JP5824439B2 - Method and apparatus for measuring coefficient of friction - Google Patents

Method and apparatus for measuring coefficient of friction Download PDF

Info

Publication number
JP5824439B2
JP5824439B2 JP2012228565A JP2012228565A JP5824439B2 JP 5824439 B2 JP5824439 B2 JP 5824439B2 JP 2012228565 A JP2012228565 A JP 2012228565A JP 2012228565 A JP2012228565 A JP 2012228565A JP 5824439 B2 JP5824439 B2 JP 5824439B2
Authority
JP
Japan
Prior art keywords
measured
friction coefficient
floor surface
acceleration
traction force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012228565A
Other languages
Japanese (ja)
Other versions
JP2014081252A (en
Inventor
野村 俊夫
俊夫 野村
修平 野村
修平 野村
堀切川 一男
一男 堀切川
山口 健
健 山口
圭 柴田
圭 柴田
Original Assignee
株式会社トリニティーラボ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トリニティーラボ filed Critical 株式会社トリニティーラボ
Priority to JP2012228565A priority Critical patent/JP5824439B2/en
Publication of JP2014081252A publication Critical patent/JP2014081252A/en
Application granted granted Critical
Publication of JP5824439B2 publication Critical patent/JP5824439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

本発明は、摩擦係数の測定方法および装置に関し、より詳しくは、すべり速度や傾斜角度が変化する摩擦系において摩擦係数を正確に測定できる方法および装置に関するものである。   The present invention relates to a friction coefficient measuring method and apparatus, and more particularly to a method and apparatus capable of accurately measuring a friction coefficient in a friction system in which a sliding speed and an inclination angle change.

近年、交通事故による死亡者数は年々減少の傾向であるのに対して、屋内外における転倒事故による死亡者の数は年々増加する傾向にあり、これが社会的に大きな問題になっている。このような転倒事故の原因としては、靴やその他の履き物(スリッパなど)(以下、靴で総称する)と、床面や地面(アスファルトやコンクリート面などを含む)(以下、床面で総称する)との間のすべりが、大きな割合を占めている。そして、すべりによる転倒を防止するためには、靴の底面と床面との間の静摩擦係数や動摩擦係数を高くすることが重要であり、これら2つの摩擦係数を正しく測定することで両者の間のすべりを評価する装置が必要である。   In recent years, the number of deaths due to traffic accidents has been decreasing year by year, while the number of deaths due to accidents falling indoors and outdoors has been increasing year by year, which has become a major social problem. Causes of such a fall accident include shoes and other footwear (such as slippers) (hereinafter collectively referred to as shoes), floor and ground (including asphalt and concrete surfaces) (hereinafter collectively referred to as floor) ) Slips in between. In order to prevent falls due to slipping, it is important to increase the static friction coefficient and the dynamic friction coefficient between the bottom and the floor of the shoe, and by correctly measuring these two friction coefficients, There is a need for a device that evaluates sliding.

摩擦係数を測定する装置として、従来は、携帯式の小型のものと、研究室などで使用される大型のものとがあるが、動摩擦係数だけを測定するものが大部分であり、静摩擦係数と動摩擦係数の両方を測定することができる装置は少なかった。また、携帯式の装置の場合、持ち運びが可能であるから屋内外での使用が可能であるという長所を有しているが、靴を装置に取り付けることができないので、靴と床面との間の摩擦係数を測定することができない、また、すべり速度や荷重を種々変えた測定を行うことができないなどの欠点があった。   Conventionally, there are two types of devices that measure the coefficient of friction: small portable devices and large ones used in laboratories, etc., but most of them measure only the dynamic friction coefficient. Few devices were able to measure both dynamic friction coefficients. In addition, portable devices have the advantage that they can be used indoors and outdoors because they are portable, but shoes cannot be attached to the device. In other words, the friction coefficient cannot be measured, and measurements with various sliding speeds and loads cannot be performed.

一方、大型の装置の場合には、装置に靴を取り付けることができ、また、すべり速度や荷重を変化させた測定ができる反面、持ち運びが難しいので、場所を種々変えて測定することが困難であり、必要とする場所での実際の測定には不向きであるなどの欠点を有していた。  On the other hand, in the case of a large device, shoes can be attached to the device, and measurement can be performed by changing the sliding speed and load, but it is difficult to carry, so it is difficult to measure in various places. However, it has a drawback that it is not suitable for actual measurement at a required place.

さらに、従来の装置は、2つの物体、例えば靴の靴底と床面とを所定の荷重で接触させて、すべり速度一定の条件下で摩擦係数を測定する方式が一般的に採用されている。しかしながら、この方式は、例えば靴の底面と床面との摩擦係数を屋内の限られた空間内で測定する場合、測定時のすべり速度を一定にすることが困難となり、靴の底面と床面との間のすべり速度が変動するため、摩擦係数を正確に測定することができないという課題を有していた。   Furthermore, a conventional apparatus generally employs a method in which a friction coefficient is measured under a condition in which a sliding speed is constant by bringing two objects, for example, a shoe sole and a floor surface into contact with each other with a predetermined load. . However, in this method, for example, when measuring the coefficient of friction between the bottom surface of the shoe and the floor surface in a limited indoor space, it becomes difficult to keep the sliding speed constant at the time of measurement. Because the sliding speed fluctuates between the two, the friction coefficient cannot be measured accurately.

本発明に係わる摩擦係数の測定方法は、被測定物をその測定面と床面とを接触させた状態で所定の方向に牽引することで前記床面に対して摺動させ、前記摺動の際に前記被測定物に働く外力を牽引力検出器により測定すると共に前記被測定物に働く加速度を検出し、これら外力と加速度とから次式により摩擦係数を求める、方法である。 The friction coefficient measuring method according to the present invention is such that the object to be measured is slid with respect to the floor surface by pulling in a predetermined direction in a state where the measurement surface and the floor surface are in contact with each other. In this case, the external force acting on the object to be measured is measured by a traction force detector, the acceleration acting on the object to be measured is detected, and the friction coefficient is obtained from the external force and acceleration by the following equation.

(数1)
μ=(F+m(gsinθ−a))/m(a+gcosθ)
但し、μは床面と被測定物との間の摩擦係数、Fは牽引力検出器により検出された床面に対して水平方向に被測定物に働く外力(N)、mは被測定物の質量(g)、gは重力加速度、aは床面に水平な方向における被測定物の加速度(m/s)、aは床面に垂直な方向における被測定物の加速度(m/s)、θは床面の傾斜角度(°)である。
(Equation 1)
μ = (F + m (g sin θ−a h )) / m (a n + g cos θ)
Where μ is the coefficient of friction between the floor surface and the object to be measured, F is the external force (N) acting on the object to be measured in the horizontal direction with respect to the floor surface detected by the traction force detector, and m is the object to be measured. weight (g), g is the gravitational acceleration, a h is the acceleration of the object to be measured in the horizontal direction to the floor surface (m / s 2), a n is the measured object in a direction perpendicular to the floor acceleration (m / s 2 ) and θ are the inclination angles (°) of the floor surface.

前記摺動は、直線摺動(被測定物を床面に対して直線的に牽引して摺動させる)、回転摺動(例えば被測定物を床面に対して円周線上に牽引して摺動させる)などの適宜な形態で行うことができる。さらに、前記直線摺動の一例として、被測定物と台車とを牽引力検出器を介して接続し、被測定物の測定面と床面とを接触させた状態で前記台車を床面に対して移動させる際の前記牽引力検出器により被測定物に働く外力、被測定物に働く加速度を求め、これら求めた値から上式により摩擦係数を求める方法を用いることができる。   The sliding may be linear sliding (the object to be measured is pulled linearly with respect to the floor surface) or rotational sliding (for example, the object to be measured is pulled with respect to the floor surface on the circumference). For example). Furthermore, as an example of the linear sliding, the object to be measured and the cart are connected via a traction force detector, and the cart is brought into contact with the floor surface with the measurement surface of the object to be measured and the floor surface in contact with each other. An external force acting on the object to be measured and an acceleration acting on the object to be measured can be obtained by the traction force detector when moving, and a method of obtaining a friction coefficient by the above equation from these obtained values can be used.

本発明に係わる摩擦係数の測定装置は、被測定物と牽引力検出器を介して接続された本体と、被測定物に働く加速度を検出する加速度検出手段と、被測定物の測定面と床面とを接触させた状態で前記本体を床面に対して移動させる際の前記牽引力検出器により被測定物に働く外力、前記加速度検出手段により検出された加速度から次式により摩擦係数を算出する演算手段とを有してなる、ことを特徴とする測定装置である。   A friction coefficient measuring apparatus according to the present invention includes a main body connected to a measurement object via a traction force detector, acceleration detection means for detecting acceleration acting on the measurement object, and a measurement surface and a floor surface of the measurement object. The friction coefficient is calculated by the following equation from the external force acting on the object to be measured by the traction force detector when the main body is moved with respect to the floor surface in contact with the acceleration, and the acceleration detected by the acceleration detecting means. And a measuring device.

(数2)
μ=(F+m(gsinθ−a))/m(a+gcosθ)
但し、μは床面と被測定物との間の摩擦係数、Fは牽引力検出器により検出された床面に対して水平方向に被測定物に働く外力(N)、mは被測定物の質量(g)、gは重力加速度、aは床面に水平な方向における被測定物の加速度(m/s)、aは床面に垂直な方向における被測定物の加速度(m/s)、θは床面の傾斜角度(°)である。
(Equation 2)
μ = (F + m (g sin θ−a h )) / m (a n + g cos θ)
Where μ is the coefficient of friction between the floor surface and the object to be measured, F is the external force (N) acting on the object to be measured in the horizontal direction with respect to the floor surface detected by the traction force detector, and m is the object to be measured. weight (g), g is the gravitational acceleration, a h is the acceleration of the object to be measured in the horizontal direction to the floor surface (m / s 2), a n is the measured object in a direction perpendicular to the floor acceleration (m / s 2 ) and θ are the inclination angles (°) of the floor surface.

上記の測定装置において、本体として、例えば台車を用いることができる。この場合、台車に牽引力検出器を一体に組み合わせると共に、被測定物を保持するための保持部を設け、この保持手段と牽引力検出器とを着脱自在に連結する構成としても良いものである。これにより、保持手段を容易に取り替えることができる。そして、予め複数の被測定物をそれぞれ別の保持手段に固定保持させておくことで、保持部を差し替えるだけで複数の被測定物の摩擦係数の測定を行うことができ、測定処理の迅速化が図ることができる。   In the above measuring apparatus, for example, a carriage can be used as the main body. In this case, the traction force detector may be integrally combined with the carriage, a holding portion for holding the object to be measured may be provided, and the holding means and the traction force detector may be detachably connected. Thereby, a holding means can be replaced easily. In addition, by holding a plurality of objects to be measured in advance on different holding means, it is possible to measure the friction coefficient of the objects to be measured by simply replacing the holding part, thereby speeding up the measurement process. Can be planned.

また、必要に応じて、台車に手押し部や牽引フックなどを設けることで、台車を手押ししたり、あるいは車などで牽引して移動させながら測定を行うことができる。   In addition, if necessary, by providing a hand pressing unit, a towing hook, or the like on the cart, measurement can be performed while manually pushing the cart or moving it by towing the vehicle.

その他、上記の本体として小型の筐体などを用いることで携帯型或いは卓上型の摩擦測定装置を構成することもできる。   In addition, a portable or table-type friction measuring device can be configured by using a small casing or the like as the main body.

また、本発明の方法および装置において得られた摩擦係数は静摩擦係数と動摩擦係数とに容易に判別ないし分別することができる。即ち、加速度aを積分(定積分)して被測定物の速度v(すべり速度)を算出し、この速度がゼロの状態から正になる直前までのタイミングで得られる摩擦係数が静摩擦係数(実際には、速度v>0となる最初の時刻において上記式により算出される摩擦係数が静摩擦係数)であり、それ以後の速度が正である状態の摩擦係数が動摩擦係数として判別される。 Further, the friction coefficient obtained in the method and apparatus of the present invention can be easily discriminated or classified into a static friction coefficient and a dynamic friction coefficient. That is, the acceleration a h is integrated (constant integration) to calculate the velocity v h (sliding velocity) of the object to be measured, and the friction coefficient obtained at the timing from when the velocity is zero to just before the velocity becomes positive is the static friction coefficient. (In actuality, the friction coefficient calculated by the above equation at the first time when the speed v h > 0 is the static friction coefficient), and the friction coefficient in a state where the speed thereafter is positive is determined as the dynamic friction coefficient. .

(A)から(C)は本発明の摩擦係数測定方法の原理を示した説明図である。(A) to (C) is an explanatory view showing the principle of the friction coefficient measuring method of the present invention. (A)は本発明の摩擦係数測定装置の実施例の側面図、(B)は同じく平面図である。(A) is a side view of the Example of the friction coefficient measuring apparatus of this invention, (B) is a top view similarly. 図2の実施例の摩擦係数測定装置を構成する牽引力検出部を詳細に示した説明図。Explanatory drawing which showed in detail the tractive force detection part which comprises the friction coefficient measuring apparatus of the Example of FIG. (A)は図2の摩擦係数計測装置を構成する保持部の平面図、(B)は同じく側面図である。(A) is a top view of the holding | maintenance part which comprises the friction coefficient measuring apparatus of FIG. 2, (B) is a side view similarly. 図2の摩擦係数測定装置を構成する制御部を例示した説明図。Explanatory drawing which illustrated the control part which comprises the friction coefficient measuring apparatus of FIG. (A)は図2の摩擦係数測定装置の使用例を示した説明図、(B)は同じく他の使用例を示した説明図である。(A) is explanatory drawing which showed the usage example of the friction coefficient measuring apparatus of FIG. 2, (B) is explanatory drawing which showed the other usage example similarly. (A)、(B)は本発明の摩擦係数測定装置の保持部の他の例を示した説明図である。(A), (B) is explanatory drawing which showed the other example of the holding | maintenance part of the friction coefficient measuring apparatus of this invention. (A)、(B)は本発明の摩擦係数測定装置の保持部の別の例を示した説明図である。(A), (B) is explanatory drawing which showed another example of the holding | maintenance part of the friction coefficient measuring apparatus of this invention. (A)から(C)は本発明の摩擦係数測定方法により得られたデータを例示したグラフである。(A) to (C) are graphs illustrating data obtained by the friction coefficient measurement method of the present invention.

以下に、添付図面を参照して、本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

まず、図1を参照して、本発明に係わる摩擦測定方法の原理を説明する。
図1(A)から(C)は質量mの物体である被測定物1が床面2に対して水平な方向に牽引力としての外力Fを受け,すべり運動をしている力学系を例示したものである。この力学系において、床面2の傾斜角度、具体的には被測定物1の牽引方向Dにおいて水平面3(水平線)に対する床面2の角度をθとして、図1(A)は被測定物1が斜面である床面2に対して下る場合(つまり0<θ<π/2 )を、図1(B)は被測定物1が水平な面である床面2を滑り運動する場合(つまりθ=0)を、図1(c)は被測定物1が斜面である床面2を上る場合(つまり−π/2<θ<0)を、それぞれ表している。
First, the principle of the friction measurement method according to the present invention will be described with reference to FIG.
FIGS. 1A to 1C exemplify a dynamic system in which an object 1 to be measured, which is an object of mass m, receives an external force F as a traction force in a direction horizontal to the floor surface 2 and performs a sliding motion. Is. In this dynamic system, the inclination angle of the floor surface 2, specifically, the angle of the floor surface 2 with respect to the horizontal surface 3 (horizontal line) in the pulling direction D of the device under test 1 is θ, and FIG. FIG. 1B shows a case where the DUT 1 slides on the floor 2 which is a horizontal surface (that is, 0 <θ <π / 2). FIG. 1C shows a case where the DUT 1 goes up the floor 2 which is an inclined surface (that is, −π / 2 <θ <0).

ここで、上記の力学系における被測定物1の床面2に水平な方向と垂直な方向の運動方程式は,それぞれ以下の式となる。なお、a、aはそれぞれ床面2に水平な方向、垂直な方向に生じる被測定物1の加速度、Fは被測定物1を床面2に対して水平に牽引する力、fとfはそれぞれ床面2から被測定物1に作用する反力、gは重力加速度である
ma=F+mgsinθ−f
ma=f−mgcosθ
また、上記2つの 式から、物体(被測定物)と床面との間の摩擦係数μは以下の式となる。
μ=fh/fn=(F+m(gsinθ−a))/m(a+gcosθ)
Here, the equations of motion in the direction horizontal to the floor surface 2 of the DUT 1 in the above dynamic system are respectively the following equations. Incidentally, a h, a n is the horizontal direction, respectively to the floor 2, the DUT 1 in acceleration generated in a direction perpendicular, F is the force for pulling horizontally through the DUT 1 to the floor surface 2, f h And f n are reaction forces acting on the DUT 1 from the floor surface 2 and g is a gravitational acceleration. Ma h = F + mg sin θ−f h
ma n = f n −mg cos θ
Further, from the above two equations, the friction coefficient μ between the object (object to be measured) and the floor surface is as follows.
μ = fh / fn = (F + m (g sin θ−a h )) / m (a n + g cos θ)

ここで、上記の得られた摩擦係数が静摩擦係数であるか、あるいは動摩擦係数であるかは、加速度aを積分(定積分)して被測定物1の速度v(すべり速度)を算出し、この速度がゼロから正になるタイミング、つまり速度v>0となる最初の時刻において上記式により算出される摩擦係数が静摩擦係数とし、それ以後の速度v>0である状態の摩擦係数が動摩擦係数として判別される。 Here, whether the obtained friction coefficient is a static friction coefficient or a dynamic friction coefficient is calculated by integrating the acceleration a h (constant integration) and calculating the speed v h (sliding speed) of the DUT 1. and, positive going timing the speed from zero, i.e. the friction coefficient calculated by the above equation is the coefficient of static friction at the first time that the velocity v h> 0, it friction subsequent velocity v h> 0 in a state The coefficient is determined as the dynamic friction coefficient.

このように、本発明によれば、被測定物1に働く外力つまり牽引力F、上記の加速度a、aおよび床面の傾斜角度θを測定することで、静摩擦係数および加速度による慣性力を補正した動摩擦係数を測定することができる。 Thus, according to the present invention, the external force, i.e. traction force F acting on the measurement object 1, the above acceleration a h, by measuring the inclination angle θ of a n and the floor, the inertial force due to static friction coefficient and the acceleration The corrected dynamic friction coefficient can be measured.

次に、上記の原理に基づく本願発明の測定方法の実施例を説明する。
(実施例1)
図2に、本願発明の原理を利用して被測定物の摩擦係数を測定するための、実施例に係わる測定装置を例示した。この測定装置は、被測定物を固定保持すると共に所定の方向に移動させる機能を有する台車部10、この移動に伴う被測定物と床面との間に働く力を検出するための牽引力検出部20、被測定物を保持するための保持手段
30、制御部40などから構成される。
Next, an embodiment of the measurement method of the present invention based on the above principle will be described.
Example 1
FIG. 2 illustrates a measuring apparatus according to an embodiment for measuring the friction coefficient of the object to be measured using the principle of the present invention. The measuring apparatus includes a carriage unit 10 having a function of fixing and holding a measured object and moving the measured object in a predetermined direction, and a traction force detecting unit for detecting a force acting between the measured object and the floor surface accompanying the movement. 20, a holding means 30 for holding the object to be measured, a control unit 40, and the like.

台車10は、荷台11、該荷台11の前後左右に合計4個設けられ回転自在に軸支された車輪12、荷台11の図2において右側に固着された手押し部材13などから構成される。これら荷台11、車輪12および手押し部材13などは、アルミやSUSなどの金属材、ABS樹脂などの合成樹脂材などの適宜な材料(車輪12の場合はその他、ゴムなどの弾性材)で構成すれば良い。また、荷台11の図2において左側には、図中上下方向に延在する取付部材14、15が設けられている。これら取付部材14、15には、後述するように牽引力検出部20が取り付けられている。   The cart 10 includes a loading platform 11, a total of four wheels 12 provided on the front, rear, left and right of the loading platform 11, which are rotatably supported by shafts, a hand pressing member 13 fixed to the right side of the loading platform 11 in FIG. These cargo bed 11, wheel 12 and hand pushing member 13 are made of an appropriate material such as a metal material such as aluminum or SUS, or a synthetic resin material such as ABS resin (in the case of wheel 12, other elastic material such as rubber). It ’s fine. Further, on the left side of the loading platform 11 in FIG. 2, mounting members 14 and 15 extending in the vertical direction in the figure are provided. A traction force detector 20 is attached to these attachment members 14 and 15 as will be described later.

牽引力検出部20は、図3をさらに参照して、牽引力検出器(例えば、力を信号(データ)に変換するセンサであるロードセル)21、牽引力検出器21の両側に連結されたリンクボール22、23、リンクボール22に上記取付部材14を介して連結された牽引フック25、リンクボール23に連結されたボールスプライン26、ボールスプライン26に連結された牽引棒取付部材27、および牽引棒取付部材27に固定され図3において上方に延在する円筒状の牽引棒28などから構成されている。そして、リンクボール22の左端部と牽引フック25の右側部は上記の取付部材14に固着されており、またボールスプライン26は取付部材15に固着されており、これにより牽引力検出部20は取付部材14、15を介して台車10に一体的に取り付けられている。   The traction force detection unit 20 further includes a traction force detector (for example, a load cell that is a sensor that converts force into a signal (data)) 21, link balls 22 connected to both sides of the traction force detector 21, with reference to FIG. 23, a tow hook 25 connected to the link ball 22 via the mounting member 14, a ball spline 26 connected to the link ball 23, a tow bar mounting member 27 connected to the ball spline 26, and a tow bar mounting member 27 It is comprised from the cylindrical pulling rod 28 etc. which are being fixed to and extended upwards in FIG. The left end portion of the link ball 22 and the right side portion of the traction hook 25 are fixed to the mounting member 14, and the ball spline 26 is fixed to the mounting member 15. 14 and 15 are integrally attached to the carriage 10.

台車部10を構成する荷台11の後部両側にそれぞれ車輪12,12を軸承して、両車輪12,12の間には図2の後部がわに開口部17を設けてある。そのため、図4に示した靴4、図7に示した平板状の測定片6、図8に示したタイヤ7などを装着した保持部30を床面2上に置いた状態でこの台車10を後退させれば、被測定物を持ち上げたりすることなく前記開口部17内に位置する牽引棒28に取り付けて、摩擦係数の測定作業の準備を比較的容易に行うことができる。この場合、台車10を後退させないで、床面2上に置いてある被測定物を前進させて取り付けることも可能である。   Wheels 12, 12 are supported on both sides of the rear part of the loading platform 11 constituting the carriage part 10, and the rear part of FIG. For this reason, the carriage 10 is placed in a state in which the holding unit 30 on which the shoe 4 shown in FIG. 4, the flat measurement piece 6 shown in FIG. 7, the tire 7 shown in FIG. If it is moved backward, it can be attached to the tow bar 28 located in the opening 17 without lifting the object to be measured, and preparation for measuring the friction coefficient can be made relatively easily. In this case, the object to be measured placed on the floor 2 can be moved forward and attached without moving the carriage 10 backward.

ここで、ボールスプライン26を上記のようにリンクボール23と牽引棒取付部材27との間に設けることで、牽引棒取付部材27からリンクボール23に伝わる力の内の図3において右方向つまりD方向の力である牽引力以外の力を抑制でき、牽引力を精度良くリンクボール23を介して牽引力検出器21に伝達することができる。また、上記の例ではリンクボール22と牽引フック25とを取付部材14を介して間接的に連結したが、リンクボール22と牽引フック25とを直接連結する構造としても良い。また、牽引棒28は円筒状、つまり断面円形としたが、断面を多角形、例えば四角形や三角形とすることもできる。さらに、牽引棒28は剛性を考慮して中実が好ましいが、必要な剛性が確保できれば中空でも良い。   Here, by providing the ball spline 26 between the link ball 23 and the tow bar mounting member 27 as described above, the force transmitted from the tow bar mounting member 27 to the link ball 23 in the right direction in FIG. A force other than the traction force, which is a directional force, can be suppressed, and the traction force can be accurately transmitted to the traction force detector 21 via the link ball 23. In the above example, the link ball 22 and the traction hook 25 are indirectly connected via the attachment member 14. However, the link ball 22 and the traction hook 25 may be directly connected. The tow bar 28 has a cylindrical shape, that is, a circular cross section, but the cross section may be a polygon, for example, a square or a triangle. Furthermore, the tow bar 28 is preferably solid considering rigidity, but may be hollow as long as necessary rigidity can be secured.

保持手段30は、図4をさらに参照して、上記の牽引棒28との連結用孔31aが中央部に形成された連結片31、該連結片31の両端部に一端がそれぞれ固着された一対のレバー32、32、これらレバー32、32の他端の間に回動自在に連結された取付棒33、取付棒33の略中央部に固着された図4(B)において上下方向に延在するロッド34などから構成されている。   Referring to FIG. 4 further, the holding means 30 is a pair of connection pieces 31 in which a hole 31a for connection with the pulling rod 28 is formed in the center, and one end fixed to both ends of the connection piece 31. Lever 32, 32, a mounting rod 33 rotatably connected between the other ends of these levers 32, 32, and extending in the vertical direction in FIG. It is comprised from the rod 34 etc. which do.

ロッド34は、図4(B)に示したように、上側が小径部34aで下側が大径部34bとなっており、これら小径部34aと大径部34bとの間に形成される段部34cには、円形の支持板35が載置され係止されている。この支持板35上には中央に孔が開いた円形の錘36が1つないし複数個載置される。錘36はその中央孔をロッド34の小径部34aに通すことでロッド34に固定される。錘36の重量、あるいは載置する個数は、後述する被測定物に加えるべき荷重に応じて適宜調整される。   As shown in FIG. 4B, the rod 34 has a small diameter portion 34a on the upper side and a large diameter portion 34b on the lower side, and a step portion formed between the small diameter portion 34a and the large diameter portion 34b. A circular support plate 35 is placed and locked to 34c. On the support plate 35, one or more circular weights 36 having a hole in the center are placed. The weight 36 is fixed to the rod 34 by passing the central hole through the small diameter portion 34 a of the rod 34. The weight of the weight 36 or the number of the weights 36 is appropriately adjusted according to the load to be applied to the object to be measured which will be described later.

ロッド34の下端、つまりロッド34の大径部34bの下側には被測定物が設けられる。図2から図4に例示した実施例では、被測定物として靴4が用いられ、この靴4の底部、つまり靴底と床面2との間の摩擦係数が測定される。
図4(B)を特に参照して、ロッド34の大径部34bが靴4の内側(図示した例では靴4の踵部分の内側に上部から挿入され、大径部34bの底面が踵部分の内側に当接した状態となっている。このとき、ロッド34に取り付けられた錘36を含む荷重(錘36や支持板35およびロッド34の重さの合計)が大径部34bの底面を介して靴4の踵部分の内側に加わり、上記荷重(垂直荷重)により靴4の踵部分の外側下面が下方向に押圧された状態となる。
An object to be measured is provided at the lower end of the rod 34, that is, below the large-diameter portion 34 b of the rod 34. In the embodiment illustrated in FIGS. 2 to 4, a shoe 4 is used as an object to be measured, and a friction coefficient between the bottom of the shoe 4, that is, the shoe bottom and the floor surface 2 is measured.
With particular reference to FIG. 4B, the large-diameter portion 34b of the rod 34 is inserted from the top inside the shoe 4 (in the illustrated example, inside the heel portion of the shoe 4, and the bottom surface of the large-diameter portion 34b is the heel portion. At this time, a load including the weight 36 attached to the rod 34 (the total weight of the weight 36, the support plate 35 and the rod 34) is applied to the bottom surface of the large-diameter portion 34b. Thus, the outer lower surface of the heel portion of the shoe 4 is pressed downward by the load (vertical load).

さらに、靴4の内部には加速度検出手段、即ち、加速度センサ5が設けられている。この加速度センサ5は、これが取り付けられた部材に加わる所定方向の加速度を検出し、この検出信号をデータ出力するものである。本願発明では、加速度センサ5は、床面に対して少なくとも上下方向(Y軸方向)と左右方向(X軸方向)の2方向の加速度を検出するものが使用される。本実施例では、さらにZ軸方向の3方向の加速度を検出する加速度センサが使用される。加速度センサ5はさらに、これが取り付けられた物体の平面に対する傾き(傾斜角度)を検知し、この検知信号をデータ出力する。   Furthermore, acceleration detecting means, that is, an acceleration sensor 5 is provided inside the shoe 4. The acceleration sensor 5 detects acceleration in a predetermined direction applied to a member to which the acceleration sensor 5 is attached, and outputs the detection signal as data. In the present invention, an acceleration sensor 5 that detects at least accelerations in two directions of the vertical direction (Y-axis direction) and the horizontal direction (X-axis direction) with respect to the floor surface is used. In this embodiment, an acceleration sensor that detects acceleration in three directions in the Z-axis direction is further used. The acceleration sensor 5 further detects an inclination (inclination angle) with respect to the plane of the object to which the acceleration sensor 5 is attached, and outputs this detection signal as data.

この種の加速度センサとしては、例えばFreescale社製の3軸加速度センサモジュールが使用される。この加速度センサ5は、例えば図4(B)に例示したように靴4の内部の底面に固着することで、靴4と一体的に移動する。
なお、図示した例では加速度センサ5を靴4の踵部内側に設けたが、これに限定されず、例えば靴4の踵部の外側、靴4のつま先部の内側あるいは外側上面などの適宜な場所に設けることもできる。あるいは、靴4の加速度検出精度は幾分低くなるが、靴4を押圧するロッド34の上部に一体的に固着したり、ロッド34の内部に形成した凹部内に収容して一体的に固定する構成でも良い。
As this type of acceleration sensor, for example, a 3-axis acceleration sensor module manufactured by Freescale is used. The acceleration sensor 5 moves integrally with the shoe 4 by being fixed to the bottom surface inside the shoe 4 as illustrated in FIG. 4B, for example.
In the illustrated example, the acceleration sensor 5 is provided on the inner side of the heel of the shoe 4. However, the present invention is not limited to this. For example, an appropriate sensor such as the outer side of the heel of the shoe 4, the inner side of the toe part of the shoe 4, It can also be provided at a place. Alternatively, although the acceleration detection accuracy of the shoe 4 is somewhat lowered, the shoe 4 is integrally fixed to the upper portion of the rod 34 that presses the shoe 4 or is housed in a recess formed inside the rod 34 and fixed integrally. It may be configured.

なお、上記の加速度センサに代えて、加速度検出手段として、公知の画像処理を用いた手法を用いることができる。この画像処理による加速度検出手段としては、例えば、靴4に赤外線反射材を固着すると共にこの赤外線反射材からの反射光(赤外線)を検出する赤外線カメラを用い、赤外線カメラにより検出された赤外線反射材の移動つまり位置の時間変化に基づいて赤外線反射材が固着された靴4に加わる加速度を演算し算出する構成とすれば良い(例えば、靴4の位置データを2回微分することで加速度を算出する)。この種の加速度検出手段としては、例えば、Oxford Matrix社のVicon360として市販された3次元動作解析装置を用いることができる。   In place of the acceleration sensor described above, a method using known image processing can be used as the acceleration detection means. As the acceleration detecting means by this image processing, for example, an infrared reflecting material detected by an infrared camera using an infrared camera that fixes an infrared reflecting material to the shoe 4 and detects reflected light (infrared ray) from the infrared reflecting material is used. In other words, the acceleration applied to the shoe 4 to which the infrared reflecting material is fixed may be calculated and calculated based on the movement of the lens, that is, the time change of the position (for example, the acceleration is calculated by differentiating the position data of the shoe 4 twice). To do). As this type of acceleration detection means, for example, a three-dimensional motion analysis device commercially available as Vicon 360 of Oxford Matrix can be used.

制御部40には、図5をさらに参照して、すべり速度検出部41、摩擦係数演算部42、摩擦係数判別部43などを構成する、例えばコンピュータおよびその周辺機器からなる機器が収納されている。すべり速度検出部41には加速度センサ5からの所要の加速度データ(床面に平行な方向の加速度:加速度a)が入力される。すべり速度検出部41はこの加速度データを定積分し、被測定物(この実施例の場合は靴4)のすべり速度(床面に平行な方向の速度:速度v)を算出する。このすべり速度データは摩擦係数判別部43に入力される。 With further reference to FIG. 5, the control unit 40 accommodates, for example, a computer and its peripheral devices that constitute a sliding speed detection unit 41, a friction coefficient calculation unit 42, a friction coefficient determination unit 43, and the like. . The required acceleration data from the acceleration sensor 5 (acceleration in a direction parallel to the floor surface: acceleration a h ) is input to the slip speed detection unit 41. The slip speed detection unit 41 integrates the acceleration data and calculates the slip speed (speed in the direction parallel to the floor surface: speed v h ) of the object to be measured (the shoe 4 in this embodiment). The slip speed data is input to the friction coefficient determination unit 43.

摩擦係数演算部42には、加速度センサ5からの加速度データ(加速度ah、an)および傾きデータS、および牽引力データ(牽引力F)が逐次的に入力される。摩擦係数演算部42は、これら入力されたデータから、以下の式によって摩擦係数を算出してデータ出力する。但し、μは床面と被測定物(靴4)との間の摩擦係数、Fは牽引力検出器により検出された床面に対して水平方向に被測定物(靴)に働く外力(N)、mは被測定物(靴)の質量(g)、gは重力加速度、aは床面に水平な方向における被測定物(靴)の加速度(m/s)、aは床面に垂直な方向における被測定物(靴)の加速度(m/s)である。また、θは床面の傾斜角度(°)であり、−π/2<θ<π/2である。 The friction coefficient calculation unit 42 is sequentially inputted with acceleration data (acceleration ah, an), inclination data S, and traction force data (traction force F) from the acceleration sensor 5. The friction coefficient calculation unit 42 calculates the friction coefficient from the input data by the following formula and outputs the data. Where μ is a coefficient of friction between the floor surface and the object to be measured (shoe 4), and F is an external force (N) acting on the object to be measured (shoe) in the horizontal direction with respect to the floor surface detected by the traction force detector. , m is the measured object mass (shoes) (g), g is the gravitational acceleration, a h is the measured object in the horizontal direction to the floor surface acceleration (shoes) (m / s 2), a n is the floor The acceleration (m / s 2 ) of the object to be measured (shoes) in the direction perpendicular to Further, θ is the inclination angle (°) of the floor surface, and −π / 2 <θ <π / 2.

(数3)
μ=(F+m(gsinθ−a))/m(a+gcosθ)
(Equation 3)
μ = (F + m (g sin θ−a h )) / m (a n + g cos θ)

また、摩擦係数判定部43には、摩擦係数演算部42から出力される摩擦係数データと、すべり速度検出部41から出力されるすべり速度データが入力される。そして、摩擦係数判定部43は、このすべり速度が正になる(つまり、すべり速度v>0)タイミングを検出すると共に、このタイミング以前に入力される摩擦係数を静摩擦係数と判定し、またこのタイミング以降に入力される摩擦係数を動摩擦係数と判定し、それぞれ静摩摩擦係数μs、動摩擦係数μkとして逐次的にデータ出力する。 Further, the friction coefficient determination unit 43 receives the friction coefficient data output from the friction coefficient calculation unit 42 and the slip speed data output from the slip speed detection unit 41. Then, the friction coefficient determination unit 43 detects the timing at which the slip speed becomes positive (that is, the slip speed v h > 0), determines the friction coefficient input before this timing as the static friction coefficient, and The friction coefficient input after the timing is determined as a dynamic friction coefficient, and data is sequentially output as a static friction coefficient μs and a dynamic friction coefficient μk, respectively.

上記の各データ、つまり加速度データ、すべり速度データ、傾きデータ、摩擦係数データ(静摩擦係数データ、動摩擦係数データ)などは、図示しない記憶装置(例えば、ハードディスク、データロガーなど)に逐次的または所要の間隔で記憶される。   Each of the above data, that is, acceleration data, sliding speed data, inclination data, friction coefficient data (static friction coefficient data, dynamic friction coefficient data), etc. are stored in a storage device (not shown) such as a hard disk or a data logger sequentially or as required. Stored at intervals.

なお、制御部40には上記の他、必要に応じて、各種データを表示するためのCRTやLCDなどの表示部、これらデータを印刷するための印刷部などを設けることができる。また、上記の構成を有する制御部を記録装置部分(牽引力検出器21からの外力、加速度センサ5からの加速度データや傾きデータ、および任意的にこれらデータから算出した摩擦係数を経時的に記録するデータロガーなどの記憶装置)と、その他の装置部分(表示部や印刷部など)に分割する構成としても良い。この場合、その他の装置部分と記録装置部分とは、ケーブルや赤外線通信などで接続される。   In addition to the above, the control unit 40 may be provided with a display unit such as a CRT or LCD for displaying various data, a printing unit for printing these data, and the like as necessary. Further, the control unit having the above-described configuration records the recording device portion (external force from the traction force detector 21, acceleration data and inclination data from the acceleration sensor 5, and optionally, a friction coefficient calculated from these data over time. A configuration may be used in which the data is divided into a storage device such as a data logger) and other device parts (such as a display unit and a printing unit). In this case, the other device portion and the recording device portion are connected by a cable or infrared communication.

以上の構成を有する測定装置は、例えば次のように使用される。即ち、上記のように靴4の靴底と床面との摩擦係数を測定する場合、まず、図2のように保持部30の連結片
31の連結用孔31aを牽引力検出部20の連結棒28に挿入して両者を連結すると共に保持部30のロッド34により靴4の靴底が床面2に接地して押圧された状態とする。そして、この状態において、図6(A)のように人間Mにより手押し部材13を前方に押し進ませて、測定装置に図において左方向の力を加える。
The measuring apparatus having the above configuration is used as follows, for example. That is, when measuring the friction coefficient between the shoe sole and the floor surface of the shoe 4 as described above, first, the connecting hole 31a of the connecting piece 31 of the holding unit 30 is connected to the connecting rod of the traction force detecting unit 20 as shown in FIG. The shoe sole of the shoe 4 is brought into contact with the floor surface 2 and pressed by the rod 34 of the holding unit 30. In this state, the hand pushing member 13 is pushed forward by the human M as shown in FIG. 6A, and a leftward force is applied to the measuring device in the drawing.

ここで、靴4の靴底と床面2との間の摩擦力が測定装置に上記のように左方向の力を加えた際に牽引力検出部20の牽引力検出器21を介して靴底に加わる外力以上である場合には靴4は床面2を滑ることはない。このとき、牽引力検出器21に加わる外力が入力されることから、摩擦係数演算部42において上記の式に基づいて摩擦係数μが判別部43に出力される。   Here, when the frictional force between the shoe sole of the shoe 4 and the floor surface 2 applies a leftward force to the measuring device as described above, the force is applied to the shoe sole via the traction force detector 21 of the traction force detector 20. When the external force is greater than the applied force, the shoe 4 does not slide on the floor surface 2. At this time, since the external force applied to the traction force detector 21 is input, the friction coefficient calculation unit 42 outputs the friction coefficient μ to the determination unit 43 based on the above formula.

一方、測定装置に加わる力が増大して上記外力が上記摩擦力を越えたタイミングで、測定装置はゆっくりと移動を開始し、また靴底が床面2上をすべって摩擦しながら移動するようになる。即ち、靴4は所定のすべり速度で、靴底と床面2との間で動摩擦力を生じつつ移動する。そして、上記の越えたタイミングで、すべり速度検出部41の出力であるVはゼロから正に変化し、この変化したタイミングで摩擦係数判別部43は静摩擦係数μsを出力する。また、このタイミング以後、つまりV>0の状態では、摩擦係数判別部43は摩擦係数演算部42からの出力を動摩擦係数μkとして出力する。以上の手順により、靴底と床面2との間の摩擦係数(静摩擦係数、動摩擦係数)を測定し、各種データを収集する。 On the other hand, at the timing when the force applied to the measuring device increases and the external force exceeds the friction force, the measuring device starts to move slowly, and the shoe sole slides on the floor surface 2 and moves while rubbing. become. That is, the shoe 4 moves at a predetermined sliding speed while generating a dynamic friction force between the shoe sole and the floor surface 2. At the timing exceeding the above, Vh, which is the output of the sliding speed detection unit 41, changes from zero to positive, and at this changed timing, the friction coefficient determination unit 43 outputs the static friction coefficient μs. In addition, after this timing, that is, in a state where V h > 0, the friction coefficient determination unit 43 outputs the output from the friction coefficient calculation unit 42 as the dynamic friction coefficient μk. By the above procedure, the friction coefficient (static friction coefficient, dynamic friction coefficient) between the shoe sole and the floor surface 2 is measured, and various data are collected.

図6(B)は、測定装置を人間ではなく車で移動させる場合の一例である。この例では、牽引フック25を鎖で車Cと連結し、靴4の靴底と床面2とを接触させた状態で車Cを図において左方向に移動させる。   FIG. 6B is an example in which the measuring apparatus is moved by a vehicle instead of a human. In this example, the tow hook 25 is connected to the car C with a chain, and the car C is moved in the left direction in the drawing in a state where the shoe sole of the shoe 4 and the floor surface 2 are in contact with each other.

なお、以上の例では靴4の底面と床面2との間の摩擦係数を計測する場合を例示したが、靴以外の物体と床面2との間の摩擦係数を計測する場合にも、本願の測定装置を適用することができる。   In the above example, the case of measuring the friction coefficient between the bottom surface of the shoe 4 and the floor surface 2 is illustrated, but when measuring the friction coefficient between an object other than the shoe and the floor surface 2, The measuring device of the present application can be applied.

即ち、図7は、図4の靴4に代えて所要の測定片6を固着した例を示したものである。この測定片6は、所要の厚さを有する長方形状のものであり、材質はゴム、例えば靴底部分(ソール)に使用される合成樹脂である。つまり、図4の例は実際の靴の摩擦係数を測定するものであるのに対して、図7の例は靴底の材料自体の摩擦係数を測定するものである。その他、測定片6の材質としては、例えばカーペット材(床面とカーペットとの間の摩擦係数測定の場合)などを適宜用いることもできる。   That is, FIG. 7 shows an example in which a required measurement piece 6 is fixed instead of the shoe 4 of FIG. The measurement piece 6 is a rectangular shape having a required thickness, and the material thereof is rubber, for example, a synthetic resin used for a shoe sole portion (sole). That is, the example of FIG. 4 measures the friction coefficient of an actual shoe, whereas the example of FIG. 7 measures the friction coefficient of the shoe sole material itself. In addition, as a material of the measurement piece 6, for example, a carpet material (in the case of measuring the friction coefficient between the floor and the carpet) can be used as appropriate.

また、図8は、図4の靴4に代えて車両用のタイヤ7を用いた場合の例である。この場合、取付棒33をタイヤ7の中心軸に通しタイヤ7を固定して取り付けてある。そして、ホイール、例えばその内側に加速度センサを設置し、この状態で測定装置を上記のように移動させることで、タイヤ7の表面のゴム材と床面との間の摩擦係数を測定することができる。   FIG. 8 shows an example in which a vehicle tire 7 is used instead of the shoe 4 of FIG. In this case, the mounting rod 33 is passed through the central axis of the tire 7 so that the tire 7 is fixed. And, by installing an acceleration sensor on the inside of the wheel, for example, and moving the measuring device as described above in this state, the friction coefficient between the rubber material on the surface of the tire 7 and the floor surface can be measured. it can.

(実施例2)
実施例1で示される摩擦係数測定装置を用いて、以下の手順で、靴4の靴底と床面2との間の摩擦係数を測定する実験を行った。即ち、実験に用いた床面2は水平(θ=0)であり、また床反力計測装置(フォースプレート)を埋設した。そして、このフォースプレート上に表面が滑らかなステンレス板を固定し、その上に食用油を塗布した。さらに、その上に靴4の底面を接地させた状態で測定装置を所定の速度で移動させた。このとき、靴4の底面と床面2との間の摩擦係数μaは、靴4とこの靴に加わる荷重(錘36、ロッド34および支持板35)の合計質量をm、牽引力検出部20(ロードセル)により検出される外力(牽引力)をF、靴4に取り付けられた加速度センサ5によって測定される床面2に水平な方向、垂直な方向に生じる加速度をそれぞれa、aとすると、次式Aで表すことができる。
μ=(F−ma)/m(a+g) A
(Example 2)
Using the friction coefficient measuring apparatus shown in Example 1, an experiment for measuring the friction coefficient between the shoe sole of the shoe 4 and the floor surface 2 was performed by the following procedure. That is, the floor surface 2 used in the experiment was horizontal (θ = 0), and a floor reaction force measuring device (force plate) was embedded. A stainless steel plate having a smooth surface was fixed on the force plate, and edible oil was applied thereon. Further, the measuring device was moved at a predetermined speed with the bottom surface of the shoe 4 grounded thereon. At this time, the friction coefficient μa between the bottom surface of the shoe 4 and the floor surface 2 is the total mass of the shoe 4 and the load (weight 36, rod 34, and support plate 35) applied to the shoe m, and the traction force detection unit 20 ( external force (tractive force) F detected by the load cell), the floor 2 in the horizontal direction measured by the acceleration sensor 5 attached to the shoe 4, a h acceleration generated in a direction perpendicular respectively, when a n, It can be represented by the following formula A.
μ a = (F-ma h ) / m (a n + g) A

一方、靴4に働く加速度を考慮せずに、牽引力検出部20(ロードセル)から得られる外力Fと靴4およびその荷重mのみを用いて計算された摩擦係数μbは、次式Bで求められる。
μb=f/mg B
On the other hand, the friction coefficient μb calculated using only the external force F obtained from the traction force detector 20 (load cell), the shoe 4 and its load m without considering the acceleration acting on the shoe 4 is obtained by the following equation B. .
μb = f / mg B

さらに、フォースプレートによって計測された床反力の水平成分fh、垂直成分
fnから求められる摩擦係数μcは、次式Cの通りである。
μc=fh/fn C
Further, the friction coefficient μc obtained from the horizontal component fh and the vertical component fn of the floor reaction force measured by the force plate is expressed by the following equation C.
μc = fh / fn C

ここで、フォースプレートは靴4の靴底と床面2との間に作用する摩擦力と垂直荷重をそれぞれfh、fnとして直接測定することができる。よって、式Cで計算される摩擦係数と、式Aで計算される加速度の影響を補正した摩擦係数を比較することによって、本測定システムの妥当性を検証することができる。なお、本発明における摩擦係数測定装置ではフォースプレートは不要である。   Here, the force plate can directly measure the frictional force and the vertical load acting between the shoe sole of the shoe 4 and the floor surface 2 as fh and fn, respectively. Therefore, the validity of the present measurement system can be verified by comparing the friction coefficient calculated by Expression C with the friction coefficient corrected by the acceleration calculated by Expression A. Note that the friction coefficient measuring device according to the present invention does not require a force plate.

図9に,加速度計によって計測された靴4の水平方向の加速度(図9(A))、この水平方向の加速度を定積分することで算出された靴の水平方向の移動速度(すべり速度)(図9(B)、式AからCを用いて計算された各摩擦係数μa、μb、μc(図9(C))を示した。   FIG. 9 shows the horizontal acceleration of the shoe 4 measured by the accelerometer (FIG. 9A), and the horizontal movement speed (sliding speed) of the shoe calculated by definite integration of the horizontal acceleration. (FIG. 9B, friction coefficients μa, μb, and μc calculated using equations A to C (FIG. 9C) are shown.

図9(B)から、床面2に対する靴4の靴底のすべり速度は増加した後に減少していることが判る。なお、図9(B)において、すべり速度が0m/sを越えたタイミングにおける摩擦係数が静摩擦係数となる。   From FIG. 9B, it can be seen that the sliding speed of the sole of the shoe 4 with respect to the floor surface 2 decreases after increasing. In FIG. 9B, the friction coefficient at the timing when the sliding speed exceeds 0 m / s is the static friction coefficient.

一方、図9(C)より、式Bを用いて計算された加速度補正のない摩擦係数は、フォースプレートから得られた摩擦係数に対して、すべり出し後は、加速域において高い値を示すが、減速域では低い値を示すことが判る。また、靴4にかかる加速度の影響を補正した式Aで計算される摩擦係数は、すべり出しから停止までの区間において、フォースプレートから得られた摩擦係数(静摩擦係数,動摩擦係数)と非常によく一致していることが判る。
以上のことから,本発明における摩擦係数測定方法および測定装置の妥当性が実証された.
On the other hand, from FIG. 9C, the friction coefficient without acceleration correction calculated using Expression B shows a high value in the acceleration region after sliding relative to the friction coefficient obtained from the force plate. It can be seen that the deceleration range shows a low value. In addition, the friction coefficient calculated by the equation A that corrects the influence of acceleration on the shoe 4 is very similar to the friction coefficient (static friction coefficient, dynamic friction coefficient) obtained from the force plate in the section from sliding to stopping. You can see that you are doing it.
From the above, the validity of the friction coefficient measuring method and measuring device in the present invention was proved.

Claims (10)

被測定物をその測定面と床面とを接触させた状態で所定の方向に牽引することで前記床面に対して摺動させ、前記摺動の際に前記被測定物に働く外力を牽引力検出器により測定すると共に前記被測定物に働く加速度および前記床面の傾斜角度を検出し、これら外力と加速度と傾斜角度とから次式により摩擦係数を求める、摩擦係数の測定方法。
(数4)
μ=(F+m(gsinθ−ah))/m(an+gcosθ)
但し、μは床面と被測定物との間の摩擦係数、Fは牽引力検出器により検出された床面に対して水平方向に被測定物に働く外力(N)、mは被測定物の質量(g)、gは重力加速度、ahは床面に水平な方向における被測定物の加速度(m/s)、anは床面に垂直な方向における被測定物の加速度(m/s)、θは床面の傾斜角度(°)である。
The object to be measured is slid with respect to the floor surface by pulling in a predetermined direction in a state where the measurement surface and the floor surface are in contact with each other, and an external force acting on the object to be measured during the sliding is a traction force. A method for measuring a friction coefficient, which is measured by a detector, detects an acceleration acting on the object to be measured and an inclination angle of the floor surface, and obtains a friction coefficient from the external force, the acceleration, and the inclination angle by the following expression.
(Equation 4)
μ = (F + m (g sin θ−ah)) / m (an + g cos θ)
Where μ is the coefficient of friction between the floor surface and the object to be measured, F is the external force (N) acting on the object to be measured in the horizontal direction with respect to the floor surface detected by the traction force detector, and m is the object to be measured. weight (g), g is acceleration (m / s 2) of the gravitational acceleration, ah is the measured object in the horizontal direction to the floor surface, an, the acceleration of the object to be measured in a direction perpendicular to the floor surface (m / s 2 ), Θ is the inclination angle (°) of the floor surface.
前記被測定物と台車とを前記牽引力検出器を介して接続し、
前記被測定物の測定面と床面とを接触させた状態で前記台車を床面に対して移動させる際に前記被測定物に働く外力を前記牽引力検出器により測定する、請求項1記載の測定方法。
Connecting the object to be measured and the cart via the traction force detector;
The external force acting on the object to be measured when the carriage is moved with respect to the floor surface in a state where the measurement surface of the object to be measured is in contact with the floor surface is measured by the traction force detector. Measuring method.
前記加速度を利用して前記摩擦係数を静摩擦係数と動摩擦係数に判別する、請求項1または2記載の測定方法。   The measurement method according to claim 1, wherein the friction coefficient is discriminated into a static friction coefficient and a dynamic friction coefficient using the acceleration. 前記加速度を積分して得られるすべり速度により前記摩擦係数を静摩擦係数と動摩擦係数に判別する、請求項3記載の測定方法。   The measurement method according to claim 3, wherein the friction coefficient is determined as a static friction coefficient and a dynamic friction coefficient based on a sliding speed obtained by integrating the acceleration. 被測定物と牽引力検出器を介して接続された本体と、
前記被測定物に設けられた加速度検出手段および傾斜角度検出手段と、
前記被測定物の測定面と床面とを接触させた状態で前記本体を床面に対して移動させる際の前記牽引力検出器により検出された被測定物に働く外力、前記加速度検出手段により検出された前記被測定物に働く加速度と、前記傾斜角度検出手段により検出された前記床面の傾斜角度とから次式により摩擦係数を算出する演算手段とを有してなる、ことを特徴とする摩擦係数の測定装置。
(数5)
μ=(F+m(gsinθ−ah))/m(an+gcosθ)
但し、μは床面と被測定物との間の摩擦係数、Fは牽引力検出器により検出された床面に対して水平方向に被測定物に働く外力(N)、mは被測定物の質量(g)、gは重力加速度、ahは床面に水平な方向における被測定物の加速度(m/s)、anは床面に垂直な方向における被測定物の加速度(m/s)、θは床面の傾斜角度(°)である。
A main body connected to the object to be measured via a traction force detector;
Acceleration detection means and inclination angle detection means provided on the object to be measured;
An external force acting on the measurement object detected by the traction force detector when the main body is moved relative to the floor surface in a state where the measurement surface of the measurement object is in contact with the floor surface, and the acceleration detection means And a calculating means for calculating a friction coefficient by the following equation from the detected acceleration acting on the object to be measured and the inclination angle of the floor surface detected by the inclination angle detecting means. A friction coefficient measuring device.
(Equation 5)
μ = (F + m (g sin θ−ah)) / m (an + g cos θ)
Where μ is the coefficient of friction between the floor surface and the object to be measured, F is the external force (N) acting on the object to be measured in the horizontal direction with respect to the floor surface detected by the traction force detector, and m is the object to be measured. weight (g), g is acceleration (m / s 2) of the gravitational acceleration, ah is the measured object in the horizontal direction to the floor surface, an, the acceleration of the object to be measured in a direction perpendicular to the floor surface (m / s 2 ), Θ is the inclination angle (°) of the floor surface.
前記加速度を利用して前記摩擦係数を静摩擦係数と動摩擦係数に判別する摩擦係数判別部をさらに有してなる、請求項5記載の測定装置。   The measurement apparatus according to claim 5, further comprising a friction coefficient determination unit that determines the friction coefficient into a static friction coefficient and a dynamic friction coefficient using the acceleration. 前記摩擦係数判別部は、前記加速度を積分して得られるすべり速度により前記摩擦係数を静摩擦係数と動摩擦係数に判別する、請求項6記載の測定装置。   The measuring apparatus according to claim 6, wherein the friction coefficient determination unit determines the friction coefficient as a static friction coefficient and a dynamic friction coefficient based on a sliding speed obtained by integrating the acceleration. 前記本体が台車である、請求項5から7のいずれか1に記載の測定装置。   The measuring apparatus according to claim 5, wherein the main body is a cart. 被測定物を保持する保持手段をさらに有してなる、請求項8記載の測定装置。   The measuring apparatus according to claim 8, further comprising holding means for holding an object to be measured. 前記台車と前記牽引力検出器が一体に組み合わされており、前記保持手段が前記牽引力検出器に着脱自在に連結されることを特徴とする、請求項9記載の測定装置。
以上
The measuring apparatus according to claim 9, wherein the carriage and the traction force detector are integrally combined, and the holding means is detachably connected to the traction force detector.
that's all
JP2012228565A 2012-10-16 2012-10-16 Method and apparatus for measuring coefficient of friction Active JP5824439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012228565A JP5824439B2 (en) 2012-10-16 2012-10-16 Method and apparatus for measuring coefficient of friction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012228565A JP5824439B2 (en) 2012-10-16 2012-10-16 Method and apparatus for measuring coefficient of friction

Publications (2)

Publication Number Publication Date
JP2014081252A JP2014081252A (en) 2014-05-08
JP5824439B2 true JP5824439B2 (en) 2015-11-25

Family

ID=50785570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012228565A Active JP5824439B2 (en) 2012-10-16 2012-10-16 Method and apparatus for measuring coefficient of friction

Country Status (1)

Country Link
JP (1) JP5824439B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018120698B4 (en) 2017-09-08 2021-09-30 Toyo Tire & Rubber Co., Ltd. Rubber friction test method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7142460B2 (en) * 2018-05-01 2022-09-27 日邦産業株式会社 Slip resistance coefficient measuring device
JP7313054B2 (en) * 2019-10-30 2023-07-24 学校法人立教学院 Method, apparatus and program for measuring dynamic friction coefficient
RU2745198C1 (en) * 2020-07-23 2021-03-22 Максим Юрьевич Кейно Method and device for measuring the coefficient of friction of cargo on the contact surfaces of a freight car

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153088A (en) * 1978-05-22 1979-12-01 Nippon Telegr & Teleph Corp <Ntt> Measuring method of coefficients of dynamical friction
US5107448A (en) * 1991-02-13 1992-04-21 501 Board Of Regents, The University Of Texas System Apparatus and method for determining coefficients of friction
US8695398B2 (en) * 2011-03-25 2014-04-15 Fred M. Johnson Intrinsically-calibrated tribometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018120698B4 (en) 2017-09-08 2021-09-30 Toyo Tire & Rubber Co., Ltd. Rubber friction test method

Also Published As

Publication number Publication date
JP2014081252A (en) 2014-05-08

Similar Documents

Publication Publication Date Title
JP5824439B2 (en) Method and apparatus for measuring coefficient of friction
JP4599356B2 (en) Test stand and method for aerodynamic measurements in vehicles
JP6095676B2 (en) Wind tunnel balance
US7254998B2 (en) Method for determining drag characteristics of aircraft and system for performing the method
US8915117B2 (en) Intrinsically-calibrated tribometer
CN205192925U (en) Move coefficient of static friction determining instrument
US7392693B2 (en) Test stand for motor vehicles
NL1021957C2 (en) Device for measuring the static and / or dynamic coefficient of friction of a surface.
US10712362B2 (en) Calibrating sensor unit orientation for use in a vehicle monitoring system
US10514323B2 (en) Apparatus and method for assessing vehicle wheel alignment
CN101619970B (en) Method for measuring vertical section of road surface
US10417930B1 (en) Vehicle driving simulator with pressure sensitive handlebar input sensor
KR101164423B1 (en) active contact pressure measuring device of tire
CN110114643A (en) Axle load measuring device and axle load measuring method
Rowe et al. A pedal dynamometer for off-road bicycling
JP4602605B2 (en) Tire wear life prediction method
US10337936B2 (en) Dynamometer having a chassis to chassis load measurement device
RU158239U1 (en) INSTALLATION FOR MEASURING THE COUPLING COEFFICIENT OF A LOCKED CAR WHEEL WITH ROAD COVERING
KR20110007321A (en) Golf putt training apparatus to announce putting arrival distance
Bascou et al. Is bearing resistance negligible during wheelchair locomotion? Design and validation of a testing device
EP3256830B1 (en) Multi -plate apparatus and method for checking the braking system of land vehicles with at least two axles
US20150000390A1 (en) System for Measuring Suspension Sag
JP6448140B2 (en) Vehicle characteristic analysis method and apparatus, and vehicle test apparatus
RU75041U1 (en) INSTALLATION FOR DETERMINING STATIC AND DYNAMIC FRICTION COEFFICIENTS AT HUMAN MOVEMENT ON THE SURFACE OF FLOOR COVERINGS
JPWO2017175720A1 (en) Action determination device and action determination method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151009

R150 Certificate of patent or registration of utility model

Ref document number: 5824439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250