない。絶縁部材の先端部13bが重力によってプラズマ電極7のテーパ部の内面に当接して位置決めされている。プラズマノズル8は、たとえば銅又は銅合金からなり、冷却水を通す流路が形成されて直接冷却されている。 The welding wire 4 is fed from the through hole provided in the power feed tip 6. The power feed tip 6 is in contact with the welding wire 4 and supplies power for generating a mig arc. The welding wire 4 is fed by the rotation of a feed roll 5 using a feed motor WM as a drive source. The plasma electrode 7 is made of, for example, copper or a copper alloy, and is screwed into the plasma electrode main body 22. Since the plasma electrode 7 is a consumable part and is frequently replaced, a path through which the cooling water flows cannot be formed. Therefore, a path through which cooling water flows is formed inside the plasma electrode main body 22 to be cooled, and the plasma electrode 7 is indirectly water-cooled by the plasma electrode main body 22. An insulating member 13 made of ceramic is provided between the plasma electrode 7 and the power supply chip 6 so that arcing does not occur between the plasma electrode 7 and the power supply chip 6. This insulating member 13 is usually not fixed in order to be difficult to process and to be easily replaced because it is a consumable part. The tip 13b of the insulating member is positioned in contact with the inner surface of the tapered portion of the plasma electrode 7 by gravity. The plasma nozzle 8 is made of, for example, copper or a copper alloy, and is directly cooled by forming a flow path through which cooling water passes.

プラズマミグ溶接トーチ23は、通常ロボット(図示は省略)によって保持された状態で、母材3に対して移動させられる。溶接ワイヤ4の先端と母材3との間には、ミグアーク2が発生する。プラズマ電極7と母材3との間にはプラズマアーク1が発生し、このプラズマアーク1はプラズマノズル8によって熱的に拘束されている。プラズマ電極7はプラズマアーク1を拘束するために、先端部の内面にテーパ部が形成されて、先端部が縮径されていている。また、プラズマガス11が狭隘なプラズマノズル8を通過することによって動圧が高められ、プラズマアーク1を集中させている。従って、ミグアーク2は、プラズマアーク1に包まれた状態になっている。このために、プラズマアーク1は、ミグアーク2の形状が広がるのを拘束する作用があり、溶接ワイヤ4は、プラズマアーク1からの放熱を受けることになる。 The plasma MIG welding torch 23 is moved with respect to the base material 3 while being held by a normal robot (not shown). A MIG arc 2 is generated between the tip of the welding wire 4 and the base material 3. A plasma arc 1 is generated between the plasma electrode 7 and the base material 3, and the plasma arc 1 is thermally constrained by a plasma nozzle 8. In order to constrain the plasma arc 1, the plasma electrode 7 is formed with a tapered portion on the inner surface of the tip portion, and the tip portion is reduced in diameter. Further, when the plasma gas 11 passes through the narrow plasma nozzle 8, the dynamic pressure is increased and the plasma arc 1 is concentrated. Therefore, the MIG arc 2 is in a state of being surrounded by the plasma arc 1. For this reason, the plasma arc 1 has an action of restraining the shape of the MIG arc 2 from spreading, and the welding wire 4 receives heat radiation from the plasma arc 1.

ミグ溶接電源PSMは、給電チップ6を介して溶接ワイヤ4と母材3との間にミグ溶接電圧Vwmを印加することによって、ミグ溶接電流Iwmを通電する。ミグ溶接電源PSMからは、送給モータWMに対して送給制御信号Fcが送られ、溶接ワイヤ4の送給方向及び送給速度Fwが制御される。プラズマ溶接電源PSPは、プラズマ電極7と母材3との間にプラズマ溶接電圧Vwpを印加することによって、プラズマ溶接電流Iwpを通電する。   The MIG welding power source PSM applies a MIG welding current Iwm by applying a MIG welding voltage Vwm between the welding wire 4 and the base material 3 via the power feed tip 6. A feed control signal Fc is sent from the MIG welding power source PSM to the feed motor WM, and the feed direction and feed speed Fw of the welding wire 4 are controlled. The plasma welding power source PSP applies a plasma welding current Iwp by applying a plasma welding voltage Vwp between the plasma electrode 7 and the base material 3.

