JP5824339B2 - Three-phase rectifier - Google Patents

Three-phase rectifier Download PDF

Info

Publication number
JP5824339B2
JP5824339B2 JP2011251576A JP2011251576A JP5824339B2 JP 5824339 B2 JP5824339 B2 JP 5824339B2 JP 2011251576 A JP2011251576 A JP 2011251576A JP 2011251576 A JP2011251576 A JP 2011251576A JP 5824339 B2 JP5824339 B2 JP 5824339B2
Authority
JP
Japan
Prior art keywords
phase
edge side
circuit
diodes
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011251576A
Other languages
Japanese (ja)
Other versions
JP2013110785A (en
Inventor
通可 植杉
通可 植杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2011251576A priority Critical patent/JP5824339B2/en
Priority to CN201210459110.5A priority patent/CN103124145B/en
Publication of JP2013110785A publication Critical patent/JP2013110785A/en
Application granted granted Critical
Publication of JP5824339B2 publication Critical patent/JP5824339B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Rectifiers (AREA)

Description

本発明の実施形態は、三相交流電源の電圧を整流して直流電圧に変換する三相整流装置に関する。   Embodiments described herein relate generally to a three-phase rectifier that rectifies a voltage of a three-phase AC power source and converts the voltage into a DC voltage.

一般的な三相交流電源の電圧を整流して直流電圧に変換する整流回路は、一対のダイオードを直列接続してなる3つの直列回路を有し、これら直列回路の各ダイオードの相互接続点が三相交流電源の各相に接続される。そして、この整流回路の出力端に平滑コンデンサが接続され、その平滑コンデンサに負荷が接続される。   A rectifier circuit that rectifies the voltage of a general three-phase AC power source and converts it into a DC voltage has three series circuits formed by connecting a pair of diodes in series, and the interconnection point of each diode of these series circuits is Connected to each phase of the three-phase AC power supply. A smoothing capacitor is connected to the output terminal of the rectifier circuit, and a load is connected to the smoothing capacitor.

三相交流電圧は位相が互いに120°異なる3つの相電圧からなり、これら相電圧により、各直列回路のそれぞれ正側ダイオードを通って平滑コンデンサに電流が流れ、その平滑コンデンサから各直列回路のそれぞれ負側ダイオードを通って電流が流れる。   The three-phase AC voltage is composed of three phase voltages whose phases are different from each other by 120 °. With these phase voltages, a current flows through the positive diode of each series circuit to the smoothing capacitor, and each of the series circuits is supplied from the smoothing capacitor. Current flows through the negative diode.

このような整流回路では、力率を改善するため、また入力電流に含まれる高調波成分を抑制するため、入力側にリアクトルを設けるとともに、これらリアクトルに対する短絡路形成用の複数のスイッチを接続し、これらスイッチの高周波スイッチングにより、入力電流波形を正弦波に追従させる三相アクティブフィルタが採用される(例えば特許文献1)。   In such a rectifier circuit, in order to improve the power factor and to suppress harmonic components contained in the input current, a reactor is provided on the input side, and a plurality of switches for forming a short circuit for these reactors are connected. A three-phase active filter is employed in which the input current waveform follows a sine wave by high-frequency switching of these switches (for example, Patent Document 1).

特許第3675336号公報Japanese Patent No. 3675336

しかしながら、上記の高周波スイッチングにより入力電流波形を正弦波に追従させることができても、高周波スイッチングに伴うノイズが入力電流に重畳してしまうという問題が生じる。   However, even if the input current waveform can be made to follow a sine wave by the above-described high frequency switching, there arises a problem that noise accompanying the high frequency switching is superimposed on the input current.

本発明の実施形態の目的は、力率を向上させつつ、入力電流に重畳する高周波スイッチングノイズを低減できる三相整流装置を提供することである。   The objective of embodiment of this invention is providing the three-phase rectifier which can reduce the high frequency switching noise superimposed on an input current, improving a power factor.

請求項1の三相整流装置は、一対のダイオードを直列接続し、その両ダイオードの相互接続点が三相交流電源のU相に接続されるU相用直列回路、一対のダイオードを直列接続しその両ダイオードの相互接続点が上記三相交流電源のV相に接続されるV相用直列回路、一対のダイオードを直列接続しその両ダイオードの相互接続点が上記三相交流電源のW相に接続されるW相用直列回路を有し、上記三相交流電源の電圧を直流電圧に変換して出力する整流回路と、この整流回路の各ダイオードを短絡する複数のスイッチング素子と、上記三相交流電源の各相と上記整流回路の各直列回路との接続間にそれぞれ設けた複数のリアクトルと、上記三相交流電源からの入力電力を検出する検出手段と、上記各直列回路の両ダイオードの相互接続点と上記整流回路の負側出力端との間を前記スイッチング素子を制御して、上記三相交流電源からの入力電流が正レベルとなる位相の前縁側で回数N1だけ断続的に短絡し、同位相の後縁側で回数N2だけ断続的に短絡し、上記各直列回路の両ダイオードの相互接続点と上記整流回路の正側出力端との間を前記スイッチング素子を制御して、上記三相交流電源からの入力電流が負レベルとなる位相の前縁側で上記回数N1だけ断続的に短絡し、同位相の後縁側で上記回数N2だけ断続的に短絡するとともに、上記回数N1,N2をN1>N2とし、その比率N1/N2を上記検出手段の検出結果に応じて切換える制御手段と、を備える。   The three-phase rectifier of claim 1 includes a pair of diodes connected in series, a U-phase series circuit in which an interconnection point between the two diodes is connected to the U-phase of a three-phase AC power supply, and a pair of diodes connected in series. A series circuit for V phase in which the connection point of the two diodes is connected to the V phase of the three-phase AC power supply, a pair of diodes are connected in series, and the connection point of the two diodes is the W phase of the three-phase AC power supply. A rectifier circuit that has a W-phase series circuit connected thereto, converts the voltage of the three-phase AC power source into a DC voltage and outputs the DC voltage, a plurality of switching elements that short-circuit each diode of the rectifier circuit, and the three-phase circuit A plurality of reactors provided between each phase of the AC power supply and each series circuit of the rectifier circuit, detection means for detecting input power from the three-phase AC power supply, and both diodes of each series circuit With interconnection points The switching element is controlled between the negative-side output terminal of the rectifier circuit, and the input current from the three-phase AC power supply is intermittently short-circuited N1 times on the leading edge side of the phase where the input current becomes a positive level. The three-phase AC power supply by intermittently short-circuiting N2 times on the trailing edge side and controlling the switching element between the interconnection point of both diodes of each series circuit and the positive output terminal of the rectifier circuit. Is intermittently shorted by the number N1 on the leading edge side of the phase where the input current from the negative phase is negative, and is intermittently shorted by the number N2 on the trailing edge side of the same phase, and the times N1 and N2 are set to N1> N2 And control means for switching the ratio N1 / N2 according to the detection result of the detection means.

