JP5820292B2 - Hydraulic device - Google Patents

Hydraulic device Download PDF

Info

Publication number
JP5820292B2
JP5820292B2 JP2012025887A JP2012025887A JP5820292B2 JP 5820292 B2 JP5820292 B2 JP 5820292B2 JP 2012025887 A JP2012025887 A JP 2012025887A JP 2012025887 A JP2012025887 A JP 2012025887A JP 5820292 B2 JP5820292 B2 JP 5820292B2
Authority
JP
Japan
Prior art keywords
flow rate
hydraulic oil
inner cylinder
hydraulic
outer cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012025887A
Other languages
Japanese (ja)
Other versions
JP2013164086A (en
Inventor
康史 曽谷
康史 曽谷
勝 加渡
勝 加渡
知久 吉村
知久 吉村
小林 馨
馨 小林
小林 健
健 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Kawasaki Motors Ltd
Original Assignee
Toshiba Corp
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Kawasaki Jukogyo KK filed Critical Toshiba Corp
Priority to JP2012025887A priority Critical patent/JP5820292B2/en
Publication of JP2013164086A publication Critical patent/JP2013164086A/en
Application granted granted Critical
Publication of JP5820292B2 publication Critical patent/JP5820292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Pressure Circuits (AREA)

Description

本発明は、管路内の作動油圧力を所定圧力に維持するようにした油圧装置に関する。   The present invention relates to a hydraulic apparatus configured to maintain a hydraulic oil pressure in a pipe line at a predetermined pressure.

従来、発電プラント設備等における油圧装置に用いられる作動油は、使用による酸化等によって劣化するため交換されているが、その交換頻度は高い。この作動油の酸化による酸価(油脂の変質の指標となる数値のひとつであり、「油脂1g中に存在する遊離脂肪酸を中和するのに必要な水酸化カリウムのmg数」)の上昇の主原因は従来から熱と水分であると考えられ、発熱と水分についてはいずれも極力少なくなるように油圧装置は設計されている。そして、酸価上昇を抑えるために、フィルタによって酸化生成物や水分を除去する方法がとられている。   Conventionally, hydraulic oil used in hydraulic equipment in power plant facilities and the like has been replaced because it deteriorates due to oxidation or the like due to use, but the replacement frequency is high. The increase in acid value due to the oxidation of this hydraulic oil (one of the numerical values that can be used as an index for the alteration of fats and oils, “the number of mg of potassium hydroxide required to neutralize free fatty acids present in 1 g of fats and oils)” Conventionally, the main cause is considered to be heat and moisture, and hydraulic devices are designed so that both heat generation and moisture are minimized. And in order to suppress an acid value raise, the method of removing an oxidation product and a water | moisture content with a filter is taken.

しかしながら、フィルタによって酸化生成物を除去する方法は、作動油の酸化生成物の発生自体を低減するのではなく発生した酸化生成物等の異物を除去することが主体であるため、添加剤等をも除去してしまう。また、酸化生成物を除去したフィルタエレメントの交換が必要となるため、メンテナンスに手間とコストが必要となる。   However, the method of removing the oxidation product by the filter mainly removes foreign matters such as the generated oxidation product rather than reducing the generation of the oxidation product itself of the hydraulic oil. Will also be removed. Moreover, since it is necessary to replace the filter element from which the oxidation products have been removed, labor and cost are required for maintenance.

一方、酸価が上昇した作動油は交換しなければならないが、作動油を交換するためには油圧装置が設けられたプラント設備全体を停止しなければならない。しかし、プラント設備によっては、非常に長期間、油圧装置で所定圧力を維持した運転を継続しなければならない設備もあり、簡単に停止することができない。そのため、作動油の交換間隔を延ばすために、作動油の酸価上昇を抑える手段が求められている。また、原子力発電プラント設備等のように、交換した作動油の廃棄が制限される場合もあり、このようなプラント設備においても作動油の交換間隔を延ばすために、作動油の酸価上昇を抑える手段が求められている。   On the other hand, the hydraulic oil whose acid value has risen must be replaced, but in order to replace the hydraulic oil, the entire plant equipment provided with the hydraulic device must be stopped. However, depending on the plant equipment, there is equipment that has to continue operation with a predetermined pressure maintained by a hydraulic device for a very long time, and cannot be easily stopped. Therefore, in order to extend the replacement interval of the hydraulic oil, a means for suppressing an increase in the acid value of the hydraulic oil is required. In addition, disposal of the replaced hydraulic oil may be restricted, such as in a nuclear power plant facility. In such a plant facility, an increase in the acid value of the hydraulic oil is suppressed in order to extend the hydraulic oil replacement interval. Means are sought.

そこで、本発明者は、作動油の酸価とその上昇速度について鋭意研究し、油圧管路における作動油の酸価上昇の主原因の一つである熱の発生要因と考えられていたせん断について考察し、この作動油のせん断に「絞り」が影響していることに着目した。   Therefore, the present inventor has eagerly studied the acid value of hydraulic oil and the rate of its rise, and about the shear that was considered to be one of the main causes of the increase in the acid value of hydraulic oil in hydraulic lines. We considered and focused on the influence of “squeezing” on the shearing of this hydraulic oil.

上記したような油圧装置における絞りは、例えば、ポンプ吐出量を調整する傾転機構へ供給される一部の作動油をタンクに戻すドレン管路や、油圧ポンプから吐出した吐出管路内の作動油の一部をタンクに戻すことにより油圧ポンプの過熱を防止する最小流量確保管路(ミニマムフロー)等に設けられている。   The throttle in the hydraulic device as described above is, for example, a drain line that returns a part of hydraulic oil supplied to the tilting mechanism that adjusts the pump discharge amount to the tank, or an operation in the discharge line that is discharged from the hydraulic pump. It is provided in a minimum flow rate securing pipeline (minimum flow) that prevents overheating of the hydraulic pump by returning a part of the oil to the tank.

図8は、この種の絞り100であり、管路101の内部に流路断面積を絞る筒体102が設けられ、この筒体102の中心部に設けられた円孔103で流路面積を小さく絞って高圧P0の上流側から低圧P1の下流側へ流れる作動油Oの流量を制限して、上流側の圧力を維持している。図9に示す絞り110は、管路111の内部流路面積を絞る上流側の筒体112と下流側の筒体113とが2段で配置された二段絞りとなっている。上流側の筒体112に設けられた円孔114に対して、下流側の筒体113に設けられた円孔115を大径にし、一段当たりの圧力差を小さくしている。このような絞り100,110を管路101,111内に配置して、それぞれ上流側における管路101,111内の作動油圧力を所定圧力に維持している。   FIG. 8 shows a throttle 100 of this type, in which a cylindrical body 102 for reducing the cross-sectional area of the flow path is provided inside the pipe 101, and the flow path area is reduced by a circular hole 103 provided in the center of the cylindrical body 102. The upstream pressure is maintained by restricting the flow rate of the hydraulic oil O flowing from the upstream side of the high pressure P0 to the downstream side of the low pressure P1. The throttle 110 shown in FIG. 9 is a two-stage throttle in which an upstream cylinder 112 and a downstream cylinder 113 that limit the area of the internal flow path of the pipe 111 are arranged in two stages. The circular hole 115 provided in the downstream cylinder 113 is larger in diameter than the circular hole 114 provided in the upstream cylinder 112 to reduce the pressure difference per stage. Such throttles 100 and 110 are arranged in the pipe lines 101 and 111, and the hydraulic oil pressure in the pipe lines 101 and 111 on the upstream side is maintained at a predetermined pressure, respectively.

そして、本発明者は上記絞り100,110の円孔103,114,115の出口部分に着目し、この出口部分において作動油に生じるせん断が酸価上昇に大きく影響していると考えた。つまり、絞り100,110の部分における作動油は、円孔103,114,115の出口部分から低圧側に流れる噴流の境界面において大きな流速差を生じ、この流速差によって生じる渦等で作動油がせん断されて、これによって作動油が分子レベルで破壊されて酸価上昇を招いているのではないかと推察した。そして、この作動油のせん断が、作動油の劣化速度に大きく影響しているとの知見を得た。   The inventor paid attention to the outlet portions of the circular holes 103, 114, and 115 of the throttles 100 and 110, and thought that the shear generated in the hydraulic oil at the outlet portions greatly affected the increase in the acid value. In other words, the hydraulic oil in the portions of the throttles 100 and 110 generates a large flow velocity difference at the boundary surface of the jet flowing from the outlet portions of the circular holes 103, 114, and 115 to the low pressure side, and the hydraulic oil is caused by vortices generated by the flow velocity difference. As a result of shearing, it was inferred that the hydraulic oil was destroyed at the molecular level, leading to an increase in acid value. And the knowledge that the shear of this hydraulic oil had influenced the deterioration rate of hydraulic oil greatly was acquired.

なお、先行技術文献として、作動油タンクに設けた粘度センサで測定した作動油の粘度が油圧機器に損傷を来すおそれのある粘度であれば交換指示がなされるようにした装置(例えば、特許文献1参照)や、ポンプ吐出圧力検出手段が所定の吐出圧力を検出したときに油圧管路を開弁して油圧ポンプに必要なミニマムフロー量を確保するもの(例えば、特許文献2参照)等があるが、これらの先行技術は、作動油の酸価上昇を抑えることができるものではない。   In addition, as a prior art document, if the viscosity of the hydraulic oil measured by the viscosity sensor provided in the hydraulic oil tank is a viscosity that may cause damage to the hydraulic equipment, a replacement instruction is issued (for example, a patent) Document 1), or the one that secures the minimum flow amount necessary for the hydraulic pump by opening the hydraulic line when the pump discharge pressure detecting means detects a predetermined discharge pressure (see Patent Document 2, for example) However, these prior arts cannot suppress an increase in the acid value of hydraulic oil.

特開平5−332912号公報Japanese Patent Laid-Open No. 5-332912 実開平4−100095号公報Japanese Utility Model Publication No. 4-100095

そこで、本発明者は、絞りの部分における作動油のせん断と、絞りの形状と作動油の劣化との関係を考察して絞りの部分における構造を工夫し、作動油のせん断を抑えることができて、作動油の酸価上昇を抑えて劣化速度の低下を図ることができる油圧装置を発明した。   Therefore, the present inventor can consider the relationship between the shear of hydraulic oil in the throttle portion and the relationship between the shape of the throttle and deterioration of the hydraulic oil, and devise the structure in the throttle portion to suppress the hydraulic oil shear. Thus, a hydraulic device has been invented that can suppress the increase in the acid value of hydraulic oil and reduce the deterioration rate.

本発明は、制御機器へ供給される作動油を吐出する油圧ポンプと、前記油圧ポンプの吐出量を調整する傾転機構へ供給される一部の作動油をタンクに戻すドレン管路と、前記油圧ポンプから吐出される作動油の一部をタンクに戻すことにより前記油圧ポンプの過熱を防止する最小流量確保管路と、を備えた油圧装置であって、前記ドレン管路及び前記最小流量確保管路の少なくともいずれか一方は、前記作動油の管路内流量を制限する流量制限手段を備え、前記流量制限手段は、外筒と、該外筒の軸心上に配置した内筒と、前記外筒と前記内筒との間に形成される環状の開口部を有し、前記開口部で上流側から下流側へ作動油の一部をタンクに戻すように構成されている。この明細書及び特許請求の範囲の書類中における「環状の開口部」は、内筒の周囲と外筒との間で作動油の流量を制限するように流路断面積が小さくなった円環状、C字状等の開口部をいう。また、「内筒」は、中空構造及び中実構造のいずれも含むものとする。   The present invention includes a hydraulic pump that discharges hydraulic oil supplied to a control device, a drain line that returns part of the hydraulic oil supplied to a tilting mechanism that adjusts a discharge amount of the hydraulic pump to a tank, And a minimum flow rate securing line for preventing overheating of the hydraulic pump by returning a part of the hydraulic oil discharged from the hydraulic pump to the tank, wherein the drain line and the minimum flow rate are secured. At least one of the pipes is provided with a flow restriction means for restricting the flow rate of the hydraulic oil in the pipe, and the flow restriction means includes an outer cylinder, an inner cylinder disposed on the axis of the outer cylinder, It has an annular opening formed between the outer cylinder and the inner cylinder, and is configured to return part of the hydraulic oil to the tank from the upstream side to the downstream side at the opening. The "annular opening" in the specification and claims is an annular shape whose flow passage cross-sectional area is small so as to limit the flow rate of hydraulic oil between the periphery of the inner cylinder and the outer cylinder. , C-shaped openings. The “inner cylinder” includes both a hollow structure and a solid structure.

この構成により、ドレン管路及び最小流量確保管路のいずれか一方からタンクに戻る作動油を、流量制限手段の外筒と内筒との間に形成した環状の開口部で流量を制限しつつ内筒に沿って下流側のタンクへ流すので、流量制限手段で上流側の管路内圧力を保ちつつ、環状の開口部から下流側に流す作動油にせん断が生じるのを抑えて、作動油の酸価上昇を抑えて劣化速度を低下させることができる。特に、最小流量確保管路は、ドレン管路に比べて多くの作動油をタンクへ戻しているため、高圧の上流側から低圧の下流側に流れる作動油にせん断が生じるのを大幅に抑えて、作動油の酸価上昇速度を抑えた劣化防止を図ることができる。   With this configuration, the hydraulic oil returning to the tank from either the drain pipe or the minimum flow rate securing pipe is restricted in flow rate by the annular opening formed between the outer cylinder and the inner cylinder of the flow restriction means. Since it flows to the tank on the downstream side along the inner cylinder, the hydraulic fluid flowing from the annular opening to the downstream side is prevented from being sheared while maintaining the pressure in the upstream pipe line by the flow restriction means, and the hydraulic oil The deterioration rate can be reduced by suppressing the increase in acid value. In particular, since the minimum flow rate securing pipeline returns more hydraulic fluid to the tank than the drain pipeline, shearing of hydraulic fluid flowing from the high pressure upstream side to the low pressure downstream side is greatly suppressed. Therefore, it is possible to prevent deterioration by suppressing the rate of increase in the acid value of the hydraulic oil.

また、前記内筒は、円錐形状に形成され、該内筒は、上流部分から下流部分に向けて広がる所定のテーパ角で形成されていてもよい。この明細書及び特許請求の範囲の書類中における「円錐形状」は、ニードル弁の弁体のようなニードル状(針状)の形状も含むものとする。このように構成すれば、上流側から下流側に流れる作動油は、内筒外面のテーパ角に沿って広がって下流側に流れるので、開口部を通過後に広がる作動油は内筒の広い面から下流側へ流れてせん断が生じるのを抑えられ、作動油の酸価上昇を更に抑えることができる。   The inner cylinder may be formed in a conical shape, and the inner cylinder may be formed with a predetermined taper angle that widens from the upstream portion toward the downstream portion. The “conical shape” in the specification and the claims includes a needle-like (needle-like) shape like a valve body of a needle valve. With this configuration, the hydraulic oil that flows from the upstream side to the downstream side spreads along the taper angle of the outer surface of the inner cylinder and flows to the downstream side, so the hydraulic oil that spreads after passing through the opening is from the wide surface of the inner cylinder. It is possible to suppress the occurrence of shearing by flowing to the downstream side, and further suppress the increase in the acid value of the hydraulic oil.

また、前記テ−パ角は、1度以上75度以下の範囲で形成されていてもよい。このように構成すれば、上流側から下流側に流れる作動油は、内筒外面のテーパ角に沿って広がって下流側に流れるので、開口部を通過後に広がる作動油は内筒の広い面から下流側へ流れてせん断が生じるのを抑えられ、作動油の酸価上昇を更に抑えることができる。   The taper angle may be formed in a range of 1 degree to 75 degrees. With this configuration, the hydraulic oil that flows from the upstream side to the downstream side spreads along the taper angle of the outer surface of the inner cylinder and flows to the downstream side, so the hydraulic oil that spreads after passing through the opening is from the wide surface of the inner cylinder. It is possible to suppress the occurrence of shearing by flowing to the downstream side, and further suppress the increase in the acid value of the hydraulic oil.

また、前記内筒は、上流部分におけるテーパ角に対して下流部分の一部が更に広がる大きなテーパ角で形成されていてもよい。このように構成すれば、内筒の下流部分において作動油は更に広がって下流側に流れるので、更に広い面から下流側に流れる作動油にせん断が生じるのを抑えて、作動油の酸価上昇を抑えることができる。   Moreover, the said inner cylinder may be formed with the big taper angle which a part of downstream part spreads further with respect to the taper angle in an upstream part. With this configuration, since the hydraulic oil further spreads and flows downstream in the downstream portion of the inner cylinder, the occurrence of shearing in the hydraulic oil flowing from the wider surface to the downstream side is suppressed, and the acid value of the hydraulic oil is increased. Can be suppressed.

また、前記内筒又は外筒は、軸方向に位置調整可能なように構成されていてもよい。このように構成すれば、内筒と外筒との間の環状の開口部面積を変更することができ、管路の上流側で維持する圧力に応じた開口部面積に調整できる流量制限手段を構成することができる。   Further, the inner cylinder or the outer cylinder may be configured to be positionally adjustable in the axial direction. If comprised in this way, the flow volume restriction | limiting means which can change the cyclic | annular opening area between an inner cylinder and an outer cylinder, and can be adjusted to the opening area according to the pressure maintained in the upstream of a pipe line. Can be configured.

また、前記外筒は、下流部分に縮径した流量調節部が形成され、前記内筒は、前記外筒の流量調節部との間に環状の開口部を形成する円柱体に形成されていてもよい。このように構成すれば、円柱体の内筒の周囲から下流側に流れる作動油にせん断が生じるのを抑えて作動油の酸価上昇を抑えることができる。   In addition, the outer cylinder is formed with a flow rate adjusting portion whose diameter is reduced in the downstream portion, and the inner cylinder is formed in a cylindrical body that forms an annular opening between the outer cylinder and the flow rate adjusting portion of the outer cylinder. Also good. If comprised in this way, it can suppress that a shearing arises in the hydraulic fluid which flows downstream from the circumference | surroundings of the inner cylinder of a cylindrical body, and can suppress the raise of the acid value of hydraulic fluid.

また、前記ドレン管路及び最小流量確保管路に前記流量制限手段を備えてもよい。このように構成すればドレン管路及び最小流量確保管路のいずれでも作動油の酸価上昇を抑えることができ、更なる作動油の酸価上昇抑制が可能となる。   Further, the flow restriction means may be provided in the drain line and the minimum flow rate securing line. If comprised in this way, the acid value rise of hydraulic fluid can be suppressed in any of the drain pipe and the minimum flow rate securing pipe, and further increase in the acid value of hydraulic oil can be suppressed.

本発明によれば、作動油の酸価上昇速度を大幅に抑えることができるので、作動油の劣化速度を大幅に低下させて交換間隔を大幅に延ばすことが可能となる。これにより、簡単に停止することができないプラント設備や、作動油の廃棄が制限される設備等において作動油のメンテナンス軽減を図ることが可能となる。   According to the present invention, the rate of increase in the acid value of the hydraulic oil can be greatly suppressed, so that the deterioration rate of the hydraulic oil can be greatly reduced and the replacement interval can be greatly extended. As a result, it is possible to reduce the maintenance of hydraulic oil in plant equipment that cannot be stopped easily or in equipment where the disposal of hydraulic oil is restricted.

本発明の一実施形態に係る油圧装置を示す図面である。It is drawing which shows the hydraulic device which concerns on one Embodiment of this invention. 本発明の油圧装置に用いる第1例の流量制限手段を示す断面図である。It is sectional drawing which shows the flow volume restriction | limiting means of the 1st example used for the hydraulic device of this invention. 本発明の油圧装置に用いる第2例の流量制限手段を示す断面図である。It is sectional drawing which shows the flow volume restriction | limiting means of the 2nd example used for the hydraulic device of this invention. 本発明の油圧装置に用いる第3例の流量制限手段を示す断面図である。It is sectional drawing which shows the flow volume restriction | limiting means of the 3rd example used for the hydraulic device of this invention. 本発明の油圧装置に用いる第4例の流量制限手段を示す断面図である。It is sectional drawing which shows the flow volume restriction | limiting means of the 4th example used for the hydraulic device of this invention. 本発明の油圧装置に用いる第5例の流量制限手段を示す断面図である。It is sectional drawing which shows the flow volume restriction | limiting means of the 5th example used for the hydraulic device of this invention. 本発明の流量制限手段と従来の絞りとにおける作動油の酸価上昇速度を示すグラフである。It is a graph which shows the acid value raise speed | rate of the hydraulic fluid in the flow volume restriction | limiting means of this invention, and the conventional aperture_diaphragm | restriction. 従来の絞りを示す断面図である。It is sectional drawing which shows the conventional aperture_diaphragm | restriction. 従来の他の絞りを示す断面図である。It is sectional drawing which shows the other conventional diaphragm.

以下、本発明の一実施形態を図面に基づいて説明する。この実施形態では、例えば、制御機器としての蒸気タービンのタービンガバナ等に供給する作動油を可変容量形ポンプで吐出管路に吐出する油圧装置を例に説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In this embodiment, for example, a hydraulic apparatus that discharges hydraulic oil supplied to a turbine governor of a steam turbine serving as a control device to a discharge pipe with a variable displacement pump will be described as an example.

図1に示すように、この油圧装置1は、タンク2の作動油が可変容量形ポンプ3(以下、単に「油圧ポンプ」ともいう)によって吐出管路(主管路)5に吐出され、この作動油が蒸気タービンのタービンガバナ等(図示略)に供給されている。図示する弁6は、タービンガバナ等に作動油を供給する時に開放される弁である。   As shown in FIG. 1, in the hydraulic apparatus 1, hydraulic oil in a tank 2 is discharged to a discharge pipe (main pipe) 5 by a variable displacement pump 3 (hereinafter also simply referred to as “hydraulic pump”). Oil is supplied to a turbine governor or the like (not shown) of the steam turbine. The illustrated valve 6 is a valve that is opened when hydraulic oil is supplied to a turbine governor or the like.

そして、上記吐出管路5には、油圧ポンプ3の吐出量を調整する傾転機構15へ供給される一部の作動油をタンク2に戻すドレン管路10と、油圧ポンプ3から吐出される作動油の一部をタンク2に戻すことにより油圧ポンプ3の過熱を防止する最小流量確保管路20とが設けられている。吐出管路5の上流側にドレン管路10が設けられ、下流側に最小流量確保管路20が設けられている。   Then, a part of the hydraulic oil supplied to the tilting mechanism 15 that adjusts the discharge amount of the hydraulic pump 3 is discharged to the discharge pipe 5 from the drain pipe 10 and the hydraulic pump 3. A minimum flow rate securing pipe 20 is provided for preventing overheating of the hydraulic pump 3 by returning a part of the hydraulic oil to the tank 2. A drain line 10 is provided on the upstream side of the discharge line 5, and a minimum flow rate securing pipe 20 is provided on the downstream side.

上記ドレン管路10には、所定圧力で開放するリリーフ弁11が設けられている。そして、このドレン管路10の下流部分に、油劣化防止機能を備えたドレン用流量制限手段12が設けられている。ドレン用流量制限手段12は、吐出管路5内の圧力を所定圧力で維持するための傾転機構15に供給される作動油の圧力を保ちつつ、タンク2に一部の作動油を戻すように流量を制限する。このドレン用流量制限手段12の構造は、後述する。   The drain pipe 10 is provided with a relief valve 11 that opens at a predetermined pressure. A drain flow restricting means 12 having an oil deterioration preventing function is provided in the downstream portion of the drain pipe 10. The drain flow restricting means 12 returns a part of the hydraulic oil to the tank 2 while maintaining the pressure of the hydraulic oil supplied to the tilting mechanism 15 for maintaining the pressure in the discharge pipe 5 at a predetermined pressure. Limit the flow to. The structure of the drain flow restricting means 12 will be described later.

なお、油圧ポンプ3、ドレン管路10、リリーフ弁11、傾転機構15、及びドレン用流量制限手段12は、可変容量型のポンプユニット4として一体的に構成されていても良い。   Note that the hydraulic pump 3, the drain line 10, the relief valve 11, the tilting mechanism 15, and the drain flow rate limiting means 12 may be integrally configured as a variable capacity pump unit 4.

また、上記最小流量確保管路20には、油劣化防止機能を備えた最小流量確保用流量制限手段22が設けられている。最小流量確保用流量制限手段22は、油圧ポンプ3から吐出した作動油の吐出管路5内の圧力を所定圧力に保ちつつ、一部の作動油をタンク2に戻すように流量を制限する。この最小流量確保用流量制限手段22は、上記ドレン用流量制限手段12と同一の構造を適用することができる。この最小流量確保用流量制限手段22の構造も、後述する。   The minimum flow rate securing pipe line 20 is provided with a minimum flow rate securing flow rate limiting means 22 having an oil deterioration preventing function. The flow rate restricting means 22 for securing the minimum flow rate restricts the flow rate so as to return a part of the hydraulic oil to the tank 2 while keeping the pressure in the discharge pipeline 5 of the hydraulic oil discharged from the hydraulic pump 3 at a predetermined pressure. The minimum flow rate securing flow restricting means 22 can employ the same structure as the drain flow restricting means 12. The structure of the flow rate restricting means 22 for securing the minimum flow rate will also be described later.

このような油圧装置1によれば、油圧ポンプ3の吐出量が制御されている状態では、ドレン管路10に設けたドレン用流量制限手段12によって、傾転機構15内の圧力が所定圧力を維持するようにドレン管路10内の作動油の流量が制限され、その作動油はタンク2に戻される。また、最小流量確保管路20に設けられた最小流量確保用流量制限手段22により、油圧ポンプ3から作動油を吐出している状態で、吐出管路5内の圧力を保ちつつ最小流量確保管路20内の作動油の流量を制限して、作動油の一部がタンク2に戻される。   According to such a hydraulic device 1, when the discharge amount of the hydraulic pump 3 is controlled, the pressure in the tilting mechanism 15 is set to a predetermined pressure by the drain flow rate limiting means 12 provided in the drain pipe 10. The flow rate of the hydraulic oil in the drain line 10 is limited so as to be maintained, and the hydraulic oil is returned to the tank 2. Further, the minimum flow rate securing pipe 22 is provided in the minimum flow rate securing pipe line 20, and the minimum flow rate securing pipe is maintained while maintaining the pressure in the discharge pipe line 5 while the hydraulic oil is being discharged from the hydraulic pump 3. The flow rate of the hydraulic oil in the passage 20 is limited, and a part of the hydraulic oil is returned to the tank 2.

この実施形態の油圧装置1では、ドレン管路10にドレン用流量制限手段12を設け、最小流量確保管路20に最小流量確保用流量制限手段22を設けているので、上記したように吐出管路5内の作動油を、流量制限しつつタンク2へ戻すドレン管路10及び最小流量確保管路20の両方の流量制限手段12,22で高圧の上流側から低圧の下流側へ流れる作動油の酸価上昇を抑えることができ、作動油の劣化速度を大幅に低下させて交換間隔を大幅に延ばすことが可能となる。   In the hydraulic apparatus 1 of this embodiment, the drain flow rate limiting means 12 is provided in the drain line 10 and the minimum flow rate securing flow rate limiting means 22 is provided in the minimum flow rate securing line 20, so that the discharge pipe as described above. The hydraulic oil that flows from the upstream side of the high pressure to the downstream side of the low pressure by the flow rate restricting means 12, 22 of both the drain pipe line 10 and the minimum flow rate securing pipe line 20 that returns the hydraulic oil in the path 5 to the tank 2 while restricting the flow rate. The increase in the acid value of the oil can be suppressed, and the deterioration rate of the hydraulic oil can be greatly reduced to greatly extend the replacement interval.

なお、上記流量制限手段12,22は、後述するように、ドレン管路10及び最小流量確保管路20のいずれか一方に設けても酸価上昇を抑えることができるので、いずれか一方の管路10,20に設けるようにしてもよい。   As described later, the flow rate limiting means 12 and 22 can suppress an increase in acid value even if provided in either one of the drain line 10 and the minimum flow rate securing line 20, so that either one of the pipes It may be provided on the roads 10 and 20.

以下、図2〜図5に基づいて、上述した油劣化防止機能を備えたドレン用流量制限手段12及び最小流量確保用流量制限手段22の構造について説明する。これら流量制限手段12,22は同じ構造を採用できるため、これらの図の説明ではドレン用流量制限手段12として用いる流量制限手段を例に説明する。また、これらの図の説明ではドレン管路10を例に説明する。さらに、これらの図では、開口部を誇張して記載するが、例えば、0.数mm程度(0.2mm程度)の隙間の環状の開口部に設定される。   Hereinafter, the structures of the drain flow restricting means 12 and the minimum flow securing flow restricting means 22 having the above-described oil deterioration preventing function will be described with reference to FIGS. Since these flow rate limiting means 12 and 22 can adopt the same structure, in the description of these figures, the flow rate limiting means used as the drain flow rate limiting means 12 will be described as an example. In the description of these drawings, the drain line 10 will be described as an example. Furthermore, in these drawings, the opening is exaggerated and described. It is set to an annular opening having a gap of about several mm (about 0.2 mm).

図2に示す第1例の流量制限手段30は、ドレン管路10における管路内面に外筒31が設けられ、この外筒31の軸心上に、上流部分から下流部分に向けて大きいテーパ角θで広がる山形状の内筒32が設けられている。この実施形態の内筒32は、上流側に向けて尖る円錐体に形成されている。ここで、円錐体は、ニードル弁の弁体のようなニードル状(針状)の形状も含む。この内筒32は、上流部の一部が外筒31の中空部分34に挿入された状態で配置されている。また、内筒32の上流側端部は、外筒31の上流側端部から所定量下流側に入った位置に配置されている。   The flow restricting means 30 of the first example shown in FIG. 2 is provided with an outer cylinder 31 on the inner surface of the pipe line in the drain pipe 10, and on the axial center of the outer cylinder 31, a large taper from the upstream portion toward the downstream portion. A mountain-shaped inner cylinder 32 extending at an angle θ is provided. The inner cylinder 32 of this embodiment is formed in a conical body that is pointed toward the upstream side. Here, the cone includes a needle-like (needle-like) shape like a valve body of a needle valve. The inner cylinder 32 is arranged in a state where a part of the upstream portion is inserted into the hollow portion 34 of the outer cylinder 31. The upstream end of the inner cylinder 32 is disposed at a position that is a predetermined amount downstream from the upstream end of the outer cylinder 31.

このような外筒31と内筒32との組合わせによる流量制限手段30によれば、高圧P0の上流側から外筒31と内筒32との間の環状の開口部33を介して低圧P1の下流側に流れる作動油Oは、内筒32に沿って速度が遅く速度分布が小さいことと、内筒32がガイドとなって静止流体の巻込みが小さくなること等の効果により、作動油Oにせん断が生じるのを抑えることができる。   According to the flow restriction means 30 by combining the outer cylinder 31 and the inner cylinder 32 as described above, the low pressure P1 is passed through the annular opening 33 between the outer cylinder 31 and the inner cylinder 32 from the upstream side of the high pressure P0. The hydraulic oil O flowing to the downstream side of the hydraulic oil has a low speed distribution along the inner cylinder 32 and a small speed distribution, and the effect that the inner cylinder 32 serves as a guide and the entrainment of the stationary fluid becomes small. O can be prevented from being sheared.

図3に示す第2例の流量制限手段40は、ドレン管路10における管路内面に外筒41が設けられ、この外筒41の軸心上に、上流部分から下流部分に向けて所定のテーパ角θで広がるニードル状に形成された内筒42が設けられている。この内筒42は、上流部分が外筒41の中空部分44に挿入された状態で配置されている。また、内筒42の上流側端部は、外筒41の上流側端部から所定量下流側に入った位置に配置されている。   The flow restricting means 40 of the second example shown in FIG. 3 is provided with an outer cylinder 41 on the inner surface of the drain pipe 10, and on the axial center of the outer cylinder 41, a predetermined amount from the upstream portion toward the downstream portion. An inner cylinder 42 formed in a needle shape that spreads at a taper angle θ is provided. The inner cylinder 42 is arranged with the upstream portion inserted into the hollow portion 44 of the outer cylinder 41. Further, the upstream end of the inner cylinder 42 is disposed at a position that is a predetermined amount downstream from the upstream end of the outer cylinder 41.

この例によれば、高圧P0の上流側から外筒41と内筒42との間の環状の開口部43を介して低圧P1の下流側に流れる作動油は、内筒42に沿って速度が遅く速度分布が小さいことと、内筒42がガイドとなって静止流体の巻込みが更に小さくなること等の効果により、作動油Oにせん断が生じるのを抑えることができる。   According to this example, the hydraulic oil flowing from the upstream side of the high pressure P0 to the downstream side of the low pressure P1 through the annular opening 43 between the outer cylinder 41 and the inner cylinder 42 has a velocity along the inner cylinder 42. It is possible to suppress the occurrence of shearing in the hydraulic oil O due to the effects such as the slow speed distribution being small and the inner cylinder 42 being a guide to further reduce the entrainment of the stationary fluid.

図4に示す第3例の流量制限手段50は、上記第2例と同様の構造であるが、外筒51の軸心上に設けられる内筒52が、上流部分から下流部分に向けて所定のテーパ角θで広がった後、下流部分の一部が更に広がる大きなテーパ角θ2で広がる2段のニードル状に形成されている。この内筒52は、上流部分が外筒51の中空部分54に挿入された状態で配置されている。また、内筒52の上流側端部は、外筒51の上流側端部から所定量下流側に入った位置に配置されている。   The flow restricting means 50 of the third example shown in FIG. 4 has the same structure as that of the second example, but the inner cylinder 52 provided on the axis of the outer cylinder 51 is predetermined from the upstream portion toward the downstream portion. After being widened at a taper angle θ, a part of the downstream portion is formed into a two-stage needle shape widened at a larger taper angle θ2. The inner cylinder 52 is arranged with the upstream portion inserted into the hollow portion 54 of the outer cylinder 51. Further, the upstream end of the inner cylinder 52 is disposed at a position that is a predetermined amount downstream from the upstream end of the outer cylinder 51.

この例でも、高圧P0の上流側から外筒51と内筒52との間の環状の開口部53を介して低圧P1の下流側へ流れる作動油Oは、内筒52に沿って速度が遅く速度分布が小さいことと、内筒52がガイドとなって静止流体の巻込みが更に小さくなること等の効果により、作動油Oにせん断が生じるのを抑えることができる。   Also in this example, the hydraulic oil O flowing from the upstream side of the high pressure P0 to the downstream side of the low pressure P1 through the annular opening 53 between the outer cylinder 51 and the inner cylinder 52 has a low speed along the inner cylinder 52. It is possible to suppress shearing of the hydraulic oil O due to the effect that the velocity distribution is small and the inner cylinder 52 serves as a guide to further reduce the entrainment of the stationary fluid.

図5に示す第4例の流量制限手段60は、管路10の内面に環状の外筒61が設けられ、この外筒61の軸心上に、円柱体に形成された内筒62が設けられている。外筒61は、管路10の内面に固定された外周部分65の下流部に、この外周部分65から軸心に向けて縮径する中空部分(流量調整部)64が設けられている。そして、円柱体の内筒62は、外筒61の中空部分64に挿入された状態で配置されている。これにより、外筒61の内周と内筒62の外周との間に環状の開口部63が形成されている。この例の場合、内筒62が軸方向に移動したとしても開口部63の開口面積は一定である。   The flow restricting means 60 of the fourth example shown in FIG. 5 is provided with an annular outer cylinder 61 on the inner surface of the conduit 10, and an inner cylinder 62 formed in a cylindrical body is provided on the axial center of the outer cylinder 61. It has been. The outer cylinder 61 is provided with a hollow portion (flow rate adjusting portion) 64 whose diameter is reduced from the outer peripheral portion 65 toward the axial center at a downstream portion of the outer peripheral portion 65 fixed to the inner surface of the pipe line 10. The cylindrical inner cylinder 62 is arranged in a state of being inserted into the hollow portion 64 of the outer cylinder 61. Thereby, an annular opening 63 is formed between the inner periphery of the outer cylinder 61 and the outer periphery of the inner cylinder 62. In this example, even if the inner cylinder 62 moves in the axial direction, the opening area of the opening 63 is constant.

この例によっても、高圧P0の上流側から外筒61と内筒62との間の環状の開口部63を介して低圧P1の下流側に流れる作動油Oは、内筒62に沿って速度が遅く速度分布が小さいことと、内筒62がガイドとなって静止流体の巻込みが小さくなること等の効果により、作動油Oにせん断が生じるのを抑えることができる。   Also in this example, the hydraulic oil O flowing from the upstream side of the high pressure P0 to the downstream side of the low pressure P1 through the annular opening 63 between the outer cylinder 61 and the inner cylinder 62 has a velocity along the inner cylinder 62. It is possible to suppress the occurrence of shearing in the hydraulic oil O due to the effects of the slow velocity distribution being small and the fact that the inner cylinder 62 serves as a guide to reduce the entrainment of the stationary fluid.

図6に示す第5例の流量制限手段70は、開口部73の面積を調整できるようにした流量制限手段70である。この例の流量制限手段70は、管路10の所定位置に設けられ、円筒状の上流側部材75と下流側部材76とを有している。   The flow rate limiting unit 70 of the fifth example shown in FIG. 6 is a flow rate limiting unit 70 that can adjust the area of the opening 73. The flow rate restricting means 70 in this example is provided at a predetermined position in the pipe 10 and has a cylindrical upstream member 75 and a downstream member 76.

下流側部材76の軸心上には、内筒72の配置座77が設けられ、この配置座77に内筒72の円筒基部78が配置されている。この内筒72は、上流部分が小径に形成されており、上流部分から上記円筒基部78に向けて所定のテーパ角θで広がるように形成されている。また、内筒72には、円筒基部78の軸心に設けられた穴79が、テーパ部分で径方向に開口するように形成されている。   An arrangement seat 77 for the inner cylinder 72 is provided on the axial center of the downstream member 76, and a cylindrical base 78 of the inner cylinder 72 is arranged on the arrangement seat 77. The inner cylinder 72 has an upstream portion with a small diameter, and is formed so as to spread from the upstream portion toward the cylindrical base 78 with a predetermined taper angle θ. Further, a hole 79 provided in the center of the cylindrical base 78 is formed in the inner cylinder 72 so as to open in the radial direction at the tapered portion.

一方、上流側部材75は、下流端が所定の内径で形成された外筒71に形成されている。この外筒71の中空部分74に、上記内筒72の上流部分が配置されている。   On the other hand, the upstream member 75 is formed in an outer cylinder 71 whose downstream end is formed with a predetermined inner diameter. The upstream portion of the inner cylinder 72 is disposed in the hollow portion 74 of the outer cylinder 71.

そして、上記内筒72と外筒71との間に、これらの間隔を決めるスペーサ80が設けられている。このスペーサ80は、下流側部材76の内面に設けられ、下流側部材76の上流端に上流側部材75をねじ込んで固定することで外筒71と内筒72との間に固定されている。このスペーサ80の高さにより、外筒71と内筒72との間に形成される環状の開口部73の開口面積が決定される。図では大きな開口部73が形成されているが、実際には、例えば、0.数mm程度の隙間に設定される。   A spacer 80 is provided between the inner cylinder 72 and the outer cylinder 71 to determine the distance therebetween. The spacer 80 is provided on the inner surface of the downstream member 76, and is fixed between the outer cylinder 71 and the inner cylinder 72 by screwing and fixing the upstream member 75 to the upstream end of the downstream member 76. The opening area of the annular opening 73 formed between the outer cylinder 71 and the inner cylinder 72 is determined by the height of the spacer 80. In the drawing, a large opening 73 is formed. The gap is set to about several mm.

このような流量制限手段70によれば、スペーサ80の高さを変更することで環状の開口部73の面積を変更することができる。なお、スペーサ80によって外筒71の軸方向位置を調整可能とする構成は一例であり、他の構成で外筒71又は内筒72を軸方向に位置調整可能としてもよい。   According to such a flow restriction means 70, the area of the annular opening 73 can be changed by changing the height of the spacer 80. Note that the configuration in which the axial position of the outer cylinder 71 can be adjusted by the spacer 80 is an example, and the position of the outer cylinder 71 or the inner cylinder 72 may be adjusted in the axial direction by another configuration.

この例によっても、高圧P0の上流側から外筒71と内筒72との間の環状の開口部73を介して低圧P1の下流側に流れる作動油Oは、内筒72に沿って速度が遅く速度分布が小さいことと、内筒72がガイドとなって静止流体の巻込みが小さくなること等の効果により、作動油Oにせん断が生じるのを抑えることができる。   Also in this example, the hydraulic oil O flowing from the upstream side of the high pressure P0 to the downstream side of the low pressure P1 through the annular opening 73 between the outer cylinder 71 and the inner cylinder 72 has a velocity along the inner cylinder 72. It is possible to suppress the occurrence of shearing in the hydraulic oil O due to effects such as the slow speed distribution being small and the effect that the inner cylinder 72 serves as a guide to reduce the entrainment of the stationary fluid.

しかも、この例によれば、外筒71と内筒72との間の環状の開口部73の面積を変更することができ、管路10の上流側で維持する圧力に応じた開口部73の面積に調整することができる。   Moreover, according to this example, the area of the annular opening 73 between the outer cylinder 71 and the inner cylinder 72 can be changed, and the opening 73 corresponding to the pressure maintained on the upstream side of the conduit 10 can be changed. The area can be adjusted.

なお、上記図2に示す内筒32、図3に示す内筒42、及び図4に示す内筒52、及び図6に示す内筒72は、いずれも上流部分から下流部分に向けて広がるテーパ状に形成されているが、そのテーパ角θは、例えば、1度〜75度の範囲で形成される。   The inner cylinder 32 shown in FIG. 2, the inner cylinder 42 shown in FIG. 3, the inner cylinder 52 shown in FIG. 4, and the inner cylinder 72 shown in FIG. 6 are all tapered from the upstream portion toward the downstream portion. The taper angle θ is, for example, in the range of 1 to 75 degrees.

上記第1例〜第5例の流量制限手段30,40,50,60,70は、上記したようにドレン用流量制限手段12及び最小流量確保用流量制限手段22のいずれか一方に使用しても効果を奏することができるので、ドレン管路10及び最小流量確保管路20のいずれか一方、又は両方の管路10,20に設ければよい。また、ドレン用流量制限手段12及び最小流量確保用流量制限手段22は、上記第1例〜第5例の流量制限手段30,40,50,60,70を、同一の組合わせ、異なった組合わせのいずれで設けてもよい。   The flow rate limiting means 30, 40, 50, 60, 70 of the first to fifth examples are used as one of the drain flow rate limiting means 12 and the minimum flow rate securing flow rate limiting means 22 as described above. Therefore, it is sufficient to provide either one of the drain line 10 and the minimum flow rate securing line 20 or both of the lines 10 and 20. Further, the drain flow restricting means 12 and the minimum flow securing flow restricting means 22 are the same combination or different combinations of the flow restricting means 30, 40, 50, 60, 70 of the first to fifth examples. You may provide by any of them.

図7は、油圧装置1のドレン管路10と最小流量確保管路20とに、上述した従来の絞り100,110を設けた場合と、上記各流量制限手段40,50,60,70を適宜組合わせて設けた場合とにおける、作動油の酸価上昇速度を実験した結果を示すグラフである。横軸に時間を示し、縦軸に酸価を示している。各実験は、上記各流量制限手段40,50,60,70の異なる組合わせ例をドレン管路10と最小流量確保管路20とに設け、作動油の酸価上昇値を所定時間毎に計測して、その傾向を直線で示している。   FIG. 7 shows a case where the above-described conventional restrictors 100 and 110 are provided in the drain line 10 and the minimum flow rate securing pipe 20 of the hydraulic apparatus 1, and the flow rate restricting means 40, 50, 60 and 70 are appropriately set. It is a graph which shows the result of having experimented the acid value raise speed | rate of hydraulic oil in the case where it provides in combination. The horizontal axis represents time, and the vertical axis represents the acid value. In each experiment, different combinations of the flow rate limiting means 40, 50, 60, and 70 are provided in the drain line 10 and the minimum flow rate securing line 20, and the acid value increase value of the hydraulic oil is measured every predetermined time. The trend is shown by a straight line.

図7に示す「□」の傾向を示す「実線」は、従来の図8に示す絞り100をドレン管路10に用い、従来の図9に示す絞り110を最小流量確保管路20に用いた場合の作動油の酸価上昇速度を示している。図示する酸価が最も高い位置が、油圧装置1を約220時間運転したときの酸価であり、この酸価を「3」とし、この従来の絞り100,110用いた「実線」に対し、以下に本発明の流量制限手段40,50,60,70を用いた例と比較する。   The “solid line” indicating the tendency of “□” shown in FIG. 7 uses the conventional throttle 100 shown in FIG. 8 for the drain line 10 and the conventional throttle 110 shown in FIG. 9 for the minimum flow rate securing pipe 20. In this case, the rate of increase in the acid value of the hydraulic oil is shown. The position where the acid value shown in the figure is the highest is the acid value when the hydraulic device 1 is operated for about 220 hours. This acid value is “3”, and the “solid line” using this conventional diaphragm 100, 110, In the following, a comparison will be made with an example using the flow restriction means 40, 50, 60, 70 of the present invention.

図示する「○」の傾向を示す「二点鎖線」は、上記ドレン管路10に上述した図8に示す絞り100を用い、最小流量確保管路20に図4に示す第3例の流量制限手段50を用いた場合の例である。この組合わせの場合、「実線」で示すドレン管路10に従来の絞り100を用い、最小流量確保管路20に従来の絞り110を用いた場合に比べて酸価上昇速度を約1/3に抑えることができる。また、上記ドレン管路10に上述した図8に示す絞り100を用い、最小流量確保管路20に図2に示す第1例の流量制限手段30を用いた場合も略同様の結果となった。   The “two-dot chain line” indicating the tendency of “◯” shown in the figure uses the throttle 100 shown in FIG. 8 for the drain pipe 10 and the flow rate restriction of the third example shown in FIG. This is an example when the means 50 is used. In the case of this combination, the acid value increase rate is about 1/3 compared with the case where the conventional throttle 100 is used for the drain line 10 indicated by the “solid line” and the conventional throttle 110 is used for the minimum flow rate securing pipe 20. Can be suppressed. Further, when the above-described throttle 100 shown in FIG. 8 is used for the drain line 10 and the flow rate restricting means 30 of the first example shown in FIG. .

このことは、例えば、ドレン管路10に比べて最小流量確保管路20の流量が多く、例えば、ドレン管路10に比べて最小流量確保管路20で2倍の作動油をタンク2に戻すような構成もあるため、最小流量確保管路20に流量制限手段50又は流量制限手段30を設けることで酸価上昇速度を大幅に抑えて作動油の劣化速度を低下することが可能であることがわかる。   This is because, for example, the flow rate of the minimum flow rate securing line 20 is larger than that of the drain line 10. For example, the hydraulic fluid is returned to the tank 2 twice as much as the minimum flow rate securing line 20 compared to the drain line 10. Since there is such a configuration, by providing the flow rate limiting means 50 or the flow rate limiting means 30 in the minimum flow rate securing pipe line 20, it is possible to greatly suppress the acid value increase rate and reduce the deterioration rate of the hydraulic oil. I understand.

図示する「△」の傾向を示す「一点鎖線」は、上記ドレン管路10に図5に示す第4例の流量制限手段60を用い、上記最小流量確保管路20に図4に示す第3例の流量制限手段50を用いた場合の例である。この例の場合も、上記「実線」で示す従来の絞り100,110をドレン管路10と最小流量確保管路20に設けた場合に比べて、酸価上昇速度を約1/3に抑えることができる。   The “one-dot chain line” indicating the tendency of “Δ” shown in the figure uses the flow restricting means 60 of the fourth example shown in FIG. 5 in the drain pipe 10 and the third flow shown in FIG. This is an example in which the example flow restricting means 50 is used. Also in this example, compared with the case where the conventional throttles 100 and 110 shown by the “solid line” are provided in the drain pipe 10 and the minimum flow rate securing pipe 20, the acid value increase rate is suppressed to about 1/3. Can do.

図示する「◇」の傾向を示す「点線」は、上記ドレン管路10に図3に示す第2例の流量制限手段40を用い、上記最小流量確保管路20に図4に示す第3例の流量制限手段50を用いた場合の例である。この例の場合、上記「一点鎖線」で示す、ドレン管路10に第4例の流量制限手段60を用い、最小流量確保管路20に第3例の流量制限手段50を用いた場合に比べて、酸価上昇速度を更に約20%程度抑えることができる。従って、上記「実線」で示す従来の絞り100,110をドレン管路10と最小流量確保管路20に設けた場合に比べて、大幅に酸価上昇速度を抑えることができる。   The “dotted line” indicating the tendency of “◇” shown in the figure uses the flow restricting means 40 of the second example shown in FIG. 3 for the drain pipe 10 and the third example shown in FIG. This is an example in which the flow rate restricting means 50 is used. In the case of this example, as compared with the case where the fourth example flow restriction means 60 is used for the drain line 10 and the third flow restriction means 50 is used for the minimum flow rate securing pipe 20, as indicated by the “dashed line”. Thus, the acid value increase rate can be further suppressed by about 20%. Therefore, compared with the case where the conventional throttles 100 and 110 indicated by the “solid line” are provided in the drain pipe line 10 and the minimum flow rate securing pipe line 20, the acid value increase rate can be greatly suppressed.

このように、油圧装置1のドレン管路10及び最小流量確保管路20のいずれか一方、又は両方の管路10,20に上記したような流量制限手段40,50,60,70を用いることで、従来の絞り100,110における円孔からの自由噴流に比べて、外筒41,51,61,71と内筒42,52,62,72との間の環状の開口部43,53,63,73からの噴流は作動油の最高速度が遅く速度分布が小さいことと、内筒42,52,62,72がガイドとなって静止流体の巻込みが小さくなること等の効果により、作動油のせん断が抑えられて酸価上昇速度を抑えることができると考えられる。   As described above, the flow restricting means 40, 50, 60, 70 as described above is used for either one of the drain line 10 and the minimum flow rate securing pipe line 20 of the hydraulic apparatus 1 or both of the pipe lines 10, 20. In comparison with the free jet flow from the circular holes in the conventional throttles 100, 110, the annular openings 43, 53, between the outer cylinders 41, 51, 61, 71 and the inner cylinders 42, 52, 62, 72 are provided. The jets from 63 and 73 operate due to the effect that the maximum speed of the hydraulic oil is slow and the speed distribution is small, and that the inner cylinders 42, 52, 62 and 72 serve as guides to reduce the entrainment of the stationary fluid. It is considered that the shear rate of oil can be suppressed and the rate of increase in acid value can be suppressed.

従って、上記油圧装置1によれば、作動油の酸価上昇速度を抑えて劣化速度の低下を図ることが可能となり、簡単に停止することができないプラント設備や、作動油の廃棄が制限される設備、メンテナンス等が困難で作動油の交換間隔を延ばしたい設備等において、作動油を長期間にわたって使用できる油圧装置1を構成することが可能となる。   Therefore, according to the hydraulic device 1, it is possible to reduce the deterioration rate by suppressing the acid value increase rate of the hydraulic oil, and the plant equipment that cannot be easily stopped and the disposal of the hydraulic oil are restricted. It is possible to configure the hydraulic device 1 that can use the hydraulic oil for a long period of time in an equipment that is difficult to install, maintenance, etc. and that wants to extend the hydraulic oil replacement interval.

その上、交換した作動油を廃棄できないプラント設備においては、作動油の長期使用によって廃棄油を減らすことが可能となる。   In addition, in plant facilities where the replaced hydraulic oil cannot be discarded, the waste oil can be reduced by long-term use of the hydraulic oil.

なお、上記実施形態では、第1例〜第5例の流量制限手段30,40,50,60,70を個別に説明し、上記図7ではその一例の実験結果を説明したが、上記したように、ドレン管路10及び最小流量確保管路20のいずれか一方の管路10,20に流量制限手段12,22を設けても、作動油の酸価上昇速度を抑えることができるので、油圧装置1が用いられるプラント設備等に応じて流量制限手段12,22をドレン管路10及び最小流量確保管路20のいずれか一方、又は両方の管路10,20に設けるようにすればよい。   In the above embodiment, the flow rate restricting means 30, 40, 50, 60, 70 of the first to fifth examples are individually described, and the experimental results of the example are described in FIG. 7, but as described above. In addition, even if the flow rate limiting means 12 and 22 are provided in any one of the drain line 10 and the minimum flow rate securing line 20, the rate of increase in the acid value of the hydraulic oil can be suppressed. The flow rate limiting means 12 and 22 may be provided in either one of the drain line 10 and the minimum flow rate securing line 20 or both of the lines 10 and 20 in accordance with the plant facility in which the apparatus 1 is used.

また、上記実施形態では、流量制限手段12,22として外筒31,41,51,61,71と内筒32,42,52,62,72とを組合わせた例を説明したが、環状の開口部33,43,53,63,73を形成できるような構成であれば、例えば、ニードル弁の形態の流量制限手段であってもよく、流量制限手段12,22の構成は上記例に限定されるものではない。   Moreover, although the said embodiment demonstrated the example which combined outer cylinder 31,41,51,61,71 and inner cylinder 32,42,52,62,72 as the flow volume restriction | limiting means 12,22, As long as the openings 33, 43, 53, 63, 73 can be formed, for example, a flow restriction means in the form of a needle valve may be used, and the constitution of the flow restriction means 12, 22 is limited to the above example. Is not to be done.

さらに、上述した実施形態は一例を示しており、本発明の要旨を損なわない範囲での種々の変更は可能であり、本発明は上述した実施形態に限定されるものではない。   Furthermore, the above-described embodiment shows an example, and various modifications can be made without departing from the gist of the present invention, and the present invention is not limited to the above-described embodiment.

本発明に係る油圧装置は、作動油を長期間使用して交換頻度を抑えたい設備等に利用できる。   The hydraulic apparatus according to the present invention can be used for facilities that use hydraulic oil for a long period of time and want to suppress replacement frequency.

1 油圧装置
2 タンク
3 可変容量形ポンプ(油圧ポンプ)
4 ポンプユニット
5 吐出管路
6 弁
10 ドレン管路
11 リリーフ弁
12 ドレン用流量制限手段
15 傾転機構
20 最小流量確保管路
22 最小流量確保用流量制限手段
30 流量制限手段
31 外筒
32 内筒
33 開口部
40 流量制限手段
41 外筒
42 内筒
43 開口部
50 流量制限手段
51 外筒
52 内筒
53 開口部
60 流量制限手段
61 外筒
62 内筒
63 開口部
70 流量制限手段
71 外筒
72 内筒
73 開口部
80 スペーサ
1 Hydraulic system
2 tanks
3 Variable displacement pump (hydraulic pump)
4 Pump unit
5 Discharge pipeline
6 Valve 10 Drain Pipe Line 11 Relief Valve 12 Drain Flow Limiting Means 15 Tilt Mechanism 20 Minimum Flow Ensuring Pipe Line 22 Minimum Flow Ensuring Flow Limiting Means 30 Flow Limiting Means 31 Outer Tube 32 Inner Cylinder 33 Opening 40 41 outer cylinder 42 inner cylinder 43 opening 50 flow restricting means 51 outer cylinder 52 inner cylinder 53 opening 60 flow restricting means 61 outer cylinder 62 inner cylinder 63 opening 70 flow restricting means 71 outer cylinder 72 inner cylinder 73 opening 80 spacer

Claims (7)

制御機器へ供給される作動油を吐出する油圧ポンプと、前記油圧ポンプの吐出量を調整する傾転機構へ供給される一部の作動油をタンクに戻すドレン管路と、前記油圧ポンプから吐出される作動油の一部をタンクに戻すことにより前記油圧ポンプの過熱を防止する最小流量確保管路と、を備えた油圧装置であって、
前記ドレン管路及び前記最小流量確保管路の少なくともいずれか一方は、前記作動油の管路内流量を制限する流量制限手段を備え、
前記流量制限手段は、前記管路の内面において、前記管路の軸方向に設けられた外筒と、該外筒の軸心上に配置され、かつ上流側端部が前記外筒の上流側端部から所定量下流側に入った位置に配置された内筒と、前記外筒と前記内筒との間に形成される環状の開口部と、を有し、
前記環状の開口部から流出する流路において、前記内筒の断面積が上流側から下流側に向かって同一乃至は増加するように形成され、
前記環状の開口部を介して上流側から下流側へ作動油の一部をタンクに戻すように構成されていることを特徴とする油圧装置。
A hydraulic pump that discharges hydraulic oil supplied to the control device, a drain line that returns a part of the hydraulic oil supplied to the tilting mechanism that adjusts the discharge amount of the hydraulic pump to the tank, and a discharge from the hydraulic pump A minimum flow rate securing pipe for preventing overheating of the hydraulic pump by returning a part of the hydraulic oil to be returned to the tank,
At least one of the drain line and the minimum flow rate securing line includes a flow rate limiting unit that limits the flow rate of the hydraulic oil in the pipeline,
The flow restricting means is arranged on the inner surface of the pipe line on the outer cylinder provided in the axial direction of the pipe line, on the axis of the outer cylinder , and the upstream end is the upstream side of the outer cylinder. It has a cylindrical inner disposed at a position within a predetermined amount downstream from the end, and a annular opening formed between the inner cylinder and the outer cylinder,
In the flow path that flows out from the annular opening , the inner cylinder has a cross-sectional area that is the same or increases from the upstream side toward the downstream side,
A hydraulic apparatus configured to return a part of the hydraulic oil to the tank from the upstream side to the downstream side through the annular opening .
前記内筒は、円錐形状に形成され、該内筒は、上流部分から下流部分に向けて広がる所定のテーパ角で形成されている請求項1に記載の油圧装置。   The hydraulic apparatus according to claim 1, wherein the inner cylinder is formed in a conical shape, and the inner cylinder is formed with a predetermined taper angle extending from an upstream portion toward a downstream portion. 前記テ−パ角は、1度以上75度以下の範囲で形成される請求項2に記載の油圧装置。   3. The hydraulic apparatus according to claim 2, wherein the taper angle is formed in a range of 1 degree to 75 degrees. 前記内筒は、上流部分におけるテーパ角に対して下流部分の一部が更に広がるテーパ角で形成されている請求項2に記載の油圧装置。   The hydraulic apparatus according to claim 2, wherein the inner cylinder is formed with a taper angle in which a part of the downstream part further expands with respect to the taper angle in the upstream part. 前記内筒又は外筒は、軸方向に位置調整可能なように構成されている請求項2〜4のいずれか1項に記載の油圧装置。   The hydraulic apparatus according to any one of claims 2 to 4, wherein the inner cylinder or the outer cylinder is configured to be positionally adjustable in an axial direction. 前記外筒は、下流部分に縮径した流量調節部が形成され、
前記内筒は、前記外筒の流量調節部との間に環状の開口部を形成する円柱体に形成されている請求項1に記載の油圧装置。
The outer cylinder is formed with a flow rate adjusting portion having a reduced diameter in the downstream portion,
2. The hydraulic apparatus according to claim 1, wherein the inner cylinder is formed in a cylindrical body that forms an annular opening between the inner cylinder and a flow rate adjusting unit of the outer cylinder.
前記ドレン管路及び最小流量確保管路に前記流量制限手段を備えている請求項1〜6のいずれか1項に記載の油圧装置。   The hydraulic apparatus according to any one of claims 1 to 6, wherein the drain restricting line and the minimum flow securing pipe are provided with the flow restricting means.
JP2012025887A 2012-02-09 2012-02-09 Hydraulic device Active JP5820292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012025887A JP5820292B2 (en) 2012-02-09 2012-02-09 Hydraulic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012025887A JP5820292B2 (en) 2012-02-09 2012-02-09 Hydraulic device

Publications (2)

Publication Number Publication Date
JP2013164086A JP2013164086A (en) 2013-08-22
JP5820292B2 true JP5820292B2 (en) 2015-11-24

Family

ID=49175564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012025887A Active JP5820292B2 (en) 2012-02-09 2012-02-09 Hydraulic device

Country Status (1)

Country Link
JP (1) JP5820292B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3409973A1 (en) * 1984-03-19 1985-09-26 Cameron Iron Works Gmbh, 3100 Celle THROTTLE ORGAN FOR REDUCING PRESSURE IN DISCHARGE PIPES
JPH05288202A (en) * 1992-04-08 1993-11-02 Komatsu Ltd Oil hydraulic circuit having pressure compensating valve

Also Published As

Publication number Publication date
JP2013164086A (en) 2013-08-22

Similar Documents

Publication Publication Date Title
CN104040233B (en) Gas-tight pit and the method that non-anti-cavitation main valve is transformed into into anti-cavitation main valve
CN101975310B (en) Throttling device
EP3473908B1 (en) Valve mechanism
JP5674521B2 (en) Steam valve device and steam turbine plant
CN104913148A (en) Multi-stage denoiser and valve with same
JP2009531225A5 (en)
US9903219B2 (en) Steam governing valve apparatus and power generation facility
JP6603406B2 (en) Valve device for restricting pressure medium flow and damping device for damping pressure pulsation
CN105393032A (en) Control valve
JP2008101516A (en) Steam valve and steam turbine
JP2018023936A (en) Fine bubble generator
JP2016514237A (en) Pressure independent control valve and balance valve
EP2905478A1 (en) Vibration suppression device for jet pump and jet pump
RU2650010C2 (en) Valve body with improved lower flow cavity
RU2296261C2 (en) Straight-way valve
JP5820292B2 (en) Hydraulic device
CN202418892U (en) Pressure/noise reduction sleeve regulating valve
CN105736733A (en) Adjusting ball valve
WO2016067490A1 (en) Main shaft device
CN103343836A (en) Hedging-type cavitation-resistant valve cage as well as regulating valve with valve cage
CN101205975A (en) Cage type single seat regulating valve
JP6486804B2 (en) Steam valves and power generation equipment
US20160245513A1 (en) Heat-protective insert for a fuel line
CN202927240U (en) Butterfly-valve noise-attenuating device
CN203421279U (en) Direct-impact cavitation-resistant valve cage and adjusting valve with same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151002

R150 Certificate of patent or registration of utility model

Ref document number: 5820292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250