特開2010−104996号公報JP 2010-104996 A

上述したように、プラズマ電極7は間接水冷されているが、プラズマ電極7の先端部からプラズマアーク1が発生するために、プラズマ電極7自身への入熱は著しく大きい。そのために、溶接中におけるプラズマ電極7の温度上昇は、絶縁部材13やプラズマノズル8やシールドガスノズル9に比べると大きくなり、溶接中の温度上昇によって銅金属からなるプラズマ電極7は熱膨張して、プラズマ電極7の内径が拡大される。この場合、例えば下向き姿勢で行われる溶接のとき、プラズマ電極7のテーパ部の内面に重力によって当接して位置決めされている絶縁部材13は、プラズマ電極7の内径が拡大されることによって、さらにプラズマ電極7の先端部の方向(X1方向)へ降下する。   As described above, although the plasma electrode 7 is indirectly water-cooled, since the plasma arc 1 is generated from the tip of the plasma electrode 7, the heat input to the plasma electrode 7 itself is extremely large. Therefore, the temperature rise of the plasma electrode 7 during welding is larger than that of the insulating member 13, the plasma nozzle 8, and the shield gas nozzle 9, and the plasma electrode 7 made of copper metal is thermally expanded due to the temperature rise during welding, The inner diameter of the plasma electrode 7 is enlarged. In this case, for example, when welding is performed in a downward posture, the insulating member 13 positioned by contact with the inner surface of the tapered portion of the plasma electrode 7 by gravity is further increased by increasing the inner diameter of the plasma electrode 7. The electrode 7 descends in the direction of the tip (X1 direction).

そして溶接が終了して、プラズマ電極7の熱が冷めると、プラズマ電極7の内径が元の大きさに収縮する。このとき、絶縁部材の先端部13bがプラズマ電極7のテーパ部によって締め付けられることによって、絶縁部材の先端部13bに割れや欠けが発生することがある。この割れや欠けによって給電チップ6の先端部とプラズマ電極7との間に絶縁部材13が無くなると、この間でアーキングが発生したり、割れや欠けによってセンターガス10が乱流を巻き起こしたりして、プラズマアーク1が不安定になるという不具合があった。 When the welding is finished and the heat of the plasma electrode 7 is cooled, the inner diameter of the plasma electrode 7 contracts to the original size. At this time, the distal end portion 13b of the insulating member is tightened by the tapered portion of the plasma electrode 7, so that the distal end portion 13b of the insulating member may be cracked or chipped. When the insulating member 13 disappears between the tip of the power supply chip 6 and the plasma electrode 7 due to the cracks and chips, arcing occurs between them, or the center gas 10 causes turbulence due to the cracks and chips, There was a problem that the plasma arc 1 became unstable.

本発明は、プラズマ電極が熱膨張した後に冷却するときに、絶縁部材がプラズマ電極のテーパ部によって締め付けられて絶縁部材に割れや欠けを生じることのないプラズマミグ溶接トーチを提供することを目的としている。   It is an object of the present invention to provide a plasma MIG welding torch in which when the plasma electrode is cooled after being thermally expanded, the insulating member is tightened by the taper portion of the plasma electrode and the insulating member is not cracked or chipped. .

上述した課題を解決するために、請求項1の発明は、
軸心部に溶接ワイヤが挿通されて給電される給電チップと、
この給電チップと同軸心に設けられて、円筒状に形成されて、先端部にテーパ部が形成されたプラズマ電極と、
前記給電チップと前記プラズマ電極との間に設けられて、円筒状に形成された絶縁部材と、
前記プラズマ電極を取り囲み、プラズマガスが供給されるプラズマノズルと、
このプラズマノズルを取り囲み、シールドガスが供給されるシールドガスノズルとを備えたプラズマミグ溶接トーチにおいて、
前記プラズマ電極のテーパ部に形成されて、前記絶縁部材の先端部が当接して摺動可能に支持される切り欠き部を備え
前記切り欠き部は、前記プラズマ電極の軸心部と直角方向に広がる底面と、この底面の最大外周部から前記プラズマ電極の基端部の方向へ伸びる側面とを有し、
前記切り欠き部は、前記給電チップの先端部と前記テーパ部との最短距離を結ぶ直線を前記絶縁部材が交差する位置に設けられるように形成されたことを特徴とするプラズマミグ溶接トーチである。
In order to solve the above-described problems, the invention of claim 1
A power supply tip that is fed with a welding wire inserted through the shaft center; and
A plasma electrode that is provided coaxially with the power supply tip, is formed in a cylindrical shape, and has a tapered portion at the tip,
An insulating member provided between the power supply chip and the plasma electrode and formed in a cylindrical shape;
A plasma nozzle that surrounds the plasma electrode and is supplied with plasma gas;
In a plasma MIG welding torch that surrounds the plasma nozzle and includes a shield gas nozzle to which a shield gas is supplied,
The plasma electrode has a notch formed on the tapered portion, the tip of the insulating member is in contact with and slidably supported ,
The notch has a bottom surface extending in a direction perpendicular to the axial center of the plasma electrode, and a side surface extending from the maximum outer periphery of the bottom surface toward the base end of the plasma electrode,
The notch is a plasma MIG welding torch characterized in that a straight line connecting the shortest distance between the tip of the power feed tip and the taper is provided at a position where the insulating member intersects.

請求項2の発明は、
前記給電チップの先端部と前記絶縁部材の先端部との間の距離が1mm乃至3mmで、
前記絶縁部材の先端部と前記プラズマ電極の先端部との間の距離が3mm乃至7mmであることを特徴とする請求項1記載のプラズマミグ溶接トーチである。
The invention of claim 2
The distance between the tip of the power feed tip and the tip of the insulating member is 1 mm to 3 mm,
2. The plasma MIG welding torch according to claim 1, wherein a distance between a tip portion of the insulating member and a tip portion of the plasma electrode is 3 mm to 7 mm.

請求項3の発明は、
前記絶縁部材の先端部と前記切り欠き部の底面との重なり代が0.5mm乃至1.2mmで、
前記切り欠き部の最外径と前記絶縁部材の外径との差である切欠き部の裕度が0.3mm乃至1.5mmであることを特徴とする請求項2記載のプラズマミグ溶接トーチである。
The invention of claim 3
The overlap margin between the tip of the insulating member and the bottom of the notch is 0.5 mm to 1.2 mm,
The plasma MIG welding torch according to claim 2, wherein a margin of the notch, which is a difference between the outermost diameter of the notch and the outer diameter of the insulating member, is 0.3 mm to 1.5 mm. is there.

本発明のプラズマミグ溶接トーチは、プラズマ電極が熱膨張した後に冷却するときに、絶縁部材の先端部がプラズマ電極のテーパ部によって締め付けられることがないために、絶縁部材の先端部に割れや欠けが発生することがない。従って、絶縁部材の寿命を向上させることができ、さらに溶接品質を向上させることができる。   In the plasma MIG welding torch according to the present invention, when the plasma electrode is cooled after being thermally expanded, the tip of the insulating member is not tightened by the taper portion of the plasma electrode. It does not occur. Therefore, the life of the insulating member can be improved, and the welding quality can be further improved.

本発明のプラズマミグ溶接トーチの断面図である。It is sectional drawing of the plasma MIG welding torch of this invention. 本発明のプラズマミグ溶接トーチの部分断面図である。It is a fragmentary sectional view of the plasma MIG welding torch of the present invention. 従来技術のプラズマミグ溶接装置の構成図である。It is a block diagram of the plasma MIG welding apparatus of a prior art. 従来技術のプラズマミグ溶接トーチの断面図である。It is sectional drawing of the plasma MIG welding torch of a prior art.

発明の実施の形態を実施例に基づき図面を参照して説明する。図1は、本発明のプラズマミグ溶接トーチの断面図であり、図2は、本発明のプラズマミグ溶接トーチの部分断面図である。図1及び図2において、プラズマミグ溶接トーチ24の給電チップ6の軸心部に溶接ワイヤ4の挿通孔が形成されて、溶接ワイヤ4がこの挿通孔に挿通されて給電される。プラズマ電極25は、給電チップ6と同軸心に設けられ、プラズマ電極本体22にねじ込まれる。プラズマ電極本体22は円筒状に形成され、その内部には冷却水が流れる経路が形成され、冷却されている。プラズマ電極25は、先端部にテーパ部25aが形成されて、プラズマ電極本体22によって間接的に冷却される。絶縁部材13が円筒状に形成されて、給電チップ6とプラズマ電極25との間に設けられている。プラズマノズル8が円筒状に形成されて、その先端部にテーパ部が形成され、プラズマ電極25を取り囲み、プラズマガス11が供給される。シールドガスノズル9が円筒状に形成されて、その先端部にテーパ部が形成され、プラズマノズル8を取り囲み、シールドガス12が供給される。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described based on examples with reference to the drawings. FIG. 1 is a cross-sectional view of the plasma MIG welding torch of the present invention, and FIG. 2 is a partial cross-sectional view of the plasma MIG welding torch of the present invention. 1 and 2, an insertion hole for the welding wire 4 is formed in the axial center portion of the power feeding tip 6 of the plasma MIG welding torch 24, and the welding wire 4 is inserted into the insertion hole for power supply. The plasma electrode 25 is provided coaxially with the power feed tip 6 and is screwed into the plasma electrode body 22. The plasma electrode main body 22 is formed in a cylindrical shape, and a path through which cooling water flows is formed and cooled. The plasma electrode 25 has a tapered portion 25 a formed at the tip and is indirectly cooled by the plasma electrode body 22. The insulating member 13 is formed in a cylindrical shape and is provided between the power feed tip 6 and the plasma electrode 25. The plasma nozzle 8 is formed in a cylindrical shape, a tapered portion is formed at the tip thereof, surrounds the plasma electrode 25, and the plasma gas 11 is supplied. The shield gas nozzle 9 is formed in a cylindrical shape, a tapered portion is formed at the tip thereof, surrounds the plasma nozzle 8, and the shield gas 12 is supplied.

プラズマ電極のテーパ部25aに、階段状の切り欠き部26が形成されて、絶縁部材の先端部13bがこの切り欠き部26に当接している。また、プラズマ電極25が溶接中に熱膨張して拡大したり、溶接終了後に冷却されて縮小したりしたときに、絶縁部材13が切り欠き部26で摺動可能に支持される。この切り欠き部26は、プラズマ電極25の軸心部と直角方向に広がる底面26aと、この底面26aの最大外周部からプラズマ電極25の基端部の方向(X2方向)へ伸びる側面26bとを有している。この側面26bは、プラズマ電極25の基端部側(X2側)から見て、円形に形成されている。また、切り欠き部26は、プラズマ電極25の軸心部方向の断面形状がL字形状に形成されている。 A stepped notch 26 is formed in the taper portion 25 a of the plasma electrode, and the tip 13 b of the insulating member is in contact with the notch 26. The insulating member 13 is slidably supported by the notch 26 when the plasma electrode 25 expands due to thermal expansion during welding or when the plasma electrode 25 is cooled and contracted after the end of welding. The notch 26 includes a bottom surface 26a that extends in a direction perpendicular to the axial center of the plasma electrode 25, and a side surface 26b that extends from the maximum outer periphery of the bottom surface 26a toward the base end of the plasma electrode 25 (X2 direction). Have. The side surface 26 b is formed in a circular shape when viewed from the base end side (X2 side) of the plasma electrode 25. Further, the cutout portion 26 is formed in an L-shaped cross section in the axial center direction of the plasma electrode 25.

また、切り欠き部26は、給電チップの先端部6bとプラズマ電極のテーパ部25aとの最短距離を結ぶ直線を絶縁部材13が交差する位置になるように形成されている。即ち、給電チップ6とプラズマ電極25との間でアーキングが発生しないように絶縁部材13を設けることができる位置に切り欠き部26を形成している。 The notch 26 is formed so that the insulating member 13 intersects a straight line connecting the shortest distance between the tip 6b of the power feed tip and the taper 25a of the plasma electrode. That is, the notch 26 is formed at a position where the insulating member 13 can be provided so that arcing does not occur between the power supply chip 6 and the plasma electrode 25.

以下、切り欠き部26が形成される位置やその形状を、給電チップ6の外径D1が6mmで、プラズマ電極の先端部25bの内径D5が7mmで、プラズマ電極25のテーパ部25aを除く円筒状の部分の内径D3(プラズマ電極本体22の内径と同じ)が10mmで、絶縁部材13の外径D2が9.3mmで、絶縁部材13の厚みL1が1.3mmのときを例として説明する。 Hereinafter, the positions and shapes of the notches 26 are defined as follows: the outer diameter D1 of the power supply tip 6 is 6 mm, the inner diameter D5 of the tip 25b of the plasma electrode is 7 mm, and the cylinder excluding the taper 25a of the plasma electrode 25 is excluded. An example will be described in which the inner diameter D3 (same as the inner diameter of the plasma electrode main body 22) is 10 mm, the outer diameter D2 of the insulating member 13 is 9.3 mm, and the thickness L1 of the insulating member 13 is 1.3 mm. .

まず、切り欠き部26が形成される位置を説明する。給電チップの先端部6bと絶縁部材の先端部13bとの間の距離L1が1mmよりも短い場合、給電チップの先端部6bとプラズマ電極のテーパ部25aとの間の最短距離を結ぶ線上に絶縁部材13が存在しなくなるので、給電チップの先端部6bとプラズマ電極のテーパ部25aとの間でアーキングが発生する。一方、給電チップの先端部6bと絶縁部材の先端部13bとの間の距離L1が3mmよりも長い場合、給電チップの先端部6bと母材3との間の距離が長くなって、溶接ワイヤ4の突出し長さが長くなる。その場合、鉄系の溶接ワイヤ4を使用すると、溶接ワイヤ4の突出し長さの抵抗発熱が大きくなって、溶接電流が低減する。従って、給電チップの先端部6bと絶縁部材の先端部13bとの間の距離L1を1mm乃至3mmとする。 First, the position where the notch 26 is formed will be described. When the distance L1 between the tip portion 6b of the power feed tip and the tip portion 13b of the insulating member is shorter than 1 mm, insulation is performed on the line connecting the shortest distance between the tip portion 6b of the power feed tip and the taper portion 25a of the plasma electrode. Since the member 13 does not exist, arcing occurs between the tip portion 6b of the power feed tip and the taper portion 25a of the plasma electrode. On the other hand, when the distance L1 between the tip portion 6b of the power feed tip and the tip portion 13b of the insulating member is longer than 3 mm, the distance between the tip portion 6b of the power feed tip and the base material 3 becomes long, and the welding wire The protruding length of 4 becomes longer. In this case, when the iron-based welding wire 4 is used, the resistance heat generation of the protruding length of the welding wire 4 increases, and the welding current is reduced. Accordingly, the distance L1 between the tip portion 6b of the power feed tip and the tip portion 13b of the insulating member is set to 1 mm to 3 mm.

絶縁部材の先端部13bとプラズマ電極の先端部25bとの間の距離L2が3mmよりも短い場合、絶縁部材の先端部13bがプラズマアークに近くなりすぎて、プラズマアークの高熱のために絶縁部材13が破損する場合がある。一方、絶縁部材の先端部13bとプラズマ電極の先端部25bとの間の距離L2が7mmよりも長い場合、給電チップの先端部6bと絶縁部材の先端部13bとの間の距離L1と同様に、溶接ワイヤ4の突出し長さが長くなって溶接電流が低減する。従って、絶縁部材の先端部13bとプラズマ電極の先端部25bとの間の距離L2を3mm乃至7mmとする。 When the distance L2 between the distal end portion 13b of the insulating member and the distal end portion 25b of the plasma electrode is shorter than 3 mm, the distal end portion 13b of the insulating member becomes too close to the plasma arc, and the insulating member due to the high heat of the plasma arc. 13 may be damaged. On the other hand, when the distance L2 between the distal end portion 13b of the insulating member and the distal end portion 25b of the plasma electrode is longer than 7 mm, similarly to the distance L1 between the distal end portion 6b of the power feed tip and the distal end portion 13b of the insulating member. The protruding length of the welding wire 4 is increased and the welding current is reduced. Therefore, the distance L2 between the distal end portion 13b of the insulating member and the distal end portion 25b of the plasma electrode is set to 3 mm to 7 mm.

次に切り欠き部26の形状を説明する。絶縁部材の先端部13bと切り欠き部の底面26aとが接触する面(以下、切り欠き部の重なり代26cという。)の長さL3が、プラズマ電極25が熱膨張していない常温状態において0.5mmよりも短い場合、熱膨張したときに、プラズマ電極25の線膨張係数が絶縁部材13の線膨張係数よりも著しく大きいために、重なり代が無くなって、絶縁部材13が切り欠き部26よりも下方のテーパ部25aに降下して、従来技術と同じ不具合が発生する。一方、切り欠き部の重なり代26cの長さL3が1.2mmよりも長い場合、絶縁部材13の厚さとほぼ同じ長さになって、給電チップ6とプラズマ電極25とを絶縁する効果が薄れて、これらの間でアーキングが発生する場合がある。従って、切り欠き部の重なり代26cの長さL3を0.5mm乃至1.2mmとする。 Next, the shape of the notch 26 will be described. The length L3 of the surface where the tip 13b of the insulating member and the bottom surface 26a of the notch contact (hereinafter referred to as the notch overlap 26c) is 0 in the normal temperature state where the plasma electrode 25 is not thermally expanded. When it is shorter than 5 mm, the linear expansion coefficient of the plasma electrode 25 is remarkably larger than the linear expansion coefficient of the insulating member 13 when thermally expanded. Also descends to the lower taper portion 25a, causing the same problem as in the prior art. On the other hand, when the length L3 of the overlap margin 26c of the notch is longer than 1.2 mm, the length of the insulating member 13 is almost the same as that of the insulating member 13, and the effect of insulating the power feed tip 6 and the plasma electrode 25 is reduced. In some cases, arcing may occur between them. Accordingly, the length L3 of the overlap margin 26c of the notch is set to 0.5 mm to 1.2 mm.

切り欠き部26の最外径D4と絶縁部材13の外径D2との差である切り欠き部26の裕度(以下、切り欠き部26の裕度という。)の最小値は、絶縁部材13とプラズマ電極25の切り欠き部26との加工精度によって決定され、0.3mmとする。一方、この裕度が1.5mmよりも大きい場合、切り欠き部の重なり代26cが少なくなり、絶縁部材13が切り欠き部の底面26aで安定して支持できなくなる。従って、切り欠き部26の裕度を0.3mm乃至1.5mmとする。   The minimum value of the margin of the notch 26 (hereinafter referred to as the margin of the notch 26), which is the difference between the outermost diameter D4 of the notch 26 and the outer diameter D2 of the insulating member 13, is the insulating member 13. And 0.3 mm, which is determined by the processing accuracy of the notch 26 of the plasma electrode 25. On the other hand, when this tolerance is larger than 1.5 mm, the overlap margin 26c of the notch portion decreases, and the insulating member 13 cannot be stably supported by the bottom surface 26a of the notch portion. Therefore, the tolerance of the notch 26 is set to 0.3 mm to 1.5 mm.

なお、切り欠き部26の最外径D4は、(切り欠き部26の最外径D4)-=(切り欠き部26の裕度)+(絶縁部材13の外径D2)であるから、切り欠き部の最外径D4は、9.6mm乃至10.8mmとなる。また、切り欠き部の底面26aの長さL4は、(切り欠き部の底面の長さL4)=(切り欠き部の重なり代26cの長さL3)+(切り欠き部26の裕度/2)であるから、切り欠き部の底面の長さL4は、0.65mm乃至1.95mmとなる。   The outermost diameter D4 of the notch 26 is (outermost diameter D4 of the notch 26) − = (tolerance of the notch 26) + (outer diameter D2 of the insulating member 13). The outermost diameter D4 of the notch is 9.6 mm to 10.8 mm. The length L4 of the bottom surface 26a of the notch portion is (the length L4 of the bottom surface of the notch portion) = (the length L3 of the overlap margin 26c of the notch portion) + (tolerance of the notch portion / 2). Therefore, the length L4 of the bottom surface of the notch is 0.65 mm to 1.95 mm.

以下、動作を説明する。例えば下向き姿勢で溶接が開始されると、溶接ワイヤ4の先端と母材3との間にミグアーク2が発生し、プラズマ電極の先端部25bと母材3との間にプラズマアーク1が発生して、プラズマ電極25の温度が著しく上昇する。このとき、銅金属からなるプラズマ電極25は熱膨張して、プラズマ電極25の内径が拡大され、切り欠き部26の最外径D4が拡大する。一方、セラミックからなる絶縁部材13は、線膨張係数がプラズマ電極25よりも小さいために、熱膨張が小さい。このとき、切り欠き部の重なり代26cの長さL3が0.5mm乃至1.2mmに設けられ、切り欠き部26の裕度が0.3mm乃至1.5mmに設けられているために、絶縁部材の先端部13bは切り欠き部の底面26aを摺動するが、依然として切り欠き部26によって支持されている。従って、絶縁部材13が重力によってプラズマ電極の先端部25bの方向(X1方向)へ降下することがない。   The operation will be described below. For example, when welding is started in a downward posture, a MIG arc 2 is generated between the tip of the welding wire 4 and the base material 3, and a plasma arc 1 is generated between the tip 25 b of the plasma electrode and the base material 3. As a result, the temperature of the plasma electrode 25 significantly increases. At this time, the plasma electrode 25 made of copper metal is thermally expanded, the inner diameter of the plasma electrode 25 is enlarged, and the outermost diameter D4 of the notch 26 is enlarged. On the other hand, since the insulating member 13 made of ceramic has a linear expansion coefficient smaller than that of the plasma electrode 25, the thermal expansion is small. At this time, the length L3 of the overlap margin 26c of the notch portion is provided in the range of 0.5 mm to 1.2 mm, and the margin of the notch portion 26 is provided in the range of 0.3 mm to 1.5 mm. The tip 13b of the member slides on the bottom surface 26a of the notch, but is still supported by the notch 26. Therefore, the insulating member 13 does not drop in the direction of the front end portion 25b of the plasma electrode (X1 direction) due to gravity.

また、給電チップの先端部6bと絶縁部材の先端部13bとの間の距離L1が1mm乃至3mmに設けられ、絶縁部材の先端部13bとプラズマ電極の先端部25bとの間の距離L2が3mm乃至7mmに設けられている。このために、給電チップの先端部6bとプラズマ電極のテーパ部25aとの間でアーキングが発生することがなく、プラズマアーク1の高熱のために絶縁部材13が破損することもなく、また、溶接ワイヤ4の突出し長さの抵抗発熱が大きくなって、溶接電流が低減することもない。   The distance L1 between the tip 6b of the power feed tip and the tip 13b of the insulating member is set to 1 mm to 3 mm, and the distance L2 between the tip 13b of the insulating member and the tip 25b of the plasma electrode is 3 mm. Or 7 mm. For this reason, arcing does not occur between the tip portion 6b of the power supply tip and the taper portion 25a of the plasma electrode, the insulating member 13 is not damaged due to the high heat of the plasma arc 1, and welding is performed. The resistance heating of the protruding length of the wire 4 is increased, and the welding current is not reduced.

そして溶接が終了して、プラズマ電極25の熱が冷めると、プラズマ電極25の内径が元の大きさに収縮する。この場合も、絶縁部材の先端部13bは切り欠き部の底面26aを摺動して、切り欠き部26によって支持されている。このとき、絶縁部材の先端部13bがプラズマ電極のテーパ部25aによって締め付けられることがないために、絶縁部材の先端部13bに割れや欠けが発生することがない。従って、従来技術のように絶縁部材の先端部13bに割れや欠けが発生して、この割れや欠けによって給電チップの先端部6bとプラズマ電極25との間に絶縁部材13が無くなり、これらの間でアーキングが発生したり、割れや欠けによってセンターガス10が乱流を巻き起こしたりして、プラズマアーク1が不安定になることがない。よって、絶縁部材13の寿命を向上させることができ、さらに溶接品質を向上させることができる。 When the welding is completed and the heat of the plasma electrode 25 is cooled, the inner diameter of the plasma electrode 25 contracts to the original size. Also in this case, the distal end portion 13b of the insulating member slides on the bottom surface 26a of the notch portion and is supported by the notch portion 26. At this time, since the tip portion 13b of the insulating member is not tightened by the taper portion 25a of the plasma electrode, the tip portion 13b of the insulating member is not cracked or chipped. Therefore, as in the prior art, the tip 13b of the insulating member is cracked or chipped, and the insulating member 13 is not provided between the tip 6b of the power feed tip and the plasma electrode 25 due to the crack or chip. Thus, arcing does not occur, and the center gas 10 causes a turbulent flow due to cracking or chipping, so that the plasma arc 1 does not become unstable. Therefore, the life of the insulating member 13 can be improved, and the welding quality can be further improved.

1 プラズマアーク
2 ミグアーク
3 母材
4 溶接ワイヤ
5 送給ロール
6 給電チップ
6b 給電チップの先端部
7 プラズマ電極
8 プラズマノズル
9 シールドガスノズル
10 センターガス
11 プラズマガス
12 シールドガス
13 絶縁部材
13b 絶縁部材の先端部
21 プラズマミグ溶接装置
22 プラズマ電極本体
23 プラズマミグ溶接トーチ
24 プラズマミグ溶接トーチ
25 プラズマ電極
25a プラズマ電極のテーパ部
25b プラズマ電極の先端部
26 切り欠き部
26a 切り欠き部の底面
26b 切り欠き部の側面
26c 切り欠き部26の重なり代
D1 給電チップ6の外径
D2 絶縁部材13の外径
D3 プラズマ電極25のテーパ部25aを除く円筒状の部分の内径
D4 切り欠き部26の最外径
D5 プラズマ電極の先端部25bの内径
Fc 送給制御信号
Fw 送給速度
Iwm ミグ溶接電流
Iwp プラズマ溶接電流
L1 給電チップの先端部6bと絶縁部材の先端部13bとの間の距離
L2 絶縁部材の先端部13bとプラズマ電極の先端部25bとの間の距離
L3 切り欠き部の重なり代26cの長さ
L4 切り欠き部の底面の長さ
PSM ミグ溶接電源
PSP プラズマ溶接電源
Vwm ミグ溶接電圧
Vwp プラズマ溶接電圧
WM 送給モータ
DESCRIPTION OF SYMBOLS 1 Plasma arc 2 Mig arc 3 Base material 4 Welding wire 5 Feed roll 6 Feed tip 6b Tip part 7 of feed tip Plasma electrode 8 Plasma nozzle 9 Shield gas nozzle 10 Center gas 11 Plasma gas 12 Shield gas 13 Insulation member 13b Tip of insulation member Part 21 Plasma MIG welding device 22 Plasma electrode main body 23 Plasma MIG welding torch 24 Plasma MIG welding torch 25 Plasma electrode 25a Plasma electrode taper part 25b Plasma electrode tip part 26 Notch part 26a Notch part bottom face 26b Notch side face 26c Notch Overlap allowance D1 of notch portion 26 Outer diameter D2 of feed tip 6 Outer diameter D3 of insulating member 13 Inner diameter D4 of cylindrical portion excluding taper portion 25a of plasma electrode 25 Outermost diameter D5 of notch portion 26 Tip of plasma electrode Inner diameter F of portion 25b c Feeding control signal Fw Feeding speed Iwm Mig welding current Iwp Plasma welding current L1 Distance between the tip 6b of the power feed tip and the tip 13b of the insulating member L2 The tip 13b of the insulating member and the tip 25b of the plasma electrode Distance L3 between the notch overlap length 26c length L4 notch bottom length PSM MIG welding power source PSP plasma welding power source Vwm MIG welding voltage Vwp plasma welding voltage WM feeding motor

Claims (3)

軸心部に溶接ワイヤが挿通されて給電される給電チップと、
この給電チップと同軸心に設けられて、円筒状に形成されて、先端部にテーパ部が形成されたプラズマ電極と、
前記給電チップと前記プラズマ電極との間に設けられて、円筒状に形成された絶縁部材と、
前記プラズマ電極を取り囲み、プラズマガスが供給されるプラズマノズルと、
このプラズマノズルを取り囲み、シールドガスが供給されるシールドガスノズルとを備えたプラズマミグ溶接トーチにおいて、
前記プラズマ電極のテーパ部に形成されて、前記絶縁部材の先端部が当接して摺動可能に支持される切り欠き部を備え
前記切り欠き部は、前記プラズマ電極の軸心部と直角方向に広がる底面と、この底面の最大外周部から前記プラズマ電極の基端部の方向へ伸びる側面とを有し、
前記切り欠き部は、前記給電チップの先端部と前記テーパ部との最短距離を結ぶ直線を前記絶縁部材が交差する位置に設けられるように形成されたことを特徴とするプラズマミグ溶接トーチ。
A power supply tip that is fed with a welding wire inserted through the shaft center; and
A plasma electrode that is provided coaxially with the power supply tip, is formed in a cylindrical shape, and has a tapered portion at the tip,
An insulating member provided between the power supply chip and the plasma electrode and formed in a cylindrical shape;
A plasma nozzle that surrounds the plasma electrode and is supplied with plasma gas;
In a plasma MIG welding torch that surrounds the plasma nozzle and includes a shield gas nozzle to which a shield gas is supplied,
The plasma electrode has a notch formed on the tapered portion, the tip of the insulating member is in contact with and slidably supported ,
The notch has a bottom surface extending in a direction perpendicular to the axial center of the plasma electrode, and a side surface extending from the maximum outer periphery of the bottom surface toward the base end of the plasma electrode,
The plasma MIG welding torch characterized in that the notch is formed so as to be provided at a position where the insulating member intersects a straight line connecting the shortest distance between the tip of the power feed tip and the taper.
前記給電チップの先端部と前記絶縁部材の先端部との間の距離が1mm乃至3mmで、The distance between the tip of the power feed tip and the tip of the insulating member is 1 mm to 3 mm,
前記絶縁部材の先端部と前記プラズマ電極の先端部との間の距離が3mm乃至7mmであることを特徴とする請求項1記載のプラズマミグ溶接トーチ。The plasma MIG welding torch according to claim 1, wherein a distance between a tip portion of the insulating member and a tip portion of the plasma electrode is 3 mm to 7 mm.
前記絶縁部材の先端部と前記切り欠き部の底面との重なり代が0.5mm乃至1.2mmで、The overlap margin between the tip of the insulating member and the bottom of the notch is 0.5 mm to 1.2 mm,
前記切り欠き部の最外径と前記絶縁部材の外径との差である切欠き部の裕度が0.3mm乃至1.5mmであることを特徴とする請求項2記載のプラズマミグ溶接トーチ。The plasma MIG welding torch according to claim 2, wherein a margin of the notch, which is a difference between the outermost diameter of the notch and the outer diameter of the insulating member, is 0.3 mm to 1.5 mm.
JP2011065137A 2011-03-24 2011-03-24 Plasma mig welding torch Expired - Fee Related JP5828652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011065137A JP5828652B2 (en) 2011-03-24 2011-03-24 Plasma mig welding torch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011065137A JP5828652B2 (en) 2011-03-24 2011-03-24 Plasma mig welding torch

Publications (2)

Publication Number Publication Date
JP2012200734A JP2012200734A (en) 2012-10-22
JP5828652B2 true JP5828652B2 (en) 2015-12-09

Family

ID=47182250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011065137A Expired - Fee Related JP5828652B2 (en) 2011-03-24 2011-03-24 Plasma mig welding torch

Country Status (1)

Country Link
JP (1) JP5828652B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101690971B1 (en) * 2013-01-18 2016-12-29 주성엔지니어링(주) Substrate processing apparatus
KR101657937B1 (en) * 2013-03-22 2016-09-22 주식회사 무한 Apparatus for processing substrate
CN104741806B (en) * 2015-04-01 2019-03-29 西南交通大学 Consumable electrode plasma-arc composite welding system and its welding control method
CN105491776B (en) * 2016-02-16 2018-01-05 衢州迪升工业设计有限公司 Plasma electrode with ionization collaboration
KR101895838B1 (en) * 2016-08-26 2018-09-07 주식회사 무한 Apparatus for processing substrate
KR101995717B1 (en) * 2018-08-31 2019-07-03 주식회사 무한 Apparatus for processing substrate
CN114226911A (en) * 2021-12-22 2022-03-25 浙江巴顿焊接技术研究院 Plasma-arc hybrid welding method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL166871C (en) * 1969-04-04 1981-10-15 Philips Nv IMPROVEMENT OF ARC WELDING METHOD.
JPS63168283A (en) * 1986-12-29 1988-07-12 Toshiba Corp Plasma mig welding equipment
US6084197A (en) * 1998-06-11 2000-07-04 General Electric Company Powder-fan plasma torch
JP2002086274A (en) * 2000-09-12 2002-03-26 Koike Sanso Kogyo Co Ltd Nozzle for plasma torch

Also Published As

Publication number Publication date
JP2012200734A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
JP5828652B2 (en) Plasma mig welding torch
JP2020073281A (en) Additive manufacturing method and additive manufacturing system applying pulse heating signal using high energy source and heat wire
JP4726038B2 (en) System for welding and method of use thereof
US20080169336A1 (en) Apparatus and method for deep groove welding
JP2009208137A (en) Plasma mig welding method
JP5005332B2 (en) Arc start control method for consumable electrode arc welding
JP2008229704A (en) Arc start control method for two-electrode arc welding
JP2014004629A (en) Electrode for plasma cutting torches and use of the same
CN107249802B (en) Welding torch and device using same
JP4952315B2 (en) Composite welding method and composite welding equipment
JP2010155251A (en) Plasma gma welding method
JP2008229705A (en) Plasma gma welding torch and plasma gma welding method
JP2010194566A (en) Gma welding method
JP6004623B2 (en) Two-electrode differential welding method
JP2020534160A (en) Torch body for thermal bonding
JP5287962B2 (en) Welding equipment
JP2011031252A (en) Insert tip, plasma torch, and plasma machining device
JP2010104996A (en) Plasma electrode and plasma mig welding torch
JP2008149363A (en) Welding apparatus
JP5472931B2 (en) Plasma welding equipment
JPS63101076A (en) Arc starting method for plasma arc welding machine
US10610954B2 (en) Welding apparatus and plasma welding method
Brunov et al. Transfer of electrode metal in welding with the pulsed feed of welding wire
JP2013099793A (en) Welding method
JP2012192443A (en) Nozzle for plasma cutting device, and plasma torch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151020

R150 Certificate of patent or registration of utility model

Ref document number: 5828652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees