JP5824827B2 - ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子 - Google Patents

ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子 Download PDF

Info

Publication number
JP5824827B2
JP5824827B2 JP2011047369A JP2011047369A JP5824827B2 JP 5824827 B2 JP5824827 B2 JP 5824827B2 JP 2011047369 A JP2011047369 A JP 2011047369A JP 2011047369 A JP2011047369 A JP 2011047369A JP 5824827 B2 JP5824827 B2 JP 5824827B2
Authority
JP
Japan
Prior art keywords
derivatives
compound
light emitting
layer
emitting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011047369A
Other languages
English (en)
Other versions
JP2011219461A (ja
Inventor
明子 影山
明子 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
JNC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JNC Corp filed Critical JNC Corp
Priority to JP2011047369A priority Critical patent/JP5824827B2/ja
Publication of JP2011219461A publication Critical patent/JP2011219461A/ja
Application granted granted Critical
Publication of JP5824827B2 publication Critical patent/JP5824827B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子に関する。
有機電界発光素子は、自己発光型の発光素子であり、表示用または照明用の発光素子として期待されている。従来、電界発光する発光素子を用いた表示装置は、省電力化や薄型化が可能なことから、種々研究され、さらに、有機材料からなる有機電界発光素子は、軽量化や大型化が容易なことから活発に検討されてきた。特に、光の三原色の一つである青色をはじめとする発光特性を有する有機材料の開発、および正孔、電子などの電荷輸送能(半導体や超電導体となる可能性を有する)を備えた有機材料の開発については、高分子化合物、低分子化合物を問わずこれまで活発に研究されてきた。
有機電界発光素子は、陽極および陰極からなる一対の電極と、当該一対の電極間に配置され、有機化合物を含む一層または複数の層とからなる構造を有する。有機化合物を含む層には、発光層や、正孔、電子などの電荷を輸送または注入する電荷輸送/注入層があるが、当該有機化合物としては種々の有機材料が開発されている(例えば、国際公開第2004/061047号パンフレット、国際公開第2004/061048号パンフレット(特表2006-512395号公報)、国際公開第2005/056633号パンフレット:特許文献1、2および3を参照)。
しかし、これらの特許文献の実施例には、ベンゾフルオレンの高分子化合物しか開示されてない。また、例えば、国際公開第2003/051092号パンフレット(特表2005-513713号公報)には、アリール置換アミノを有するジベンゾフルオレン化合物が示されている(特許文献4を参照)。しかしながら、当該文献にはその構造式のみが開示されていて、その具体的な特性は報告されていない。
国際公開第2004/061047号パンフレット 国際公開第2004/061048号パンフレット(特表2006-512395号公報) 国際公開第2005/056633号パンフレット 国際公開第2003/051092号パンフレット(特表2005-513713号公報)
しかしながら、上述する有機材料を用いても駆動電圧などに関して十分な性能を有する有機電界発光素子は、未だ得られていない。このような状況下、駆動電圧などの特性(好ましくは素子寿命も含めた特性)においてさらに性能のよい有機電界発光素子、すなわち、該素子を得ることができる化合物の開発が望まれている。
本発明者は、上記課題を解決するため鋭意検討した結果、下記一般式(1)で表されるベンゾフルオレン化合物を見出し、その製造に成功した。また、このベンゾフルオレン化合物を含有する層を一対の電極間に配置して有機電界発光素子を構成することにより、素子寿命などにおいて改善された有機電界発光素子が得られることを見出し、本発明を完成させた。
すなわち本発明は、以下のようなベンゾフルオレン化合物を提供する。
[1]
下記一般式(1)で表されるベンゾフルオレン化合物。
(式中、
、R、RおよびRは、それぞれ独立して、水素、アルキル、アリール、ヘテロアリール、またはシクロアルキルであり、R、R、RおよびRのすべてが水素になることはなく、
およびRは、それぞれ独立して、アルキル、アリール、ヘテロアリール、またはシクロアルキルであり、
n1およびn2は、それぞれ独立して、0〜3の整数であり、2以上の場合には、2つ以上のR同士または2つ以上のR同士が結合して環を形成していてもよく、
は、それぞれ独立して、アルキル、または炭素数1〜4のアルキルで置換されていてもよいアリールであり、2つのRが結合して環を形成していてもよい。)
[2]
は、それぞれ独立して、炭素数1〜6のアルキル、炭素数6〜12のアリール、または炭素数3〜6のシクロアルキルであり、
、RおよびRは、水素であり、
およびRは、それぞれ独立して、炭素数1〜6のアルキル、炭素数6〜12のアリール、または炭素数3〜6のシクロアルキルであり、
n1およびn2は、それぞれ独立して、0〜3の整数であり、
は、それぞれ独立して、炭素数1〜6のアルキル、または炭素数1〜4のアルキルで置換されていてもよい炭素数6〜12のアリールである、
上記[1]に記載するベンゾフルオレン化合物。
[3]
およびRは、それぞれ独立して、炭素数1〜6のアルキル、炭素数6〜12のアリール、または炭素数3〜6のシクロアルキルであり、
およびRは、水素であり、
およびRは、それぞれ独立して、炭素数1〜6のアルキル、炭素数6〜12のアリール、または炭素数3〜6のシクロアルキルであり、
n1およびn2は、それぞれ独立して、0〜3の整数であり、
は、それぞれ独立して、炭素数1〜6のアルキル、または炭素数1〜4のアルキルで置換されていてもよい炭素数6〜12のアリールである、
上記[1]に記載するベンゾフルオレン化合物。
[4]
およびRは、それぞれ独立して、炭素数1〜6のアルキル、炭素数6〜12のアリール、または炭素数3〜6のシクロアルキルであり、
およびRは、水素であり、
およびRは、それぞれ独立して、炭素数1〜6のアルキル、炭素数6〜12のアリール、または炭素数3〜6のシクロアルキルであり、
n1およびn2は、それぞれ独立して、0〜3の整数であり、
は、それぞれ独立して、炭素数1〜6のアルキル、または炭素数1〜4のアルキルで置換されていてもよい炭素数6〜12のアリールである、
上記[1]に記載するベンゾフルオレン化合物。
[5]
は、それぞれ独立して、メチル、エチル、プロピル、i−プロピル、ブチル、sec−ブチル、t−ブチル、シクロペンチルまたはシクロヘキシルであり、
、RおよびRは、水素であり、
およびRは、それぞれ独立して、メチル、エチル、プロピル、i−プロピル、ブチル、sec−ブチル、t−ブチル、フェニル、ビフェニリル、ナフチル、シクロペンチルまたはシクロヘキシルであり、
n1およびn2は、それぞれ独立して、0〜3の整数であり、
は、それぞれ独立して、メチル、エチル、プロピル、i−プロピル、ブチル、sec−ブチル、t−ブチル、または、メチルで置換されていてもよいフェニルである、
上記[2]に記載するベンゾフルオレン化合物。
[6]
およびRは、それぞれ独立して、メチル、エチル、プロピル、i−プロピル、ブチル、sec−ブチル、t−ブチル、シクロペンチルまたはシクロヘキシルであり、
およびRは、水素であり、
およびRは、それぞれ独立して、メチル、エチル、プロピル、i−プロピル、ブチル、sec−ブチル、t−ブチル、フェニル、ビフェニリル、ナフチル、シクロペンチルまたはシクロヘキシルであり、
n1およびn2は、それぞれ独立して、0〜2の整数であり、
は、それぞれ独立して、メチル、エチル、プロピル、i−プロピル、ブチル、sec−ブチル、t−ブチル、または、メチルで置換されていてもよいフェニルである、
上記[3]に記載するベンゾフルオレン化合物。
[7]
およびRは、それぞれ独立して、メチル、エチル、プロピル、i−プロピル、ブチル、sec−ブチル、t−ブチル、シクロペンチルまたはシクロヘキシルであり、
およびRは、水素であり、
およびRは、それぞれ独立して、メチル、エチル、プロピル、i−プロピル、ブチル、sec−ブチル、t−ブチル、フェニル、ビフェニリル、ナフチル、シクロペンチルまたはシクロヘキシルであり、
n1およびn2は、それぞれ独立して、0〜2の整数であり、
は、それぞれ独立して、メチル、エチル、プロピル、i−プロピル、ブチル、sec−ブチル、t−ブチル、または、メチルで置換されていてもよいフェニルである、
上記[4]に記載するベンゾフルオレン化合物。
[8]
は、共に、メチル、エチル、i−プロピル、またはt−ブチルであり、
、RおよびRは、水素であり、
およびRは、共に、メチル、エチル、i−プロピル、またはt−ブチルであり、
n1およびn2は、共に、0または1であり、
は、共に、メチル、エチルまたはフェニルである、
上記[2]に記載するベンゾフルオレン化合物。
[9]
下記式(1−53)で表される、上記[1]に記載するベンゾフルオレン化合物。
[10]
下記式(1−13)で表される、上記[1]に記載するベンゾフルオレン化合物。
[11]
下記式(1−63)で表される、上記[1]に記載するベンゾフルオレン化合物。
[12]
下記一般式(1’)で表される中間体。
(式中、Rは、それぞれ独立して、アルキル、または炭素数1〜4のアルキルで置換されていてもよいアリールであり、2つのRが結合して環を形成していてもよい。)
[13]
上記[12]に記載する一般式(1’)で表される中間体と一級芳香族アミンまたは二級芳香族アミンとをカップリングして、上記[1]に記載する一般式(1)で表されるベンゾフルオレン化合物を製造する方法。
[14]
発光素子の発光層用材料であって、上記[1]ないし[11]のいずれかに記載するベンゾフルオレン化合物を含有する発光層用材料。
[15]
陽極および陰極からなる一対の電極と、該一対の電極間に配置され、上記[14]に記載する発光層用材料を含有する発光層とを有する、有機電界発光素子。
[16]
さらに、前記陰極と該発光層との間に配置される電子輸送層および/または電子注入層を有し、該電子輸送層および電子注入層の少なくとも1つは、キノリノール系金属錯体、ピリジン誘導体、フェナントロリン誘導体、ボラン誘導体およびベンゾイミダゾール誘導体からなる群から選択される少なくとも1つを含有する、上記[15]に記載する有機電界発光素子。
[17]
前記電子輸送層および/または電子注入層が、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、上記[16]に記載の有機電界発光素子。
[18]
上記[15]ないし[17]のいずれかに記載する有機電界発光素子を備えた表示装置。
[19]
上記[15]ないし[17]のいずれかに記載する有機電界発光素子を備えた照明装置。
本発明の好ましい態様によれば、例えば、発光層用材料として優れた特性を有するベンゾフルオレン化合物を提供することができる。また、駆動電圧などの特性(好ましくは素子寿命も含めた特性)について改善された有機電界発光素子を提供することができる。
本実施形態に係る有機電界発光素子を示す概略断面図である。
1.一般式(1)で表されるベンゾフルオレン化合物
本発明のベンゾフルオレン化合物について詳細に説明する。本発明に係るベンゾフルオレン化合物は、上記一般式(1)で表されるベンゾフルオレン化合物である。
また、一般式(1)のR、R、RおよびRにおける「アルキル」としては、直鎖および分枝鎖のいずれでもよく、例えば、炭素数1〜12のアルキル(炭素数3〜12の分枝鎖アルキル)があげられる。好ましい「アルキル」は、炭素数1〜6のアルキル(炭素数3〜6の分枝鎖アルキル)である。さらに好ましい「アルキル」は、炭素数1〜4のアルキル(炭素数3〜4の分枝鎖アルキル)である。
一般式(1)のR、RおよびRにおける「アルキル」としては、直鎖および分枝鎖のいずれでもよく、例えば、炭素数1〜24の直鎖アルキルまたは炭素数3〜24の分枝鎖アルキルがあげられる。好ましい「アルキル」は、炭素数1〜18のアルキル(炭素数3〜18の分枝鎖アルキル)である。より好ましい「アルキル」は、炭素数1〜12のアルキル(炭素数3〜12の分枝鎖アルキル)である。さらに好ましい「アルキル」は、炭素数1〜6のアルキル(炭素数3〜6の分枝鎖アルキル)である。特に好ましい「アルキル」は、炭素数1〜4のアルキル(炭素数3〜4の分枝鎖アルキル)である。
具体的な「アルキル」としては、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、s−ブチル、t−ブチル、n−ペンチル、イソペンチル、ネオペンチル、t−ペンチル、n−ヘキシル、1−メチルペンチル、4−メチル−2−ペンチル、3,3−ジメチルブチル、2−エチルブチル、n−ヘプチル、1−メチルヘキシル、n−オクチル、t−オクチル、1−メチルヘプチル、2−エチルヘキシル、2−プロピルペンチル、n−ノニル、2,2−ジメチルヘプチル、2,6−ジメチル−4−ヘプチル、3,5,5−トリメチルヘキシル、n−デシル、n−ウンデシル、1−メチルデシル、n−ドデシル、n−トリデシル、1−ヘキシルヘプチル、n−テトラデシル、n−ペンタデシル、n−ヘキサデシル、n−ヘプタデシル、n−オクタデシル、n−エイコシルなどがあげられる。
、R、RおよびRにおける「アルキル」は、フェニル基のオルト位に結合する置換基であるため、合成上の観点からは、R、RおよびRのものと比較すると炭素数が少ないアルキルが好ましい。
一般式(1)のR、R、RおよびRにおける「アリール」としては、例えば、炭素数6〜16のアリールがあげられる。好ましい「アリール」は炭素数6〜12のアリールである。
一般式(1)のR、RおよびRにおける「アリール」としては、例えば、炭素数6〜30のアリールがあげられる。好ましい「アリール」は炭素数6〜16のアリールであり、より好ましくは炭素数6〜12のアリールである。
具体的な「アリール」としては、単環系アリールであるフェニル、(o−,m−,p−)トリル、(2,3−,2,4−,2,5−,2,6−,3,4−,3,5−)キシリル、メシチル、(o−,m−,p−)クメニル、二環系アリールである(2−,3−,4−)ビフェニリル、縮合二環系アリールである(1−,2−)ナフチル、三環系アリールであるテルフェニリル(m−テルフェニル−2’−イル、m−テルフェニル−4’−イル、m−テルフェニル−5’−イル、o−テルフェニル−3’−イル、o−テルフェニル−4’−イル、p−テルフェニル−2’−イル、m−テルフェニル−2−イル、m−テルフェニル−3−イル、m−テルフェニル−4−イル、o−テルフェニル−2−イル、o−テルフェニル−3−イル、o−テルフェニル−4−イル、p−テルフェニル−2−イル、p−テルフェニル−3−イル、p−テルフェニル−4−イル)、縮合三環系アリールである、アセナフチレン−(1−,3−,4−,5−)イル、フルオレン−(1−,2−,3−,4−,9−)イル、フェナレン−(1−,2−)イル、(1−,2−,3−,4−,9−)フェナントリル、四環系アリールであるクアテルフェニリル(5’−フェニル−m−テルフェニル−2−イル、5’−フェニル−m−テルフェニル−3−イル、5’−フェニル−m−テルフェニル−4−イル、m−クアテルフェニル)、縮合四環系アリールであるトリフェニレン−(1−,2−)イル、ピレン−(1−,2−,4−)イル、ナフタセン−(1−,2−,5−)イル、縮合五環系アリールであるペリレン−(1−,2−,3−)イル、ペンタセン−(1−,2−,5−,6−)イルなどがあげられる。
、R、RおよびRにおける「アリール」は、フェニル基のオルト位に結合する置換基であるため、合成上の観点からは、R、RおよびRのものと比較すると炭素数が少ないアリールが好ましい。
における「アリール」は炭素数1〜4のアルキルで置換されていてもよく、この場合の置換基としては、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、s−ブチル、t−ブチルがあげられ、メチルが好ましい。置換基の数は、例えば、最大置換可能な数であり、好ましくは1〜3個、より好ましくは1〜2個、さらに好ましくは1個であるが、「置換基」がないのが好ましい。
一般式(1)のR、R、RおよびRにおける「ヘテロアリール」としては、例えば、炭素数2〜15のヘテロアリールがあげられる。好ましい「ヘテロアリール」は炭素数2〜10のヘテロアリールである。また、「ヘテロアリール」としては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環基などがあげられ、例えば、芳香族複素環基などがあげられる。
一般式(1)のRおよびRにおける「ヘテロアリール」としては、例えば、炭素数2〜30のヘテロアリールがあげられる。好ましい「ヘテロアリール」は、炭素数2〜25のヘテロアリールであり、より好ましくは炭素数2〜20のヘテロアリールであり、さらに好ましくは炭素数2〜15のヘテロアリールであり、特に好ましくは炭素数2〜10のヘテロアリールである。また、「ヘテロアリール」としては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環基などがあげられ、例えば、芳香族複素環基などがあげられる。
「複素環基」としては、例えば、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、オキサジアゾリル、チアジアゾリル、トリアゾリル、テトラゾリル、ピラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、インドリル、イソインドリル、1H−インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H−ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、インドリジニルなどがあげられ、イミダゾリル、ピリジル、カルバゾリルなどが好ましい。
「芳香族複素環基」としては、例えば、フリル、チエニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、オキサジアゾリル、フラザニル、チアジアゾリル、トリアゾリル、テトラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、ベンゾフラニル、イソベンゾフラニル、ベンゾ[b]チエニル、インドリル、イソインドリル、1H−インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H−ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェノキサチイニル、チアントレニル、インドリジニルなどがあげられ、チエニル、イミダゾリル、ピリジル、カルバゾリルなどが好ましい。
、R、RおよびRにおける「ヘテロアリール」は、フェニル基のオルト位に結合する置換基であるため、合成上の観点からは、R、RおよびRのものと比較すると環を構成する原子数が少ないヘテロアリールが好ましい。
一般式(1)のR、R、R、R、RおよびRにおける「シクロアルキル」としては、例えば、炭素数3〜12のシクロアルキルがあげられる。好ましい「シクロアルキル」は、炭素数3〜10のシクロアルキルである。より好ましい「シクロアルキル」は、炭素数3〜8のシクロアルキルである。さらに好ましい「シクロアルキル」は、炭素数3〜6のシクロアルキルである。
具体的な「シクロアルキル」としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどがあげられる。
、R、RおよびRにおける「シクロアルキル」は、フェニル基のオルト位に結合する置換基であるため、合成上の観点からは、RおよびRのものと比較すると炭素数が少ないシクロアルキルが好ましい。
、R、RおよびRとしては水素も選択されるが、R、R、RおよびRのすべてが水素になることはなく、一般式(1)で表される化合物は、ジフェニル置換アミノ基のいずれかのフェニル基のオルト位に必ず水素以外の基が置換している。好ましい形態としては、例えば、R、RおよびRが水素でありRのみが何らかの置換基である形態、RおよびRが水素でありRおよびRが何らかの置換基である形態、RおよびRが水素でありRおよびRが何らかの置換基である形態などがあげられる。また、ベンゾフルオレン骨格に結合する2つのジフェニル置換アミノ基において、例えばそれぞれのR(R、RまたはRも同様)は同じであっても異なっていてもよいが、同じであることが好ましい。
n1およびn2は、それぞれ独立して、0〜3の整数であり、好ましくは0〜2の整数であり、より好ましくはn1およびn2は共に0または1である。また、n1またはn2が2以上の場合には、2つ以上のR同士または2つ以上のR同士が結合して環を形成していてもよく、形成してできた環としては具体的にはシクロブタン、シクロペンタン、シクロヘキサンなどの脂肪族環やベンゼンなどの芳香族環があげられる。
2つのRは同じであっても異なっていてもよいが、2つのRは同じであることが好ましい。また、2つのRは結合して環を形成していてもよく、この結果、フルオレン骨格の5員環には、シクロブタン、シクロペンタン、シクロペンテン、シクロペンタジエン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、フルオレンまたはインデンなどがスピロ縮合していてもよい。
上記一般式(1)で表される化合物の具体例としては、例えば、下記式(1−1)〜式(1−72)で表される化合物があげられる。下記化合物の中でも、下記式(1−1)、式(1−3)、式(1−5)〜式(1−7)、式(1−11)〜式(1−15)、式(1−17)〜式(1−19)、式(1−23)、式(1−24)、式(1−38)〜式(1−40)、式(1−49)、式(1−51)、式(1−53)、式(1−54)、式(1−58)、式(1−63)、式(1−64)、式(1−66)、式(1−67)、式(1−70)で表される化合物が好ましく、下記式(1−1)、式(1−5)、式(1−6)、式(1−7)、式(1−11)〜式(1−15)、式(1−17)〜式(1−19)、式(1−23)、式(1−24)、式(1−53)、式(1−63)、式(1−67)で表される化合物がさらに好ましい。
また、本発明の中間体は上記一般式(1’)で表され、例えば上述した一般式(1)で表されるベンゾフルオレン化合物を製造するために用いられる。一般式(1’)においてXは、フッ素、塩素、臭素、またはヨウ素であり、特にヨウ素が好ましい。Rは、それぞれ独立して、アルキル、または炭素数1〜4のアルキルで置換されていてもよいアリールであり、2つのRが結合して環を形成していてもよく、これらの詳細は一般式(1)におけるRの説明を引用することができる。
2.ベンゾフルオレン化合物の製造方法
一般式(1)で表されるように、ベンゾフロオレン骨格に2つのジフェニルアミノ基が結合した化合物は、Buchwald−Hartwig反応またはUllmann反応などの既存の反応を利用して製造することができる。
Buchwald−Hartwig反応は、塩基の存在下、パラジウム触媒または銅触媒を用いて、芳香族ハライドと、一級芳香族アミンもしくは二級芳香族アミンとをカップリングする方法である。この方法により一般式(1)で表される化合物を得る反応経路の具体例は下記の通りである(スキーム1〜3)。なお、スキーム1で説明する芳香族ハライドの合成方法に関しては、例えば国際公開第2005/056633号パンフレットが参考になる。また、スキーム1の第一段目に示した反応は鈴木カップリングであり、反応させる2つの化合物におけるX基とY基とを交互に入れ替えても反応させることができる。さらに、この第一段目の反応において、鈴木カップリングではなく根岸カップリングを用いることもでき、この場合には、Y基を有する化合物としてボロン酸やボロン酸エステルの代わりに塩化亜鉛錯体を用いる。また、この根岸カップリングの場合も上記と同様に、X基とY基とを交互に入れ替えても(すなわち、ナフタレンの塩化亜鉛錯体を用いる)反応させることができる。さらには、スキーム1ではカップリング反応の後に五員環を形成するために、ベンゼン環のカップリングさせる炭素の隣に予め−COORを置換させた原料を用いているが、ナフタレン環の2位(カップリングさせる炭素の隣)に−COORを置換させた原料を用いることもできる。スキーム1で得られる最終生成物が、一般式(1’)で表される中間体に相当する。各スキーム中のR〜R、n1およびn2は、それぞれ一般式(1)中で用いられるものに対応する。
この反応で用いられるパラジウム触媒の具体例は、テトラキス(トリフェニルホスフィン)パラジウム(0):Pd(PPh、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド:PdCl(PPh、酢酸パラジウム(II):Pd(OAc)、トリス(ジベンジリデンアセトン)二パラジウム(0):Pd(dba)、トリス(ジベンジリデンアセトン)二パラジウム(0)クロロホルム錯体:Pd(dba)・CHCl、ビス(ジベンジリデンアセトン)パラジウム(0):Pd(dba)などである。
反応を促進させるため、場合によりこれらのパラジウム化合物にホスフィン化合物を加えてもよい。そのホスフィン化合物の具体例は、トリ(t−ブチル)ホスフィン、トリシクロヘキシルホスフィン、1−(N,N−ジメチルアミノメチル)−2−(ジt−ブチルホスフィノ)フェロセン、1−(N,N−ジブチルアミノメチル)−2−(ジt−ブチルホスフィノ)フェロセン、1−(メトキシメチル)−2−(ジt−ブチルホスフィノ)フェロセン、1,1’−ビス(ジt−ブチルホスフィノ)フェロセン、2,2’−ビス(ジt−ブチルホスフィノ)−1,1’−ビナフチル、2−メトキシ−2’−(ジt−ブチルホスフィノ)−1,1’−ビナフチル、1,1’−ビス(ジフェニルホスフィノ)フェロセン、ビス(ジフェニルホスフィノ)ビナフチル、4−ジメチルアミノフェニルジt−ブチルホスフィン、フェニルジt−ブチルホスフィンなどである。
この反応で用いられる塩基の具体例は、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、ナトリウムエトキシド、ナトリウムt−ブトキシド、酢酸ナトリウム、リン酸三カリウム、フッ化カリウムなどである。
さらに、この反応で用いられる溶媒の具体例は、ベンゼン、トルエン、キシレン、N,N−ジメチルホルムアミド、テトラヒドロフラン、ジエチルエ−テル、t−ブチルメチルエ−テル、1,4−ジオキサン、メタノ−ル、エタノール、イソプロピルアルコ−ルなどである。これらの溶媒は、反応させる芳香族ハライド、トリフラート、芳香族ボロン酸エステルおよび芳香族ボロン酸の構造に応じて適宜選択できる。溶媒は単独で用いてもよく、混合溶媒として用いてもよい。
またUllman反応は、塩基の存在下、銅触媒を用いて、芳香族ハライドと一級芳香族アミンもしくは二級芳香族アミンとをカップリングする方法である。Ullman反応で用いられる銅触媒の具体例は、銅粉、塩化銅、臭化銅またはヨウ化銅などである。また、この反応で用いられる塩基の具体例は、Buchwald−Hartwig反応と同じものから選択することができる。さらに、Ullman反応で用いられる溶媒の具体例は、ニトロベンゼン、ジクロロベンゼン、N,N−ジメチルホルムアミドなどである。
また、一般式(1)で表されるように、ベンゾフロオレン骨格に2つのジフェニルアミノ基が結合した化合物は、以下の反応を利用しても製造することができる(スキーム4、5)。なお、スキーム4およびスキーム5の第一段目に示した反応は鈴木カップリングであり、反応させる2つの化合物におけるX基とY基とを交互に入れ替えても反応させることができる。さらに、この第一段目の反応において、鈴木カップリングではなく根岸カップリングを用いることもでき、この場合には、Y基を有する化合物としてボロン酸やボロン酸エステルの代わりに塩化亜鉛錯体を用いる。また、この根岸カップリングの場合も上記と同様に、X基とY基とを交互に入れ替えても(すなわち、ジフェニルアミノ置換ナフタレンの塩化亜鉛錯体を用いる)反応させることができる。なお、各スキーム中のR〜R、n1およびn2は、それぞれ一般式(1)中で用いられるものに対応する。
3.有機電界発光素子
本発明に係るベンゾフルオレン化合物は、例えば、有機電界発光素子の材料として用いることができる。
この実施形態に係る有機電界発光素子について図面に基づいて詳細に説明する。図1は、本実施形態に係る有機電界発光素子を示す概略断面図である。
<有機電界発光素子の構造>
図1に示された有機電界発光素子100は、基板101と、基板101上に設けられた陽極102と、陽極102の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた発光層105と、発光層105の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた電子注入層107と、電子注入層107の上に設けられた陰極108とを有する。
なお、有機電界発光素子100は、作製順序を逆にして、例えば、基板101と、基板101上に設けられた陰極108と、陰極108の上に設けられた電子注入層107と、電子注入層107の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた発光層105と、発光層105の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた陽極102とを有する構成としてもよい。
上記各層すべてがなくてはならないわけではなく、最小構成単位を陽極102と発光層105と陰極108とからなる構成として、正孔注入層103、正孔輸送層104、電子輸送層106および電子注入層107は任意に設けられる層である。また、上記各層は、それぞれ単一層からなってもよいし、複数層からなってもよい。
有機電界発光素子を構成する層の態様としては、上述する「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」の構成態様の他に、「基板/陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/正孔注入層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/陰極」、「基板/陽極/正孔注入層/発光層/陰極」、「基板/陽極/正孔輸送層/発光層/陰極」、「基板/陽極/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子注入層/陰極」、「基板/陽極/発光層/陰極」の構成態様であってもよい。
<有機電界発光素子における基板>
基板101は、有機電界発光素子100の支持体となるものであり、通常、石英、ガラス、金属、プラスチックなどが用いられる。基板101は、目的に応じて板状、フィルム状またはシート状に形成され、例えば、ガラス板、金属板、金属箔、プラスチックフィルムまたはプラスチックシートなどが用いられる。なかでも、ガラス板、およびポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂製の板が好ましい。ガラス基板であれば、ソーダライムガラスや無アルカリガラスなどが用いられ、また、厚みも機械的強度を保つのに十分な厚みがあればよいので、例えば、0.2mm以上あればよい。厚さの上限値としては、例えば、2mm以下、好ましくは1mm以下である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましいが、SiOなどのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することができる。また、基板101には、ガスバリア性を高めるために、少なくとも片面に緻密なシリコン酸化膜などのガスバリア膜を設けてもよく、特にガスバリア性が低い合成樹脂製の板、フィルムまたはシートを基板101として用いる場合にはガスバリア膜を設けるのが好ましい。
<有機電界発光素子における陽極>
陽極102は、発光層105へ正孔を注入する役割を果たすものである。なお、陽極102と発光層105との間に正孔注入層103および/または正孔輸送層104が設けられている場合には、これらを介して発光層105へ正孔を注入することになる。
陽極102を形成する材料としては、無機化合物および有機化合物があげられる。無機化合物としては、例えば、金属(アルミニウム、金、銀、ニッケル、パラジウム、クロムなど)、金属酸化物(インジウムの酸化物、スズの酸化物、インジウム−スズ酸化物(ITO)など)、ハロゲン化金属(ヨウ化銅など)、硫化銅、カーボンブラック、ITOガラスやネサガラスなどがあげられる。有機化合物としては、例えば、ポリ(3−メチルチオフェン)などのポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーなどがあげられる。その他、有機電界発光素子の陽極として用いられている物質の中から適宜選択して用いることができる。
透明電極の抵抗は、発光素子の発光に十分な電流が供給できさえすれば特に限定されないが、発光素子の消費電力の観点からは低抵抗であることが望ましい。例えば、300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、例えば100〜5Ω/□、好ましくは50〜5Ω/□の低抵抗品を使用することが特に望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常100〜300nmの間で用いられることが多い。
<有機電界発光素子における正孔注入層、正孔輸送層>
正孔注入層103は、陽極102から移動してくる正孔を、効率よく発光層105内または正孔輸送層104内に注入する役割を果たすものである。正孔輸送層104は、陽極102から注入された正孔または陽極102から正孔注入層103を介して注入された正孔を、効率よく発光層105に輸送する役割を果たすものである。正孔注入層103および正孔輸送層104は、それぞれ、正孔注入・輸送材料の一種または二種以上を積層、混合するか、正孔注入・輸送材料と高分子結着剤の混合物により形成される。また、正孔注入・輸送材料に塩化鉄(III)のような無機塩を添加して層を形成してもよい。
正孔注入・輸送性物質としては電界を与えられた電極間において正極からの正孔を効率よく注入・輸送することが必要で、正孔注入効率が高く、注入された正孔を効率よく輸送することが望ましい。そのためにはイオン化ポテンシャルが小さく、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。
正孔注入層103および正孔輸送層104を形成する材料としては、光導電材料において、正孔の電荷輸送材料として従来から慣用されている化合物、p型半導体、有機電界発光素子の正孔注入層および正孔輸送層に使用されている公知のものの中から任意のものを選択して用いることができる。それらの具体例は、カルバゾール誘導体(N−フェニルカルバゾール、ポリビニルカルバゾールなど)、ビス(N−アリールカルバゾール)またはビス(N−アルキルカルバゾール)などのビスカルバゾール誘導体、トリアリールアミン誘導体(芳香族第3級アミノを主鎖あるいは側鎖に持つポリマー、1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン、N,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジアミノビフェニル、N,N’−ジフェニル−N,N’−ジナフチル−4,4’−ジアミノビフェニル(以下、NPDと略記する。)、N,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジフェニル−1,1’−ジアミン、N,N’−ジナフチル−N,N’−ジフェニル−4,4’−ジフェニル−1,1’−ジアミン、4,4’,4”−トリス(3−メチルフェニル(フェニル)アミノ)トリフェニルアミンなどのトリフェニルアミン誘導体、スターバーストアミン誘導体など、スチルベン誘導体、フタロシアニン誘導体(無金属、銅フタロシアニンなど)、ピラゾリン誘導体、ヒドラゾン系化合物、ベンゾフラン誘導体やチオフェン誘導体、オキサジアゾール誘導体、ポルフィリン誘導体などの複素環化合物、ポリシランなどである。ポリマー系では上記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリビニルカルバゾールおよびポリシランなどが好ましいが、発光素子の作製に必要な薄膜を形成し、陽極から正孔が注入できて、さらに正孔を輸送できる化合物であれば特に限定されるものではない。
また、有機半導体の導電性は、そのドーピングにより、強い影響を受けることも知られている。このような有機半導体マトリックス物質は、電子供与性の良好な化合物、または電子受容性の良好な化合物から構成されている。電子供与物質のドーピングのために、テトラシアノキノンジメタン(TCNQ)または2,3,5,6−テトラフルオロテトラシアノ−1,4−ベンゾキノンジメタン(F4TCNQ)などの強い電子受容体が知られている(例えば、文献「M.Pfeiffer,A.Beyer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(22),3202-3204(1998)」および文献「J.Blochwitz,M.Pheiffer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(6),729-731(1998)」を参照)。これらは、電子供与型ベース物質(正孔輸送物質)における電子移動プロセスによって、いわゆる正孔を生成する。正孔の数および移動度によって、ベース物質の伝導性が、かなり大きく変化する。正孔輸送特性を有するマトリックス物質としては、例えばベンジジン誘導体(TPDなど)またはスターバーストアミン誘導体(TDATAなど)、あるいは、特定の金属フタロシアニン(特に、亜鉛フタロシアニンZnPcなど)が知られている(特開2005−167175号公報)。
<有機電界発光素子における発光層>
発光層105は、電界を与えられた電極間において、陽極102から注入された正孔と、陰極108から注入された電子とを再結合させることにより発光するものである。発光層105を形成する材料としては、正孔と電子との再結合によって励起されて発光する化合物(発光性化合物)であればよく、安定な薄膜形状を形成することができ、かつ、固体状態で強い発光(蛍光および/または燐光)効率を示す化合物であるのが好ましい。
発光層は単一層でも複数層からなってもどちらでもよく、それぞれ発光材料(ホスト材料、ドーパント材料)により形成され、これはホスト材料とドーパント材料との混合物であっても、ホスト材料単独であっても、いずれでもよい。すなわち、発光層の各層において、ホスト材料もしくはドーパント材料のみが発光してもよいし、ホスト材料とドーパント材料がともに発光してもよい。ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれであってもよい。ドーパントの使用量はドーパントによって異なり、そのドーパントの特性に合わせて決めれば良い。ドーパントの使用量の目安は、好ましくは発光材料全体の0.001〜50重量%であり、より好ましくは0.1〜10重量%であり、さらに好ましくは1〜5重量%である。ドーピング方法としては、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。
ホスト材料としては、特に限定されるものではないが、以前から発光体として知られていたアントラセンやピレンなどの縮合環誘導体、トリス(8−キノリノラト)アルミニウムをはじめとする金属キレート化オキシノイド化合物、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、オキサジアゾール誘導体、チアジアゾロピリジン誘導体、ピロロピロール誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、そして、ポリチオフェン誘導体が好適に用いられる。
その他、ホスト材料としては、化学工業2004年6月号13頁、および、それにあげられた参考文献などに記載された化合物などの中から適宜選択して用いることができる。
ホスト材料の使用量は、好ましくは発光材料全体の50〜99.999重量%であり、より好ましくは80〜99.95重量%であり、さらに好ましくは90〜99.9重量%である。
また、ドーパント材料としては、上記一般式(1)のベンゾフルオレン化合物を用いることができ、特に、下記式(1−1)〜式(1−72)で表される化合物を用いることが好ましい。上記一般式(1)で表されるベンゾフルオレン化合物のドーパント材料としての使用量は、好ましくは発光材料全体の0.001〜50重量%であり、より好ましくは0.05〜20重量%であり、さらに好ましくは0.1〜10重量%である。ドーピング方法としては、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。
また、その他のドーパント材料も同時に使用できる。その他のドーパント材料としては、特に限定されるものではなく、既知の化合物を用いることができ、所望の発光色に応じて様々な材料の中から選択することができる。具体的には、例えば、フェナンスレン、アントラセン、ピレン、テトラセン、ペンタセン、ペリレン、ナフトピレン、ジベンゾピレンおよびルブレンなどの縮合環誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、ベンゾイミダゾール誘導体、ベンゾトリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、チアゾール誘導体、イミダゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピラゾリン誘導体、スチルベン誘導体、チオフェン誘導体、テトラフェニルブタジエン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体(特開平1−245087号公報)、ビススチリルアリーレン誘導体(特開平2−247278号公報)、ジアザインダセン誘導体、フラン誘導体、ベンゾフラン誘導体、フェニルイソベンゾフラン、ジメシチルイソベンゾフラン、ジ(2−メチルフェニル)イソベンゾフラン、ジ(2−トリフルオロメチルフェニル)イソベンゾフラン、フェニルイソベンゾフランなどのイソベンゾフラン誘導体、ジベンゾフラン誘導体、7−ジアルキルアミノクマリン誘導体、7−ピペリジノクマリン誘導体、7−ヒドロキシクマリン誘導体、7−メトキシクマリン誘導体、7−アセトキシクマリン誘導体、3−ベンゾチアゾリルクマリン誘導体、3−ベンゾイミダゾリルクマリン誘導体、3−ベンゾオキサゾリルクマリン誘導体などのクマリン誘導体、ジシアノメチレンピラン誘導体、ジシアノメチレンチオピラン誘導体、ポリメチン誘導体、シアニン誘導体、オキソベンゾアンスラセン誘導体、キサンテン誘導体、ローダミン誘導体、フルオレセイン誘導体、ピリリウム誘導体、カルボスチリル誘導体、アクリジン誘導体、オキサジン誘導体、フェニレンオキサイド誘導体、キナクリドン誘導体、キナゾリン誘導体、ピロロピリジン誘導体、フロピリジン誘導体、1,2,5−チアジアゾロピレン誘導体、ピロメテン誘導体、ペリノン誘導体、ピロロピロール誘導体、スクアリリウム誘導体、ビオラントロン誘導体、フェナジン誘導体、アクリドン誘導体およびデアザフラビン誘導体などがあげられる。
発色光ごとに例示すると、青〜青緑色ドーパント材料としては、ナフタレン、アントラセン、フェナンスレン、ピレン、トリフェニレン、ペリレン、フルオレン、インデンなどの芳香族炭化水素化合物やその誘導体、フラン、ピロール、チオフェン、シロール、9−シラフルオレン、9,9’−スピロビシラフルオレン、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、イミダゾピリジン、フェナントロリン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン、チオキサンテンなどの芳香族複素環化合物やその誘導体、ジスチリルベンゼン誘導体、テトラフェニルブタジエン誘導体、スチルベン誘導体、アルダジン誘導体、クマリン誘導体、イミダゾール、チアゾール、チアジアゾール、カルバゾール、オキサゾール、オキサジアゾール、トリアゾールなどのアゾール誘導体およびその金属錯体およびN,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジフェニル−1,1’−ジアミンに代表される芳香族アミン誘導体などがあげられる。
また、緑〜黄色ドーパント材料としては、クマリン誘導体、フタルイミド誘導体、ナフタルイミド誘導体、ペリノン誘導体、ピロロピロール誘導体、シクロペンタジエン誘導体、アクリドン誘導体、キナクリドン誘導体およびルブレンなどのナフタセン誘導体などがあげられ、さらに上記青〜青緑色ドーパント材料として例示した化合物に、アリール、ヘテロアリール、アリールビニル、アミノ、シアノなど長波長化を可能とする置換基を導入した化合物も好適な例としてあげられる。
さらに、橙〜赤色ドーパント材料としては、ビス(ジイソプロピルフェニル)ペリレンテトラカルボン酸イミドなどのナフタルイミド誘導体、ペリノン誘導体、アセチルアセトンやベンゾイルアセトンとフェナントロリンなどを配位子とするEu錯体などの希土類錯体、4−(ジシアノメチレン)−2−メチル−6−(p−ジメチルアミノスチリル)−4H−ピランやその類縁体、マグネシウムフタロシアニン、アルミニウムクロロフタロシアニンなどの金属フタロシアニン誘導体、ローダミン化合物、デアザフラビン誘導体、クマリン誘導体、キナクリドン誘導体、フェノキサジン誘導体、オキサジン誘導体、キナゾリン誘導体、ピロロピリジン誘導体、スクアリリウム誘導体、ビオラントロン誘導体、フェナジン誘導体、フェノキサゾン誘導体およびチアジアゾロピレン誘導体などあげられ、さらに上記青〜青緑色および緑〜黄色ドーパント材料として例示した化合物に、アリール、ヘテロアリール、アリールビニル、アミノ、シアノなど長波長化を可能とする置換基を導入した化合物も好適な例としてあげられる。さらに、トリス(2−フェニルピリジン)イリジウム(III)に代表されるイリジウムや白金を中心金属とした燐光性金属錯体も好適な例としてあげられる。
本発明の発光層用材料に適したドーパント材料としては、上述するドーパント材料の中でも、上記一般式(1)で表されるベンゾフルオレン化合物が最適であり、同時に使用できるドーパント材料としては、ペリレン誘導体、ボラン誘導体、アミン含有スチリル誘導体、芳香族アミン誘導体、クマリン誘導体、ピラン誘導体、イリジウム錯体または白金錯体が好ましい。
ペリレン誘導体としては、例えば、3,10−ビス(2,6−ジメチルフェニル)ペリレン、3,10−ビス(2,4,6−トリメチルフェニル)ペリレン、3,10−ジフェニルペリレン、3,4−ジフェニルペリレン、2,5,8,11−テトラ−t−ブチルペリレン、3,4,9,10−テトラフェニルペリレン、3−(1’−ピレニル)−8,11−ジ(t−ブチル)ペリレン、3−(9’−アントリル)−8,11−ジ(t−ブチル)ペリレン、3,3’−ビス(8,11−ジ(t−ブチル)ペリレニル)などがあげられる。
また、特開平11-97178号公報、特開2000-133457号公報、特開2000-26324号公報、特開2001-267079号公報、特開2001-267078号公報、特開2001-267076号公報、特開2000-34234号公報、特開2001-267075号公報、および特開2001-217077号公報などに記載されたペリレン誘導体を用いてもよい。
ボラン誘導体としては、例えば、1,8−ジフェニル−10−(ジメシチルボリル)アントラセン、9−フェニル−10−(ジメシチルボリル)アントラセン、4−(9’−アントリル)ジメシチルボリルナフタレン、4−(10’−フェニル−9’−アントリル)ジメシチルボリルナフタレン、9−(ジメシチルボリル)アントラセン、9−(4’−ビフェニリル)−10−(ジメシチルボリル)アントラセン、9−(4’−(N−カルバゾリル)フェニル)−10−(ジメシチルボリル)アントラセンなどがあげられる。
また、国際公開第2000/40586号パンフレットなどに記載されたボラン誘導体を用いてもよい。
アミン含有スチリル誘導体としては、例えば、N,N,N’,N’−テトラ(4−ビフェニリル)−4、4’−ジアミノスチルベン、N,N,N’,N’−テトラ(1−ナフチル)−4、4’−ジアミノスチルベン、N,N,N’,N’−テトラ(2−ナフチル)−4、4’−ジアミノスチルベン、N,N’−ジ(2−ナフチル)−N,N’−ジフェニル−4、4’−ジアミノスチルベン、N,N’−ジ(9−フェナントリル)−N,N’−ジフェニル−4、4’−ジアミノスチルベン、4,4’−ビス[4”−ビス(ジフェニルアミノ)スチリル]−ビフェニル、1,4−ビス[4’−ビス(ジフェニルアミノ)スチリル]−ベンゼン、2,7−ビス[4’−ビス(ジフェニルアミノ)スチリル]−9,9−ジメチルフルオレン、4,4’−ビス(9−エチル−3−カルバゾビニレン)−ビフェニル、4,4’−ビス(9−フェニル−3−カルバゾビニレン)−ビフェニルなどがあげられる。 また、特開2003-347056号公報、および特開2001-307884号公報などに記載されたアミン含有スチリル誘導体を用いてもよい。
芳香族アミン誘導体としては、例えば、N,N,N,N−テトラフェニルアントラセン−9,10−ジアミン、9,10−ビス(4−ジフェニルアミノ−フェニル)アントラセン、9,10−ビス(4−ジ(1−ナフチルアミノ)フェニル)アントラセン、9,10−ビス(4−ジ(2−ナフチルアミノ)フェニル)アントラセン、10−ジ−p−トリルアミノ−9−(4−ジ−p−トリルアミノ−1−ナフチル)アントラセン、10−ジフェニルアミノ−9−(4−ジフェニルアミノ−1−ナフチル)アントラセン、10−ジフェニルアミノ−9−(6−ジフェニルアミノ−2−ナフチル)アントラセン、[4−(4−ジフェニルアミノ−フェニル)ナフタレン−1−イル]−ジフェニルアミン、[4−(4−ジフェニルアミノ−フェニル)ナフタレン−1−イル]−ジフェニルアミン、[6−(4−ジフェニルアミノ−フェニル)ナフタレン−2−イル]−ジフェニルアミン、4,4’−ビス[4−ジフェニルアミノナフタレン−1−イル]ビフェニル、4,4’−ビス[6−ジフェニルアミノナフタレン−2−イル]ビフェニル、4,4”−ビス[4−ジフェニルアミノナフタレン−1−イル]−p−テルフェニル、4,4”−ビス[6−ジフェニルアミノナフタレン−2−イル]−p−テルフェニルなどがあげられる。
また、特開2006-156888号公報などに記載された芳香族アミン誘導体を用いてもよい。
クマリン誘導体としては、クマリン−6、クマリン−334などがあげられる。
また、特開2004-43646号公報、特開2001-76876号公報、および特開平6-298758号公報などに記載されたクマリン誘導体を用いてもよい。
ピラン誘導体としては、下記のDCM、DCJTBなどがあげられる。
また、特開2005-126399号公報、特開2005-097283号公報、特開2002-234892号公報、特開2001-220577号公報、特開2001-081090号公報、および特開2001-052869号公報などに記載されたピラン誘導体を用いてもよい。
イリジウム錯体としては、下記のIr(ppy)などがあげられる。
また、特開2006-089398号公報、特開2006-080419号公報、特開2005-298483号公報、特開2005-097263号公報、および特開2004-111379号公報などに記載されたイリジウム錯体を用いてもよい。
白金錯体としては、下記のPtOEPなどがあげられる。
また、特開2006-190718号公報、特開2006-128634号公報、特開2006-093542号公報、特開2004-335122号公報、および特開2004-331508号公報などに記載された白金錯体を用いてもよい。
その他、ドーパントとしては、化学工業2004年6月号13頁、および、それにあげられた参考文献などに記載された化合物などの中から適宜選択して用いることができる。
<有機電界発光素子における電子注入層、電子輸送層>
電子注入層107は、陰極108から移動してくる電子を、効率よく発光層105内または電子輸送層106内に注入する役割を果たすものである。電子輸送層106は、陰極108から注入された電子または陰極108から電子注入層107を介して注入された電子を、効率よく発光層105に輸送する役割を果たすものである。電子輸送層106および電子注入層107は、それぞれ、電子輸送・注入材料の一種または二種以上を積層、混合するか、電子輸送・注入材料と高分子結着剤の混合物により形成される。
電子注入・輸送層とは、陰極から電子が注入され、さらに電子を輸送することを司る層であり、電子注入効率が高く、注入された電子を効率よく輸送することが望ましい。そのためには電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。しかしながら、正孔と電子の輸送バランスを考えた場合に、陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たす場合には、電子輸送能力がそれ程高くなくても、発光効率を向上させる効果は電子輸送能力が高い材料と同等に有する。したがって、本実施形態における電子注入・輸送層は、正孔の移動を効率よく阻止できる層の機能も含まれてもよい。
電子輸送層および電子注入層に用いられる材料としては、光導電材料において電子伝達化合物として従来から慣用されている化合物、有機電界発光素子の電子注入層および電子輸送層に使用されている公知の化合物の中から任意に選択して用いることができる。
具体的には、ピリジン誘導体、ナフタレン誘導体、アントラセン誘導体、フェナントロリン誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノン誘導体、ジフェノキノン誘導体、ジフェニルキノン誘導体、ペリレン誘導体、チオフェン誘導体、チアジアゾール誘導体、キノキサリン誘導体、キノキサリン誘導体のポリマー、ベンザゾール類化合物、ピラゾール誘導体、パーフルオロ化フェニレン誘導体、トリアジン誘導体、ピラジン誘導体、イミダゾピリジン誘導体、ボラン誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、キノリン誘導体、アルダジン誘導体、カルバゾール誘導体、インドール誘導体、リンオキサイド誘導体、ビススチリル誘導体などがあげられる。また、オキサジアゾール誘導体(1,3−ビス[(4−t−ブチルフェニル)1,3,4−オキサジアゾリル]フェニレンなど)、トリアゾール誘導体(N−ナフチル−2,5−ジフェニル−1,3,4−トリアゾールなど)、ベンゾキノリン誘導体(2,2’−ビス(ベンゾ[h]キノリン−2−イル)−9,9’−スピロビフルオレンなど)、ベンゾイミダゾール誘導体(トリス(N−フェニルベンゾイミダゾール−2−イル)ベンゼンなど)、ビピリジン誘導体、テルピリジン誘導体(1,3−ビス(4’−(2,2’:6’2”−テルピリジニル))ベンゼンなど)、ナフチリジン誘導体(ビス(1−ナフチル)−4−(1,8−ナフチリジン−2−イル)フェニルホスフィンオキサイドなど)などがあげられる。これらの材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。
また、電子受容性窒素を有する金属錯体を用いることもでき、例えば、キノリノール系金属錯体やヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体およびベンゾキノリン金属錯体などがあげられる。これらの材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。
上述した材料の中でも、キノリノール系金属錯体、ピリジン誘導体、フェナントロリン誘導体、ボラン誘導体またはベンゾイミダゾール誘導体が好ましい。
キノリノール系金属錯体は、下記一般式(E−1)で表される化合物である。
式中、R〜Rは水素または置換基であり、MはLi、Al、Ga、BeまたはZnであり、nは1〜3の整数である。
キノリノール系金属錯体の具体例としては、8−キノリノールリチウム、トリス(8−キノリノラート)アルミニウム、トリス(4−メチル−8−キノリノラート)アルミニウム、トリス(5−メチル−8−キノリノラート)アルミニウム、トリス(3,4−ジメチル−8−キノリノラート)アルミニウム、トリス(4,5−ジメチル−8−キノリノラート)アルミニウム、トリス(4,6−ジメチル−8−キノリノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(フェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2−メチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(3−メチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(4−メチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2−フェニルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(3−フェニルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(4−フェニルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,3−ジメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,6−ジメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(3,4−ジメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(3,5−ジメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(3,5−ジ−t−ブチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,6−ジフェニルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,4,6−トリフェニルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,4,6−トリメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,4,5,6−テトラメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(1−ナフトラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2−ナフトラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)(2−フェニルフェノラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)(3−フェニルフェノラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)(4−フェニルフェノラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)(3,5−ジメチルフェノラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)(3,5−ジ−t−ブチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2−メチル−8−キノリノラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2,4−ジメチル−8−キノリノラート)アルミニウム、ビス(2−メチル−4−エチル−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2−メチル−4−エチル−8−キノリノラート)アルミニウム、ビス(2−メチル−4−メトキシ−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2−メチル−4−メトキシ−8−キノリノラート)アルミニウム、ビス(2−メチル−5−シアノ−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2−メチル−5−シアノ−8−キノリノラート)アルミニウム、ビス(2−メチル−5−トリフルオロメチル−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2−メチル−5−トリフルオロメチル−8−キノリノラート)アルミニウム、ビス(10−ヒドロキシベンゾ[h]キノリン)ベリリウムなどがあげられる。
ピリジン誘導体は、下記一般式(E−2)で表される化合物である。
式中、Gは単なる結合手またはn価の連結基を表し、nは2〜8の整数である。また、ピリジン−ピリジンまたはピリジン−Gの結合に用いられない炭素原子は置換されていてもよい。
一般式(E−2)のGとしては、例えば、以下の構造式のものがあげられる。なお、下記構造式中のRは、それぞれ独立して、水素、メチル、エチル、イソプロピル、シクロヘキシル、フェニル、1−ナフチル、2−ナフチル、ビフェニリルまたはテルフェニリルである。
ピリジン誘導体の具体例としては、2,5−ビス(2,2’−ビピリジン−6−イル)−1,1−ジメチル−3,4−ジフェニルシロール、2,5−ビス(2,2’−ビピリジン−6−イル)−1,1−ジメチル−3,4−ジメシチルシロール、2,5−ビス(2,2’−ビピリジン−5−イル)−1,1−ジメチル−3,4−ジフェニルシロール、2,5−ビス(2,2’−ビピリジン−5−イル)−1,1−ジメチル−3,4−ジメシチルシロール9,10−ジ(2,2’−ビピリジン−6−イル)アントラセン、9,10−ジ(2,2’−ビピリジン−5−イル)アントラセン、9,10−ジ(2,3’−ビピリジン−6−イル)アントラセン、9,10−ジ(2,3’−ビピリジン−5−イル)アントラセン、9,10−ジ(2,3’−ビピリジン−6−イル)−2−フェニルアントラセン、9,10−ジ(2,3’−ビピリジン−5−イル)−2−フェニルアントラセン、9,10−ジ(2,2’−ビピリジン−6−イル)−2−フェニルアントラセン、9,10−ジ(2,2’−ビピリジン−5−イル)−2−フェニルアントラセン、9,10−ジ(2,4’−ビピリジン−6−イル)−2−フェニルアントラセン、9,10−ジ(2,4’−ビピリジン−5−イル)−2−フェニルアントラセン、9,10−ジ(3,4’−ビピリジン−6−イル)−2−フェニルアントラセン、9,10−ジ(3,4’−ビピリジン−5−イル)−2−フェニルアントラセン、3,4−ジフェニル−2,5−ジ(2,2’−ビピリジン−6−イル)チオフェン、3,4−ジフェニル−2,5−ジ(2,3’−ビピリジン−5−イル)チオフェン、6’6”−ジ(2−ピリジル)2,2’:4’,4”:2”,2”’−クアテルピリジンなどがあげられる。
フェナントロリン誘導体は、下記一般式(E−3−1)または(E−3−2)で表される化合物である。
式中、R〜Rは水素または置換基であり、隣接する基は互いに結合して縮合環を形成してもよく、Gは単なる結合手またはn価の連結基を表し、nは2〜8の整数である。また、一般式(E−3−2)のGとしては、例えば、ビピリジン誘導体の欄で説明したものと同じものがあげられる。
フェナントロリン誘導体の具体例としては、4,7−ジフェニル−1,10−フェナントロリン、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン、9,10−ジ(1,10−フェナントロリン−2−イル)アントラセン、2,6−ジ(1,10−フェナントロリン−5−イル)ピリジン、1,3,5−トリ(1,10−フェナントロリン−5−イル)ベンゼン、9,9’−ジフルオル−ビス(1,10−フェナントロリン−5−イル)、バソクプロインや1,3−ビス(2−フェニル−1,10−フェナントロリン−9−イル)ベンゼンなどがあげられる。
特に、フェナントロリン誘導体を電子輸送層、電子注入層に用いた場合について説明する。長時間にわたって安定な発光を得るには、熱的安定性や薄膜形成性に優れた材料が望まれ、フェナントロリン誘導体の中でも、置換基自身が三次元的立体構造を有するか、フェナントロリン骨格とのあるいは隣接置換基との立体反発により三次元的立体構造を有するもの、あるいは複数のフェナントロリン骨格を連結したものが好ましい。さらに、複数のフェナントロリン骨格を連結する場合、連結ユニット中に共役結合、置換もしくは無置換の芳香族炭化水素、置換もしくは無置換の芳香複素環を含んでいる化合物がより好ましい。
ボラン誘導体は、下記一般式(E−4)で表される化合物であり、詳細には特開2007-27587号公報に開示されている。
式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13〜R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよいアリーレンであり、Yは、置換されていてもよい炭素数16以下のアリール、置換ボリル、または置換されていてもよいカルバゾールであり、そして、nはそれぞれ独立して0〜3の整数である。
上記一般式(E−4)で表される化合物の中でも、下記一般式(E−4−1)で表される化合物、さらに下記一般式(E−4−1−1)〜(E−4−1−4)で表される化合物が好ましい。具体例としては、9−[4−(4−ジメシチルボリルナフタレン−1−イル)フェニル]カルバゾール、9−[4−(4−ジメシチルボリルナフタレン−1−イル)ナフタレン−1−イル]カルバゾールなどがあげられる。
式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13〜R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、R21およびR22は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、Xは、置換されていてもよい炭素数20以下のアリーレンであり、nはそれぞれ独立して0〜3の整数であり、そして、mはそれぞれ独立して0〜4の整数である。
各式中、R31〜R34は、それぞれ独立して、メチル、イソプロピルまたはフェニルのいずれかであり、そして、R35およびR36は、それぞれ独立して、水素、メチル、イソプロピルまたはフェニルのいずれかである。
上記一般式(E−4)で表される化合物の中でも、下記一般式(E−4−2)で表される化合物、さらに下記一般式(E−4−2−1)で表される化合物が好ましい。
式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13〜R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよい炭素数20以下のアリーレンであり、そして、nはそれぞれ独立して0〜3の整数である。
式中、R31〜R34は、それぞれ独立して、メチル、イソプロピルまたはフェニルのいずれかであり、そして、R35およびR36は、それぞれ独立して、水素、メチル、イソプロピルまたはフェニルのいずれかである。
上記一般式(E−4)で表される化合物の中でも、下記一般式(E−4−3)で表される化合物、さらに下記一般式(E−4−3−1)または(E−4−3−2)で表される化合物が好ましい。
式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13〜R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよい炭素数10以下のアリーレンであり、Yは、置換されていてもよい炭素数14以下のアリールであり、そして、nはそれぞれ独立して0〜3の整数である。
各式中、R31〜R34は、それぞれ独立して、メチル、イソプロピルまたはフェニルのいずれかであり、そして、R35およびR36は、それぞれ独立して、水素、メチル、イソプロピルまたはフェニルのいずれかである。
ベンゾイミダゾール誘導体は、下記一般式(E−5)で表される化合物である。
式中、Ar〜Arはそれぞれ独立に水素または置換されてもよい炭素数6〜30のアリールである。特に、Arが置換されてもよいアントリルであるベンゾイミダゾール誘導体が好ましい。
炭素数6〜30のアリールの具体例は、フェニル、1−ナフチル、2−ナフチル、アセナフチレン−1−イル、アセナフチレン−3−イル、アセナフチレン−4−イル、アセナフチレン−5−イル、フルオレン−1−イル、フルオレン−2−イル、フルオレン−3−イル、フルオレン−4−イル、フルオレン−9−イル、フェナレン−1−イル、フェナレン−2−イル、1−フェナントリル、2−フェナントリル、3−フェナントリル、4−フェナントリル,9−フェナントリル、1−アントリル、2−アントリル、9−アントリル、フルオランテン−1−イル、フルオランテン−2−イル、フルオランテン−3−イル、フルオランテン−7−イル、フルオランテン−8−イル、トリフェニレン−1−イル、トリフェニレン−2−イル、ピレン−1−イル、ピレン−2−イル、ピレン−4−イル、クリセン−1−イル、クリセン−2−イル、クリセン−3−イル、クリセン−4−イル、クリセン−5−イル、クリセン−6−イル、ナフタセン−1−イル、ナフタセン−2−イル、ナフタセン−5−イル、ペリレン−1−イル、ペリレン−2−イル、ペリレン−3−イル、ペンタセン−1−イル、ペンタセン−2−イル、ペンタセン−5−イル、ペンタセン−6−イルである。
ベンゾイミダゾール誘導体の具体例は、1−フェニル−2−(4−(10−フェニルアントラセン−9−イル)フェニル)−1H−ベンゾ[d]イミダゾール、2−(4−(10−(ナフタレン−2−イル)アントラセン−9−イル)フェニル)−1−フェニル−1H−ベンゾ[d]イミダゾール、2−(3−(10−(ナフタレン−2−イル)アントラセン−9−イル)フェニル)−1−フェニル−1H−ベンゾ[d]イミダゾール、5−(10−(ナフタレン−2−イル)アントラセン−9−イル)−1,2−ジフェニル−1H−ベンゾ[d]イミダゾール、1−(4−(10−(ナフタレン−2−イル)アントラセン−9−イル)フェニル)−2−フェニル−1H−ベンゾ[d]イミダゾール、2−(4−(9,10−ジ(ナフタレン−2−イル)アントラセン−2−イル)フェニル)−1−フェニル−1H−ベンゾ[d]イミダゾール、1−(4−(9,10−ジ(ナフタレン−2−イル)アントラセン−2−イル)フェニル)−2−フェニル−1H−ベンゾ[d]イミダゾール、5−(9,10−ジ(ナフタレン−2−イル)アントラセン−2−イル)−1,2−ジフェニル−1H−ベンゾ[d]イミダゾールである。
電子輸送層または電子注入層には、さらに、電子輸送層または電子注入層を形成する材料を還元できる物質を含んでいてもよい。この還元性物質は、一定の還元性を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを好適に使用することができる。
好ましい還元性物質としては、Na(仕事関数2.36eV)、K(同2.28eV)、Rb(同2.16eV)またはCs(同1.95eV)などのアルカリ金属や、Ca(同2.9eV)、Sr(同2.0〜2.5eV)またはBa(同2.52eV)などのアルカリ土類金属が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。これらのうち、より好ましい還元性物質は、K、RbまたはCsのアルカリ金属であり、さらに好ましくはRbまたはCsであり、最も好ましいのはCsである。これらのアルカリ金属は、特に還元能力が高く、電子輸送層または電子注入層を形成する材料への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2.9eV以下の還元性物質として、これら2種以上のアルカリ金属の組み合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRb、またはCsとNaとKとの組み合わせが好ましい。Csを含むことにより、還元能力を効率的に発揮することができ、電子輸送層または電子注入層を形成する材料への添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。
<有機電界発光素子における陰極>
陰極108は、電子注入層107および電子輸送層106を介して、発光層105に電子を注入する役割を果たすものである。
陰極108を形成する材料としては、電子を有機層に効率よく注入できる物質であれば特に限定されないが、陽極102を形成する材料と同様のものを用いることができる。なかでも、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀、銅、ニッケル、クロム、金、白金、鉄、亜鉛、リチウム、ナトリウム、カリウム、セシウムおよびマグネシウムなどの金属またはそれらの合金(マグネシウム−銀合金、マグネシウム−インジウム合金、フッ化リチウム/アルミニウムなどのアルミニウム−リチウム合金など)などが好ましい。電子注入効率をあげて素子特性を向上させるためには、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウムまたはこれら低仕事関数金属を含む合金が有効である。しかしながら、これらの低仕事関数金属は一般に大気中で不安定であることが多い。この点を改善するために、例えば、有機層に微量のリチウム、セシウムやマグネシウムをドーピングして、安定性の高い電極を使用する方法が知られている。その他のドーパントとしては、フッ化リチウム、フッ化セシウム、酸化リチウムおよび酸化セシウムのような無機塩も使用することができる。ただし、これらに限定されるものではない。
さらに、電極保護のために白金、金、銀、銅、鉄、錫、アルミニウムおよびインジウムなどの金属、またはこれら金属を用いた合金、そしてシリカ、チタニアおよび窒化ケイ素などの無機物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子化合物などを積層することが、好ましい例としてあげられる。これらの電極の作製法も、抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティングおよびコーティングなど、導通を取ることができれば特に制限されない。
<各層で用いてもよい結着剤>
以上の正孔注入層、正孔輸送層、発光層、電子輸送層および電子注入層に用いられる材料は単独で各層を形成することができるが、高分子結着剤としてポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリ(N−ビニルカルバゾール)、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリブタジエン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル樹脂、ABS樹脂、ポリウレタン樹脂などの溶剤可溶性樹脂や、フェノール樹脂、キシレン樹脂、石油樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコーン樹脂などの硬化性樹脂などに分散させて用いることも可能である。
<有機電界発光素子の作製方法>
有機電界発光素子を構成する各層は、各層を構成すべき材料を蒸着法、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、印刷法、スピンコート法またはキャスト法、コーティング法などの方法で薄膜とすることにより、形成することができる。このようにして形成された各層の膜厚については特に限定はなく、材料の性質に応じて適宜設定することができるが、通常2nm〜5000nmの範囲である。膜厚は通常、水晶発振式膜厚測定装置などで測定できる。蒸着法を用いて薄膜化する場合、その蒸着条件は、材料の種類、膜の目的とする結晶構造および会合構造などにより異なる。蒸着条件は一般的に、ボート加熱温度+50〜+400℃、真空度10−6〜10−3Pa、蒸着速度0.01〜50nm/秒、基板温度−150〜+300℃、膜厚2nm〜5μmの範囲で適宜設定することが好ましい。
次に、有機電界発光素子を作製する方法の一例として、陽極/正孔注入層/正孔輸送層/ホスト材料とドーパント材料からなる発光層/電子輸送層/電子注入層/陰極からなる有機電界発光素子の作製法について説明する。適当な基板上に、陽極材料の薄膜を蒸着法などにより形成させて陽極を作製した後、この陽極上に正孔注入層および正孔輸送層の薄膜を形成させる。この上にホスト材料とドーパント材料を共蒸着し薄膜を形成させて発光層とし、この発光層の上に電子輸送層、電子注入層を形成させ、さらに陰極用物質からなる薄膜を蒸着法などにより形成させて陰極とすることにより、目的の有機電界発光素子が得られる。なお、上述の有機電界発光素子の作製においては、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
このようにして得られた有機電界発光素子に直流電圧を印加する場合には、陽極を+、陰極を−の極性として印加すればよく、電圧2〜40V程度を印加すると、透明または半透明の電極側(陽極または陰極、および両方)より発光が観測できる。また、この有機電界発光素子は、パルス電流や交流電流を印加した場合にも発光する。なお、印加する交流の波形は任意でよい。
<有機電界発光素子の応用例>
また、本発明は、有機電界発光素子を備えた表示装置または有機電界発光素子を備えた照明装置などにも応用することができる。
有機電界発光素子を備えた表示装置または照明装置は、本実施形態にかかる有機電界発光素子と公知の駆動装置とを接続するなど公知の方法によって製造することができ、直流駆動、パルス駆動、交流駆動など公知の駆動方法を適宜用いて駆動することができる。
表示装置としては、例えば、カラーフラットパネルディスプレイなどのパネルディスプレイ、フレキシブルカラー有機電界発光(EL)ディスプレイなどのフレキシブルディスプレイなどがあげられる(例えば、特開平10−335066号公報、特開2003−321546号公報、特開2004−281086号公報など参照)。また、ディスプレイの表示方式としては、例えば、マトリクスおよび/またはセグメント方式などがあげられる。なお、マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。
マトリクスとは、表示のための画素が格子状やモザイク状など二次元的に配置されたものをいい、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法としては、線順次駆動方法やアクティブマトリックスのどちらでもよい。線順次駆動の方が構造が簡単であるという利点があるが、動作特性を考慮した場合、アクティブマトリックスの方が優れる場合があるので、これも用途によって使い分けることが必要である。
セグメント方式(タイプ)では、予め決められた情報を表示するようにパターンを形成し、決められた領域を発光させることになる。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示および自動車のパネル表示などがあげられる。
照明装置としては、例えば、室内照明などの照明装置、液晶表示装置のバックライトなどがあげられる(例えば、特開2003−257621号公報、特開2003−277741号公報、特開2004−119211号公報など参照)。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶表示装置、中でも薄型化が課題となっているパソコン用途のバックライトとしては、従来方式のものが蛍光灯や導光板からなっているため薄型化が困難であることを考えると、本実施形態に係る発光素子を用いたバックライトは薄型で軽量が特徴になる。
<ベンゾフルオレン化合物の合成例>
以下、式(1'−1)、式(1'−2)で表される中間体、式(1−13)、式(1−53)、式(1−63)で表される化合物および比較例で用いた化合物(A)の合成例について説明する。
<式(1'−1)で表される中間体の合成例>
窒素雰囲気下、7,7−ジメチル−7H−ベンゾ[C]フルオレン30gを酢酸200ml/濃硫酸4.5ml/水30mlに懸濁させた。そこにヨウ素34gおよび過ヨウ素酸11gを加えて70℃で4時間加熱した。冷却後、亜硫酸ナトリウム水溶液で未反応のヨウ素を分解した後、分液ロートにて有機層と水層を分けた。有機層を集めて、粗製品をシリカゲルでカラム精製(溶媒:へプタン)を行うことにより、式(1'−1)で表される中間体である「5,9−ジヨード−7,7−ジメチル−7H−ベンゾ[c]フルオレン」を27g(収率44%)得た。
MSスペクトルおよびNMR測定により式(1'−1)で表される中間体の構造を確認した。
H−NMR(CDCl)σ:8.59(d,1H)、8.23(dd,1H)、8.20(s,1H)、8.04(d,1H)、7.83(d,1H)、7.76(dd,1H)、7.69−7.59(m,2H)、1.52(s,6H).
<式(1'−2)で表される中間体の合成例>
窒素雰囲気下、7,7−ジフェニル−7H−ベンゾ[C]フルオレン50gと酢酸660ml/濃硫酸13mlに懸濁させた。そこにヨウ素103gおよびヨウ素酸48gを加えて80℃で4時間加熱した。冷却後、固体をろ過し、これをメタノールで洗浄を行った。この固体をトルエンに溶解した後、この溶液をチオ硫酸ナトリウム水溶液にて洗浄を行った。これを濃縮して、粗製品をシリカゲルでカラム精製(溶媒:へプタン/トルエン=1/1(容量比))を行った。さらにこれをキシレンにて再結晶を行うことにより、式(1'−2)で表される中間体である「5,9−ジヨード−7,7−ジフェニル−7H−ベンゾ[c]フルオレン」を36g(収率43%)得た。
MSスペクトルおよびNMR測定により式(1'−2)で表される中間体の構造を確認した。
H−NMR(CDCl)σ:8.64(d,1H)、8.23(dd,1H)、8.11(s,1H)、8.09(d,1H)、7.80−7.61(m,4H)、7.27−7.24(m,6H)、7.20−7.17(m,4H).
<式(1−13)で表される化合物の合成例>
窒素雰囲気下、2−ブロモトルエン25gとアニリン40gを脱水トルエン200mlに溶解させ、酢酸パラジウム0.5g、ナトリウムt−ブトキシド27g、そしてトリt−ブチルホスフィン1.4gを加えて120℃で8時間加熱した。反応後、水を添加し、分液ロートにて有機層と水層を分離し、有機層を濃縮した。その粗製品をシリカゲルショートカラムで精製(溶媒:トルエン)し、以下の目的の化合物を19g(収率49%)得た。
窒素雰囲気下、5,9−ジヨード−7,7−ジフェニル−7H−ベンゾ[c]フルオレン5.9gと上記で合成した化合物4.4gを脱水トルエン100mlに溶解させ、酢酸パラジウム40mg、ナトリウムt−ブトキシド6.3g、そしてトリスt−ブチルホスフィン0.060gを加えて80℃で4時間加熱した。反応後、シリカゲルショートカラムで精製(溶媒:トルエン)することにより触媒を除去した。その後、粗製品をシリカゲルでカラム精製(溶媒:へプタン/トルエン=7/3(容量比))を行った後、昇華精製をして、目的の式(1−13)で表される化合物を2.8g(収率10%)得た。
MSスペクトルおよびNMR測定により式(1−13)で表される化合物の構造を確認した。
H−NMR(トルエン−d8)σ:8.68(d,1H)、8.16(d,1H)、7.93(d,1H)、7.38−6.68(m,33H)、1.95(s,3H)、1.93(s,3H).
<式(1−53)で表される化合物の合成例>
窒素雰囲気下、4−ヨードトルエン20.7gと2,5−ジメチルアニリン11.5gを脱水トルエン250mlに溶解させ、ビス(ジベンジリデンアセトン)パラジウム(0)0.60g、ナトリウムt−ブトキシド18.0g、そして4−(ジメチルアミノ)フェニルジ−t−ブチルホスフィン0.85gを加えて100℃で5時間加熱した。反応後、水を添加し、分液ロートにて有機層と水層を分離した。有機層を集めて、アルミナカラムで精製(溶媒:ヘプタン)した後、溶媒を減圧除去し、以下の目的の化合物を15g(収率72%)得た。
窒素雰囲気下、5,9−ジヨード−7,7−ジメチル−7H−ベンゾ[c]フルオレン9.9gと上記で合成した化合物9.3gを脱水トルエン200mlに溶解させ、ビス(ジベンジリデンアセトン)パラジウム(0)0.25g、ナトリウムt−ブトキシド8.5g、そして4−(ジメチルアミノ)フェニルジ−t−ブチルホスフィン0.35gを加えて90℃で4時間加熱した。室温まで冷却した後、沈殿物をろ過し、メタノールと水で洗浄した。その後、粗製品をシリカゲルでカラム精製(溶媒:へプタン/トルエン=9/1(容量比))を行った後、昇華精製をして、目的の式(1−53)で表される化合物を6.6g(収率45%)得た。
MSスペクトルおよびNMR測定により式(1−53)で表される化合物の構造を確認した。
H−NMR(トルエン−d8)σ:8.65(d,1H)、8.29(d,1H)、7.92(d,1H)、7.39−6.75(m,19H)、2.11(s,9H)、2.07(s,6H)、1.94(s,3H)、1.18(s,6H).
<式(1−63)で表される化合物の合成例>
窒素雰囲気下、1−ブロモ−4−ターシャリーブチルベンゼン12.8gと2,5−ジメチルアニリン7.3gを脱水トルエン150mlに溶解させ、ビス(ジベンジリデンアセトン)パラジウム(0)0.46g、ナトリウムt−ブトキシド15.0g、そして4−(ジメチルアミノ)フェニルジ−t−ブチルホスフィン0.61gを加えて100℃で3時間加熱した。反応後、水を添加し、分液ロートにて有機層と水層を分離した。有機層を集めて、アルミナカラムで精製(溶媒:ヘプタン)した後、溶媒を減圧除去し、以下の目的の化合物を14g(収率67%)得た。
窒素雰囲気下、5,9−ジヨード−7,7−ジメチル−7H−ベンゾ[c]フルオレン9.9gと上記で合成した化合物8.7gを脱水トルエン150mlに溶解させ、ビス(ジベンジリデンアセトン)パラジウム(0)0.21g、ナトリウムt−ブトキシド8.5g、そして4−(ジメチルアミノ)フェニルジ−t−ブチルホスフィン0.29gを加えて80℃で4時間加熱した。室温まで冷却した後、沈殿物をろ過し、メタノールと水で洗浄した。その後、粗製品をシリカゲルでカラム精製(溶媒:へプタン/トルエン=4/1(容量比))を行った後、昇華精製をして、目的の式(1−63)で表される化合物を4.1g(収率31%)得た。
MSスペクトルおよびNMR測定により式(1−63)で表される化合物の構造を確認した。
H−NMR(トルエン−d8)σ:8.65(d,1H)、8.30(d,1H)、7.91(d,1H)、7.41−6.75(m,19H)、2.10(s,9H)、2.08(s,6H)、1.92(s,3H)、1.23(s,9H)、1.19(s,9H).
<化合物(A)の合成例>
窒素雰囲気下、5,9−ジブロモ−7,7−ジフェニル−7H−ベンゾ[c]フルオレン2.5gとジフェニルアミン1.6gを脱水キシレン100mlに溶解させ、酢酸パラジウム1.5mg、ナトリウムt−ブトキシド0.98g、そしてトリ(t−ブチル)ホスフィン14mgを加えて4時間還流した。
反応後、水を100ml添加して、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて濃縮し、粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:へプタン/トルエン=3/1(容量比))を行った後、昇華精製して、目的の化合物(A)を450mg(収率:13%)得た。
MSスペクトルおよびNMR測定により比較例化合物(A)の構造を確認した。
H−NMR(CDCl)σ:8.70(d,1H)、8.16(d,1H)、8.02(d,1H)、7.56(t,1H)、7.37〜7.34(m,2H)、7.58〜6.86(m,32H).
原料の化合物を適宜選択することにより、上記の合成例に準じた方法で、他のベンゾフルオレン化合物を合成することができる。
<電界発光素子に用いた場合の特性>
まず、実施例1、2および比較例1に係る電界発光素子を作製し、それぞれ1000cd/m発光時の特性である電圧(V)、電流密度(mA/cm)、発光効率(lm/W)、電流効率(cd/A)の測定、EL発光波長(nm)、外部量子効率(%)の測定をし、次に2000cd/mの輝度が得られる電流密度で定電流駆動した際の輝度半減時間(時間)を測定した。
さらに、実施例3、4および比較例2に係る電界発光素子を作製し、素子寿命の測定以外は上記と同様に測定した。素子寿命については、2000cd/mの輝度が得られる電流密度で定電流駆動した際に90%(1800cd/m)以上の輝度を保持する時間を測定した。
なお、発光素子の量子効率には、内部量子効率と外部量子効率とがあるが、発光素子の発光層に電子(または正孔)として注入される外部エネルギーが純粋に光子に変換される割合を示したものが内部量子効率である。一方、この光子が発光素子の外部にまで放出された量に基づいて算出されるものが外部量子効率であり、発光層において発生した光子は、その一部が発光素子の内部で吸収されたりあるいは反射され続けたりして、発光素子の外部に放出されないため、外部量子効率は内部量子効率よりも低くなる。
外部量子効率の測定方法は次の通りである。アドバンテスト社製電圧/電流発生器R6144を用いて、素子の輝度が1000cd/mになる電圧を印加して素子を発光させた。TOPCON社製分光放射輝度計SR−2Aを用いて、発光面に対して垂直方向から可視光領域の分光放射輝度を測定した。発光面が完全拡散面であると仮定して、測定した各波長成分の分光放射輝度の値を波長エネルギーで割ってπを掛けた数値が各波長におけるフォトン数である。次いで、観測した全波長領域でフォトン数を積算し、素子から放出された全フォトン数とした。印加電流値を素電荷で割った数値を素子へ注入したキャリア数として、素子から放出された全フォトン数を素子へ注入したキャリア数で割った数値が外部量子効率である。
作製した実施例1、2および比較例1に係る電界発光素子における、各層の材料構成を下記表1に示す。
表1において、化合物(1−13)または化合物(1−53)は、それぞれ上記式(1−13)または式(1−53)で表される化合物である。また、表1において、「CuPc」は銅フタロシアニン、「NPD」はN,N4’−ジ(ナフタレン−1−イル)−N,N4’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン、化合物(A)はN,N,N,N,7,7−ヘキサフェニル−7H−ベンゾ[c]フルオレン−5,9−ジアミン、化合物(B)は9−フェニル−10−〔6−(1,1’;3,1”)テルフェニル−5’−イル〕ナフタレン−2−イル〕アントラセン、化合物(C)は5,5’−(2−フェニルアントラセン−9,10−ジイル)ジ−2,2’−ビピリジンであり、それぞれ、下記化学構造を有する。
作製した実施例3、4および比較例2に係る電界発光素子における、各層の材料構成を下記表2に示す。
表2において、「HI」はN,N4’−ジフェニル−N,N4’−ビス(9−フェニル−9H−カルバゾール−3−イル)−[1,1’−ビフェニル]−4,4’−ジアミン、「NPD」はN,N4’−ジ(ナフタレン−1−イル)−N,N4’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン、化合物(D)は9,10−ビス(ナフタレン−1−イル)−アントラセン、化合物(A)はN,N,N,N,7,7−ヘキサフェニル−7H−ベンゾ[c]フルオレン−5,9−ジアミン、化合物(C)は5,5’−(2−フェニルアントラセン−9,10−ジイル)ジ−2,2’−ビピリジン、そして「Liq」は8−キノリノールリチウムである。以下に化学構造を示す。
<実施例1>
<化合物(1−13)を発光層のドーパント材料に用いた素子>
ITOを150nmの厚さに蒸着した26mm×28mm×0.7mmのガラス基板を透明支持基板とした。この透明支持基板を市販の蒸着装置の基板ホルダ−に固定し、CuPcを入れたモリブデン製蒸着用ボート、NPDを入れたモリブデン製蒸着用ボート、化合物(B)を入れたモリブデン製蒸着用ボート、化合物(1−13)を入れたモリブデン製蒸着用ボート、化合物(C)を入れたモリブデン製蒸着用ボート、フッ化リチウムを入れたモリブデン製蒸着用ボート、およびアルミニウムを入れたタングステン製蒸着用ボートを装着した。
真空槽を5×10−4Paまで減圧し、CuPcが入った蒸着用ボートを加熱して、膜厚40nmになるようにCuPcを蒸着して正孔注入層を形成し、次いで、NPD入りの蒸着用ボートを加熱して、膜厚30nmになるようにNPDを蒸着して正孔輸送層を形成した。次に、化合物(B)を入れたモリブデン製蒸着用ボートおよび化合物(1−13)を入れたモリブデン製蒸着用ボートを加熱して、膜厚35nmになるように両化合物を共蒸着して発光層を形成した。このとき、化合物(1−13)のドープ濃度は約5重量%であった。次に化合物(C)を入れた蒸着用ボートを加熱して、膜厚15nmになるように化合物(C)を蒸着して電子輸送層を形成した。以上の蒸着速度は0.01〜1nm/秒であった。
その後、フッ化リチウム入りの蒸着用ボートを加熱して、膜厚1nmになるように0.003〜0.1nm/秒の蒸着速度でフッ化リチウムを蒸着し、次いで、アルミニウム入りの蒸着用ボートを加熱して、膜厚100nmになるように0.01〜10nm/秒の蒸着速度でアルミニウムを蒸着することにより、有機EL素子を得た。
ITO電極を陽極、フッ化リチウム/アルミニウム電極を陰極として、1000cd/m発光時の特性を測定すると、電圧4.03V、電流密度16.96mA/cm、発光効率4.61(lm/W)、電流効率5.90cd/A、外部量子効率5.68%(発光波長460nm、色度(x=0.137,y=0.148))であり、2000cd/mの輝度が得られる電流密度で定電流駆動した際の輝度半減時間は130時間であった。
<実施例2>
<化合物(1−53)を発光層のドーパント材料に用いた素子>
実施例1で発光層のドーパントに用いた化合物(1−13)を化合物(1−53)に替えた以外は、実施例1に準じた方法で有機EL素子を得た。ITO電極を陽極、フッ化リチウム/アルミニウム電極を陰極として、1000cd/m発光時の特性を測定すると、電圧4.26V、電流密度12mA/cm、発光効率6.42(lm/W)、電流効率8.71cd/A、外部量子効率7.07%(発光波長465nm、色度(x=0.138,y=0.206))であり、2000cd/mの輝度が得られる電流密度で定電流駆動した際の輝度半減時間は570時間であった。
<比較例1>
<化合物(A)を発光層のドーパント材料に用いた素子>
実施例1で発光層のドーパントに用いた化合物(1−13)を化合物(A)に替えた以外は、実施例1に準じた方法で有機EL素子を得た。ITO電極を陽極、フッ化リチウム/アルミニウム電極を陰極として、1000cd/m発光時の特性を測定すると、電圧4.60V、電流密度12.59mA/cm、発光効率5.44(lm/W)、電流効率7.95cd/A、外部量子効率7.40%(発光波長460nm、色度(x=0.134,y=0.157))であり、2000cd/mの輝度が得られる電流密度で定電流駆動した際の輝度半減時間は180時間であった。
<実施例3>
<化合物(1−53)を発光層のドーパント材料に用いた素子(その2)>
ITOを150nmの厚さに蒸着した26mm×28mm×0.7mmのガラス基板を透明支持基板とした。この透明支持基板を市販の蒸着装置の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、NPDを入れたモリブデン製蒸着用ボート、化合物(D)を入れたモリブデン製蒸着用ボート、化合物(1−53)を入れたモリブデン製蒸着用ボート、化合物(C)を入れたモリブデン製蒸着用ボート、8−キノリノールリチウム(Liq)を入れたモリブデン製蒸着用ボート、マグネシウムを入れたモリブデン製蒸着用ボートおよび銀を入れたモリブデン製蒸着用ボートを装着した。
真空槽を5×10−4Paまで減圧し、HIが入った蒸着用ボートを加熱して、膜厚40nmになるようにHIを蒸着して正孔注入層を形成し、次いで、NPD入りの蒸着用ボートを加熱して、膜厚30nmになるようにNPDを蒸着して正孔輸送層を形成した。次に、化合物(D)を入れたモリブデン製蒸着用ボートおよび化合物(1−53)を入れたモリブデン製蒸着用ボートを加熱して、膜厚35nmになるように両化合物を共蒸着して発光層を形成した。このとき、化合物(1−53)のドープ濃度は約5重量%であった。次に化合物(C)を入れた蒸着用ボートを加熱して、膜厚15nmになるように化合物(C)を蒸着して電子輸送層を形成した。以上の蒸着速度は0.01〜1nm/秒であった。
その後、8−キノリノールリチウム(Liq)が入った蒸着用ボートを加熱して膜厚1nmになるように0.01〜0.1nm/秒の蒸着速度で蒸着した。次いで、マグネシウムの入ったボートと銀の入ったボートを同時に加熱して膜厚100nmになるように蒸着して陰極を形成した。この時、マグネシウムと銀の原子数比が10対1となるように蒸着速度を調節し、蒸着速度が0.01〜2nm/秒になるようにして有機EL素子を得た。
ITO電極を陽極、Liq/Mg+Ag電極を陰極として、1000cd/m発光時の特性を測定すると、電圧5.16V、電流密度12.70mA/cm、発光効率4.79(lm/W)、電流効率7.87cd/A、外部量子効率6.01%(発光波長463nm、色度(x=0.144,y=0.193))であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の90%(1800cd/m)以上の輝度を保持する時間は140時間であった。
<実施例4>
<化合物(1−63)を発光層のドーパント材料に用いた素子>
実施例3で発光層のドーパントに用いた化合物(1−53)を化合物(1−63)に替えた以外は、実施例3に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/Mg+Ag電極を陰極として、1000cd/m発光時の特性を測定すると、電圧5.07V、電流密度12.04mA/cm、発光効率5.14(lm/W)、電流効率8.30cd/A、外部量子効率6.46%(発光波長463nm、色度(x=0.143,y=0.191))であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の90%(1800cd/m)以上の輝度を保持する時間は156時間であった。
<比較例2>
<化合物(A)を発光層のドーパント材料に用いた素子(その2)>
実施例3で発光層のドーパントに用いた化合物(1−53)を化合物(A)に替えた以外は、実施例3に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/Mg+Ag電極を陰極として、1000cd/m発光時の特性を測定すると、電圧5.19V、電流密度16.01mA/cm、発光効率3.78(lm/W)、電流効率6.25cd/A、外部量子効率6.45%(発光波長457nm、色度(x=0.141,y=0.133))であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の90%(1800cd/m)以上の輝度を保持する時間は90時間であった。
本発明の好ましい態様によれば、優れた駆動電圧(好ましくは優れた素子寿命も兼ね備えた)を有する有機電界発光素子、それを備えた表示装置およびそれを備えた照明装置などを提供することができる。
100 有機電界発光素子
101 基板
102 陽極
103 正孔注入層
104 正孔輸送層
105 発光層
106 電子輸送層
107 電子注入層
108 陰極

Claims (11)

  1. 下記一般式(1)で表されるベンゾフルオレン化合物。
    (式中、
    はメチルであり、
    、RおよびRは水素であり、
    は炭素数1〜24のアルキルであり、n1は0〜3の整数であり、
    はメチルであり、n2は0〜3の整数であり、
    は炭素数1〜24のアルキルである。)
  2. はメチルであり、
    、RおよびRは水素であり、
    は炭素数1〜6のアルキルであり、n1は1であり、RはNと結合する炭素に対してパラ位であり、
    はメチルであり、n2は1であり、RはRに対してパラ位であり、
    は炭素数1〜6のアルキルである、
    請求項1に記載するベンゾフルオレン化合物。
  3. 下記式(1−53)で表される、請求項1に記載するベンゾフルオレン化合物。
  4. 下記式(1−63)で表される、請求項1に記載するベンゾフルオレン化合物。
  5. 下記一般式(1’)で表される中間体と一級芳香族アミンまたは二級芳香族アミンとをカップリングして、請求項1に記載する一般式(1)で表されるベンゾフルオレン化合物を製造する方法。
    (式中、R は炭素数1〜24のアルキルである。)
  6. 発光素子の発光層用材料であって、請求項1ないし4のいずれかに記載するベンゾフルオレン化合物を含有する発光層用材料。
  7. 陽極および陰極からなる一対の電極と、該一対の電極間に配置され、請求項に記載する発光層用材料を含有する発光層とを有する、有機電界発光素子。
  8. さらに、前記陰極と該発光層との間に配置される電子輸送層および/または電子注入層を有し、該電子輸送層および電子注入層の少なくとも1つは、キノリノール系金属錯体、ピリジン誘導体、フェナントロリン誘導体、ボラン誘導体およびベンゾイミダゾール誘導体からなる群から選択される少なくとも1つを含有する、請求項に記載する有機電界発光素子。
  9. 前記電子輸送層および/または電子注入層が、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、請求項に記載の有機電界発光素子。
  10. 請求項ないしのいずれかに記載する有機電界発光素子を備えた表示装置。
  11. 請求項ないしのいずれかに記載する有機電界発光素子を備えた照明装置。
JP2011047369A 2010-03-23 2011-03-04 ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子 Active JP5824827B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011047369A JP5824827B2 (ja) 2010-03-23 2011-03-04 ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010065480 2010-03-23
JP2010065480 2010-03-23
JP2011047369A JP5824827B2 (ja) 2010-03-23 2011-03-04 ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子

Publications (2)

Publication Number Publication Date
JP2011219461A JP2011219461A (ja) 2011-11-04
JP5824827B2 true JP5824827B2 (ja) 2015-12-02

Family

ID=45036890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011047369A Active JP5824827B2 (ja) 2010-03-23 2011-03-04 ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子

Country Status (1)

Country Link
JP (1) JP5824827B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10439146B2 (en) 2015-08-07 2019-10-08 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5780132B2 (ja) * 2011-05-19 2015-09-16 Jnc株式会社 ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
JP5982966B2 (ja) * 2011-08-17 2016-08-31 Jnc株式会社 ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
TWI570095B (zh) * 2011-11-04 2017-02-11 捷恩智股份有限公司 苯并茀化合物、使用了該化合物的發光層用材料以及有機電場發光元件
KR101638665B1 (ko) * 2012-04-20 2016-07-13 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
US9385324B2 (en) 2012-05-07 2016-07-05 Samsung Electronics Co., Ltd. Electronic system with augmented reality mechanism and method of operation thereof
KR101950474B1 (ko) * 2012-08-22 2019-02-21 삼성디스플레이 주식회사 유기 발광 소자
US9748492B2 (en) 2012-11-02 2017-08-29 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
KR101423070B1 (ko) * 2013-04-22 2014-07-28 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
JP6446362B2 (ja) 2013-09-20 2018-12-26 出光興産株式会社 アミン化合物及び有機エレクトロルミネッセンス素子
US9711731B2 (en) * 2013-10-25 2017-07-18 E I Du Pont De Nemours And Company Blue luminescent compounds
WO2019194616A1 (ko) * 2018-04-05 2019-10-10 주식회사 엘지화학 아민 화합물 및 이를 포함하는 유기 발광 소자

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5233228B2 (ja) * 2006-10-05 2013-07-10 Jnc株式会社 ベンゾフルオレン化合物、該化合物を用いた発光層用材料及び有機電界発光素子
JP5066945B2 (ja) * 2007-03-05 2012-11-07 東ソー株式会社 新規なベンゾ[c]フルオレン誘導体及びその用途
WO2010016405A1 (ja) * 2008-08-07 2010-02-11 出光興産株式会社 新規芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10439146B2 (en) 2015-08-07 2019-10-08 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device

Also Published As

Publication number Publication date
JP2011219461A (ja) 2011-11-04

Similar Documents

Publication Publication Date Title
JP5233228B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料及び有機電界発光素子
JP5617398B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
JP5786578B2 (ja) 発光層用材料およびこれを用いた有機電界発光素子
JP5018138B2 (ja) 発光材料およびこれを用いた有機電界発光素子
JP5353233B2 (ja) ピリジルフェニル基を有するアントラセン誘導体化合物及び有機電界発光素子
JP5556168B2 (ja) ピリジルナフチル基を有するアントラセン誘導体及び有機電界発光素子
JP5824827B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
JP5780132B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
JP5982966B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
JP6156389B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
JP5834442B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
JP5509606B2 (ja) ピリジル基を有するアントラセン誘導体化合物及び有機電界発光素子
JP5949779B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
JP5794155B2 (ja) 新規な2,7−ビスアントリルナフタレン化合物およびこれを用いた有機電界発光素子
JP2009184993A (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料及び有機電界発光素子
JP5776384B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
JPWO2011152466A1 (ja) 電子受容性窒素含有へテロアリールを含む置換基を有するカルバゾール化合物および有機電界発光素子
JP5402128B2 (ja) ビピリジル基を有するアントラセンまたはナフタレン誘導体化合物および有機電界発光素子
JP6349902B2 (ja) アントラセン誘導体および有機el素子
JP5867269B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
JP7239924B2 (ja) 有機電界発光素子、表示装置および照明装置、ならびに化合物
JP6610447B2 (ja) 自己組織化し得る多環式芳香族化合物およびそれを用いた有機el素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150928

R150 Certificate of patent or registration of utility model

Ref document number: 5824827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250