一実施形態の構成を示すブロック図。The block diagram which shows the structure of one Embodiment. 一実施形態の制御部の制御を示すフローチャート。The flowchart which shows control of the control part of one Embodiment. 一実施形態のスイッチングデータ切換え条件を示す図。The figure which shows the switching data switching condition of one Embodiment. 一実施形態の低入力用の前縁側スイッチングデータを示す図。The figure which shows the front edge side switching data for low input of one Embodiment. 一実施形態の低入力用の後縁側スイッチングデータを示す図。The figure which shows the trailing edge side switching data for low input of one Embodiment. 一実施形態の低入力時の入力電流波形およびMOSFETの断続的なオンを示す図。The figure which shows the input current waveform at the time of the low input of one Embodiment, and intermittent ON of MOSFET. 低入力時に高入力用のスイッチングデータを用いた場合の入力電流波形およびMOSFETの断続的なオンを参考として示す図。The figure which shows the input current waveform at the time of using the switching data for high inputs at the time of low input, and intermittent ON of MOSFET as reference. 一実施形態の高入力用の前縁側スイッチングデータを示す図。The figure which shows the leading edge side switching data for high input of one Embodiment. 一実施形態の高入力用の後縁側スイッチングデータを示す図。The figure which shows the trailing edge side switching data for high input of one Embodiment. 一実施形態の高入力時の入力電流波形およびMOSFETの断続的なオンを示す図。The figure which shows the input current waveform at the time of high input of one Embodiment, and intermittent ON of MOSFET. 高入力時に低入力用のスイッチングデータを用いた場合の入力電流波形およびMOSFETの断続的なオンを参考として示す図。The figure which shows the input current waveform at the time of using the switching data for low inputs at the time of high input, and intermittent ON of MOSFET as reference.

以下、この発明の一実施形態について図面を参照して説明する。
図1に示すように、三相交流電源1のU,V,W相に三相整流装置10を接続し、その三相整流装置10の出力電圧(後述の平滑コンデンサ14に生じ電圧)を負荷2に供給する。負荷2は、例えば、モータ駆動用のインバータ装置が用いられ、その消費電力が変動する。三相整流装置10は、三相交流電源1との接続ラインに設けた高調波低減用のリアクトル21,22,23、これらリアクトル21,22,23を介して三相交流電源1につながる整流回路30、三相交流電源1とリアクトル21,22,23との間の接続ラインに設けた電流センサ41,42,43、これら電流センサ41,42,43を介して三相交流電源1からの入力電流(以下、相電流という)Iu,Iv,Iwを検出する電流検出回路50を有する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a three-phase rectifier 10 is connected to the U, V, and W phases of a three-phase AC power supply 1, and the output voltage of the three-phase rectifier 10 (voltage generated in a smoothing capacitor 14 described later) is loaded. 2 is supplied. As the load 2, for example, an inverter device for driving a motor is used, and its power consumption varies. The three-phase rectifier 10 includes a reactor 21, 22, 23 for reducing harmonics provided in a connection line with the three-phase AC power source 1, and a rectifier circuit connected to the three-phase AC power source 1 through the reactors 21, 22, 23. 30, input from the three-phase AC power source 1 via the current sensors 41, 42, 43 provided on the connection lines between the three-phase AC power source 1 and the reactors 21, 22, 23 A current detection circuit 50 that detects currents (hereinafter referred to as phase currents) Iu, Iv, and Iw is included.

整流回路30は、一対のダイオード31a,32aを直列接続しその両ダイオードの相互接続点が三相交流電源1のU相に接続されるU相用直列回路、一対のダイオード33a,34aを直列接続しその両ダイオードの相互接続点が三相交流電源1のV相に接続されるV相用直列回路、一対のダイオード35a,36aを直列接続しその両ダイオードの相互接続点が三相交流電源1のW相に接続されるW相用直列回路を有し、三相交流電源1の三相交流電圧を直流電圧に変換して正側出力端子(+)および負側出力端子(−)から出力する。各ダイオードには、それぞれ各ダイオードを短絡する複数のスイッチング素子が並列接続されている。具体的には、スイッチング素子は、半導体スイッチたとえばMOSFET31,32,33,34,35,36であり、上記ダイオード31a,32a,33a,34a,35a,36aは、これらのMOSFET31〜36の寄生ダイオードである。すなわち、各ダイオード31a〜36aに対し、1つのMOSFET31〜36がそれぞれ逆並列接続された状態にある。これらのMOSFET31〜36がオンすれば、その素子に対して逆並列接続されているダイオード31a〜36aが短絡されることになる。   The rectifier circuit 30 includes a pair of diodes 31a and 32a connected in series, and a connection circuit between the two diodes connected to the U-phase of the three-phase AC power supply 1, and a pair of diodes 33a and 34a connected in series. A series circuit for V phase in which the mutual connection point of the two diodes is connected to the V phase of the three-phase AC power source 1, and a pair of diodes 35a and 36a are connected in series. It has a W-phase series circuit connected to the W-phase, converts the three-phase AC voltage of the three-phase AC power source 1 into a DC voltage, and outputs it from the positive output terminal (+) and negative output terminal (-) To do. A plurality of switching elements that short-circuit each diode are connected in parallel to each diode. Specifically, the switching elements are semiconductor switches such as MOSFETs 31, 32, 33, 34, 35, 36, and the diodes 31a, 32a, 33a, 34a, 35a, 36a are parasitic diodes of these MOSFETs 31-36. is there. That is, one of the MOSFETs 31 to 36 is connected in reverse parallel to each of the diodes 31a to 36a. When these MOSFETs 31 to 36 are turned on, the diodes 31a to 36a connected in antiparallel to the element are short-circuited.

また、三相整流装置10は、三相交流電源1からの入力電力を電流検出回路50で検出される相電流Iu,Iv,Iwに基づいて検出する入力電力検出部51、電流検出回路50で検出される相電流Iu,Iv,Iwの零クロス点をそれぞれ検出する零クロス点検出部52、MOSFET31,32,33,34,35,36に対し、零クロス点からの時間に基づき短絡(オン)及び短絡終了(オフ)動作を指示する各種スイッチングデータを記憶したメモリ53、電流検出回路50で検出される相電流Iu,Iv,Iw、入力電力検出部51で検出される入力電力、零クロス点検出部52で検出される零クロス点およびメモリ53内のスイッチングデータに基づいてMOSFET31〜36に対する駆動信号(短絡信号)を生成し出力する制御部60、この制御部60から出力される駆動信号に応じてMOSFET31〜36をオン,オフ駆動する駆動部54を有する。   Further, the three-phase rectifier 10 includes an input power detection unit 51 that detects input power from the three-phase AC power supply 1 based on phase currents Iu, Iv, and Iw detected by the current detection circuit 50, and a current detection circuit 50. The zero cross point detector 52 and the MOSFETs 31, 32, 33, 34, 35, and 36 that detect the zero cross points of the detected phase currents Iu, Iv, and Iw are short-circuited (ON) based on the time from the zero cross point. ) And a memory 53 storing various switching data for instructing a short circuit termination (off) operation, phase currents Iu, Iv, Iw detected by the current detection circuit 50, input power detected by the input power detection unit 51, and zero crossing Based on the zero cross point detected by the point detector 52 and the switching data in the memory 53, a drive signal (short circuit signal) for the MOSFETs 31 to 36 is generated and output. Control unit 60, on the MOSFET31~36 in response to a drive signal outputted from the control unit 60 has a drive unit 54 to turn off the drive.

制御部60は、主要な機能として次の(1)〜(7)の手段を有する。
(1)U相用直列回路のダイオード31a,32aの相互接続点と整流回路30の負側出力端(−)との間を、MOSFET32により、三相交流電源1からの相電流Iuが正レベルとなる位相の前縁側で回数N1だけ断続的に短絡し、同位相の後縁側で回数N2だけ断続的に短絡する手段。
The control unit 60 has the following means (1) to (7) as main functions.
(1) The phase current Iu from the three-phase AC power supply 1 is at a positive level by the MOSFET 32 between the connection point of the diodes 31a and 32a of the U-phase series circuit and the negative output terminal (−) of the rectifier circuit 30. Means to intermittently short-circuit the number of times N1 on the leading edge side of the phase, and intermittently short-circuit the number of times N2 on the trailing edge side of the phase.

(2)U相用直列回路のダイオード31a,32aの相互接続点と整流回路30の正側出力端(+)との間を、MOSFET31により、三相交流電源1からの相電流Iuが負レベルとなる位相の前縁側で回数N1だけ断続的に短絡し、同位相の後縁側で回数N2だけ断続的に短絡する手段。   (2) The phase current Iu from the three-phase AC power supply 1 is at a negative level by the MOSFET 31 between the interconnection point of the diodes 31a and 32a of the U-phase series circuit and the positive output terminal (+) of the rectifier circuit 30. Means to intermittently short-circuit the number of times N1 on the leading edge side of the phase, and intermittently short-circuit the number of times N2 on the trailing edge side of the phase.

(3)V相用直列回路のダイオード33a,34aの相互接続点と整流回路30の負側出力端(−)との間を、MOSFET34により、三相交流電源1からの相電流Ivが正レベルとなる位相の前縁側で回数N1だけ断続的に短絡し、同位相の後縁側で回数N2だけ断続的に短絡する手段。   (3) The phase current Iv from the three-phase AC power supply 1 is at a positive level by the MOSFET 34 between the interconnection point of the diodes 33a and 34a of the V-phase series circuit and the negative output terminal (−) of the rectifier circuit 30. Means to intermittently short-circuit the number of times N1 on the leading edge side of the phase, and intermittently short-circuit the number of times N2 on the trailing edge side of the phase.

(4)V相用直列回路のダイオード33a,34aの相互接続点と整流回路30の正側出力端(+)との間を、MOSFET33により、三相交流電源1からの相電流Ivが負レベルとなる位相の前縁側で回数N1だけ断続的に短絡し、同位相の後縁側で回数N2だけ断続的に短絡する手段。   (4) The phase current Iv from the three-phase AC power supply 1 is at a negative level by the MOSFET 33 between the connection point of the diodes 33a and 34a of the V-phase series circuit and the positive output terminal (+) of the rectifier circuit 30. Means to intermittently short-circuit the number of times N1 on the leading edge side of the phase, and intermittently short-circuit the number of times N2 on the trailing edge side of the phase.

(5)W相用直列回路のダイオード35a,36aの相互接続点と整流回路30の負側出力端(−)との間を、MOSFET36により、三相交流電源1からの相電流Iwが正レベルとなる位相の前縁側で回数N1だけ断続的に短絡し、同位相の後縁側で回数N2だけ断続的に短絡する手段。   (5) The phase current Iw from the three-phase AC power supply 1 is at a positive level by the MOSFET 36 between the connection point of the diodes 35a and 36a of the W-phase series circuit and the negative output terminal (−) of the rectifier circuit 30. Means to intermittently short-circuit the number of times N1 on the leading edge side of the phase, and intermittently short-circuit the number of times N2 on the trailing edge side of the phase.

(6)W相用直列回路のダイオード35a,36aの相互接続点と整流回路30の正側出力端(+)との間を、MOSFET35により、三相交流電源1からの相電流Iwが負レベルとなる位相の前縁側で回数N1だけ断続的に短絡し、同位相の後縁側で回数N2だけ断続的に短絡する手段。   (6) The phase current Iw from the three-phase AC power supply 1 is at a negative level by the MOSFET 35 between the interconnection point of the diodes 35a and 36a of the W-phase series circuit and the positive output terminal (+) of the rectifier circuit 30. Means to intermittently short-circuit the number of times N1 on the leading edge side of the phase, and intermittently short-circuit the number of times N2 on the trailing edge side of the phase.

(7)回数N1,N2をN1>N2とし、その回数比率N1/N2を入力電力検出部51の検出結果に応じて切換えるとともに、その切換え点を入力電力検出部51の検出結果の上昇時と下降時で異ならせ、かつその切換えを零クロス点検出部52で検出される零クロス点を基準に行う手段。   (7) The number of times N1 and N2 is set to N1> N2, and the number ratio N1 / N2 is switched according to the detection result of the input power detection unit 51, and the switching point is set when the detection result of the input power detection unit 51 rises. Means for making it different at the time of descending and performing the switching based on the zero cross point detected by the zero cross point detector 52.

なお、相電流の正・負の状態において前縁側は、相電流の零クロス点から零クロス点までの期間における前側、後縁側は、相電流の零クロス点から零0クロス点までの期間における後ろ側を意味する。以下の実施形態の説明においては、前縁側を、0クロスを基準とした電気角で表し、相電流の正・負のいずれの状態においても電気角で0°〜60°とし、後縁側を120°〜180°としている。ちなみに、これは、一般的な正弦波の1周期を基準にすると、相電流が正の状態においては、前縁側が電気角で0°〜60°、後縁側は120°〜180°で同じになるが、相電流が負の状態では、前縁側が電気角で180°〜240°、後縁側が300°〜360°で表されることになる。   In the positive / negative state of the phase current, the leading edge side is the front side in the period from the zero cross point of the phase current to the zero cross point, and the trailing edge side is in the period from the zero cross point of the phase current to the zero cross point. It means the back side. In the following description of the embodiments, the leading edge side is represented by an electrical angle with reference to 0 cross, the electrical angle is 0 ° to 60 ° in both positive and negative phase current states, and the trailing edge side is 120 °. The angle is set to ° to 180 °. By the way, this is based on one period of a general sine wave, and when the phase current is positive, the leading edge side is the same as an electrical angle of 0 ° to 60 °, and the trailing edge side is the same at 120 ° to 180 °. However, when the phase current is negative, the leading edge side is represented by an electrical angle of 180 ° to 240 °, and the trailing edge side is represented by 300 ° to 360 °.

回数N1,N2の一例として、N1+N2の合計を、高入力時及び低入力時ともに同じ数である15回とし、回数N1,N2を入力電力が低い場合はN1=8,N2=7、入力電力が高い場合はN1=10,N2=5とする。さらに、回数N1,N2の比率N1/N2は、低入力時を“8/7、高入力時を“10/5”として、低入力時より高入力時のほうを大きくする。言い換えると、比率N2/N1は、低入力時を“7/8”、高入力時を“5/10”として、低入力時より高入力時のほうを小さくする。   As an example of the number of times N1 and N2, the sum of N1 + N2 is set to 15 times that is the same for both high input and low input, and when the input power is low, N1 = 8, N2 = 7, input power If N is high, N1 = 10 and N2 = 5. Further, the ratio N1 / N2 of the times N1 and N2 is “8/7” at low input and “10/5” at high input, and is larger at high input than at low input. N2 / N1 is “7/8” when the input is low and “5/10” when the input is high, and is smaller at the high input than at the low input.

なお、高入力時、低入力時のN1,N2のスイッチング回数、零クロス点からの短絡動作するまでのタイミング(期間)は、すべてメモリ53に記憶され、これらのデータが適宜、制御部60から読み出され、駆動部54に所定のタイミングで各MOSFET31〜36に駆動/停止信号を供給するよう指示が出される。また、合計短絡回数N1+N2を、多くすると入力電流の正弦波への追従性が向上し、高調波を低減できるが、短絡するためのスイッチング回数が増加し、MOSFET31〜36のスイッチングによる高周波スイッチングノイズが増加するため、10回以上、30回以下が望ましい。   Note that the switching times of N1 and N2 at the time of high input and low input, and the timing (period) until the short circuit operation from the zero cross point are all stored in the memory 53, and these data are appropriately stored from the control unit 60. The readout is instructed to supply a drive / stop signal to each of the MOSFETs 31 to 36 at a predetermined timing. Further, if the total number of short-circuits N1 + N2 is increased, the followability of the input current to the sine wave can be improved and harmonics can be reduced. However, the number of switching for short-circuiting increases, and high-frequency switching noise due to switching of the MOSFETs 31 to 36 occurs. In order to increase, 10 times or more and 30 times or less are desirable.

つぎに、作用を説明する。
図2のフローチャートに示すように、三相交流電源1からの相電流Iu,Iv,Iwを検出する(ステップ101)。この相電流Iu,Iv,Iwに基づき、三相交流電源1からの入力電力を検出する(ステップ102)。そして、相電流Iu,Iv,Iwの零クロス点をそれぞれ検出する(ステップ103)。
Next, the operation will be described.
As shown in the flowchart of FIG. 2, phase currents Iu, Iv, and Iw from the three-phase AC power source 1 are detected (step 101). Based on the phase currents Iu, Iv, and Iw, input power from the three-phase AC power source 1 is detected (step 102). Then, zero cross points of the phase currents Iu, Iv, and Iw are detected (step 103).

相電流Iuの零クロス点が到来したとき(ステップ104)、入力電力(入力電流)が図3のスイッチングデータ切換え条件における設定値80%より低い状態にあれば(ステップ105のYES)、メモリ53内の低入力用の前縁側スイッチングデータおよび後縁側スイッチングデータを選択する(ステップ106)。そして、選択した低入力用のスイッチングデータに基づき、MOSFET31,32をオン,オフ駆動(高周波スイッチング)する。ここで、入力電力の基準として、負荷2の最大消費電力を100%としている。また、図3のスイッチングデータ切換え条件は、ヒステリシスを有している。すなわち、前回の入力電流が低入力であれば、設定値80%を超える検出を行なうまでは低入力と判断し、設定値80%を超えた場合には高入力と判断する。一方、前回の入力電流が高入力であれば、設定値60%未満に低下したことを検出するまでは高入力と判断し、設定値60%未満を検出した場合には低入力と判断する。   When the zero cross point of the phase current Iu has arrived (step 104), if the input power (input current) is lower than the set value 80% in the switching data switching condition of FIG. 3 (YES in step 105), the memory 53 The leading edge side switching data and the trailing edge side switching data for the low input are selected (step 106). Based on the selected low-input switching data, the MOSFETs 31 and 32 are turned on and off (high-frequency switching). Here, the maximum power consumption of the load 2 is set to 100% as a reference for the input power. Further, the switching data switching condition of FIG. 3 has hysteresis. That is, if the previous input current is a low input, it is determined that the input is low until detection exceeding the set value 80% is performed, and if the input current exceeds the set value 80%, it is determined that the input is high. On the other hand, if the previous input current is a high input, it is determined that the input is high until it is detected that the set value has decreased to less than 60%, and if it is detected that the set value is less than 60%, it is determined that the input is low.

低入力用の前縁側スイッチングデータは、図4に示すように、零クロス点を基準とした時間経過に沿って順に並ぶ個数N1たとえば8個のオンデータP1,P2…P8からなる。これらオンデータP1,P2…P8は、それぞれオン期間t1,t2…t8を有する。低入力用の後縁側スイッチングデータは、図5に示すように、零クロス点を基準とした時間経過に沿って順に並ぶ個数N2たとえば7個のオンデータP9,P10…P15からなる。これらオンデータP9,P10…P15は、それぞれオン期間t9,t10…t15を有する。図4、5及び後述する図8、9では、三相交流電源の周波数が、50Hzの場合の例を示しており、これらのオンデータ(オンタイミングとオン期間)P9,P10…P15は、時間を基準としているため、当然ながら電源周波数が異なれば、異なるタイミング、異なるオン期間が、メモリ53から読み出される。   As shown in FIG. 4, the low-input leading edge side switching data includes a number N1, for example, eight pieces of on data P1, P2,... P8 arranged in order along the passage of time with reference to the zero cross point. These on data P1, P2,... P8 have on periods t1, t2,. As shown in FIG. 5, the low-input trailing edge side switching data includes a number N2, for example, seven pieces of on-data P9, P10,... P15 arranged in order along the passage of time with the zero cross point as a reference. These on data P9, P10... P15 have on periods t9, t10. 4 and 5 and FIGS. 8 and 9 to be described later show examples in which the frequency of the three-phase AC power supply is 50 Hz, and these on data (on timing and on period) P9, P10. Therefore, if the power supply frequency is different, of course, different timings and different ON periods are read from the memory 53.

すなわち、図6に示すように、入力電力が30%と低く、相電流Iuが正レベルとなる半サイクルの位相では、U相用直列回路の負側に位置するMOSFET32を、前縁側の0°〜60°期間において回数N1である8回だけ断続的にオンし、後縁側の120°〜180°期間において回数N2である7回だけ断続的にオンする。MOSFET32がオンすると、U相用直列回路のダイオード31a,32aの相互接続点と整流回路30の負側出力端(−)との間が短絡する。これにより、相電流Iuの正側の半サイクルを実線のような正弦波に追従させることができる。実際の相電流Iuは鋸歯状となるが、これはMOSFET32のオン,オフに伴って発生する電流変化を示している。この鋸歯状の電流変化が高周波スイッチングノイズの原因となるため、短絡回数を増加させると発生する高周波スイッチングノイズが増加することになる。なお、前縁側および後縁側を除く中間期間(60°〜120°区間)においても鋸歯状の短絡による電流変化が現れているが、これは相電流Iv,Iwを正弦波に追従させるための他の相のMOSFETのオン,オフによって生じるものである。ここで、本実施形態では、短絡回数を少なく設定しているため、高周波スイッチングノイズの発生を抑えることができる。   That is, as shown in FIG. 6, in the half cycle phase where the input power is as low as 30% and the phase current Iu is at a positive level, the MOSFET 32 positioned on the negative side of the U-phase series circuit is connected to 0 ° on the leading edge side. It is intermittently turned on 8 times, which is the number N1 in the period of -60 °, and is intermittently turned on 7 times, which is the number of times N2, in the period of 120 ° to 180 ° on the trailing edge side. When the MOSFET 32 is turned on, a short circuit is established between the interconnection point of the diodes 31 a and 32 a of the U-phase series circuit and the negative output terminal (−) of the rectifier circuit 30. Thereby, the positive half cycle of the phase current Iu can be made to follow a sine wave like a solid line. The actual phase current Iu has a sawtooth shape, which indicates a change in current that occurs when the MOSFET 32 is turned on and off. This sawtooth-shaped current change causes high-frequency switching noise. Therefore, when the number of short-circuits is increased, the generated high-frequency switching noise increases. Note that a current change due to a sawtooth-like short circuit also appears in an intermediate period (60 ° to 120 ° interval) excluding the leading edge side and the trailing edge side. This is other than for causing the phase currents Iv and Iw to follow a sine wave. This is caused by turning on and off the MOSFET of the first phase. Here, in the present embodiment, since the number of short circuits is set to be small, generation of high frequency switching noise can be suppressed.

仮に、前縁側のオン回数N1をたとえば10回に設定し、後縁側のオン回数N2をたとえば5回に設定した場合に、相電流Iuがどうなるかを確かめたのが図7である。この図7と図6において、電流波形の正弦波への追従性を比較すると、前縁側の電流と正弦波との差の大きさはあまり変わらないが、後縁側の電流と正弦波との差の大きさについては図6の方が小さくなっており、図6の方が正弦波への追従性が高く、力率が高いことが分かる。   FIG. 7 shows what happens to the phase current Iu when the number of ON times N1 on the front edge side is set to 10 times and the number of ON times N2 on the rear edge side is set to 5 times, for example. In FIG. 7 and FIG. 6, when the followability of the current waveform to the sine wave is compared, the magnitude of the difference between the current on the leading edge side and the sine wave does not change much, but the difference between the current on the trailing edge side and the sine wave. 6 is smaller in FIG. 6, and it can be seen that FIG. 6 has higher followability to a sine wave and higher power factor.

同じく入力電力が低く、相電流Iuが負レベルとなる半サイクルの位相では、U相用直列回路の正側に位置するMOSFET31が、前縁側の0°〜60°期間において8回だけ断続的にオンし、後縁側の120°〜180°期間において7回だけ断続的にオンする。MOSFET31がオンすると、U相用直列回路のダイオード31a,32aの相互接続点と整流回路30の正側出力端(+)との間が短絡する。これにより、相電流Iuの負側の半サイクルを正弦波に追従させることができる。   Similarly, in the half cycle phase in which the input power is low and the phase current Iu is at a negative level, the MOSFET 31 located on the positive side of the U-phase series circuit intermittently only 8 times in the period of 0 ° to 60 ° on the leading edge side. It is turned on and intermittently turned on only 7 times during the period of 120 ° to 180 ° on the trailing edge side. When the MOSFET 31 is turned on, a short circuit is established between the connection point of the diodes 31 a and 32 a of the U-phase series circuit and the positive output terminal (+) of the rectifier circuit 30. Thereby, the negative half cycle of the phase current Iu can be made to follow a sine wave.

一方、相電流Iuの零クロス点が到来したとき(ステップ104)、入力電力が図3のスイッチングデータ切換え条件における設定値80%以上の状態にあれば(ステップ105のNO)、メモリ53内の高入力用の前縁側スイッチングデータおよび後縁側スイッチングデータを選択する(ステップ108)。そして、選択した高入力用のスイッチングデータに基づき、MOSFET31,32をオン,オフ駆動(高周波スイッチング)する。   On the other hand, when the zero crossing point of the phase current Iu has arrived (step 104), if the input power is in a state of 80% or more of the set value in the switching data switching condition of FIG. The leading edge side switching data and trailing edge side switching data for high input are selected (step 108). Then, the MOSFETs 31 and 32 are turned on and off (high-frequency switching) based on the selected high-input switching data.

高入力用の前縁側スイッチングデータは、図8に示すように、零クロス点を基準とした時間経過に沿って順に並ぶ個数N1たとえば10個のオンデータP1,P2…P10からなる。これらオンデータP1,P2…P10は、それぞれオン期間t1,t2…t10を有する。高入力用の後縁側スイッチングデータは、図9に示すように、零クロス点を基準とした時間経過に沿って順に並ぶ個数N2たとえば5個のオンデータP11,P12…P15からなる。これらオンデータP11,P12…P15は、それぞれオン期間t11,t12…t15を有する。   As shown in FIG. 8, the leading edge side switching data for high input is composed of a number N1, for example, 10 pieces of on data P1, P2,... P10 arranged in order along the passage of time with reference to the zero cross point. These on data P1, P2,... P10 have on periods t1, t2,. As shown in FIG. 9, the high-input trailing edge side switching data is composed of a number N2, for example, five ON data P11, P12,... P15, which are sequentially arranged with the passage of time with reference to the zero cross point. These on data P11, P12... P15 have on periods t11, t12.

すなわち、図10に示すように、入力電力が100%と高く、相電流Iuが正レベルとなる位相の半サイクルでは、U相用直列回路の負側に位置するMOSFET32を、前縁側の0°〜60°期間において回数N1である10回だけ断続的にオンし、後縁側の120°〜180°期間において回数N2である5回だけ断続的にオンする。MOSFET32がオンすると、U相用直列回路のダイオード31a,32aの相互接続点と整流回路30の負側出力端(−)とが短絡する。これにより、相電流Iuの正側の半サイクルを実線のような正弦波に追従させることができ、力率が向上できる。   That is, as shown in FIG. 10, in the half cycle of the phase where the input power is as high as 100% and the phase current Iu is at a positive level, the MOSFET 32 positioned on the negative side of the U-phase series circuit is connected to 0 ° on the leading edge side. It is intermittently turned on only 10 times that is the number N1 in the period of ˜60 °, and is intermittently turned on only 5 times that is the number of times N2 in the period of 120 ° to 180 ° on the trailing edge side. When the MOSFET 32 is turned on, the interconnection point of the diodes 31a and 32a of the U-phase series circuit and the negative output terminal (−) of the rectifier circuit 30 are short-circuited. Thereby, the positive half cycle of the phase current Iu can be made to follow a sine wave as shown by a solid line, and the power factor can be improved.

仮に、前縁側のオン回数N1を低入力時と同じ8回に設定し、後縁側のオン回数N2を低入力時と同じ7回に設定した場合に、相電流Iuがどうなるかを確かめたのが図11である。この図11と図10において、電流波形の正弦波への追従性を比較すると、前縁側の電流と正弦波との差の大きさはあまり変わらないが、後縁側の電流と正弦波との差の大きさは図10の方が小さくなり、図10の方が正弦波への追従性が高く、力率を向上させ、高調波の抑制効果が高いことが分かる。   Assuming that the number of on-time N1 on the leading edge side is set to the same 8 times as at the time of low input, and that the number of on-time N2 on the trailing edge side is set to the same 7 times as at the time of low input, the phase current Iu has been confirmed. Is FIG. In FIG. 11 and FIG. 10, when the followability of the current waveform to the sine wave is compared, the difference between the current on the leading edge side and the sine wave does not change much, but the difference between the current on the trailing edge side and the sine wave. 10 is smaller in FIG. 10, and FIG. 10 has higher followability to a sine wave, improves the power factor, and has a higher harmonic suppression effect.

すなわち、回数N1,N2の比率N1/N2の設定を、低入力時より高入力時のほうを大きくすることで、それぞれの入力状態に対して、正弦波への追従性が良くなり、力率を向上させ、高調波を低減することができる。   That is, by setting the ratio N1 / N2 of the number of times N1 and N2 to be larger at the time of high input than at the time of low input, the followability to a sine wave is improved for each input state, and the power factor Can be improved and harmonics can be reduced.

同じく入力電力が高く、相電流Iuが負レベルとなる半サイクルの位相では、U相用直列回路の正側に位置するMOSFET31が、前縁側の0°〜60°期間において10回だけ断続的にオンし、後縁側の120°〜180°期間において5回だけ断続的にオンする。MOSFET31がオンすると、U相用直列回路のダイオード31a,32aの相互接続点と整流回路30の正側出力端(+)との間が短絡する。これにより、相電流Iuの負側の半サイクルを正弦波に追従させることができる。   Similarly, in the half-cycle phase where the input power is high and the phase current Iu is at a negative level, the MOSFET 31 positioned on the positive side of the U-phase series circuit is intermittently only 10 times in the period of 0 ° to 60 ° on the leading edge side. It is turned on and intermittently turned on only 5 times in the 120 ° to 180 ° period on the trailing edge side. When the MOSFET 31 is turned on, a short circuit is established between the connection point of the diodes 31 a and 32 a of the U-phase series circuit and the positive output terminal (+) of the rectifier circuit 30. Thereby, the negative half cycle of the phase current Iu can be made to follow a sine wave.

ここまで相電流Iuについて述べたが、相電流Iv,Iwについても同様の制御を行う。
すなわち、相電流Ivについては、入力電力が低く、正レベルとなる半サイクルの位相では、V相用直列回路の負側に位置するMOSFET34を、前縁側の0°〜60°期間で8回だけ断続的にオンし、後縁側の120°〜180°期間で7回だけ断続的にオンする。同じく入力電力が低く、負レベルとなる半サイクルの位相では、V相用直列回路の正側に位置するMOSFET33を、前縁側の0°〜60°期間で8回だけ断続的にオンし、後縁側の120°〜180°期間で7回だけ断続的にオンする。入力電力が高く、正レベルとなる半サイクルの位相では、V相用直列回路の負側に位置するMOSFET34を、前縁側の0°〜60°期間で10回だけ断続的にオンし、後縁側の120°〜180°期間で5回だけ断続的にオンする。同じく入力電力が高く、負レベルとなる半サイクルの位相では、V相用直列回路の正側に位置するMOSFET33を、前縁側の0°〜60°期間で10回だけ断続的にオンし、後縁側の120°〜180°期間で5回だけ断続的にオンする。
Although the phase current Iu has been described so far, the same control is performed for the phase currents Iv and Iw.
That is, with respect to the phase current Iv, in the half cycle phase where the input power is low and becomes a positive level, the MOSFET 34 located on the negative side of the V-phase series circuit is moved only eight times in the period of 0 ° to 60 ° on the leading edge side. It is turned on intermittently and is turned on only seven times in the 120 ° to 180 ° period on the trailing edge side. Similarly, in the half-cycle phase where the input power is low and becomes a negative level, the MOSFET 33 located on the positive side of the V-phase series circuit is intermittently turned on only 8 times in the period of 0 ° to 60 ° on the leading edge side, and It turns on intermittently only 7 times in the 120 ° -180 ° period on the edge side. In the half-cycle phase where the input power is high and becomes a positive level, the MOSFET 34 located on the negative side of the V-phase series circuit is intermittently turned on 10 times in the period of 0 ° to 60 ° on the leading edge side, and the trailing edge side Is intermittently turned on only 5 times in the period of 120 ° to 180 °. Similarly, in the half cycle phase where the input power is high and becomes a negative level, the MOSFET 33 located on the positive side of the V-phase series circuit is intermittently turned on 10 times in the period of 0 ° to 60 ° on the leading edge side, and It turns on intermittently only 5 times in the 120 ° -180 ° period on the edge side.

相電流Iwについては、入力電力が低く、正レベルとなる半サイクルの位相において、W相用直列回路の負側に位置するMOSFET36を、前縁側の0°〜60°期間で8回だけ断続的にオンし、後縁側の120°〜180°期間で7回だけ断続的にオンする。同じく入力電力が低く、負レベルとなる半サイクルの位相において、W相用直列回路の正側に位置するMOSFET35を、前縁側の0°〜60°期間で8回だけ断続的にオンし、後縁側の120°〜180°期間で7回だけ断続的にオンする。入力電力が高く、正レベルとなる半サイクルの位相では、W相用直列回路の負側に位置するMOSFET36を、前縁側の0°〜60°期間で10回だけ断続的にオンし、後縁側の120°〜180°期間で5回だけ断続的にオンする。同じく入力電力が高く、負レベルとなる半サイクルの位相では、W相用直列回路の正側に位置するMOSFET35を、前縁側の0°〜60°期間で10回だけ断続的にオンし、後縁側の120°〜180°期間で5回だけ断続的にオンする。   Regarding the phase current Iw, in the half cycle phase where the input power is low and becomes a positive level, the MOSFET 36 positioned on the negative side of the W-phase series circuit is intermittently only 8 times in the period of 0 ° to 60 ° on the leading edge side. And is intermittently turned on only seven times in the period of 120 ° to 180 ° on the trailing edge side. Similarly, in the half cycle phase in which the input power is low and becomes a negative level, the MOSFET 35 positioned on the positive side of the W-phase series circuit is intermittently turned on only 8 times in the period of 0 ° to 60 ° on the leading edge side, It turns on intermittently only 7 times in the 120 ° -180 ° period on the edge side. In the half-cycle phase where the input power is high and becomes a positive level, the MOSFET 36 located on the negative side of the W-phase series circuit is intermittently turned on only 10 times in the period of 0 ° to 60 ° on the leading edge side, and the trailing edge side Is intermittently turned on only 5 times in the period of 120 ° to 180 °. Similarly, in the half cycle phase where the input power is high and becomes a negative level, the MOSFET 35 positioned on the positive side of the W-phase series circuit is intermittently turned on 10 times in the period of 0 ° to 60 ° on the leading edge side, and It turns on intermittently only 5 times in the 120 ° -180 ° period on the edge side.

以上のように、相電流の半サイクルにおける前縁側および後縁側の短絡回数N1,N2をN1>N2とし、その回数比率N1/N2を、低入力時よりも高入力時のほうが小さくなるように切換えることにより、リアクトル21,22,23を設けていることによる高調波低減効果を得ながら、低入力時および高入力時のいずれにおいても力率を向上させて、相電流Iu,Iv,Iwにおける高周波スイッチングノイズを低減できる。ひいては、リアクトル21,22,23として小形で電流・インダクタンス容量が大きいリアクトルを採用した三相アクティブフィルタを構成できる。リアクトル21,22,23が小形になれば、三相整流装置10が搭載される機器の小型化が図れる。   As described above, the number of short circuits N1 and N2 on the leading edge side and the trailing edge side in the half cycle of the phase current is set to N1> N2, and the number ratio N1 / N2 is smaller at high input than at low input. By switching, the power factor is improved at both the low input and the high input while obtaining the harmonic reduction effect by providing the reactors 21, 22, 23, and the phase currents Iu, Iv, Iw High frequency switching noise can be reduced. As a result, a three-phase active filter that employs a small reactor having a large current / inductance capacity as the reactors 21, 22, and 23 can be configured. If the reactors 21, 22, and 23 are reduced in size, it is possible to reduce the size of the device on which the three-phase rectifier 10 is mounted.

しかも、図3のスイッチングデータ切換え条件は、回数比率N1/N2の切換え点を、入力電力の上昇時は設定値80%とし、入力電力の下降時は設定値60%として異ならせるヒステリシス特性を有する。このヒステリシス特性の採用により、回数比率N1/N2が入力電力の変化に伴って頻繁に切換わる不具合を防ぐことができる。なお、図4、5は、低入力時のデータであり、入力電力80%以上の領域は、過渡的な状態で発生する可能性があるため、図示しているが、現実的にこの領域のデータが制御に用いられることはほとんどない。同様に図8、9は、高入力時のデータであり、入力電力60%未満の領域のデータが制御に用いられることはほとんどない。   Moreover, the switching data switching condition of FIG. 3 has a hysteresis characteristic that makes the switching point of the frequency ratio N1 / N2 different as a set value of 80% when the input power increases and as a set value of 60% when the input power decreases. . By adopting this hysteresis characteristic, it is possible to prevent the frequency ratio N1 / N2 from being frequently switched as the input power changes. 4 and 5 are data at the time of low input, and an area where the input power is 80% or more is illustrated because it may occur in a transient state. Data is rarely used for control. Similarly, FIGS. 8 and 9 show data at the time of high input, and data in an area where the input power is less than 60% is rarely used for control.

MOSFETがオン,オフする0°〜60°期間および120°〜180°期間は、1つの相のオン,オフ制御が他の2つの相の電流波形に及ぼす影響が少ない期間である。この期間を選定していることにより、高周波スイッチングノイズの低減効果および高調波の低減効果が大きくなる。   The 0 ° to 60 ° period and the 120 ° to 180 ° period during which the MOSFET is turned on and off are periods in which the ON / OFF control of one phase has little influence on the current waveforms of the other two phases. By selecting this period, the effect of reducing high-frequency switching noise and the effect of reducing harmonics are increased.

また、本実施形態においては、入力電力検出部51は、三相交流電源1の電圧が安定していることを前提として、その入力電力を電流検出回路50で検出される相電流Iu,Iv,Iwにて検出したが、さらに正確電力を検出する必要があれば、三相交流電源1の各相の電圧を検出して、この電圧と電流によって入力電力を算出しても良い。   Further, in the present embodiment, the input power detection unit 51 assumes that the voltage of the three-phase AC power supply 1 is stable, and the phase power Iu, Iv, Although it is detected by Iw, if it is necessary to detect the power more accurately, the voltage of each phase of the three-phase AC power supply 1 may be detected, and the input power may be calculated from this voltage and current.

さらに、本実施形態においては、各相の零クロス点を、電流検出回路50で検出した相電流Iu,Iv,Iwの零クロス点で検出したが、相電流と相電圧の位相はほぼ一致するため、各相の電圧を検出する電圧検出手段を設け、この電圧検出手段によって検出される相電圧の零クロス点としても良い。   Furthermore, in the present embodiment, the zero cross point of each phase is detected by the zero cross point of the phase currents Iu, Iv, Iw detected by the current detection circuit 50, but the phase of the phase current and the phase voltage are almost the same. Therefore, voltage detection means for detecting the voltage of each phase may be provided, and the zero cross point of the phase voltage detected by the voltage detection means may be used.

なお、上記実施形態では、整流用のダイオードとしてMOSFETの寄生ダイオードを用い、そのMOSFETをそのまま短絡用のスイッチとして用いたが、その構成に限定はなく、種々変形可能である。その他、上記実施形態およびその変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態および変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態や変形は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   In the above embodiment, a parasitic diode of a MOSFET is used as a rectifying diode and the MOSFET is used as it is as a short-circuit switch. However, the configuration is not limited and various modifications can be made. In addition, the said embodiment and its modification are shown as an example, and are not intending limiting the range of invention. The novel embodiments and modifications can be implemented in various other forms, and various omissions, rewrites, and changes can be made without departing from the spirit of the invention. In these embodiments and modifications, the scope of the invention is included in the gist, and is included in the invention described in the claims and the equivalents thereof.

1…三相交流電源、2…負荷、10…三相整流装置、21,22,23…リアクトル、24…平滑コンデンサ、30…整流回路、31,32,33,34,35,36…MOSFET(スイッチ)、31a,32a,33a,34a,35a,36a…ダイオード、41,42,43…電流センサ、50…電流検出回路、51…入力電力検出部、52…零クロス点検出部、53…メモリ、54…駆動部、60…制御部   DESCRIPTION OF SYMBOLS 1 ... Three-phase alternating current power supply, 2 ... Load, 10 ... Three-phase rectifier, 21, 22, 23 ... Reactor, 24 ... Smoothing capacitor, 30 ... Rectifier circuit, 31, 32, 33, 34, 35, 36 ... MOSFET ( Switch), 31a, 32a, 33a, 34a, 35a, 36a ... diode, 41, 42, 43 ... current sensor, 50 ... current detection circuit, 51 ... input power detection unit, 52 ... zero cross point detection unit, 53 ... memory 54 ... Drive unit, 60 ... Control unit

Claims (4)

一対のダイオードを直列接続しその両ダイオードの相互接続点が三相交流電源のU相に接続されるU相用直列回路、一対のダイオードを直列接続しその両ダイオードの相互接続点が前記三相交流電源のV相に接続されるV相用直列回路、一対のダイオードを直列接続しその両ダイオードの相互接続点が前記三相交流電源のW相に接続されるW相用直列回路を有し、前記三相交流電源の電圧を直流電圧に変換して出力する整流回路と、
この整流回路の各ダイオードを短絡する複数のスイッチング素子と、
前記三相交流電源の各相と前記整流回路の各直列回路との接続間にそれぞれ設けた複数のリアクトルと、
前記三相交流電源からの入力電力を検出する検出手段と、
前記各直列回路の両ダイオードの相互接続点と前記整流回路の負側出力端との間を前記スイッチング素子を制御して、前記三相交流電源からの入力電流が正レベルとなる位相の前縁側で回数N1だけ断続的に短絡し同位相の後縁側で回数N2だけ断続的に短絡し、前記各直列回路の両ダイオードの相互接続点と前記整流回路の正側出力端との間を前記スイッチング素子を制御して、前記三相交流電源からの入力電流が負レベルとなる位相の前縁側で前記回数N1だけ断続的に短絡し同位相の後縁側で前記回数N2だけ断続的に短絡するとともに、前記回数N1,N2の比率N1/N2を前記検出手段の検出結果に応じて切換える制御手段と、
を備えることを特徴とする三相整流装置。
A series circuit for U phase in which a pair of diodes are connected in series and the interconnection point of both diodes is connected to the U phase of a three-phase AC power supply, and a pair of diodes are connected in series and the interconnection point of both diodes is the three-phase A series circuit for V phase connected to the V phase of the AC power supply, a series circuit for W phase in which a pair of diodes are connected in series, and an interconnection point between the two diodes is connected to the W phase of the three-phase AC power supply. A rectifier circuit that converts the voltage of the three-phase AC power source into a DC voltage and outputs the DC voltage;
A plurality of switching elements that short-circuit each diode of the rectifier circuit;
A plurality of reactors provided between each phase of the three-phase AC power supply and each series circuit of the rectifier circuit;
Detection means for detecting input power from the three-phase AC power source;
The leading edge side of the phase where the input current from the three-phase AC power source becomes a positive level by controlling the switching element between the interconnection point of both diodes of each series circuit and the negative side output terminal of the rectifier circuit In this case, the switching is intermittently shorted by the number of times N1 and intermittently shorted by the number of times N2 on the trailing edge side of the same phase, and the switching between the interconnection point of both diodes of each series circuit and the positive side output terminal of the rectifier circuit is performed. By controlling the element, the input current from the three-phase AC power source is intermittently shorted by the number N1 on the leading edge side of the phase where the input current becomes a negative level and intermittently shorted by the number N2 on the trailing edge side of the same phase. Control means for switching the ratio N1 / N2 of the times N1, N2 according to the detection result of the detection means;
A three-phase rectifier comprising:
前記制御手段は、前記検出手段の検出結果に応じた前記比率N1/N2の切換え点を前記検出手段の検出結果の上昇時と下降時で異ならせる、
ことを特徴とする請求項1記載の三相整流装置。
The control means makes the switching point of the ratio N1 / N2 corresponding to the detection result of the detection means different between when the detection result of the detection means rises and when it falls.
The three-phase rectifier according to claim 1.
さらに、三相電源の各相の零クロス点を検出する零クロス点検出手段を設け、
前記制御手段は、前記検出手段の検出結果に応じた前記比率N1/N2の切換えを前記零クロス点検出手段の検出した零クロス点を基準に行う、
ことを特徴とする請求項1または請求項2記載の三相整流装置。
Furthermore, a zero cross point detecting means for detecting a zero cross point of each phase of the three-phase power source is provided,
The control means switches the ratio N1 / N2 according to the detection result of the detection means with reference to the zero cross point detected by the zero cross point detection means.
The three-phase rectifier according to claim 1 or 2, characterized by the above.
前記前縁は前記各相の零クロス点を基準として、0°〜60°の期間、前記後縁は前記零クロス点を基準として、120°〜180°の期間とした、
ことを特徴とする請求項1乃至請求項3のいずれか記載の三相整流装置。
The leading edge has a period of 0 ° to 60 ° with reference to the zero cross point of each phase, and the trailing edge has a period of 120 ° to 180 ° with reference to the zero cross point.
The three-phase rectifier according to any one of claims 1 to 3, wherein
JP2011251576A 2011-11-17 2011-11-17 Three-phase rectifier Expired - Fee Related JP5824339B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011251576A JP5824339B2 (en) 2011-11-17 2011-11-17 Three-phase rectifier
CN201210459110.5A CN103124145B (en) 2011-11-17 2012-11-14 Three-phase rectifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011251576A JP5824339B2 (en) 2011-11-17 2011-11-17 Three-phase rectifier

Publications (2)

Publication Number Publication Date
JP2013110785A JP2013110785A (en) 2013-06-06
JP5824339B2 true JP5824339B2 (en) 2015-11-25

Family

ID=48455035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011251576A Expired - Fee Related JP5824339B2 (en) 2011-11-17 2011-11-17 Three-phase rectifier

Country Status (2)

Country Link
JP (1) JP5824339B2 (en)
CN (1) CN103124145B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111517A1 (en) * 2014-01-24 2015-07-30 東芝キヤリア株式会社 Power conversion apparatus, equipment, and equipment system
CN106537750B (en) 2014-08-05 2019-08-20 三菱电机株式会社 Power inverter
JP6244482B2 (en) * 2014-12-26 2017-12-06 東芝キヤリア株式会社 Motor drive device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110441A (en) * 1980-02-05 1981-09-01 Hitachi Ltd Method of operating power factor improving device
JPS60109770A (en) * 1983-11-18 1985-06-15 Hitachi Ltd Power converter
JPH04364397A (en) * 1991-06-07 1992-12-16 Fujitsu General Ltd Controlling method for air conditioner
JP3221828B2 (en) * 1996-02-16 2001-10-22 株式会社日立製作所 Power conversion method and power conversion device
JP3315591B2 (en) * 1996-05-28 2002-08-19 オリジン電気株式会社 Boost type three-phase full-wave rectifier and control method thereof
JP3422218B2 (en) * 1996-10-11 2003-06-30 ダイキン工業株式会社 converter
JP3324645B2 (en) * 1999-06-23 2002-09-17 サンケン電気株式会社 AC-DC converter
JP4454089B2 (en) * 2000-02-09 2010-04-21 三洋電機株式会社 Power supply
CN1753294A (en) * 2004-09-22 2006-03-29 松下电器产业株式会社 Direct current power supply apparatus and control method for the same, and a compressor drive apparatus
JP4784207B2 (en) * 2004-11-18 2011-10-05 パナソニック株式会社 DC power supply
CN101291119A (en) * 2007-04-17 2008-10-22 北京信息工程学院 Decoupling control policy of three-phase voltage type PWM rectifier based on passivity
WO2010038841A1 (en) * 2008-10-03 2010-04-08 東芝キヤリア株式会社 Three-phase rectifier
JP2011200069A (en) * 2010-03-23 2011-10-06 Fujitsu General Ltd Power supply

Also Published As

Publication number Publication date
CN103124145B (en) 2015-05-27
CN103124145A (en) 2013-05-29
JP2013110785A (en) 2013-06-06

Similar Documents

Publication Publication Date Title
JP5634280B2 (en) Polarity detection circuit
JP6354623B2 (en) Conversion device
JP6525364B2 (en) Power converter
JP2016019367A5 (en)
JP2019033556A (en) Gate driving device and power conversion device
RU2632916C1 (en) Switching device, power conversion device, engine exciter, air pump, compressor, air conditioner, fridge and freezer
JP5824339B2 (en) Three-phase rectifier
JP5427787B2 (en) Three-phase rectifier
JP6543872B2 (en) Control device, control method and program
JP5635304B2 (en) Power circuit
JP2013085347A (en) Ac-dc converter
JP6022883B2 (en) Power supply
JP2019058019A (en) Electric power converter
JP5802828B2 (en) Rectifier and rectifier system
JP2014107931A (en) Method for operating inverter device, and inverter device
JP6573197B2 (en) Power converter
JP2015070659A (en) Power supply
JP5934538B2 (en) Three-phase rectifier
JP5910001B2 (en) Power converter
CN113302831A (en) Power conversion device
JP6277699B2 (en) Power supply
JP5153382B2 (en) Power regeneration converter
JP2016116387A (en) Power supply circuit
JP6636852B2 (en) Power converter
JP4697579B2 (en) Power converter and phase loss detection method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130815

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151009

R150 Certificate of patent or registration of utility model

Ref document number: 5824339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees