JP5827598B2 - Failure probability calculating device, failure probability calculating method, and railway maintenance system - Google Patents

Failure probability calculating device, failure probability calculating method, and railway maintenance system Download PDF

Info

Publication number
JP5827598B2
JP5827598B2 JP2012129214A JP2012129214A JP5827598B2 JP 5827598 B2 JP5827598 B2 JP 5827598B2 JP 2012129214 A JP2012129214 A JP 2012129214A JP 2012129214 A JP2012129214 A JP 2012129214A JP 5827598 B2 JP5827598 B2 JP 5827598B2
Authority
JP
Japan
Prior art keywords
failure
information
abnormality degree
failure probability
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012129214A
Other languages
Japanese (ja)
Other versions
JP2013253847A (en
Inventor
今朝明 峰村
今朝明 峰村
崇 佐伯
崇 佐伯
晋也 湯田
晋也 湯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012129214A priority Critical patent/JP5827598B2/en
Publication of JP2013253847A publication Critical patent/JP2013253847A/en
Application granted granted Critical
Publication of JP5827598B2 publication Critical patent/JP5827598B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Description

本発明は、故障確率算出装置及び故障確率算出方法並びに鉄道保守システムに関する。   The present invention relates to a failure probability calculation device, a failure probability calculation method, and a railway maintenance system.

例えば、鉄道などの交通機関の輸送機器や該機器の部品(以下、部品を含めて輸送機器と称する)などの故障確率を算出する故障確率算出装置及び故障確率算出方法並びに鉄道保守システムに関する。   For example, the present invention relates to a failure probability calculation device, a failure probability calculation method, and a railroad maintenance system for calculating failure probabilities of transportation equipment such as railways and parts of the equipment (hereinafter referred to as transportation equipment).

本技術分野の背景技術として、特開2006−17471号公報(特許文献1)がある。この公報には、「寿命予測の対象となる前記部品の寿命を予め所定の寿命値に変換し、前記部品の測定を行ったときに、得られた測定結果から当該部品についての消耗度を表す状態量を計算し、得られた前記状態量を、測定を行った日付及び前記部品と関連付けて記憶部に記憶させ、所定の部品について寿命予測を行う際に、当該部品について複数回の測定で得られた少なくとも三つの前記状態量を、測定の日付とともに前記記憶部から読み出し、前記記憶部から読み出した前記状態量のうち、隣り合う測定点の前記状態量から、これら測定点における状態量の中間点及び日付の中間点を求め、前記中間点と今回測定における状態量及び日付を示す点を通る直線と、前記記憶部から読み出した前記部品の寿命を示す線とが交差する位置を求め、この位置に対応する日付を寿命到来予測日とする。(要約参照)」と記載されている。   As a background art in this technical field, there is JP-A-2006-17471 (Patent Document 1). In this publication, “the lifetime of the component that is subject to lifetime prediction is converted into a predetermined lifetime value in advance, and when the component is measured, the degree of wear on the component is expressed from the measurement result obtained. The state quantity is calculated, and the obtained state quantity is stored in the storage unit in association with the date of measurement and the part, and when performing life prediction for a predetermined part, the part can be measured multiple times. The obtained at least three state quantities are read from the storage unit together with the date of measurement, and among the state quantities read from the storage unit, from the state quantities at adjacent measurement points, the state quantities at these measurement points are calculated. The intermediate point and the intermediate point of the date are obtained, and the position where the straight line passing through the intermediate point and the point indicating the state quantity and date in the current measurement intersects with the line indicating the life of the component read from the storage unit is obtained. To date corresponding to this location as the life expected arrival date. It is described as (summary see). "

特開2006−17471号公報JP 2006-17471 A

前記特許文献1には、複数の測定データを用いて、部品の寿命到来予測日を決定すること、主に使用時間に関する過去のデータに基づく故障曲線と測定データを比較することで使用時間が変化しても、より部品の寿命を予測する方法が記載されている。   The above-mentioned Patent Document 1 uses a plurality of measurement data to determine the expected life arrival date of a component, and mainly changes the usage time by comparing the measurement data with a failure curve based on past data relating to the usage time. Even so, a method for predicting the life of parts is described.

しかし、寿命到来日をより正確に予測するに際して、今後の装置の使用頻度に関する情報を予め入手し、今後の使用頻度を、寿命到来予測日の決定にあたり加味することについては記載されているも、時間並びに距離に寄与しない情報については加味されていない。
例えば、鉄道システムにあっては、快速・普通列車といった列車の種別や運用されている路線といった使用時間並びに走行距離に寄与しない情報があるが、このような情報を加味し、故障予測若しくは故障確率算出を行うことについては何ら考慮されていない。
However, when predicting the arrival date of life more accurately, information on the frequency of use of the device in the future is obtained in advance, and the use frequency in the future is taken into account when determining the expected arrival date of life, Information that does not contribute to time and distance is not taken into account.
For example, in the railway system, there is information that does not contribute to the usage time and travel distance such as the type of train, such as high-speed / ordinary trains, and the route that is being operated. No consideration is given to the calculation.

要するに、従来にあっては、時間並びに距離に寄与しない情報、例えば、快速・普通列車といった列車種別や運用されている路線といった使用時間並びに走行距離に寄与しない情報をもって機器の異常度合を補正し、機器の故障予測もしくは故障確率の算出を行うことまでは考慮されていなかった。しかし、快速列車は、普通列車よりも加速や制動の回数が少なく、場合によっては最高速度が高いという違いがある。また、運行される路線が異なると、乗客数やレールの整備状態が異なる。発明者は、これらの相違と機器の寿命の因果関係に初めて着目した。   In short, in the past, information that does not contribute to time and distance, for example, the type of train such as high-speed / normal trains and the use time such as the route being operated and information that does not contribute to the travel distance are corrected, It was not taken into account until the failure prediction of the equipment or the calculation of the failure probability. However, a rapid train has a difference that the number of times of acceleration and braking is smaller than that of a normal train, and in some cases the maximum speed is high. In addition, the number of passengers and the maintenance state of the rail differ depending on the route operated. The inventor first noticed the causal relationship between these differences and the lifetime of the device.

鉄道などの交通機関にあっては、運用の途中で輸送機器や部品に故障が発生すると、鉄道システム全体に影響を及ぼすことになる。例えば、大きな鉄道事故や鉄道の運行停止に繋がり兼ねない。この場合、運用者側にとって、大きな損害を被る。また、その利用者側にとっても大きな被害、迷惑を被る。
したがって、鉄道などの交通機関にあっては、より信頼性の高い装置、方法などの開発が求められている。
In transportation systems such as railways, if a failure occurs in transportation equipment or parts during operation, the entire railway system will be affected. For example, it could lead to a major railway accident or suspension of railway operations. In this case, the operator suffers great damage. In addition, the user side suffers great damage and inconvenience.
Therefore, development of more reliable devices and methods is required for transportation such as railways.

そこで、本発明は、係る点に鑑みなされ、より信頼性の高い故障確率を算出することができる故障確率算出装置及び方法並びに鉄道保守システムを提供する。   Therefore, the present invention is made in view of the above points, and provides a failure probability calculation device and method and a railroad maintenance system that can calculate a failure probability with higher reliability.

上記課題を解決するために、本発明は、診断対象機器の異常度合を、診断対象機器の使用時間に寄与しない情報、例えば運用路線、列車種別といった走行距離、走行時間等の使用頻度に起因しない情報に基づいて診断対象機器の異常度合いを生成する。   In order to solve the above problems, the present invention does not cause the degree of abnormality of the diagnosis target device to be based on information that does not contribute to the usage time of the diagnosis target device, for example, the usage frequency such as travel distance, travel time, etc. The degree of abnormality of the diagnosis target device is generated based on the information.

本発明によれば、故障確率の精度をより高めることができ、信頼性の高い故障確率算出装置及び故障確率算出方法並びに鉄道保守システムを提供することができる。
上述した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
ADVANTAGE OF THE INVENTION According to this invention, the precision of failure probability can be improved more and the failure probability calculation apparatus, failure probability calculation method, and railway maintenance system with high reliability can be provided.
Problems, configurations, and effects other than those described above will become apparent from the following description of embodiments.

本発明の一実施例を示すものであり、鉄道保守システムにおける故障確率算出装置の構成を示す構成図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates an embodiment of the present invention and is a configuration diagram illustrating a configuration of a failure probability calculation device in a railway maintenance system. 本発明の故障確率算出装置の異常度合補正部の構成を示す構成図である。It is a block diagram which shows the structure of the abnormality degree correction | amendment part of the failure probability calculation apparatus of this invention. 本発明の異常度合計算部における異常度合検出処理及び異常度合補正部における異常度合補正処理の手順を説明するフローチャートである。It is a flowchart explaining the procedure of the abnormality degree detection process in the abnormality degree calculation part of this invention, and the abnormality degree correction process in an abnormality degree correction | amendment part. 故障曲線格納データベースの故障モード毎の故障曲線の一例を示す図である。It is a figure which shows an example of the failure curve for every failure mode of a failure curve storage database. 重み表格納データベースの異常度合補正テーブルの一例を示す図である。It is a figure which shows an example of the abnormality degree correction table of a weight table storage database.

以下、本発明の実施例について、図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の異常度合確率算出装置は、診断対象機器の機器情報と前記対象機器の診断の基準となる異常度合比較基準値とを比較し、前記診断対象機器の異常度合いを算出する異常度合計算部と、前記異常度合計算部により算出した異常度合を前記診断対象機器の使用時間に寄与しない情報に基づき補正する異常度合補正部を有し、前記異常度合補正部は、前記異常度合計算部により算出した異常度合を前記診断機器の故障確率として変換し、該故障確率を前記対象機器の使用時間に寄与しない情報に対して重み付けした重み付け情報に基づき補正し、該補正した故障確率をもって前記診断対象機器の異常度合として出力することを特徴とする。   The abnormality degree probability calculation device according to the present invention compares the device information of the diagnosis target device with the abnormality degree comparison reference value serving as a reference for diagnosis of the target device, and calculates the degree of abnormality of the diagnosis target device. And an abnormality degree correction unit that corrects the abnormality degree calculated by the abnormality degree calculation unit based on information that does not contribute to the usage time of the diagnosis target device, and the abnormality degree correction unit is calculated by the abnormality degree calculation unit. The abnormality degree is converted as a failure probability of the diagnostic device, the failure probability is corrected based on weighting information weighted on information that does not contribute to the usage time of the target device, and the diagnostic target device is corrected with the corrected failure probability. The degree of abnormality is output.

係る構成によれば、使用頻度を加味した故障確率の算出、つまり使用時間並びに走行距離に寄与しない情報に基づいて機器の故障度合を補正し、機器の故障確率算出装置を提供することができる。   According to such a configuration, it is possible to provide a failure probability calculation device for a device by correcting the failure degree of the device based on the calculation of the failure probability taking into account the use frequency, that is, the information that does not contribute to the use time and the travel distance.

本発明の前記診断対象機器は、列車、自動車、バス、航空機、船舶の何れかに搭載される輸送機器であり、前記使用時間に寄与しない情報は、前記輸送機器の輸送種別、輸送路線の、少なくとも1つ以上の情報であり、前記異常度合計算部は、前記輸送機器の機器情報と前記輸送機器の診断の基準となる異常度合比較基準値とから前記輸送機器の異常度合いを算出する計算手段からなり、前記異常度合補正部は、前記輸送種別、輸送路線、輸送距離の、少なくとも1つ以上の情報を受けたとき、前記異常度合計算部により算出された異常度合を前記輸送機器の故障モード毎の故障確率を定めた故障曲線の情報に基づいて故障確率に変換する異常度合/異常確率変換手段と、前記故障確率を前記輸送種別、輸送路線、輸送距離の、少なくとも1つ以上の情報に対応する前記重み付け情報に基づき補正する計算を行い、前記診断対象機器の異常度合として出力する補正計算手段とからなることを特徴とする。   The diagnosis target device of the present invention is a transport device mounted on any of a train, an automobile, a bus, an aircraft, and a ship, and the information that does not contribute to the use time includes the transport type of the transport device, the transport route, Calculation means for calculating the degree of abnormality of the transportation equipment from the equipment information of the transportation equipment and an abnormality degree comparison reference value serving as a basis for diagnosis of the transportation equipment. When the abnormality degree correction unit receives at least one piece of information on the transportation type, transportation route, and transportation distance, the abnormality degree calculated by the abnormality degree calculation unit is determined as a failure mode of the transportation device. An abnormality degree / abnormality probability conversion means for converting into a failure probability based on failure curve information defining a failure probability for each, and the failure probability is at least one of the transportation type, transportation route, transportation distance Perform calculations for correcting on the basis of the weighting information corresponding to the above information, characterized by comprising the correction calculating means for outputting as the abnormality degree of the diagnostic target device.

特に列車に搭載される機器においては、係る構成によれば、時間並びに距離に寄与しない情報、例えば快速・普通列車などの列車の種別や運用路線、といった走行距離や走行時間等の使用時間(使用頻度)に起因しない情報に基づいて故障度合を補正するように構成している。快速列車は、普通列車よりも加速や制動や駅停車の回数が少ないため、加速や制動に関する機器や駅停車時に動作する機器は、普通列車よりも快速列車の方が寿命が長くなると考えられる。また、場合によっては快速列車は普通列車よりも最高速度が高いため、回転体の負荷が増加し、車体の振動も増加するため、車輪や台車の寿命が短くなると考えられる。さらに、運用路線が異なると、乗客数が変わるため、車両重量や車両振動が変わり、車輪や台車の寿命に影響する。また、運用路線が変わると、レールの状態に起因して車両振動が変わるため、車輪や台車の寿命に影響する。このように、これらの情報を用いて診断を行うことにより、故障確率の精度をより高めることが可能となり、その信頼性を向上することが期待できる。   Especially in equipment mounted on trains, according to such a configuration, information that does not contribute to time and distance, such as travel distance and travel time such as train type and operation route such as high-speed / ordinary train, etc. The failure degree is corrected on the basis of information that does not originate in the frequency. Since a rapid train has fewer acceleration, braking, and station stops than a regular train, it is considered that a rapid train has a longer service life than a regular train for devices related to acceleration and braking and devices that operate when the station stops. In some cases, the high-speed train has a higher maximum speed than the ordinary train, so that the load on the rotating body increases and the vibration of the vehicle body also increases. Furthermore, if the operation route is different, the number of passengers changes, so the vehicle weight and vehicle vibration change, which affects the life of the wheels and carts. In addition, if the operation route changes, the vehicle vibration changes due to the state of the rail, which affects the life of the wheels and the carriage. Thus, by performing diagnosis using these pieces of information, it is possible to further improve the accuracy of the failure probability and improve the reliability.

本発明の前記補正計算手段は、前記輸送機器の故障モード毎の故障確率を算出する手段と、前記故障モード毎の故障確率及び/または該故障モード毎の故障確率の平均値から前記輸送機器の全体の故障確率を算出する手段を含む、ことを特徴とする。   The correction calculation means of the present invention includes a means for calculating a failure probability for each failure mode of the transport device, and a failure probability for each failure mode and / or an average value of the failure probabilities for each failure mode. And means for calculating an overall failure probability.

係る構成によれば、故障モード毎の異常度合いのみならず、全体の異常度合をも把握することができることから、これらの異常度合による故障確率をもって診断対象機器の交換、修理等の事前対応策を有効的に講じることができる。   According to such a configuration, it is possible to grasp not only the degree of abnormality for each failure mode, but also the overall degree of abnormality, and therefore it is possible to take proactive measures such as replacement and repair of the diagnosis target device with the failure probability based on these abnormality degrees. It can be taken effectively.

本発明の前記輸送種別が普通、快速を含む列車種別、輸送路線が運行路線、輸送距離が走行距離であり、前記異常度合計算部の計算手段は、前記機器情報と前記異常度合比較基準値との差分を算出する減算器であり、前記異常度合補正部の前記補正計算手段は、前記故障確率に前記列車種別、運行路線の、少なくとも1つ以上の情報に対応する前記重み付け情報を乗算し、該故障確率を補正する乗算器であることを特徴とする。   The transport type of the present invention is normal, the train type including high speed, the transport route is the operation route, the transport distance is the travel distance, and the calculation means of the abnormality degree calculation unit includes the device information and the abnormality degree comparison reference value. The correction calculation means of the abnormality degree correction unit multiplies the failure probability by the weight information corresponding to at least one piece of information of the train type and operation route, It is a multiplier for correcting the failure probability.

また、本発明の異常度合確率算出方法は、診断対象機器の機器情報と前記対象機器の診断の基準となる異常度合比較基準値とを比較し、前記診断対象機器の異常度合いを算出する異常度合処理を行うステップと、前記診断対象機器の異常度合を前記診断対象機器の故障確率に変換し、該故障確率を前記診断対象機器の使用時間に寄与しない情報に対する重み付けした情報に基づき補正し、該補正した故障確率をもって前記診断対象機器の異常度合として出力する異常度合補正処理を行うステップと、を有し、診断対象機器の機器情報と前記対象機器の診断の基準となる異常度合比較基準値とを比較して得た前記診断対象機器の異常度合いを故障確率に変換し、該故障確率を補正して補正済の補正確率を算出することを特徴とする。   Further, the abnormality degree probability calculation method of the present invention compares the device information of the diagnosis target device with the abnormality degree comparison reference value serving as a reference for diagnosis of the target device, and calculates the degree of abnormality of the diagnosis target device. Performing the processing, converting the degree of abnormality of the diagnostic target device into a failure probability of the diagnostic target device, correcting the failure probability based on weighted information for information that does not contribute to the usage time of the diagnostic target device, Performing an abnormality degree correction process for outputting the degree of abnormality of the diagnosis target device with the corrected failure probability, and including device information of the diagnosis target device and an abnormality degree comparison reference value serving as a reference for diagnosis of the target device The degree of abnormality of the diagnosis target device obtained by comparing the above is converted into a failure probability, and the corrected probability is calculated by correcting the failure probability.

時間並びに距離に寄与しない情報、例えば鉄道システムにおける運用路線、列車種別といった走行距離や走行時間等の使用頻度に起因しない情報に基づいて故障度合を補正するように構成していることから、故障確率の精度をより高めることが可能となり、その信頼性を向上することが期待できる。   The failure probability is based on information that does not contribute to time and distance, for example, information that does not depend on the frequency of use, such as travel distance and travel time, such as operating routes and train types in the railway system. It is possible to further improve the accuracy of the process and to improve its reliability.

本発明の前記異常度合補正処理を行うステップは、前記輸送機の輸送種別、輸送路線、輸送距離の、少なくとも1つ以上の情報を受けたとき、前記異常度合計算部により算出された異常度合を前記輸送機器の故障モード毎の故障確率を定めた故障曲線情報に基づいて前記異常度合計算部により算出された異常度合を故障確率に変換する異常度合/故障確率変換処理を行うステップと、前記故障確率を前記輸送機の輸送種別、輸送路線の、少なくとも1つ以上の情報に対応する重み情報により補正し、前記診断対象機器の異常度合として出力する補正計算処理を行うステップからなることを特徴とする異常度合確率算出方法である。前記異常度合補正処理を行うステップは、前記輸送機の輸送種別、輸送路線の、少なくとも1つ以上の情報を受けたとき、前記異常度合計算部により算出された異常度合を前記輸送機器の故障モード毎の故障確率を定めた故障曲線情報に基づいて前記異常度合計算部により算出された異常度合を故障確率に変換する異常度合/故障確率変換処理を行うステップと、前記故障確率を前記輸送機の輸送種別、輸送路線の、少なくとも1つ以上の情報に対応する前記重み付け情報により補正し、前記診断対象機器の異常度合として出力する補正計算処理を行うステップからなることを特徴とする。   The step of performing the abnormality degree correction processing according to the present invention includes the step of calculating the abnormality degree calculated by the abnormality degree calculating unit when receiving at least one piece of information on a transportation type, a transportation route, and a transportation distance of the transport aircraft. Performing an abnormality degree / failure probability conversion process for converting the abnormality degree calculated by the abnormality degree calculation unit into a failure probability based on failure curve information defining a failure probability for each failure mode of the transport device; and It comprises a step of performing a correction calculation process for correcting the probability by weight information corresponding to at least one piece of information of the transport type and transport route of the transport aircraft and outputting as an abnormality degree of the diagnosis target device. This is an abnormal degree probability calculation method. The step of performing the degree of abnormality correction processing, when receiving at least one or more information of the transportation type of the transport aircraft and the transportation route, the abnormality degree calculated by the abnormality degree calculation unit is a failure mode of the transportation equipment Performing an abnormality degree / failure probability conversion process for converting the abnormality degree calculated by the abnormality degree calculation unit into a failure probability based on failure curve information defining a failure probability for each, and the failure probability of the transport aircraft The method includes a step of performing correction calculation processing for correcting the weight by the weighting information corresponding to at least one piece of information of the transportation type and the transportation route, and outputting the degree of abnormality of the diagnosis target device.

係る構成によれば、時間並びに距離に寄与しない情報、例えば鉄道システムにおける運用路線、列車種別といった走行距離、走行時間等の使用頻度に起因しない情報に基づいて故障度合を補正するように構成していることから、故障確率の精度をより高めることが可能となり、その信頼性を向上することが期待できる。   According to such a configuration, it is configured to correct the failure degree based on information that does not contribute to time and distance, for example, information that does not originate from the use frequency such as the operation route in the railway system, the type of train, the travel time, etc. Therefore, it is possible to further improve the accuracy of the failure probability and improve the reliability.

本発明の前記補正計算処理を行うステップは、前記輸送機器の故障モード毎の故障確率を算出するステップと、また前記故障モード毎の故障確率から前記輸送機器全体の故障確率を算出するステップを含む、ことを特徴とする。   The step of performing the correction calculation process of the present invention includes a step of calculating a failure probability for each failure mode of the transport device, and a step of calculating a failure probability of the entire transport device from the failure probability for each failure mode. It is characterized by that.

本発明の前記輸送機の輸送種別が普通、快速を含む列車種別、輸送路線が運行路線、輸送距離が走行距離であり、前記機器情報と前記異常度合比較基準値との差分を算出する減算器であり、前記補正計算処理を行うステップは、前記故障確率に前記輸送機の列車種別、運行路線の、少なくとも1つ以上の情報に対応する前記重み情報を乗算し、該故障確率を補正することを特徴とする。   The transport type of the transport aircraft of the present invention is normal, the train type including high speed, the transport route is the operation route, the transport distance is the travel distance, and the subtractor that calculates the difference between the device information and the abnormality degree comparison reference value And the step of performing the correction calculation processing includes correcting the failure probability by multiplying the failure probability by the weight information corresponding to at least one piece of information of a train type and a route of the transport aircraft. It is characterized by.

本発明の鉄道保守システムは、鉄道車両に搭載される診断対象機器の状態を診断する際に、前記診断対象機器に関する情報と前記異常度合比較基準情報とを元に前記診断対象機器の異常度合を算出する異常度合算出部と、前記異常度合計算部による異常度合を前記診断対象機器の故障確率に変換し、かつ該故障確率を前記診断対象機器の使用時間に寄与しない情報に基づいて補正し、該補正した故障確率を前記診断対象機器の異常度合として出力する異常度合補正部と、前記異常度合補正部から出力された補正済み故障確率による異常度合を表示する表示部を有し、前記診断対象機器の機器情報と、該診断対象機器が正常状態において測定した過去正常データである異常度合比較基準情報とを元に、前記診断対象機器の異常度合を算出し、該異常度合をもって前記診断対象機器の状態を推定することを特徴とする。   The railroad maintenance system according to the present invention, when diagnosing the state of a diagnosis target device mounted on a railway vehicle, determines the degree of abnormality of the diagnosis target device based on the information on the diagnosis target device and the abnormality degree comparison reference information. An abnormality degree calculation unit to calculate, an abnormality degree by the abnormality degree calculation unit is converted into a failure probability of the diagnosis target device, and the failure probability is corrected based on information that does not contribute to the usage time of the diagnosis target device, An abnormality degree correction unit that outputs the corrected failure probability as an abnormality degree of the diagnosis target device, and a display unit that displays the abnormality degree based on the corrected failure probability output from the abnormality degree correction unit, Based on the device information of the device and the abnormality degree comparison reference information that is past normal data measured in a normal state of the diagnosis target device, the abnormality degree of the diagnosis target device is calculated, With normal degree and estimates the state of the diagnosis target device.

係る構成によれば、鉄道の輸送機器(車両機器)情報と異常度合比較基準情報から求めた故障度合の故障確率より、例えば運用する路線・種別を決定し、車両を寿命まで運用する等の車両運用の効率向上が見込める鉄道保守システムを提供することができる。   According to such a configuration, for example, the route / type to be operated is determined from the failure probability of the failure degree obtained from the railway transportation equipment (vehicle equipment) information and the abnormality degree comparison reference information, and the vehicle is operated to the end of its life. A railway maintenance system that can be expected to improve operational efficiency can be provided.

本発明の前記診断対象機器は列車に搭載される輸送機器であり、前記使用頻度情報は前記列車種別、路線の、少なくとも1つ以上の情報であり、前記異常度合計算部は、前記輸送機器の機器情報と前記輸送機器の診断の基準となる異常度合比較基準値とから前記輸送機器の異常度合いを算出する計算手段からなり、前記異常度合補正部は、前記列車種別、路線の、少なくとも1つ以上の情報を受けたとき、前記異常度合計算部により算出された異常度合を前記輸送機器の故障モード毎の故障確率を定めた故障曲線情報に基づいて故障確率に変換する異常度合/異常確率変換手段と、前記故障確率を前記列車種別、路線の、少なくとも1つ以上の情報に対応して重み付けした情報に基づき補正する計算を行い、前記輸送機器の異常度合として出力する補正計算手段とからなることを特徴とする。   The diagnosis target device of the present invention is a transport device mounted on a train, the use frequency information is at least one or more information of the train type and route, and the abnormality degree calculation unit Comprising calculation means for calculating the degree of abnormality of the transportation equipment from equipment information and an abnormality degree comparison reference value serving as a basis for diagnosis of the transportation equipment, the abnormality degree correction unit is at least one of the train type and route When receiving the above information, the degree of abnormality / abnormality probability conversion that converts the degree of abnormality calculated by the degree of abnormality calculation unit into a failure probability based on failure curve information that defines a failure probability for each failure mode of the transport equipment And a calculation for correcting the failure probability based on information weighted in correspondence with at least one or more pieces of information of the train type and route, and outputs as an abnormality degree of the transport equipment. Characterized by comprising the correction calculating means for.

係る構成によれば、故障モード毎の異常度合いのみならず、全体の異常度合いも確認することができる。   According to this configuration, it is possible to check not only the degree of abnormality for each failure mode but also the degree of abnormality as a whole.

本発明の前記補正計算手段は、前記輸送機器の故障モード毎の故障確率を算出する手段と、前記故障モード毎の故障確率及び/または該故障モード毎の故障確率の平均値から前記輸送機器の全体の故障確率を算出する手段を含み、前記表示部は、前記補正計算手段により算出した前記故障モード毎の故障確率を異常度合及び/又は前記全体の故障確率を表示するディスプレイからなることを特徴とする。   The correction calculation means of the present invention includes a means for calculating a failure probability for each failure mode of the transport device, and a failure probability for each failure mode and / or an average value of the failure probabilities for each failure mode. Means for calculating an overall failure probability, and the display unit comprises a display for displaying the failure probability for each failure mode calculated by the correction calculating means and / or an abnormality degree and / or the overall failure probability. And

係る構成によれば、鉄道保守システムにおける故障モード毎の異常度合いのみならず、全体の異常度合いも確認することができる。   According to such a configuration, it is possible to confirm not only the degree of abnormality for each failure mode in the railway maintenance system but also the degree of abnormality of the whole.

本発明の前記輸送機の輸送種別が普通、快速を含む列車種別、輸送路線が運行路線、輸送距離が走行距離であり、前記異常度合計算部の計算手段は、前記機器情報と前記異常度合比較基準値との差分を算出する減算器であり、前記異常度合補正部の前記補正計算手段は、前記故障確率に前記輸送機の列車種別、運行路線の、少なくとも1つ以上の情報に対応する前記重み付け情報を乗算し、該故障確率を補正する乗算器であることを特徴とする。   The transport type of the transport aircraft of the present invention is normal, the train type including high speed, the transport route is the operation route, the transport distance is the travel distance, and the calculation means of the abnormality degree calculation unit compares the equipment information with the abnormality degree It is a subtractor that calculates a difference from a reference value, and the correction calculation means of the abnormality degree correction unit corresponds to at least one or more pieces of information of the train type of the transport aircraft and the operation route in the failure probability. It is a multiplier for multiplying weighting information and correcting the failure probability.

本実施例では、鉄道などの輸送機器の故障確率算出装置及び方法の例を用いて説明する。例えば、鉄道保守システムにおいて、診断対象機器の使用時間に寄与しない情報、例えば運用路線、列車種別といった走行距離、走行時間等の使用頻度に起因しない情報に対応する補正情報(故障曲線情報並びに重み付け情報)に基づいて故障度合を補正するように構成した故障確率算出装置及び方法である。   In the present embodiment, a description will be given by using an example of a failure probability calculating apparatus and method for a transportation device such as a railway. For example, in a railway maintenance system, correction information (failure curve information and weighting information) corresponding to information that does not contribute to the usage time of the diagnosis target device, for example, information that does not originate from the usage frequency such as travel distance and travel time such as operation route and train type ) Based on the failure probability calculation apparatus and method configured to correct the failure degree.

まず、故障確率算出装置について説明する。
図1は、本実施例の故障確率算出装置の構成図である。ここで、故障確率算出装置とは、例えば、鉄道保守システムにおける輸送機器(車両機器)に関する情報(機器情報;運用状況を示すデータ)を収集し、該収集情報に基づいて輸送機器、つまり診断対象機器の故障確率を算出する装置である。
First, the failure probability calculation device will be described.
FIG. 1 is a configuration diagram of a failure probability calculation apparatus according to the present embodiment. Here, the failure probability calculation device, for example, collects information (equipment information; data indicating operational status) related to transport equipment (vehicle equipment) in the railway maintenance system, and based on the collected information, transport equipment, that is, a diagnosis target It is a device that calculates the failure probability of a device.

また、鉄道保守システムとは、鉄道車両(輸送機)の輸送機器(車両機器)に関する情報を収集し、該車両情報に基づいて車両機器を診断し、該診断結果をもって鉄道車両の保守を可能とするシステムである。   In addition, the railway maintenance system collects information related to transportation equipment (vehicle equipment) of a railway vehicle (transportation machine), diagnoses the vehicle equipment based on the vehicle information, and enables maintenance of the railway vehicle based on the diagnosis result. System.

図1において、輸送機器10は、鉄道などの輸送車両に搭載される診断対象機器101、センサ102を有する。   In FIG. 1, a transport device 10 includes a diagnosis target device 101 and a sensor 102 that are mounted on a transport vehicle such as a railway.

センサ102とは、例えば車両の異常音を測定するマイク、異種金属の熱電対(温度差)を測定するセンサ、車両の振動を測定するセンサ、車両の速度を測定するセンサ、各部品の磨耗状態を測定するセンサなどである。センサ102は、診断対象機器101に取付けられ、該機器の測定データをセンサデータとして出力する。   The sensor 102 is, for example, a microphone that measures abnormal sound of a vehicle, a sensor that measures a thermocouple (temperature difference) of different metals, a sensor that measures vibration of the vehicle, a sensor that measures the speed of the vehicle, and the wear state of each component It is a sensor that measures The sensor 102 is attached to the diagnosis target device 101 and outputs measurement data of the device as sensor data.

故障確率算出装置20は、診断対象機器101に取り付けられたセンサ102のセンサデータSを受け、例えば鉄道車両の台車に使用されているベアリング、軸箱支持装置(軸ばね式)や車輪のブレーキ部品(ブレーキパット)などの診断対象機器101の診断を行い、その異常度合及び故障確率を算出し、出力する。   The failure probability calculation device 20 receives the sensor data S of the sensor 102 attached to the diagnosis target device 101 and receives, for example, a bearing, a shaft box support device (shaft spring type) and a wheel brake component used in a bogie of a railway vehicle. The diagnosis target device 101 such as (brake pad) is diagnosed, and the degree of abnormality and failure probability are calculated and output.

また、故障確率算出装置20は、センサ102のセンサデータSを入力する入力部201、異常度合を計算する異常度合計算部202、情報入力部203、異常度合いを補正する異常度合補正部204、過去正常データ構築部205、異常度合補正情報を格納する格納部206、異常度合いを表示する異常度合表示部207、を有する。入力部201、情報入力部203は、入力装置を構成し、異常度合表示部201は、出力装置を構成し、異常度合計算部202及び異常度合補正部204は、演算装置を構成し、過去正常データ構築部205及び異常度合補正情報格納部206は、記憶または記録装置を構成している。   The failure probability calculation device 20 includes an input unit 201 that inputs sensor data S of the sensor 102, an abnormality degree calculation unit 202 that calculates an abnormality degree, an information input unit 203, an abnormality degree correction unit 204 that corrects an abnormality degree, A normal data construction unit 205, a storage unit 206 that stores abnormality degree correction information, and an abnormality degree display unit 207 that displays an abnormality degree. The input unit 201 and the information input unit 203 constitute an input device, the abnormality degree display unit 201 constitutes an output device, the abnormality degree calculation unit 202 and the abnormality degree correction unit 204 constitute an arithmetic device, and the past normal The data construction unit 205 and the abnormality degree correction information storage unit 206 constitute a storage or recording device.

入力部201は、センサ102により測定された一つ以上の機器情報を異常度合計算部202に入力する。機器情報とは、診断対象機器101の診断時における運用状況を測定して得た測定データ、例えばセンサデータS(S1、S2・・・)である。   The input unit 201 inputs one or more pieces of device information measured by the sensor 102 to the abnormality degree calculation unit 202. The device information is measurement data obtained by measuring the operation status at the time of diagnosis of the diagnosis target device 101, for example, sensor data S (S1, S2,...).

この入力方法としては、オンラインによる自動入力方法や例えば情報処理機器(PCなど)のキーボードからの手入力方法を問わない。   The input method may be an online automatic input method or a manual input method using a keyboard of an information processing device (such as a PC).

過去正常データ構築部205は、過去正常データa(a1、a2・・・)を格納する過去正常データ格納データベース(過去正常データ格納DB)2051を含んでいる。
過去正常データ格納DB2051は、センサS(s1、s2・・・)毎に対応してその異常度合比較基準値となる1つ以上の過去正常データa(a1、a2・・・)が登録されている。
The past normal data construction unit 205 includes a past normal data storage database (past normal data storage DB) 2051 that stores past normal data a (a1, a2,...).
In the past normal data storage DB 2051, one or more past normal data a (a 1, a 2...) That become the abnormality degree comparison reference value corresponding to each sensor S (s 1, s 2...) Is registered. Yes.

ここで、過去正常データ(異常度合比較基準値)は、例えば診断対象機器が実際に正常に動作しているとき、測定した測定データ、例えばセンサデータを過去正常データとして予め過去正常データ格納DB(記憶部)に格納しておく。あるいは、異常度合比較基準値は、各診断対象機器の設計寿命等を元にして設定しても良い。すなわち、より正確な判断が可能な値であれば、異常度合比較基準値の設定は問わない。   Here, the past normal data (abnormality comparison reference value) is a past normal data storage DB (for example, when the diagnosis target device is actually operating normally, the measured measurement data, for example, sensor data as past normal data in advance. Stored in the storage unit). Alternatively, the abnormality degree comparison reference value may be set based on the design life of each diagnosis target device. That is, the abnormality degree comparison reference value may be set as long as it is a value that allows more accurate determination.

異常度合計算部202は、センサ102からのセンサデータ、例えばベアリングの摩耗に関するセンサデータS1が入力部201を介して入力されたとき、過去正常データ格納DB2051の過去正常データaの中から該入力センサデータに対応する過去正常データa1を読み出す。また、センサデータS1と過去正常データa1を比較し、その差分を診断対象機器101の異常度合b(b1)を算出し、該異常度合いを数字データとして出力する。   When the sensor data S1 from the sensor 102, for example, sensor data S1 related to bearing wear is input via the input unit 201, the abnormality degree calculation unit 202 selects the input sensor from the past normal data a in the past normal data storage DB 2051. The past normal data a1 corresponding to the data is read. Also, the sensor data S1 and the past normal data a1 are compared, the difference is calculated as the abnormality degree b (b1) of the diagnosis target device 101, and the abnormality degree is output as numeric data.

したがって、異常度合計算部202は、過去正常データaを読み出す機能及び異常度合いを示すデータbを算出する機能を有する。   Therefore, the abnormality degree calculation unit 202 has a function of reading past normal data a and a function of calculating data b indicating the degree of abnormality.

異常度合は、過去正常データ格納DB2051に予め格納してある過去正常データa(センサデータSに対応するデータa)との比較により定義する。その比較方法としては、例えば差分・クラスタリング等の計算方法により行うことができる。   The degree of abnormality is defined by comparison with past normal data a (data a corresponding to sensor data S) stored in the past normal data storage DB 2051 in advance. As the comparison method, for example, a calculation method such as difference / clustering can be used.

情報入力部203は、診断対象機器の使用時間に寄与しない情報、例えば運用路線、列車種別といった走行距離、走行時間等の使用頻度に起因しない情報を異常度合補正部204に入力する。   The information input unit 203 inputs, to the abnormality degree correction unit 204, information that does not contribute to the usage time of the diagnosis target device, for example, information that does not depend on the usage frequency such as the travel distance and travel time such as the operation route and the train type.

この入力方法としては、データとして通信等から自動的に入力する方法や入力部201の入力方法と同様にオンラインによる自動入力方法やキーボードなどの入力手段を利用して手入力する方法を問わない。   As this input method, there is no limitation on a method of automatically inputting as data from communication or the like, a method of inputting manually using an input means such as an on-line automatic input method or a keyboard as in the input method of the input unit 201.

異常度合補正情報格納部206は、故障曲線データベース(以下、故障曲線格納DBと称する)2061、重み表格納データベース(以下、重み表格納DBと称する)2062を有する。   The abnormality degree correction information storage unit 206 includes a failure curve database (hereinafter referred to as failure curve storage DB) 2061 and a weight table storage database (hereinafter referred to as weight table storage DB) 2062.

故障曲線格納DB2061には、故障モード毎の故障度合と故障確率が対応する数字データが格納されている。換言すれば、異常度合を故障確率に変換するため、予め異常度合と故障確率とを対応付けした数字データを故障曲線格納DB2061(記憶部)に格納してある。   The failure curve storage DB 2061 stores numerical data corresponding to the failure degree and failure probability for each failure mode. In other words, in order to convert the abnormality degree into the failure probability, numerical data in which the abnormality degree and the failure probability are associated with each other is stored in the failure curve storage DB 2061 (storage unit) in advance.

この数字データは、異常度合計算部202により算出される異常度合いを故障確率に変換するための情報であって、後述する故障モード毎の異常度合b(b1、b・・・)と故障確率g(g1、g2・・・)の関係(異常度合と故障確率の数値)を示す故障曲線として表すことができる。   The numerical data is information for converting the abnormality degree calculated by the abnormality degree calculation unit 202 into a failure probability, and includes an abnormality degree b (b1, b...) And a failure probability g for each failure mode to be described later. (G1, g2,...) Can be expressed as a failure curve indicating the relationship (abnormality and failure probability).

故障モード毎の数字データ(故障曲線)は、故障確率算出対象とする診断対象機器101毎に定める。   Numerical data (failure curve) for each failure mode is determined for each diagnosis target device 101 that is a failure probability calculation target.

図4は、その故障曲線の一例を示すものであって、横軸に異常度合b(数値)、縦軸に異常度合における故障確率gを示している。そして、異常度合bと設計上の故障確率gとの関係を故障曲線cとして表している。この故障曲線は、例えば診断対象機器の設計時に定められるバスタブ曲線(ワイブル分布)等が挙げられる。そして、この故障曲線における横軸の異常度合と縦軸の故障確率との関係は、診断対象機器の部位により異なる。バスタブ曲線(Bath Tub Curve)は、機械や装置の時間経過(使用年数・時間)に伴う故障確率(故障の発生する確率)の変化を表示した曲線である。また、ワイブル分布(Weibull distribution)は、物体の強度を統計的に記述するためにW.ワイブルによって提案された確率分布であり、時間に対する劣化現象や寿命を統計的に記述するために利用されている。そして、これらは、何れもすでに公知(http://ja.wikipedia.org/wiki他)であるので、その詳細説明は省略する。   FIG. 4 shows an example of the failure curve. The abscissa indicates the abnormality degree b (numerical value), and the ordinate indicates the failure probability g in the abnormality degree. A relationship between the degree of abnormality b and the design failure probability g is represented as a failure curve c. Examples of the failure curve include a bathtub curve (Weibull distribution) determined at the time of designing the diagnosis target device. The relationship between the degree of abnormality on the horizontal axis and the failure probability on the vertical axis in this failure curve varies depending on the part of the diagnosis target device. The Bath Tub Curve is a curve that displays a change in failure probability (probability of failure) with the passage of time (year / time of use) of a machine or device. In addition, the Weibull distribution is a W.W. This is a probability distribution proposed by Weibull, and is used to statistically describe the deterioration phenomenon and lifetime with respect to time. Since these are already known (http://en.wikipedia.org/wiki, etc.), detailed description thereof is omitted.

故障確率gについては、予め診断対象機器の設計時に得られる異常度合と故障確率との関係を示す情報を用いる。診断対象の機器101の分だけの故障曲線を故障曲線DB2061に予め登録する。   For the failure probability g, information indicating the relationship between the degree of abnormality and the failure probability obtained in advance when designing the diagnosis target device is used. A failure curve corresponding to the device 101 to be diagnosed is registered in the failure curve DB 2061 in advance.

重み表格納DB2062は、異常度合を故障確率に変換した故障確率を補正するための情報を格納するものであって、例えば列車の種別、路線、距離の故障事例毎の重み付け情報(重み値)を有する表、つまり異常度合補正テーブルT(T10、T20、T30)を格納している。   The weight table storage DB 2062 stores information for correcting a failure probability obtained by converting the degree of abnormality into a failure probability. For example, weight information (weight value) for each failure case of a train type, route, and distance is stored. Table, that is, an abnormality degree correction table T (T10, T20, T30) is stored.

この異常度合補正テーブルT(T10、T20、T30)には、情報入力部203から入力される使用時間に寄与しない情報である運用路線、列車種別といった走行距離や走行時間等の使用頻度に起因しない情報、例えば図5に示す如く、列車の種別(普通、快速など)dと、路線e、距離(走行距離)fなどに関する情報及びこれらの情報に対応する重み付け情報(重み値)w(w2、w1、w3)を格納する。   In this abnormality degree correction table T (T10, T20, T30), it does not result from the use frequency of travel distance, travel time, etc., such as operation route and train type, which is information that does not contribute to the use time input from the information input unit 203. Information, for example, as shown in FIG. 5, train type (normal, rapid, etc.) d, route e, distance (travel distance) f, etc., and weighting information (weight value) w (w2, w2, w1, w3) are stored.

そして、この異常度合補正テーブルT(T10、T20、T30)による重み付け情報wは、故障モード毎に格納する。これらの重み付け情報は、過去の故障事例を参照して設定する。   The weighting information w based on the abnormality degree correction table T (T10, T20, T30) is stored for each failure mode. These weighting information is set with reference to past failure cases.

異常度合補正部204は、情報入力部203から入力される種別、例えば列車種別dなどの情報を受けたとき、まず該種別に対応する故障モード毎の故障曲線格納DB2061からの故障曲線cを読み出し、該故障曲線により異常度合計算部202による異常度合bを故障確率gに変換する。   When the degree-of-abnormality correction unit 204 receives information such as the type input from the information input unit 203, for example, the train type d, first, it reads the failure curve c from the failure curve storage DB 2061 for each failure mode corresponding to the type. The abnormality degree b by the abnormality degree calculation unit 202 is converted into a failure probability g by the failure curve.

次いで、列車種別d、路線e、距離fの故障事例毎の重み表(図5のテーブルT10、T20、T30)から各情報d〜fの重み付け情報w(w1、w2、w3)を読み出し、該重み付け情報(重み付け情報の乗算値)を用いて、故障確率gに補正を加え、該補正した補正済異常度合(故障確率g)を故障確率hとして出力する。   Next, the weight information w (w1, w2, w3) of each information d to f is read from the weight table for each failure case of the train type d, route e, distance f (tables T10, T20, T30 in FIG. 5). Using the weighting information (the multiplication value of the weighting information), the failure probability g is corrected, and the corrected corrected abnormality degree (failure probability g) is output as the failure probability h.

換言すれば、異常度合補正部204は、異常度合b(b1、b2・・・)から故障確率g(g1、g2・・・)に変換する異常度合/故障確率変換機能を実行する処理手段及び列車種別などの情報の重み付け情報に基づいて故障確率gを補正し、補正済故障確率h(h1、h2・・・)を異常度合として出力する機能を実行する処理手段を有する。   In other words, the abnormality degree correction unit 204 executes processing for executing an abnormality degree / failure probability conversion function for converting the abnormality degree b (b1, b2,...) To the failure probability g (g1, g2,. It has processing means for executing a function of correcting the failure probability g based on the weighting information of the information such as the train type and outputting the corrected failure probability h (h1, h2,...) As the degree of abnormality.

異常度合補正部204による補正方法は、異常度合計算部202において算出された異常度合bを故障モード毎の故障曲線cにより故障確率に変換し、該故障確率に列車種別/路線/距離を示す情報d〜fの故障事例毎の重み表の重み付け情報wを乗算する計算方法により行うことができる。   In the correction method by the abnormality degree correction unit 204, the abnormality degree b calculated by the abnormality degree calculation unit 202 is converted into a failure probability by a failure curve c for each failure mode, and information indicating the train type / route / distance in the failure probability. The calculation can be performed by multiplying the weighting information w of the weight table for each of the failure cases d to f.

また、その算出にあたっては、故障モード毎の故障曲線c並びに故障事例毎の重み付け情報w(w1、w2、w3)の少なくとも一つ以上用いることにより行う。これらの重み付け情報は、事例ベースで算出を行って求める。例えば、設計時に定められる設計データと実際に運用したときに得られる運用データ(過去の異常に関する事例を解析して得たデータなど)を元に求める。   The calculation is performed by using at least one of the failure curve c for each failure mode and the weighting information w (w1, w2, w3) for each failure case. The weighting information is obtained by calculation on a case basis. For example, it is obtained based on design data determined at the time of design and operation data obtained when the system is actually used (data obtained by analyzing examples of past abnormalities).

本実施例では、図4の故障曲線cにおいて、異常度合gが「4」の場合を示しており、この場合には故障確率gが60%である。つまり、異常度合bの「4」はこの故障曲線cに基づいて故障確率gが60%に変換される。   In the present embodiment, a case where the degree of abnormality g is “4” in the failure curve c of FIG. 4 is shown. In this case, the failure probability g is 60%. That is, the failure probability “4” is converted to a failure probability g of 60% based on the failure curve c.

また、列車種別/路線/距離の故障事例毎の重み表格納DB2062には、例えば図5に示す如く、異常度合補正テーブルT10、T20、T30が格納されている。   In addition, the degree-of-abnormality correction tables T10, T20, and T30 are stored in the weight table storage DB 2062 for each train type / route / distance failure case, for example, as shown in FIG.

補正テーブルとは、異常度合に重みを付ける項目、つまり路線、列車種別の少なくとも一つ含み、そしてこれらの項目に対する重み付け情報(値)が対応付けされている表である。   The correction table is a table that includes at least one of items that weight the degree of abnormality, that is, a route and a train type, and that is associated with weighting information (values) for these items.

本実施例の補正テーブルT10の例では、診断する車両の路線eと路線による重みw1を示している。路線名は「P」、「Q」として示している。テーブルT20の例では、列車の種別dによる重みw2を示している。列車種別は「普通」と「快速」を示している。テーブルT30の例では、過去の走行距離fと重みw3を示している。ここでの走行距離の単位は千kmである。   In the example of the correction table T10 of the present embodiment, the route e of the vehicle to be diagnosed and the weight w1 by the route are shown. The route names are shown as “P” and “Q”. In the example of the table T20, the weight w2 by the train type d is shown. The train type indicates “normal” and “rapid”. In the example of table T30, past travel distance f and weight w3 are shown. The unit of travel distance here is 1,000 km.

例えば、補正テーブルT10における路線が「P」、補正テーブルT20における種別dが「快速」、補正テーブルT30における距離fが「10〜20」の場合には、T10における重みw1は「1.0」、T20における重みw2は「0.8」、T30における重みw3は「0.9」となる。   For example, when the route in the correction table T10 is “P”, the type d in the correction table T20 is “rapid”, and the distance f in the correction table T30 is “10 to 20”, the weight w1 in T10 is “1.0”. , The weight w2 at T20 is “0.8”, and the weight w3 at T30 is “0.9”.

したがって、この実施例における重みは、乗算により行えば、「1.0×0.8×0.9=0.72」となる。
これにより、種別、路線などの時間に寄与しない情報を加味した故障確率を算出することができる。
Therefore, the weight in this embodiment is “1.0 × 0.8 × 0.9 = 0.72” when it is multiplied.
Thereby, it is possible to calculate a failure probability taking into account information such as type and route that does not contribute to time.

異常度合表示部207は、補正された故障確率h(異常度合)を表示するディスプレイを有する。ディスプレイは、故障モード毎の異常度合(故障確率)及び診断対象機器の全体の異常度合(故障確率)を区別して表示する。   The abnormality degree display unit 207 has a display that displays the corrected failure probability h (abnormality degree). The display distinguishes and displays the abnormality degree (failure probability) for each failure mode and the overall abnormality degree (failure probability) of the diagnosis target device.

次に、異常度合補正部204について詳述する。
図2は、異常度合補正部204の一例を示す構成図である。同図において、異常度合補正部204は、異常度合を設計時に策定された故障曲線に基づき、異常度合いを故障確率に変換する異常度合/故障確率変換手段2041と、故障確率(異常度合)に種別、路線の時間に寄与しない情報の、少なくとも一つの重み付け情報を乗算し、補正済異常度合として出力する計算手段2042とを含んでいる。
Next, the abnormality degree correction unit 204 will be described in detail.
FIG. 2 is a configuration diagram illustrating an example of the abnormality degree correction unit 204. In the figure, an abnormality degree correction unit 204 is classified into an abnormality degree / failure probability conversion means 2041 for converting an abnormality degree into a failure probability based on a failure curve established at the time of design, and a failure probability (abnormality degree). And calculating means 2042 for multiplying at least one weighting information of information that does not contribute to the route time and outputting as a corrected abnormality degree.

異常度合/故障確率変換手段2041は、異常度合計算部202からの異常度合(情報)bと故障モード毎の故障曲線格納DB2061の故障曲線c(図5参照)とを受け、該異常度合bからの故障曲線cに基づく値(故障確率g)を出力する。補正計算手段2042は、列車種別/路線/距離の故障事例毎の重み表格納DB2062の列車種別の重み付け情報dと路線情報eと走行距離情報fの各情報の少なくとも1つの情報に対応する重み情報w1、w2、w3に基づいて異常度合/故障確率変換手段2041の出力値(故障確率g)に補正を加え、補正済異常度合h(h1、h2・・・)として出力する。   The abnormality degree / failure probability conversion means 2041 receives the abnormality degree (information) b from the abnormality degree calculation unit 202 and the failure curve c (see FIG. 5) of the failure curve storage DB 2061 for each failure mode. A value (failure probability g) based on the failure curve c is output. The correction calculation means 2042 includes weight information corresponding to at least one of the train type weighting information d, route information e, and travel distance information f in the weight table storage DB 2062 for each train type / route / distance failure case. Based on w1, w2, and w3, the output value (failure probability g) of the abnormality degree / failure probability conversion means 2041 is corrected and output as a corrected abnormality degree h (h1, h2,...).

また、補正計算手段2042は、故障モード毎の故障度合(h1、h2・・・)を補正する計算を行う計算手段20421及び故障モード毎の故障度合の平均値をとって機器全体の故障度合を補正する計算を行う計算手段20422を含んでいる。   Further, the correction calculation unit 2042 calculates the failure degree for each failure mode (h1, h2,...) And calculates the failure degree of the entire device by taking the average value of the failure degree for each failure mode. Calculation means 20422 for performing correction calculation is included.

これにより、補正済異常度合hを故障モード毎の故障度合及び全体の異常度合として区別して異常度合表示部208に表示することができる。   Thereby, the corrected abnormality degree h can be distinguished and displayed on the abnormality degree display part 208 as the failure degree for every failure mode and the whole abnormality degree.

以下、故障確率算出装置20の処理について説明する。図3は異常度合補正部204を含む故障確率算出装置20による処理手順を示すフローチャートである。   Hereinafter, the process of the failure probability calculation device 20 will be described. FIG. 3 is a flowchart showing a processing procedure performed by the failure probability calculation device 20 including the abnormality degree correction unit 204.

同図において、故障対象機器の故障確率算出装置20が診断対象機器101のセンサ102からあるセンサデータの入力を受けたとき(ステップS2041)、異常度合計算部202及び異常度合補正部204は例えば演算処理を行うCPUにより以下の手順により処理する。   In the figure, when the failure probability calculation device 20 of the failure target device receives input of certain sensor data from the sensor 102 of the diagnosis target device 101 (step S2041), the abnormality degree calculation unit 202 and the abnormality degree correction unit 204 perform, for example, calculation. Processing is performed by the CPU that performs the processing according to the following procedure.

ステップS2042において、センサデータSは異常度合計算部204に入力する。そして、該異常度合計算部204により異常度合計算の処理を実行する。   In step S <b> 2042, the sensor data S is input to the abnormality degree calculation unit 204. Then, the abnormality degree calculation unit 204 executes an abnormality degree calculation process.

この処理は、学習データとして用意されている過去正常データ(異常度合比較基準値)aとセンサデータSとを比較し、その差分を異常度合として算出する。   In this process, past normal data (abnormality degree comparison reference value) a prepared as learning data is compared with the sensor data S, and the difference is calculated as the abnormal degree.

例えば、センサデータSが数値「20」として入力されたとき、過去正常データが数値「26」で表すことができるとすれば、以下のとおりになる。すなわち、センサ101から入力されたデータは異常度合計算部202の計算において、過去正常データaとセンサデータSとの差分になるので、ここでは「26−20=6」となり、診断対象機器の異常度合は、「6」となる。この異常度合については、正常値との差分の絶対値と定義する。   For example, when the sensor data S is input as a numerical value “20”, if the past normal data can be expressed by a numerical value “26”, the following is obtained. That is, since the data input from the sensor 101 is a difference between the past normal data a and the sensor data S in the calculation of the abnormality degree calculation unit 202, “26−20 = 6” is obtained here, and the abnormality of the diagnosis target device is detected. The degree is “6”. This degree of abnormality is defined as the absolute value of the difference from the normal value.

次に、ステップS2043において、異常度合補正部204により、故障曲線cと列車種別/速度d〜fとの情報を用いて異常度合の補正を行う。   Next, in step S2043, the abnormality degree correction unit 204 corrects the abnormality degree using information on the failure curve c and the train type / speed d to f.

この処理に際しては、上述したように、まず異常度合補正より補正された故障確率の出力を行う。   In this process, as described above, first, the failure probability corrected by the abnormality degree correction is output.

すなわち、図5に示す故障モード毎の故障曲線c(変換手法)を用いて異常度合bの故障確率gへの変換処理を行う。つまり、異常度合bから故障曲線cに基づく変換処理(異常度合/故障確率変換手段2041)においては、異常度合bと故障曲線cを用いて異常度合を故障曲線に対応付けられる値gに変換する。   That is, the conversion process of the abnormality degree b to the failure probability g is performed using the failure curve c (conversion method) for each failure mode shown in FIG. That is, in the conversion process (abnormality degree / failure probability conversion means 2041) based on the failure curve c from the abnormality degree b, the abnormality degree is converted into a value g associated with the failure curve using the abnormality degree b and the failure curve c. .

具体的には、図2に示す異常度合/故障確率変換手段2042において、異常度合「6」に対応する故障曲線501の値が60%である場合、60%に変換(故障確率g)する。故障曲線cは、上述したように設計時もしくは運用時において、寿命と故障の起きる確率を設定する曲線である。   Specifically, in the abnormality degree / failure probability conversion means 2042 shown in FIG. 2, when the value of the failure curve 501 corresponding to the abnormality degree “6” is 60%, it is converted to 60% (failure probability g). The failure curve c is a curve that sets the lifetime and the probability of failure during design or operation, as described above.

次に、列車種別dの重みw2、路線eの重みw1、走行距離fの重みw3のうち少なくとも一つを補正計算手段2042へ入力する。そして、該補正計算手段2042により、異常度合/故障確率変換手段2042からの故障確率g(異常度合)にこれらの重み付け情報を乗算し、故障確率を出力する。   Next, at least one of the weight w2 of the train type d, the weight w1 of the route e, and the weight w3 of the travel distance f is input to the correction calculation means 2042. Then, the correction calculation means 2042 multiplies the failure probability g (abnormality degree) from the abnormality degree / failure probability conversion means 2042 by these weighting information and outputs the failure probability.

例えば、異常度合bが「6」、故障曲線cとして異常度合「6」に対応する故障確率が60%であるとする。この場合、まず異常度合から故障曲線cに基づく異常度合/故障確率変換手段2041において、60%として変換(故障確率g)する。次に、列車種別dの重みw2が「1.0」、路線eの重みw1が「0.8」、走行距離fの重みw3が「0.9」の場合、補正計算手段2042では、それぞれの乗算を行う。   For example, it is assumed that the degree of abnormality b is “6” and the failure probability corresponding to the degree of abnormality “6” as the failure curve c is 60%. In this case, first, the degree of abnormality / failure probability conversion means 2041 based on the failure curve c converts from the degree of abnormality to 60% (failure probability g). Next, when the weight w2 of the train type d is “1.0”, the weight w1 of the route e is “0.8”, and the weight w3 of the travel distance f is “0.9”, the correction calculation unit 2042 Multiply

すなわち、列車種別に対して、図4に示す補正テーブル(図4)に基づく補正情報が0.72であるとすると、最終的な装置出力値となる故障確率は、「60×0.72=43.2」となる。この実施例における故障確率は、43.2(%)となる。本実施例では、60×1.0×0.8×0.9=
43.2となる。故障確率については、43.2(%)となる。
That is, if the correction information based on the correction table (FIG. 4) shown in FIG. 4 is 0.72 for the train type, the failure probability that is the final device output value is “60 × 0.72 = 43.2 ". The failure probability in this embodiment is 43.2 (%). In this example, 60 × 1.0 × 0.8 × 0.9 =
43.2. The failure probability is 43.2 (%).

これによって、使用頻度を加味した故障確率を算出ができる。その分だけ、故障確率を向上させることができる。また、故障モード毎に故障確率の表示以外に、全体の故障確率も把握できることから、鉄道システム全体の故障による事前対策を講じることが可能である。例えば、診断対象機器のメンテナンス効率を適確にかつ効率的に実行することができ、また列車運行時にオペレータによる確認により、交通機関の安全確認も可能である。   This makes it possible to calculate the failure probability taking into account the usage frequency. The failure probability can be improved accordingly. In addition to displaying the failure probability for each failure mode, the overall failure probability can also be grasped, so that it is possible to take precautions due to the failure of the entire railway system. For example, the maintenance efficiency of the diagnosis target device can be executed accurately and efficiently, and the safety of the transportation facility can be confirmed by the operator's confirmation during train operation.

また、鉄道の輸送機器(車両機器)情報と異常度合比較基準情報から求めた故障度合の故障確率に対し、例えば運用する路線・種別などの重み情報を元に故障モード毎の補正を施し、車両を寿命まで運用する等の車両運用の効率向上が見込める鉄道保守システムである。   In addition, the failure probability of the failure degree obtained from the railway transportation equipment (vehicle equipment) information and the abnormality degree comparison reference information is corrected for each failure mode based on, for example, weight information such as the route / type to be operated, and the vehicle This is a railway maintenance system that can be expected to improve the efficiency of vehicle operation, such as operating up to the end of its service life.

故障確率算出装置及び故障確率算出方法は、自動車、バス、航空機、船舶などの交通機関に適用可能である。   The failure probability calculation device and the failure probability calculation method can be applied to transportation facilities such as automobiles, buses, airplanes, and ships.

なお、本発明は、上述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部を他の構成に置き換えることが可能である。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to the Example mentioned above, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. In addition, a part of the configuration of the embodiment can be replaced with another configuration. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of the embodiment.

また、上記の構成、機能、処理部、処理手段等は、それらの一部又は全部を、集積回路で設計する等によりハードウェアで実現しても良い。また、上記構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現しても良い。各機能を実現するプログラム、テーブル等の情報は、メモリや、ハードディスクなどの記録装置、または、ICカードなどの記録媒体に置くことができる。   Moreover, you may implement | achieve the said structure, a function, a process part, a process means, etc. with hardware by designing a part or all of them with an integrated circuit. The above configuration, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as programs and tables for realizing each function can be stored in a recording device such as a memory or a hard disk, or a recording medium such as an IC card.

また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えても良い。   Further, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

10 輸送機器
101 診断対象機器
102 センサ
20 診断対象機器の故障確率算出装置
201 入力部
202 異常度合計算部
204 異常度合補正部
2081 故障確率
2082 モードの故障確率
205 過去正常データ構築部
2051 過去正常データ(異常度合比較基準値)格納データベース
206 異常度合補正情報格納部
2061 故障モード毎の故障曲線格納データベース
2062 列車種別/路線/距離の故障事例毎の重み表格納データベース
203 情報入力部
208 異常度合表示部
2081 ディスプレイ
S センサデータ
a 過去正常データ
b 異常度合
c 故障曲線
T テーブル
d 種別
e 路線
f 距離
w 重み情報(値)
DESCRIPTION OF SYMBOLS 10 Transportation apparatus 101 Diagnosis object apparatus 102 Sensor 20 Diagnosis object apparatus failure probability calculation apparatus 201 Input unit 202 Abnormality degree calculation part 204 Abnormality degree correction part 2081 Failure probability 2082 Mode failure probability 205 Past normal data construction part 2051 Past normal data ( Abnormality degree comparison reference value) storage database 206 Abnormality degree correction information storage unit 2061 Failure curve storage database 2062 for each failure mode Weight table storage database 203 for each train type / route / distance failure example Information input unit 208 Abnormality degree display unit 2081 Display S Sensor data a Past normal data b Abnormal degree c Failure curve T Table d Type e Route f Distance w Weight information (value)

Claims (9)

診断対象機器の機器情報と前記診断対象機器の診断の基準となる異常度合比較基準値とを比較し、前記診断対象機器の異常度合いを算出する異常度合計算部と、
前記異常度合計算部により算出した異常度合を前記診断対象機器の使用時間に寄与しない情報に基づき補正する異常度合補正部を有し、
前記異常度合補正部は、
前記異常度合計算部により算出した異常度合を前記診断対象機器の故障確率として変換し、該故障確率を前記診断対象機器の使用時間に寄与しない情報に対して重み付けした重み付け情報に基づき補正し、該補正した故障確率をもって前記診断対象機器の異常度合として出力する故障確率算出装置であって、
前記診断対象機器は列車、自動車、バス、航空機、船舶の何れかに搭載される輸送機器であり、
前記使用時間に寄与しない情報は、前記輸送機器の輸送種別、輸送路線の、少なくとも1つ以上の情報であり、
前記異常度合計算部は、
前記輸送機器の機器情報と前記輸送機器の診断の基準となる異常度合比較基準値とから前記輸送機器の異常度合いを算出する計算手段からなり、
前記異常度合補正部は、
前記輸送種別、輸送路線の、少なくとも1つ以上の情報を受けたとき、前記異常度合計算部により算出された異常度合を前記輸送機器の故障モード毎の故障確率を定めた故障曲線の情報に基づいて故障確率に変換する異常度合/異常確率変換手段と、
前記故障確率を前記輸送種別、輸送路線の、少なくとも1つ以上の情報に対応する前記重み付け情報に基づき補正する計算を行い、前記診断対象機器の異常度合として出力する補正計算手段とからなる
ことを特徴とする故障確率算出装置。
An abnormality degree calculation unit that compares the device information of the diagnosis target device with the abnormality degree comparison reference value serving as a reference for diagnosis of the diagnosis target device, and calculates the degree of abnormality of the diagnosis target device;
An abnormality degree correction unit that corrects the abnormality degree calculated by the abnormality degree calculation unit based on information that does not contribute to the usage time of the diagnosis target device;
The abnormality degree correction unit
The abnormality degree converts abnormality degree calculated by the calculation section as a failure probability of the diagnosis target device, corrected on the basis of the weighting information the failure probability and weighting information that does not contribute to the operating time of the diagnosis target device, the A failure probability calculation device that outputs a corrected failure probability as the degree of abnormality of the diagnosis target device ,
The diagnostic target device is a transport device mounted on any of a train, a car, a bus, an aircraft, and a ship,
The information that does not contribute to the use time is at least one piece of information of the transport type and transport route of the transport device,
The abnormality degree calculation unit
Comprising calculating means for calculating the degree of abnormality of the transportation equipment from the equipment information of the transportation equipment and the degree of abnormality comparison reference value serving as a basis for diagnosis of the transportation equipment
The abnormality degree correction unit
When receiving at least one piece of information on the transportation type and transportation route, the abnormality degree calculated by the abnormality degree calculation unit is based on information on a failure curve defining a failure probability for each failure mode of the transportation device. An abnormality degree / abnormality probability conversion means for converting into a failure probability;
Compensation calculation means for performing a calculation for correcting the failure probability based on the weighting information corresponding to at least one or more information of the transportation type and transportation route, and outputting as an abnormality degree of the diagnosis target device. A failure probability calculation device.
前記補正計算手段は、前記輸送機器の故障モード毎の故障確率を算出する手段と、前記故障モード毎の故障確率及び/または該故障モード毎の故障確率の平均値から前記輸送機器の全体の故障確率を算出する手段を含む、
ことを特徴とする請求項記載の故障確率算出装置。
The correction calculating means calculates a failure probability for each failure mode of the transport device, and a failure probability for each failure mode and / or an average value of failure probabilities for each failure mode causes an overall failure of the transport device. Including means for calculating the probability,
The failure probability calculation apparatus according to claim 1 .
前記輸送種別が普通、快速を含む列車種別、輸送路線が運行路線であり、
前記異常度合計算部の計算手段は、前記機器情報と前記異常度合比較基準値との差分を算出する減算器であり、
前記異常度合補正部の前記補正計算手段は、前記故障確率に前記列車種別、運行路線の、少なくとも1つ以上の情報に対応する前記重み付け情報を乗算し、該故障確率を補正する乗算器である
ことを特徴とする請求項記載の故障確率算出装置。
The transport type is normal, the train type including high speed, the transport route is a service route,
The calculation means of the abnormality degree calculation unit is a subtractor that calculates a difference between the device information and the abnormality degree comparison reference value.
The correction calculation unit of the abnormality degree correction unit is a multiplier that multiplies the failure probability by the weighting information corresponding to at least one piece of information of the train type and route, and corrects the failure probability. The failure probability calculation apparatus according to claim 1 .
診断対象機器の機器情報と前記診断対象機器の診断の基準となる異常度合比較基準値とを比較し、前記診断対象機器の異常度合いを算出する異常度合処理を行うステップと、
前記診断対象機器の異常度合を前記診断対象機器の故障確率に変換し、該故障確率を前記診断対象機器の使用時間に寄与しない情報に対する重み付けした情報に基づき補正し、該補正した故障確率をもって前記診断対象機器の異常度合として出力する異常度合補正処理を行うステップと、
を有し、
診断対象機器の機器情報と前記診断対象機器の診断の基準となる異常度合比較基準値とを比較して得た前記診断対象機器の異常度合いを故障確率に変換し、該故障確率を補正して補正済の補正確率を算出する故障確率算出方法であって、
前記異常度合補正処理を行うステップは、
前記診断対象機器を搭載する輸送機の輸送種別、輸送路線の、少なくとも1つ以上の情報を受けたとき、前記異常度合処理を行うステップにより算出された異常度合を前記診断対象機器の故障モード毎の故障確率を定めた故障曲線情報に基づいて前記異常度合処理を行うステップにより算出された異常度合を故障確率に変換する異常度合/故障確率変換処理を行うステップと、
前記故障確率を前記輸送機の輸送種別、輸送路線の、少なくとも1つ以上の情報に対応する前記重み付け情報により補正し、前記診断対象機器の異常度合として出力する補正計算処理を行うステップからなる
ことを特徴とする故障確率算出方法。
A step of diagnosis target device of the device information is compared with the reference become abnormal degree comparison reference value of the diagnosis of the diagnosis target device performs the abnormality degree process of calculating the degree of abnormality in the diagnosis target equipment,
The abnormality degree of the diagnosis target device is converted into a failure probability of the diagnosis target device, the failure probability is corrected based on weighted information for information that does not contribute to the usage time of the diagnosis target device, and the corrected failure probability is Performing an abnormality degree correction process to be output as an abnormality degree of the diagnosis target device; and
Have
The degree of abnormality of the diagnosis target device obtained by comparing the device information of the diagnosis target device and the abnormality degree comparison reference value serving as a reference for diagnosis of the diagnosis target device is converted into a failure probability, and the failure probability is corrected. A failure probability calculation method for calculating a corrected correction probability ,
The step of performing the abnormality degree correction process includes:
When receiving at least one piece of information on the transport type and transport route of the transport aircraft on which the diagnosis target device is mounted, the abnormality degree calculated in the step of performing the abnormality degree processing is determined for each failure mode of the diagnosis target device. Performing an abnormality degree / failure probability conversion process for converting the abnormality degree calculated by the step of performing the abnormality degree process based on the failure curve information defining the failure probability of
Compensating the failure probability with the weighting information corresponding to at least one piece of information of the transport type and transport route of the transport aircraft, and performing a correction calculation process for outputting as an abnormality degree of the diagnosis target device The failure probability calculation method characterized by this.
前記補正計算処理を行うステップは、前記診断対象機器の故障モード毎の故障確率を算出するステップと、また前記故障モード毎の故障確率から前記診断対象機器全体の故障確率を算出するステップを含む、
ことを特徴とする請求項記載の故障確率算出方法。
Performing the correction calculation process includes a step of calculating a step for calculating the probability of failure for each failure mode of the diagnosis target device, also the entire failure probability of the diagnosis target device from the failure probabilities for each of the failure modes ,
The failure probability calculation method according to claim 4 .
前記輸送機の輸送種別が普通、快速を含む列車種別、輸送路線が運行路線であり、
前記機器情報と前記異常度合比較基準値との差分を算出する減算器であり、
前記補正計算処理を行うステップは、前記故障確率に前記輸送機の列車種別、運行路線の、少なくとも1つ以上の情報に対応する前記重み情報を乗算し、該故障確率を補正する
ことを特徴とする請求項記載の故障確率算出方法。
The transport aircraft transport type is usually, train type, including a fast, transport route is a service road line,
A subtractor that calculates a difference between the device information and the abnormality degree comparison reference value;
The step of performing the correction calculation process includes multiplying the failure probability by the weight information corresponding to at least one piece of information on a train type and a route of the transport aircraft, and correcting the failure probability. The failure probability calculation method according to claim 4 .
鉄道車両に搭載される診断対象機器の状態を診断する際に、前記診断対象機器に関する情報と異常度合比較基準情報とを元に前記診断対象機器の異常度合を算出する異常度合計算部と、
前記異常度合計算部による異常度合を前記診断対象機器の故障確率に変換し、かつ該故障確率を前記診断対象機器の使用時間に寄与しない情報に基づいて補正し、該補正した故障確率を前記診断対象機器の異常度合として出力する異常度合補正部と、
前記異常度合補正部から出力された補正済み故障確率による異常度合を表示する表示部を有し、
前記診断対象機器の機器情報と、該診断対象機器が正常状態において測定した過去正常データである異常度合比較基準情報とを元に、前記診断対象機器の異常度合を算出し、該異常度合をもって前記診断対象機器の状態を推定する鉄道保守システムであって、
前記診断対象機器は列車に搭載される輸送機器であり、
前記使用時間に寄与しない情報は、前記列車の種別、路線の、少なくとも1つ以上の情報であり、
前記異常度合計算部は、
前記輸送機器の機器情報と前記輸送機器の診断の基準となる異常度合比較基準値とから前記輸送機器の異常度合いを算出する計算手段からなり、
前記異常度合補正部は、
前記列車の種別、路線の、少なくとも1つ以上の情報を受けたとき、前記異常度合計算部により算出された異常度合を前記輸送機器の故障モード毎の故障確率を定めた故障曲線情報に基づいて故障確率に変換する異常度合/異常確率変換手段と、
前記故障確率を前記列車の種別、路線の、少なくとも1つ以上の情報に対応して重み付けした情報に基づき補正する計算を行い、前記輸送機器の異常度合として出力する補正計算手段とからなる
ことを特徴とする鉄道保守システム。
In diagnosing the state of the diagnostic target device to be mounted on a railway vehicle, and the diagnostic said information and based on the abnormal degree comparison reference information about the target device calculates the abnormality degree of the diagnostic object apparatus abnormality degree calculating unit,
The abnormality degree calculated by the abnormality degree calculation unit is converted into a failure probability of the diagnosis target device, and the failure probability is corrected based on information that does not contribute to the usage time of the diagnosis target device, and the corrected failure probability is the diagnosis. An abnormality degree correction unit that outputs the abnormality degree of the target device;
A display unit that displays an abnormality degree based on the corrected failure probability output from the abnormality degree correction unit;
Based on the device information of the diagnosis target device and the abnormality degree comparison reference information that is past normal data measured in a normal state of the diagnosis target device, the abnormality degree of the diagnosis target device is calculated, and the abnormality degree is A railway maintenance system for estimating the state of a diagnosis target device ,
The diagnosis target device is a transport device mounted on a train,
The information that does not contribute to the use time is at least one information of the type of train and the route,
The abnormality degree calculation unit
Comprising calculating means for calculating the degree of abnormality of the transportation equipment from the equipment information of the transportation equipment and the degree of abnormality comparison reference value serving as a basis for diagnosis of the transportation equipment
The abnormality degree correction unit
When receiving at least one or more information of the type of train and route, the abnormality degree calculated by the abnormality degree calculation unit is based on failure curve information that defines a failure probability for each failure mode of the transport device. An abnormality degree / abnormality probability conversion means for converting into a failure probability;
Correction calculation means for correcting the failure probability based on information weighted corresponding to at least one information of the type and route of the train, and outputting as an abnormality degree of the transport equipment. A featured railway maintenance system.
前記補正計算手段は、前記輸送機器の故障モード毎の故障確率を算出する手段と、前記故障モード毎の故障確率及び/または該故障モード毎の故障確率の平均値から前記輸送機器の全体の故障確率を算出する手段を含み、
前記表示部は、前記補正計算手段により算出した前記故障モード毎の故障確率を異常度合及び/又は前記全体の故障確率を表示するディスプレイからなる
ことを特徴とする請求項記載の鉄道保守システム。
The correction calculating means calculates a failure probability for each failure mode of the transport device, and a failure probability for each failure mode and / or an average value of failure probabilities for each failure mode causes an overall failure of the transport device. Including means for calculating the probability,
The railway maintenance system according to claim 7 , wherein the display unit includes a display that displays a failure probability for each failure mode calculated by the correction calculation unit and an abnormality degree and / or the overall failure probability.
前記列車の輸送種別が普通、快速を含む列車種別、輸送路線が運行路線であり、
前記異常度合計算部の計算手段は、前記機器情報と前記異常度合比較基準値との差分を算出する減算器であり、
前記異常度合補正部の前記補正計算手段は、前記故障確率に前記列車種別、運行路線の、少なくとも1つ以上の情報に対応する前記重み付け情報を乗算し、該故障確率を補正する乗算器である
ことを特徴とする請求項記載の鉄道保守システム。
The transport type of the train is normal, the train type including high speed, the transport route is the operation route,
The calculation means of the abnormality degree calculation unit is a subtractor that calculates a difference between the device information and the abnormality degree comparison reference value.
It said correction calculation means of the abnormality degree correcting unit, by pre-Symbol column model the failure probability, the transit line, by multiplying the weighting information corresponding to at least one or more information, multiplier to correct the failure probability The railway maintenance system according to claim 7, wherein:
JP2012129214A 2012-06-06 2012-06-06 Failure probability calculating device, failure probability calculating method, and railway maintenance system Expired - Fee Related JP5827598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012129214A JP5827598B2 (en) 2012-06-06 2012-06-06 Failure probability calculating device, failure probability calculating method, and railway maintenance system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012129214A JP5827598B2 (en) 2012-06-06 2012-06-06 Failure probability calculating device, failure probability calculating method, and railway maintenance system

Publications (2)

Publication Number Publication Date
JP2013253847A JP2013253847A (en) 2013-12-19
JP5827598B2 true JP5827598B2 (en) 2015-12-02

Family

ID=49951465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012129214A Expired - Fee Related JP5827598B2 (en) 2012-06-06 2012-06-06 Failure probability calculating device, failure probability calculating method, and railway maintenance system

Country Status (1)

Country Link
JP (1) JP5827598B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210059154A (en) 2019-11-14 2021-05-25 한국철도공사 Apparatus and method of calculating failure intensity

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6271400B2 (en) * 2014-11-20 2018-01-31 株式会社日立製作所 Railway ground equipment deterioration estimation system and method
JP6588814B2 (en) * 2015-12-17 2019-10-09 株式会社東芝 Abnormality diagnosis apparatus and method
JP6781594B2 (en) * 2016-09-01 2020-11-04 日立Geニュークリア・エナジー株式会社 Plant monitoring equipment and plant monitoring method
JP6879873B2 (en) * 2017-09-08 2021-06-02 株式会社日立製作所 Failure probability evaluation system
WO2021019671A1 (en) * 2019-07-30 2021-02-04 日本電信電話株式会社 Feature amount extraction device, abnormality estimation device, methods thereof, and program
JP7188598B2 (en) * 2019-07-30 2022-12-13 日本電信電話株式会社 Anomaly degree estimation device, anomaly degree estimation method, and program
CN110887679A (en) * 2019-08-23 2020-03-17 唐智科技湖南发展有限公司 Rail transit vehicle health management method, device and system
JP6689479B1 (en) * 2019-10-23 2020-04-28 三菱電機株式会社 Diagnostic system and method
JP7273755B2 (en) * 2020-03-16 2023-05-15 株式会社東芝 Information processing device, information processing method and program
US20230406376A1 (en) * 2020-09-14 2023-12-21 Mitsubishi Electric Corporation Central apparatus and failure level changing method
JP2023089473A (en) * 2021-12-16 2023-06-28 株式会社日立製作所 Train control system and train control method
CN113946913B (en) * 2021-12-20 2022-04-15 中国铁道科学研究院集团有限公司电子计算技术研究所 Railway running fault detection method and device, electronic equipment and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210059154A (en) 2019-11-14 2021-05-25 한국철도공사 Apparatus and method of calculating failure intensity

Also Published As

Publication number Publication date
JP2013253847A (en) 2013-12-19

Similar Documents

Publication Publication Date Title
JP5827598B2 (en) Failure probability calculating device, failure probability calculating method, and railway maintenance system
TWI691420B (en) Anomaly diagnosis device, anomaly diagnosis method, and computer program
JP6588814B2 (en) Abnormality diagnosis apparatus and method
US10379008B2 (en) Railway vehicle condition monitoring apparatus
JP2019018755A (en) Abnormality detection device, abnormality detection method, and computer program
JP4685731B2 (en) MOBILE BODY DIAGNOSIS DEVICE, MOBILE BODY DIAGNOSIS TERMINAL, AND INVERTER DEVICE
US20210217256A1 (en) Method and Apparatus for Diagnosing and Monitoring Vehicles, Vehicle Components and Routes
US20160109476A1 (en) Method for determining at least one speed in a rail vehicle
JP5489672B2 (en) Tracked vehicle parts deterioration prediction system
EP3828656A1 (en) Diagnostic device and diagnostic method
WO2020054579A1 (en) Load estimation apparatus, load estimation method, and program
KR20200058132A (en) Railway vehicle major component and system diagnosis apparatus
ITCO20090068A1 (en) METHOD AND SYSTEM FOR DIAGNOSTICATING COMPRESSORS
JP6586837B2 (en) Bearing abnormality diagnosis device and vehicle
US20170232982A1 (en) Abnormality diagnosis apparatus, abnormality diagnosis method, and non-transitory computer readable medium
JP2011011715A (en) Abnormal cause specifying device, abnormal cause specifying system, and abnormal cause specifying method
Jardine et al. Optimizing maintenance and replacement decisions
Meissner et al. Digital transformation in maintenance on the example of a tire pressure indicating system
Jarillo et al. Novel technology concepts and architecture for on-board condition-based monitoring of railway running gear: The RUN2Rail vision
JP7273755B2 (en) Information processing device, information processing method and program
JP2013100111A (en) Abnormal cause specifying device, abnormal cause specifying system, and abnormal cause specifying method
JP7332379B2 (en) CONDITION MONITORING DEVICE, TRANSPORT VEHICLE INSTALLING CONDITION MONITORING DEVICE, AND CONDITION MONITORING METHOD
WO2023074319A1 (en) Brake device health determination device and brake device health determination method
US20220342404A1 (en) Diagnosis of technical systems
Licciardello et al. Convenience of Running-Gear Health Monitoring Systems to Reduce Unavailability in Metropolitan Railways

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151016

R150 Certificate of patent or registration of utility model

Ref document number: 5827598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees