JP5818209B2 - Macro lens - Google Patents

Macro lens Download PDF

Info

Publication number
JP5818209B2
JP5818209B2 JP2011280281A JP2011280281A JP5818209B2 JP 5818209 B2 JP5818209 B2 JP 5818209B2 JP 2011280281 A JP2011280281 A JP 2011280281A JP 2011280281 A JP2011280281 A JP 2011280281A JP 5818209 B2 JP5818209 B2 JP 5818209B2
Authority
JP
Japan
Prior art keywords
lens
lens group
object side
macro
camera shake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011280281A
Other languages
Japanese (ja)
Other versions
JP2013130723A (en
Inventor
安達 宣幸
宣幸 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamron Co Ltd
Original Assignee
Tamron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamron Co Ltd filed Critical Tamron Co Ltd
Priority to JP2011280281A priority Critical patent/JP5818209B2/en
Publication of JP2013130723A publication Critical patent/JP2013130723A/en
Application granted granted Critical
Publication of JP5818209B2 publication Critical patent/JP5818209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Description

本発明は、マクロレンズ、さらに詳しくは、撮影倍率が0.5倍以上であって、手振れ補正機能を持ち、マクロ撮影が可能な撮影レンズに関し、写真カメラ、ビデオカメラ、電子スチルカメラなどに好適なマクロレンズに関するものである。   The present invention relates to a macro lens, more specifically, a photographing lens having a photographing magnification of 0.5 times or more, a camera shake correction function, and capable of macro photographing, and is suitable for a photographic camera, a video camera, an electronic still camera, and the like. This is related to a macro lens.

一般的に、手振れ補正機能を持ったマクロ撮影用レンズは、撮影倍率が高くなるに従い、手振れ補正による収差の変動が大きくなり、その収差を補正することが難しい。その対策として、フォーカシング時に複数のレンズ群を移動させた、いわゆるフローティング方式のレンズが提案されている。   In general, in a macro imaging lens having a camera shake correction function, the variation in aberration due to camera shake correction increases as the imaging magnification increases, and it is difficult to correct the aberration. As a countermeasure, a so-called floating lens in which a plurality of lens groups are moved during focusing has been proposed.

従来のマクロ撮影レンズであって、手振れ補正機構の組み込みに好適な撮影レンズの一つは、物体側には、物体側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とを備え、最も像側には負の屈折力を有する最終レンズ群GL を備え、無限遠から近距離物体への合焦時には、前記第1レンズ群G1および前記第2レンズ群G2が物体側に移動する近距離補正レンズにおいて、前記最終レンズ群GL のうち負の屈折力を有する一部の部分レンズ群GLPを光軸とほぼ直交する方向に移動させて防振するための変位手段を備え、最短撮影距離での撮影倍率をβM とし、前記最終レンズ群GL の焦点距離をfL とし、前記最終レンズ群GL 中の部分レンズ群GLPの焦点距離をfLPとし、防振時における前記部分レンズ群GLPの光軸と直交する方向への最大変位量の大きさを△SLPとしたとき、0.25<|βM |△SLP/|fLP|<0.10.1<fLP/fL <2の条件を満足する近距離補正レンズが提案されている(例えば、特許文献1参照)。   One conventional photographing lens suitable for incorporating a camera shake correction mechanism includes, on the object side, a first lens group G1 having positive refractive power in order from the object side, and positive refraction. A second lens group G2 having a power, a final lens group GL having a negative refractive power on the most image side, and at the time of focusing from infinity to a close object, the first lens group G1 and the second lens group G2 In the short-distance correction lens in which the two lens group G2 moves toward the object side, the partial lens group GLP having a negative refractive power in the final lens group GL is moved in a direction substantially perpendicular to the optical axis to prevent vibration. And a focal length of the final lens group GL is fL, and a focal length of the partial lens group GLP in the final lens group GL is fLP. The partial len during shaking When the maximum displacement amount in the direction orthogonal to the optical axis of the group GLP is ΔSLP, 0.25 <| βM | ΔSLP / | fLP | <0.10.1 <fLP / fL <2. A short-range correction lens that satisfies the conditions has been proposed (see, for example, Patent Document 1).

従来技術であって、Fナンバーが1.2程度であり、画面全体の諸収差、色収差について特に2次スペクトルを良好に補正し、画面全体にわたり高い光学性能を有した撮影レンズとして、電子スチルカメラ等に搭載される撮影レンズSLであって、物体側より順に、正の屈折力を有する前側レンズ群GFと、正の屈折力を有する後側レンズ群GRとを有し、前側レンズ群GFは、最も物体側より順に、正の屈折力を有する第1レンズ成分G1と、正の屈折力を有する第2レンズ成分G2とを有し、後側レンズ群GRは、接合レンズG89とを有し、第1及び第2レンズ成分G1,G2のアッベ数をν1、ν2とし、無限遠から撮影倍率−0.01倍に合焦するときの前側及び後側レンズ群GF,GRの移動量をγF1,γR1としたとき、次式
(ν1+ν2)/2 > 60
0.35 < γR1/γF1 < 0.80
の条件を満足す撮影レンズが提案されている(例えば、特許文献2参照)。
An electronic still camera as a photographic lens having a high optical performance over the entire screen, which is a prior art, has an F-number of about 1.2, and corrects the secondary spectrum particularly for various aberrations and chromatic aberrations of the entire screen. A front lens group GF having a positive refractive power and a rear lens group GR having a positive refractive power in order from the object side, and the front lens group GF includes: The first lens component G1 having a positive refractive power and the second lens component G2 having a positive refractive power are disposed in order from the most object side, and the rear lens group GR includes a cemented lens G89. The Abbe numbers of the first and second lens components G1 and G2 are ν1 and ν2, and the movement amounts of the front and rear lens groups GF and GR when focusing from infinity to a photographing magnification of −0.01 times are γF1, When γR1, ν1 + ν2) / 2> 60
0.35 <γR1 / γF1 <0.80
An imaging lens that satisfies the above condition has been proposed (see, for example, Patent Document 2).

特許第3531209号公報Japanese Patent No. 3531209 特開2009−251398号公報JP 2009-251398 A

特許文献1に開示されている撮影レンズは、実施例がフルサイズ用のものであり、レンズ構成枚数が多く、鏡筒構成が複雑である。特許文献1に開示されている撮影レンズは、また、物体側から正、正、負のパワー配置となっており、物体側の正群の直径が大きくなる。その結果、バックフォーカスを短くすることは容易であるが、全光学をコンパクトにすることは困難である。   The photographic lens disclosed in Patent Document 1 is an example for a full size, has a large number of lenses, and has a complicated lens barrel configuration. The photographic lens disclosed in Patent Document 1 has a positive, positive, and negative power arrangement from the object side, and the diameter of the positive group on the object side increases. As a result, it is easy to shorten the back focus, but it is difficult to make all the optics compact.

特許文献2に開示されている撮影レンズは、前群の正の屈折力を強めバックフォーカスを短くした構成であるが、その結果として前群に多数のレンズが必須となり、コンパクト性を損なっている。さらに、手振れ補正機構を組み込む領域を十分にとることが困難である。   The photographic lens disclosed in Patent Document 2 has a configuration in which the positive refractive power of the front group is increased and the back focus is shortened. As a result, a large number of lenses are essential in the front group, and the compactness is impaired. . Furthermore, it is difficult to take a sufficient area for incorporating the camera shake correction mechanism.

(発明の目的)
本発明は、従来の撮影レンズの上述した問題点に鑑みなされたものであって、撮影倍率が0.5倍以上であって、手振れ補正機能を持ち、コンパクトでマクロ撮影が可能な撮影レンズに関し、写真カメラ、ビデオカメラ、電子スチルカメラなどに好適なマクロレンズを提供することを目的とする。
本発明はまた、手振れ補正機構を組み込む領域を十分にとることが可能なマクロレンズを提供することを目的とする。
(Object of invention)
The present invention has been made in view of the above-described problems of conventional photographing lenses, and relates to a photographing lens that has a photographing magnification of 0.5 times or more, has a camera shake correction function, and is compact and capable of macro photography. Another object is to provide a macro lens suitable for a photo camera, a video camera, an electronic still camera, and the like.
Another object of the present invention is to provide a macro lens capable of taking a sufficient area for incorporating a camera shake correction mechanism.

第1発明は、
物体側から像側へと順に、正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、正または負の屈折力を有する第3レンズ群からなり、前記第1レンズ群と前記第2レンズ群は物体距離無限遠から最短撮影距離にかけて、それぞれ異なる移動量で物体側に移動し、第3レンズ群の一部もしくは全体を光軸上を上下に移動して手振れ補正を行い、以下の条件式を満足するマクロレンズ。
|β|>0.5 ・・・・・・・・・・・(1)
β:最短撮影状態での撮影倍率
である。
The first invention is
In order from the object side to the image side, the first lens group includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive or negative refractive power. The second lens group and the second lens group move toward the object side with different amounts of movement from the infinite object distance to the shortest shooting distance, and a part or the whole of the third lens group moves up and down on the optical axis to correct camera shake. A macro lens that satisfies the following conditional expression.
| Β |> 0.5 (1)
β: An imaging magnification in the shortest imaging state.

第2発明は、
物体側から像側へと順に、正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、正または負の屈折力を有する第3レンズ群からなり、前記第1レンズ群と前記第2レンズ群は、物体距離無限遠から最短撮影距離にかけて、それぞれ異なる移動量で物体側に移動し、前記第1レンズ群が1枚のレンズからなり、以下の条件式を満足するマクロレンズ。
|β| > 0.5 ・・・・・・・・・・・(5)
β:最短撮影状態での撮影倍率
である。
The second invention is
In order from the object side to the image side, the first lens group includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive or negative refractive power. The group and the second lens group move toward the object side by different amounts of movement from the infinite object distance to the shortest shooting distance, and the first lens group is composed of one lens, and satisfies the following conditional expression lens.
| Β |> 0.5 (5)
β: An imaging magnification in the shortest imaging state.

第3発明は、
物体側から像側へと順に、正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、正または負の屈折力を有する第3レンズ群からなり、前記第1レンズ群と前記第2レンズ群は物体距離無限遠から最短撮影距離にかけて、それぞれ異なる移動量で物体側に移動し、前記第2レンズ群は少なくとも2枚の負レンズを有し、以下の条件式を満足するマクロレンズ。
|β|>0.5 ・・・・・・・・・・(8)
β:最短撮影状態での撮影倍率
5 < F/D < 30 ・・・・・・・・・(9)
D:負レンズ同士の空気間隔
である。
The third invention is
In order from the object side to the image side, the first lens group includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive or negative refractive power. The second lens group and the second lens group move to the object side by different amounts of movement from the infinite object distance to the shortest shooting distance, and the second lens group has at least two negative lenses and satisfies the following conditional expression: Macro lens.
| Β |> 0.5 (8)
β: Shooting magnification in the shortest shooting state
5 <F / D <30 (9)
D: Air spacing between negative lenses.

本発明の条件式(1)(5)(9)
|β|>0.5
β:最短撮影状態での撮影倍率
は、マクロレンズとして使い勝手が良く、かつ技術的に製造的に一般的レベルを超えた過剰な要求をしないための条件である。
Conditional expressions (1) (5) (9)
| Β |> 0.5
β: The photographing magnification in the shortest photographing state is a condition that is easy to use as a macro lens and that does not make an excessive demand exceeding a general level in terms of technical manufacturing.

条件式(9)
5 < F/D < 30
D:負レンズ同士の空気間隔
は、フォーカシング時移動するレンズ群の内、第2レンズ群は、負の屈折力を有する。第2レンズ群は、少なくとも2枚の負レンズを有し、その間に空気間隔Dを有する。この空気間隔Dがコマ収差や像面湾曲を適切に補正する。
Conditional expression (9)
5 <F / D <30
D: The air distance between the negative lenses is that the second lens group has a negative refractive power among the lens groups that move during focusing. The second lens group has at least two negative lenses and has an air gap D therebetween. This air interval D appropriately corrects coma and curvature of field.

条件式(9)の下限を超えると、第2レンズ群の負のパワーが弱くなり、光学系が大型化する。
条件式(9)の上限を超えると、第2レンズ群の負のパワーが強くなり、光学系をコンパクトにすることができるが、像面湾曲の増大を招く。
When the lower limit of conditional expression (9) is exceeded, the negative power of the second lens group becomes weak, and the optical system becomes large.
When the upper limit of conditional expression (9) is exceeded, the negative power of the second lens group becomes strong and the optical system can be made compact, but this causes an increase in field curvature.

第3レンズ群は正の屈折力でも負の屈折力でも光学系を成立させることができる。
第3レンズ群を正の屈折力で構成すれば、開口絞りの径を小さくすることができ、鏡筒外形の縮小に適した構成とすることができる。
第3レンズ群を負の屈折力で構成させれば、バックフォーカスを短くし、全系の小型化に適した構成にすることができる。
The third lens group can establish an optical system with either a positive refractive power or a negative refractive power.
If the third lens group is configured with a positive refractive power, the diameter of the aperture stop can be reduced, and a configuration suitable for reducing the outer shape of the lens barrel can be achieved.
If the third lens group is configured with a negative refractive power, the back focus can be shortened and a configuration suitable for downsizing of the entire system can be achieved.

手振れ補正レンズ群は、第3レンズ群中の一部ないし全体を光軸直交方向へ移動させることによって行う。好ましい構成としては、第3レンズ群を複数の成分に分割し、その中で物体側に近いレンズ群を手振れ補正群とする。この構成により、手振れ補正時のレンズの光軸直交方向の移動量を小さくし、手振れ補正アクチュエータの小型化、鏡筒外形の小型化が実現できる。さらに、手振れ補正系を鏡筒外部からたとえば指などによる接触を防ぐため、最終レンズ群にその保護部材としての役目を担わせることができる。   The camera shake correction lens group is performed by moving part or all of the third lens group in the direction perpendicular to the optical axis. As a preferable configuration, the third lens group is divided into a plurality of components, and among them, a lens group close to the object side is set as a camera shake correction group. With this configuration, it is possible to reduce the amount of movement of the lens in the direction orthogonal to the optical axis during camera shake correction, thereby reducing the size of the camera shake correction actuator and the size of the lens barrel. Furthermore, in order to prevent the camera shake correction system from coming into contact with, for example, a finger from the outside of the lens barrel, the final lens group can serve as its protective member.

本発明のマクロレンズによれば、撮影倍率が0.5倍以上であって、手振れ補正機能を持ち、コンパクトでマクロ撮影が可能な撮影レンズに関し、写真カメラ、ビデオカメラ、電子スチルカメラなどに好適なマクロレンズを構成することができる。
本発明のマクロレンズによればまた、手振れ補正機構を組み込む領域を十分にとることが可能なマクロレンズを構成することができる。
According to the macro lens of the present invention, the photographing magnification is 0.5 times or more, the camera lens has a camera shake correction function, and is compact and capable of macro photography, which is suitable for a photographic camera, a video camera, an electronic still camera, and the like. A simple macro lens can be configured.
According to the macro lens of the present invention, it is also possible to configure a macro lens capable of taking a sufficient area for incorporating a camera shake correction mechanism.

(実施態様)
(第1発明の実施態様1)
第1発明において、以下の条件式を満足する請求項1記載のマクロレンズ。
-20 < F3/F2 < 2.8 ・・・・・・ ・・・(2)
F2:第2レンズ群の焦点距離
F3:第3レンズ群の焦点距離
(Embodiment)
(Embodiment 1 of the first invention)
The macro lens according to claim 1, wherein, in the first invention, the following conditional expression is satisfied.
-20 <F3 / F2 <2.8 (2)
F2: Focal length of the second lens group
F3: Focal length of the third lens group

(第1発明の実施態様2)
第1発明において、以下の条件式を満足する請求項2記載のマクロレンズ。
0.3 < F1/F <0.8 ・・・・・・・・・(3)
F1:第1レンズ群の焦点距離
F :全系の焦点距離
(Embodiment 2 of the first invention)
The macro lens according to claim 2, wherein in the first invention, the following conditional expression is satisfied.
0.3 <F1 / F <0.8 (3)
F1: Focal length of the first lens group
F: Focal length of the entire system

(第1発明の実施態様3)
第1発明において、以下の条件式を満足する、請求項3記載のマクロレンズ。
-1.25 <(r1+r2)/(r1-r2) < -0.47 ・・・・・・(4)
r1:第1レンズ群中、最も物体側の凸レンズの物体側の曲率半径
r2:第1レンズ群中、最も物体側の凸レンズの像側の曲率半径
(Embodiment 3 of the first invention)
The macro lens according to claim 3, wherein in the first invention, the following conditional expression is satisfied.
-1.25 <(r1 + r2) / (r1-r2) <-0.47 (4)
r1: the radius of curvature of the object side convex lens closest to the object side in the first lens group
r2: radius of curvature of the image side of the most object side convex lens in the first lens group

(第2発明の実施態様1)
第2発明において、以下の条件式を満足する請求項5記載のマクロレンズ。
Nd<1.85 Vd>40 ・・・・・・・・・・(6)
Nd:第1レンズ群を構成するレンズのd線に対する屈折率
Vd:第1レンズ群を構成するレンズのd線に対するアッベ数
(Embodiment 1 of the second invention)
6. The macro lens according to claim 5, wherein in the second invention, the following conditional expression is satisfied.
Nd <1.85 Vd> 40 (6)
Nd: Refractive index with respect to d-line of lenses constituting the first lens group
Vd: Abbe number for the d-line of the lenses constituting the first lens group

(第2発明の実施態様2)
第2発明において、以下の条件式を満足する、請求項6記載のマクロレンズ。
-1.25 <(r1+R2)/(r1-R2) < -0.47 ・・・・・・(7)
r1:第1レンズ群中、最も物体側の凸レンズの物体側の曲率半径
r2:第1レンズ群中、最も物体側の凸レンズの像側の曲率半径
(Embodiment 2 of the second invention)
The macro lens according to claim 6, wherein in the second invention, the following conditional expression is satisfied.
-1.25 <(r1 + R2) / (r1-R2) <-0.47 (7)
r1: the radius of curvature of the object side convex lens closest to the object side in the first lens group
r2: radius of curvature of the image side of the most object side convex lens in the first lens group

(第2発明の実施態様3)
第2発明において、以下の条件式を満足する請求項7記載のマクロレンズ。
-20 < F3/F2 < 2.8
F2:第2レンズ群の焦点距離
F3:第3レンズ群の焦点距離
(Embodiment 3 of the second invention)
The macro lens according to claim 7, wherein the following conditional expression is satisfied in the second invention.
-20 <F3 / F2 <2.8
F2: Focal length of the second lens group
F3: Focal length of the third lens group

(第3発明の実施態様1)
第3発明において、前記第1レンズ群が1枚のレンズからなり、以下の条件式を満足する、請求項9記載のマクロレンズ。
-1.25 <(r1+r2)/(r1-r2 )< -0.47 ・・・・・(10)
r1 :第1レンズ群中、最も物体側の凸レンズの物体側の曲率半径
r2 :第1レンズ群中、最も物体側の凸レンズの像側の曲率半径
F :全系の焦点距離
(Embodiment 1 of the third invention)
10. The macro lens according to claim 9, wherein the first lens group includes one lens and satisfies the following conditional expression.
-1.25 <(r1 + r2) / (r1-r2) <-0.47 (10)
r1: Object side radius of curvature of the most object side convex lens in the first lens unit
r2: radius of curvature on the image side of the most object side convex lens in the first lens group
F: Focal length of the entire system

(第3発明の実施態様2)
第3発明において、以下の条件式を満足する請求項1記載のマクロレンズ。
-20 < F3/F2 < 2.8 ・・・・・・・・・・・(11)
F2:第2レンズ群の焦点距離
F3:第3レンズ群の焦点距離
(Embodiment 2 of the third invention)
The macro lens according to claim 1, wherein the following conditional expression is satisfied in the third invention.
-20 <F3 / F2 <2.8 (11)
F2: Focal length of the second lens group
F3: Focal length of the third lens group

(実施態様の条件式の説明)
条件式(2)(8)(12)は、
-20 < F3/F2 < 2.8
F2:第2レンズ群の焦点距離
F3:第3レンズ群の焦点距離
(Description of conditional expression of embodiment)
Conditional expressions (2), (8) and (12) are
-20 <F3 / F2 <2.8
F2: Focal length of the second lens group
F3: Focal length of the third lens group

条件式(2)(8)(12)は、第2レンズ群の望ましい屈折力を規定するものである。
条件式(2)(8)(12)の下限を超えて第2レンズ群の焦点距離が長くなると、物体距離無限遠時の光学全長が長くなる。さらに、マクロ端への移動量が増えてしまう問題が発生する。
条件式(2)(8)(12)の上限を超えて第2レンズ群の焦点距離が短くなると、像面湾曲が著しくアンダー側に倒れ、画面周辺部分の結像性能が損なわれる。
なお、本発明の光学系中、最も太い光線束が第1レンズ群を通過するため、第1レンズ群は、球面収差を十分に補正することが必要である。
Conditional expressions (2), (8), and (12) define a desirable refractive power of the second lens group.
If the lower limit of conditional expressions (2), (8), and (12) is exceeded and the focal length of the second lens unit is increased, the total optical length at the infinite object distance is increased. Furthermore, there is a problem that the amount of movement to the macro end increases.
When the upper limit of conditional expressions (2), (8), and (12) is exceeded and the focal length of the second lens group is shortened, the field curvature is remarkably lowered to the under side, and the imaging performance in the peripheral portion of the screen is impaired.
In the optical system of the present invention, since the thickest beam bundle passes through the first lens group, the first lens group needs to sufficiently correct spherical aberration.

条件式(3)は、
以下の条件式を満足する請求項2記載のマクロレンズ。
0.3 < F1/F <0.8
F1:第1レンズ群の焦点距離
F :全系の焦点距離
Conditional expression (3) is
The macro lens according to claim 2, wherein the following conditional expression is satisfied.
0.3 <F1 / F <0.8
F1: Focal length of the first lens group
F: Focal length of the entire system

条件式(3)の下限を超えて第1レンズ群の焦点距離が短くなると、球面収差がアンダー側に倒れる。この球面収差を後続する第2レンズ群又は第3レンズ群で補正をした場合、レンズ枚数が増加し、光学系の全長が増大する。
条件式(3)の上限を超えて第1レンズ群の焦点距離が長くなると、逆に球面収差がオーバー側に倒れ、上記同様、後続のレンズで補正することができなくなる。
When the lower limit of conditional expression (3) is exceeded and the focal length of the first lens group becomes shorter, the spherical aberration falls to the under side. When this spherical aberration is corrected by the subsequent second lens group or the third lens group, the number of lenses increases and the total length of the optical system increases.
When the focal length of the first lens unit is increased beyond the upper limit of conditional expression (3), the spherical aberration is reversed to the over side and cannot be corrected by the subsequent lens as described above.

さらに、第1レンズ群は、光線束が広くなることから、加工上の面形状の誤差による結像性能の劣化が起こりやすい。そこで、特に第1レンズ群を構成する正レンズの硝材の屈折率は、低くすることが好ましい。   Furthermore, since the first lens group has a wide beam bundle, the imaging performance is likely to deteriorate due to an error in the surface shape during processing. Therefore, it is preferable to lower the refractive index of the glass material of the positive lens constituting the first lens group.

条件式(4)(7)(11)は、
-1.25 <(r1+r2)/(r1-r2) < -0.47
r1:第1レンズ群中、最も物体側の凸レンズの物体側の曲率半径
r2:第1レンズ群中、最も物体側の凸レンズの像側の曲率半径
Conditional expressions (4), (7) and (11) are
-1.25 <(r1 + r2) / (r1-r2) <-0.47
r1: the radius of curvature of the object side convex lens closest to the object side in the first lens group
r2: radius of curvature of the image side of the most object side convex lens in the first lens group

条件式(4)(7)(11)は、当該レンズの形状を規定するものである。鏡筒外径、全長を小さくすると共に、特に球面収差、下側光線のコマ収差の補正を良好に行うことができる。
条件式(4)(7)(11)の下限値を超えると、当該レンズの焦点距離が長くなり、第1レンズ群の直径が大きくなるばかりでなく、レンズ全長が長くなり好ましくない。
条件式(4)(7)(11)の上限値を超えると、当該レンズの屈折力が強くなり、軸外コマ収差が悪化し、結像性能の悪化を招くため好ましくない。
Conditional expressions (4), (7), and (11) define the shape of the lens. In addition to reducing the outer diameter and overall length of the lens barrel, it is possible to satisfactorily correct spherical aberration and coma of the lower ray.
Exceeding the lower limit values of conditional expressions (4), (7), and (11) is not preferable because the focal length of the lens is increased, the diameter of the first lens group is increased, and the entire length of the lens is increased.
Exceeding the upper limit values of conditional expressions (4), (7), and (11) is not preferable because the refractive power of the lens becomes strong, the off-axis coma aberration is deteriorated, and the imaging performance is deteriorated.

条件式(6)は、
Nd<1.85 Vd>40
Nd:第1レンズ群を構成するレンズのd線に対する屈折率
Vd:第1レンズ群を構成するレンズのd線に対するアッベ数
Conditional expression (6) is
Nd <1.85 Vd> 40
Nd: Refractive index with respect to d-line of lenses constituting the first lens group
Vd: Abbe number for the d-line of the lenses constituting the first lens group

条件式(6)の範囲を超えた硝材を選択すると、面形状誤差による結像性能の劣化が大きくなり、量産上の歩留まりの悪化を招く。   If a glass material exceeding the range of conditional expression (6) is selected, the degradation of imaging performance due to surface shape error increases, leading to a decrease in yield in mass production.

第1レンズ群内に非球面を設けることは、上述した球面収差の補正を行う上で好ましい。非球面を設けることで、球面収差の補正効果が表れる。適切な非球面形状を与えれば、1枚の凸レンズで構成させることができる。非球面数は両面非球面としても片面非球面でもかまわない。   It is preferable to provide an aspheric surface in the first lens group in order to correct the spherical aberration described above. By providing an aspherical surface, the effect of correcting spherical aberration appears. If an appropriate aspherical shape is given, it can be constituted by a single convex lens. The aspherical number may be a double-sided aspherical surface or a single-sided aspherical surface.

本発明に係る実施形態1の撮影レンズの無限遠合焦状態の断面図である。It is sectional drawing of an infinite point focusing state of the imaging lens of Embodiment 1 which concerns on this invention. 本発明に係る実施形態1の撮影レンズの無限遠合焦状態の縦収差図である。FIG. 3 is a longitudinal aberration diagram of the photographing lens according to the first embodiment of the present invention in an infinitely focused state. 本発明に係る実施形態1の撮影レンズの撮影倍率0.5倍時の縦収差図である。FIG. 5 is a longitudinal aberration diagram of the photographing lens according to the first embodiment of the present invention when the photographing magnification is 0.5 times. 本発明に係る実施形態1の撮影レンズの撮影倍率等倍時の縦収差図である。FIG. 5 is a longitudinal aberration diagram at the same magnification of the photographing magnification of the photographing lens according to the first embodiment of the present invention. 本発明に係る実施形態1の撮影レンズの物体距離無限遠時の手振れなしの横収差図である。FIG. 3 is a lateral aberration diagram without camera shake when the object distance of the shooting lens according to Embodiment 1 is infinite. 本発明に係る実施形態1の撮影レンズの撮影倍率0.5倍時の手振れなしの横収差図である。FIG. 5 is a lateral aberration diagram without camera shake when the photographing magnification of the photographing lens of Embodiment 1 according to the present invention is 0.5 times. 本発明に係る実施形態1の撮影レンズの撮影倍率等倍時の手振れなしの横収差図である。FIG. 3 is a lateral aberration diagram without camera shake at the same magnification as the imaging magnification of the imaging lens according to the first embodiment of the present invention. 本発明に係る実施形態1の撮影レンズの物体距離無限遠時の+方向手振れ量0.24mmの横収差図である。FIG. 6 is a lateral aberration diagram of a + direction hand movement amount of 0.24 mm when the object distance of the photographing lens according to Embodiment 1 is infinite. 本発明に係る実施形態1の撮影レンズの物体距離無限遠時の−方向手振れ量0.24mmの横収差図である。FIG. 4 is a lateral aberration diagram of a directional camera shake amount of 0.24 mm when the object distance of the photographing lens according to the first embodiment is infinity. 本発明に係る実施形態2の撮影レンズの無限遠合焦状態の断面図である。It is sectional drawing of the infinite point focusing state of the imaging lens of Embodiment 2 which concerns on this invention. 本発明に係る実施形態2の撮影レンズの無限遠合焦状態の縦収差図である。FIG. 6 is a longitudinal aberration diagram of the photographing lens according to the second embodiment of the present invention in an infinitely focused state. 本発明に係る実施形態2の撮影レンズの撮影倍率0.5倍時の縦収差図である。FIG. 6 is a longitudinal aberration diagram of the photographing lens according to Embodiment 2 of the present invention when the photographing magnification is 0.5 times. 本発明に係る実施形態2の撮影レンズの撮影倍率等倍時の縦収差図である。FIG. 6 is a longitudinal aberration diagram at the same magnification of the photographing magnification of the photographing lens according to the second embodiment of the present invention. 本発明に係る実施形態2の撮影レンズの物体距離無限遠時の手振れなしの横収差図である。FIG. 10 is a lateral aberration diagram without camera shake when the object distance of the shooting lens according to Embodiment 2 is infinite. 本発明に係る実施形態2の撮影レンズの撮影倍率0.5倍時の手振れなしの横収差図である。FIG. 6 is a lateral aberration diagram without camera shake when the photographing magnification of Embodiment 2 according to the present invention is at a photographing magnification of 0.5. 本発明に係る実施形態2の撮影レンズの撮影倍率等倍時の手振れなしの横収差図である。FIG. 6 is a lateral aberration diagram without camera shake at the same magnification as the imaging magnification of the imaging lens according to the second embodiment of the present invention. 本発明に係る実施形態2の撮影レンズの物体距離無限遠時の+方向手振れ量0.24mmの横収差図である。FIG. 12 is a lateral aberration diagram of a + direction camera shake amount of 0.24 mm when the object distance of the shooting lens according to Embodiment 2 is infinite. 本発明に係る実施形態2の撮影レンズの物体距離無限遠時の−方向手振れ量0.24mmの横収差図である。FIG. 10 is a lateral aberration diagram of a photographic image pickup lens according to Embodiment 2 of the present invention when the object distance at infinity is 0.24 mm. 本発明に係る実施形態3の撮影レンズの無限遠合焦状態の断面図である。It is sectional drawing of the infinite point focusing state of the imaging lens of Embodiment 3 which concerns on this invention. 本発明に係る実施形態3の撮影レンズの無限遠合焦状態の縦収差図である。FIG. 10 is a longitudinal aberration diagram of the photographing lens according to Embodiment 3 of the present invention in an infinitely focused state. 本発明に係る実施形態3の撮影レンズの撮影倍率0.5倍時の縦収差図である。FIG. 6 is a longitudinal aberration diagram of the photographing lens according to Embodiment 3 of the present invention when the photographing magnification is 0.5 times. 本発明に係る実施形態3の撮影レンズの撮影倍率等倍時の縦収差図である。It is a longitudinal aberration diagram at the time of the photographing magnification of the photographing lens of Embodiment 3 according to the present invention at the same magnification. 本発明に係る実施形態3の撮影レンズの物体距離無限遠時の手振れなしの横収差図である。FIG. 10 is a lateral aberration diagram without camera shake when the photographing lens of Embodiment 3 according to the present invention is at an infinite object distance. 本発明に係る実施形態3の撮影レンズの撮影倍率0.5倍時の手振れなしの横収差図である。FIG. 10 is a lateral aberration diagram without camera shake when the photographing lens according to Embodiment 3 of the present invention is at a photographing magnification of 0.5. 本発明に係る実施形態3の撮影レンズの撮影倍率等倍時の手振れなしの横収差図である。FIG. 10 is a lateral aberration diagram without camera shake at the same magnification as the imaging magnification of the imaging lens according to the third embodiment of the present invention. 本発明に係る実施形態3の撮影レンズの物体距離無限遠時の+方向手振れ量0.24mmの横収差図である。FIG. 10 is a transverse aberration diagram for a photographing lens of Embodiment 3 according to the present invention with a + direction camera shake amount of 0.24 mm when the object distance is infinity. 本発明に係る実施形態3の撮影レンズの物体距離無限遠時の−方向手振れ量0.24mmの横収差図である。FIG. 10 is a lateral aberration diagram of a directional camera shake amount of 0.24 mm when the object distance of the shooting lens according to Embodiment 3 of the present invention is infinity. 本発明に係る実施形態4の撮影レンズの無限遠合焦状態の断面図である。It is sectional drawing of the infinite point focusing state of the imaging lens of Embodiment 4 which concerns on this invention. 本発明に係る実施形態4の撮影レンズの無限遠合焦状態の縦収差図である。FIG. 10 is a longitudinal aberration diagram of the photographing lens according to Embodiment 4 of the present invention in an infinitely focused state. 本発明に係る実施形態4の撮影レンズの撮影倍率0.5倍時の縦収差図である。FIG. 6 is a longitudinal aberration diagram of the photographing lens according to Embodiment 4 of the present invention when the photographing magnification is 0.5 times. 本発明に係る実施形態4の撮影レンズの撮影倍率等倍時の縦収差図である。FIG. 6 is a longitudinal aberration diagram at the same magnification of the photographing magnification of the photographing lens according to the fourth embodiment of the present invention. 本発明に係る実施形態4の撮影レンズの物体距離無限遠時の手振れなしの横収差図である。FIG. 10 is a lateral aberration diagram without camera shake when the photographing lens of Embodiment 4 according to the present invention is at an infinite object distance. 本発明に係る実施形態4の撮影レンズの撮影倍率0.5倍時の手振れなしの横収差図である。FIG. 10 is a lateral aberration diagram without camera shake when the photographing lens according to Embodiment 4 of the present invention is at a photographing magnification of 0.5. 本発明に係る実施形態4の撮影レンズの撮影倍率等倍時の手振れなしの横収差図である。FIG. 10 is a lateral aberration diagram without camera shake at the same magnification as the imaging magnification of the imaging lens according to the fourth embodiment of the present invention. 本発明に係る実施形態4の撮影レンズの物体距離無限遠時の+方向手振れ量0.23mmの横収差図である。It is a lateral aberration diagram of the + direction camera shake amount of 0.23 mm when the object distance of the photographic lens according to Embodiment 4 of the present invention is infinite. 本発明に係る実施形態4の撮影レンズの物体距離無限遠時の−方向手振れ量0.23mmの横収差図である。FIG. 10 is a transverse aberration diagram for a photographing lens of Embodiment 4 according to the present invention when the object distance is infinity and the in-direction camera shake amount is 0.23 mm. 本発明に係る実施形態5の撮影レンズの無限遠合焦状態の断面図である。It is sectional drawing of the infinite point focusing state of the imaging lens of Embodiment 5 which concerns on this invention. 本発明に係る実施形態5の撮影レンズの無限遠合焦状態の縦収差図である。FIG. 10 is a longitudinal aberration diagram of the photographing lens according to Embodiment 5 of the present invention in an infinitely focused state. 本発明に係る実施形態5の撮影レンズの撮影倍率0.5倍時の縦収差図である。FIG. 10 is a longitudinal aberration diagram of the photographing lens according to Embodiment 5 of the present invention when the photographing magnification is 0.5 times. 本発明に係る実施形態5の撮影レンズの撮影倍率等倍時の縦収差図である。FIG. 9 is a longitudinal aberration diagram at the same magnification of the photographing magnification of the photographing lens according to the fifth embodiment of the present invention. 本発明に係る実施形態5の撮影レンズの物体距離無限遠時の手振れなしの横収差図である。FIG. 10 is a lateral aberration diagram without camera shake when the object distance of the shooting lens according to Embodiment 5 is at infinity. 本発明に係る実施形態5の撮影レンズの撮影倍率0.5倍時の手振れなしの横収差図である。FIG. 10 is a lateral aberration diagram without camera shake when the shooting magnification of the shooting lens according to Embodiment 5 of the present invention is 0.5 times. 本発明に係る実施形態5の撮影レンズの撮影倍率等倍時の手振れなしの横収差図である。FIG. 10 is a lateral aberration diagram without camera shake at the same magnification as the imaging magnification of the imaging lens according to the fifth embodiment of the present invention. 本発明に係る実施形態5の撮影レンズの物体距離無限遠時の+方向手振れ量0.24mmの横収差図である。It is a lateral aberration diagram of the + direction camera shake amount of 0.24 mm when the object distance of the photographing lens according to the fifth embodiment is infinity. 本発明に係る実施形態5の撮影レンズの物体距離無限遠時の−方向手振れ量0.24mmの横収差図である。FIG. 10 is a transverse aberration diagram for a photographic lens of Embodiment 5 according to the present invention when the object distance is infinity and the in-direction camera shake amount is 0.24 mm. 本発明に係る実施形態6の撮影レンズの無限遠合焦状態の断面図である。It is sectional drawing of the infinite point focusing state of the imaging lens of Embodiment 6 which concerns on this invention. 本発明に係る実施形態6の撮影レンズの無限遠合焦状態の縦収差図である。It is a longitudinal aberration figure of the infinite point focusing state of the photographic lens of Embodiment 6 concerning the present invention. 本発明に係る実施形態6の撮影レンズの撮影倍率0.5倍時の縦収差図である。FIG. 10 is a longitudinal aberration diagram of the photographing lens according to the sixth embodiment of the present invention when the photographing magnification is 0.5 times. 本発明に係る実施形態6の撮影レンズの撮影倍率等倍時の縦収差図である。It is a longitudinal aberration figure at the time of imaging magnification equal magnification of the imaging lens of Embodiment 6 which concerns on this invention. 本発明に係る実施形態6の撮影レンズの物体距離無限遠時の手振れなしの横収差図である。FIG. 10 is a lateral aberration diagram without camera shake when the object distance of the shooting lens according to Embodiment 6 is infinite. 本発明に係る実施形態6の撮影レンズの撮影倍率0.5倍時の手振れなしの横収差図である。FIG. 12 is a lateral aberration diagram without camera shake when the photographing lens according to Embodiment 6 of the present invention is at a photographing magnification of 0.5. 本発明に係る実施形態6の撮影レンズの撮影倍率等倍時の手振れなしの横収差図である。FIG. 10 is a lateral aberration diagram without camera shake at the same magnification as the imaging magnification of the imaging lens according to the sixth embodiment of the present invention. 本発明に係る実施形態6の撮影レンズの物体距離無限遠時の+方向手振れ量0.26mmの横収差図である。It is a lateral aberration diagram of the + direction camera shake amount of 0.26 mm when the object distance of the photographic lens according to Embodiment 6 of the present invention is infinite. 本発明に係る実施形態6の撮影レンズの物体距離無限遠時の−方向手振れ量0.26mmの横収差図である。FIG. 10 is a lateral aberration diagram of the photographic lens of Embodiment 6 according to the present invention when the object distance is infinity and the in-direction camera shake amount is 0.26 mm.

以下に示す実施形態を示す表において、Fno.はFナンバー、fは全系の焦点距離、ωは半画角(°)、Rは曲率半径、Dはレンズ厚み、レンズ間隔、Ndはd線の屈折率、Vd線基準のアッベ数を示す。ASPHは、非球面を表す。   In the tables showing the embodiments shown below, Fno. Is the F number, f is the focal length of the entire system, ω is the half angle of view (°), R is the radius of curvature, D is the lens thickness, lens spacing, and Nd is the d line. The refractive index and the Abbe number based on the Vd line are shown. ASPH represents an aspherical surface.

(実施形態1)
f=46.35 Fno:2.88 ω=13.17°
NS R D Nd Vd
1 19.8253 3.0000 1.76802 49.24
2 ASPH -943.7294 1.0000 1.00000
3 STOP 0.0000 D( 3) 1.00000
4 ASPH -354.8749 0.8000 1.82115 24.06
5 ASPH 26.6033 5.4598 1.00000
6 -54.1445 0.8000 1.56732 42.58
7 11.9276 4.0000 1.78590 44.20
8 ASPH -50.6493 D( 8) 1.00000
9 -100.4490 1.6500 1.80610 33.27
10 -22.7151 0.8000 1.65844 50.85
11 19.7193 5.1637 1.00000
12 24.6966 3.5000 1.61800 63.39
13 -39.9037 2.5071 1.00000
14 -29.2808 0.6000 1.58144 40.89
15 -700.4761 D(15) 1.00000
(Embodiment 1)
f = 46.35 Fno: 2.88 ω = 13.17 °
NS RD Nd Vd
1 19.8253 3.0000 1.76802 49.24
2 ASPH -943.7294 1.0000 1.00000
3 STOP 0.0000 D (3) 1.00000
4 ASPH -354.8749 0.8000 1.82115 24.06
5 ASPH 26.6033 5.4598 1.00000
6 -54.1445 0.8000 1.56732 42.58
7 11.9276 4.0000 1.78590 44.20
8 ASPH -50.6493 D (8) 1.00000
9 -100.4490 1.6500 1.80610 33.27
10 -22.7151 0.8000 1.65844 50.85
11 19.7193 5.1637 1.00000
12 24.6966 3.5000 1.61800 63.39
13 -39.9037 2.5071 1.00000
14 -29.2808 0.6000 1.58144 40.89
15 -700.4761 D (15) 1.00000

非球面は、(式1)に示す非球面係数A,B、C、Dで示す。

Figure 0005818209
Aspheric surfaces are indicated by aspheric coefficients A, B, C, and D shown in (Equation 1).
Figure 0005818209

ASPH A B C D
2 6.22072e-006 -8.23750e-008 1.27028e-009 -7.89889e-012
4 -8.79586e-005 8.56503e-007 -2.76722e-009 -4.40628e-011
5 -1.03779e-004 6.57287e-007 -2.37679e-009 -6.65354e-011
8 5.03730e-005 3.12827e-007 -1.40090e-009 2.35150e-011
ASPH ABCD
2 6.22072e-006 -8.23750e-008 1.27028e-009 -7.89889e-012
4 -8.79586e-005 8.56503e-007 -2.76722e-009 -4.40628e-011
5 -1.03779e-004 6.57287e-007 -2.37679e-009 -6.65354e-011
8 5.03730e-005 3.12827e-007 -1.40090e-009 2.35150e-011

F INF X0.5 X1.0
D( 3) 2.1352 1.5435 1.3466
D( 8) 1.0136 14.7473 27.7872
D(15) 20.4626 20.4626 20.4626
F INF X0.5 X1.0
D (3) 2.1352 1.5435 1.3466
D (8) 1.0136 14.7473 27.7872
D (15) 20.4626 20.4626 20.4626

実施形態1のマクロレンズは、第1レンズ群を凸レンズ1枚とし、像側に非球面を配置している。非球面を用いることで第1レンズ群の構成を1枚とし、コンパクト化を実現している。第2レンズ群は、物体側から開口絞り、負レンズ、負レンズと正レンズの接合レンズとし、非球面を最も物体側の負レンズ両面と接合レンズの像側に配置している。第2レンズ群内で球面収差、コマ収差、像面湾曲を十分に補正でき、高い結像性能を得ている。   In the macro lens of Embodiment 1, the first lens group is a single convex lens, and an aspheric surface is disposed on the image side. By using an aspherical surface, the configuration of the first lens group is made one and a compact size is realized. The second lens group includes an aperture stop, a negative lens, and a cemented lens of a negative lens and a positive lens from the object side, and an aspheric surface is disposed on both surfaces of the negative lens closest to the object side and the image side of the cemented lens. Spherical aberration, coma and field curvature can be sufficiently corrected in the second lens group, and high imaging performance is obtained.

第3レンズ群は、フォーカシング時固定である。2つのレンズ成分に分割し、物体側の接合レンズを手振れ補正レンズ群としている。像側は凸レンズと凹レンズの2枚で構成している。凸レンズと凹レンズを配置にすることにより、第3レンズ群の直径の増大を抑える効果を得ている。   The third lens group is fixed during focusing. The lens is divided into two lens components, and a cemented lens on the object side is used as a camera shake correction lens group. The image side is composed of a convex lens and a concave lens. By arranging the convex lens and the concave lens, an effect of suppressing an increase in the diameter of the third lens group is obtained.

物体距離無限遠から最短撮影距離状態への移動量は、第1レンズ群、第2レンズ群がそれぞれ、26mm、26.8mmである。手振れ補正レンズ群のカメラブレ0.3度補正相当の移動量は、物体距離無限遠状態で0.24mmである。   The amount of movement from the object distance infinity to the shortest shooting distance state is 26 mm and 26.8 mm for the first lens group and the second lens group, respectively. The amount of movement equivalent to a camera shake correction of 0.3 degrees in the camera shake correction lens group is 0.24 mm at an object distance infinite state.

(実施形態2)
f=46.35 Fno:2.88 ω=13.19°
NS R D Nd Vd
1 22.9154 3.0000 1.76802 49.24
2 ASPH -283.4966 D( 2) 1.00000
3 ASPH 386.8863 0.8000 1.82115 24.06
4 ASPH 25.6872 1.9391 1.00000
5 STOP 0.0000 2.0000 1.00000
6 -24.3294 0.8000 1.58144 40.89
7 17.3969 4.0000 1.80139 45.45
8 ASPH -23.6610 D( 8) 1.00000
9 -113.6906 1.6500 1.80610 33.27
10 -23.8848 0.8000 1.65844 50.85
11 20.0195 6.4742 1.00000
12 26.1574 4.0000 1.61800 63.39
13 -39.6782 2.6419 1.00000
14 -32.3622 0.8000 1.58144 40.89
15 -2126.8967 D(15) 1.00000
(Embodiment 2)
f = 46.35 Fno: 2.88 ω = 13.19 °
NS RD Nd Vd
1 22.9154 3.0000 1.76802 49.24
2 ASPH -283.4966 D (2) 1.00000
3 ASPH 386.8863 0.8000 1.82115 24.06
4 ASPH 25.6872 1.9391 1.00000
5 STOP 0.0000 2.0000 1.00000
6 -24.3294 0.8000 1.58144 40.89
7 17.3969 4.0000 1.80139 45.45
8 ASPH -23.6610 D (8) 1.00000
9 -113.6906 1.6500 1.80610 33.27
10 -23.8848 0.8000 1.65844 50.85
11 20.0195 6.4742 1.00000
12 26.1574 4.0000 1.61800 63.39
13 -39.6782 2.6419 1.00000
14 -32.3622 0.8000 1.58144 40.89
15 -2126.8967 D (15) 1.00000

ASPH A B C D
2 6.72445e-006 -7.49296e-008 1.01845e-009 -5.64104e-012
3 -9.54919e-005 6.67566e-007 -2.67953e-009 -2.10997e-011
4 -9.58853e-005 5.49337e-007 -4.27537e-009 -3.28322e-011
8 2.51141e-005 1.83627e-007 -9.29726e-010 1.97834e-011
ASPH ABCD
2 6.72445e-006 -7.49296e-008 1.01845e-009 -5.64104e-012
3 -9.54919e-005 6.67566e-007 -2.67953e-009 -2.10997e-011
4 -9.58853e-005 5.49337e-007 -4.27537e-009 -3.28322e-011
8 2.51141e-005 1.83627e-007 -9.29726e-010 1.97834e-011

F INF X0.5 X1.0
D( 2) 3.6909 3.1577 2.9192
D( 8) 2.3683 15.9450 29.0689
D(15) 20.5307 20.5307 20.5307
F INF X0.5 X1.0
D (2) 3.6909 3.1577 2.9192
D (8) 2.3683 15.9450 29.0689
D (15) 20.5307 20.5307 20.5307

実施形態2のマクロレンズは、第1レンズ群を凸レンズ1枚とし、像側に非球面を配置している。非球面を用いることで第1レンズ群の構成を1枚としてコンパクト化を実現している。第2レンズ群は、物体側から負レンズ、開口絞り、負レンズと正レンズの接合レンズとし、非球面を最も物体側の負レンズ両面と接合レンズの像側に配置している。第2レンズ群内で球面収差、コマ収差、像面湾曲を十分に補正でき、高い結像性能を得ている。   In the macro lens of Embodiment 2, the first lens group is a single convex lens, and an aspheric surface is disposed on the image side. By using an aspherical surface, the configuration of the first lens group is reduced to one and the size is reduced. The second lens group includes a negative lens, an aperture stop, and a cemented lens of a negative lens and a positive lens from the object side, and an aspheric surface is disposed on both the negative lens surface on the most object side and the image side of the cemented lens. Spherical aberration, coma and field curvature can be sufficiently corrected in the second lens group, and high imaging performance is obtained.

第3レンズ群は、フォーカシング時に固定である。2つのレンズ成分に分割し、物体側の接合レンズを手振れ補正レンズ群としている。像側は凸レンズと凹レンズの2枚で構成している。凸レンズと凹レンズを配置にすることにより第3レンズ群の直径の増大を抑える効果を得ている。   The third lens group is fixed during focusing. The lens is divided into two lens components, and a cemented lens on the object side is used as a camera shake correction lens group. The image side is composed of a convex lens and a concave lens. By arranging the convex lens and the concave lens, an effect of suppressing an increase in the diameter of the third lens group is obtained.

物体距離無限遠から最短撮影距離状態への移動量は、第1レンズ群、第2レンズ群がそれぞれ、25.9mm、26.7mmである。手振れ補正レンズ群のカメラブレ0.3度補正相当の移動量は、物体距離無限遠状態で0.24mmである。   The amount of movement from the object distance infinity to the shortest shooting distance state is 25.9 mm and 26.7 mm for the first lens group and the second lens group, respectively. The amount of movement equivalent to a camera shake correction of 0.3 degrees in the camera shake correction lens group is 0.24 mm at an object distance infinite state.

(実施形態3)
f=46.35 Fno:2.88 ω=13.20
NS R D Nd Vd
1 22.9048 3.0000 1.76802 49.24
2 ASPH -262.2518 D( 2) 1.00000
3 ASPH 1012.7249 0.8000 1.82115 24.06
4 ASPH 26.6293 3.4557 1.00000
5 -24.0887 0.8000 1.58144 40.89
6 17.5310 4.0000 1.80139 45.45
7 ASPH -23.5485 1.0000 1.00000
8 STOP 0.0000 D( 8) 1.00000
9 -119.1446 1.6500 1.80610 33.27
10 -24.1977 0.8000 1.65844 50.85
11 20.0125 6.9655 1.00000
12 26.3707 4.0000 1.61800 63.39
13 -41.4601 2.6315 1.00000
14 -34.2697 0.8000 1.58144 40.89
15 -3899.2500 D(15) 1.00000
(Embodiment 3)
f = 46.35 Fno: 2.88 ω = 13.20
NS RD Nd Vd
1 22.9048 3.0000 1.76802 49.24
2 ASPH -262.2518 D (2) 1.00000
3 ASPH 1012.7249 0.8000 1.82115 24.06
4 ASPH 26.6293 3.4557 1.00000
5 -24.0887 0.8000 1.58144 40.89
6 17.5310 4.0000 1.80139 45.45
7 ASPH -23.5485 1.0000 1.00000
8 STOP 0.0000 D (8) 1.00000
9 -119.1446 1.6500 1.80610 33.27
10 -24.1977 0.8000 1.65844 50.85
11 20.0125 6.9655 1.00000
12 26.3707 4.0000 1.61800 63.39
13 -41.4601 2.6315 1.00000
14 -34.2697 0.8000 1.58144 40.89
15 -3899.2500 D (15) 1.00000

ASPH A B C D
2 6.52209e-006 -5.03919e-008 5.81300e-010 -2.69710e-012
3 -9.51774e-005 7.23560e-007 -4.59835e-009 3.97938e-012
4 -9.57523e-005 4.91910e-007 -4.52703e-009 -2.09764e-011
7 2.58708e-005 2.16997e-007 -8.59927e-010 1.77646e-011
ASPH ABCD
2 6.52209e-006 -5.03919e-008 5.81300e-010 -2.69710e-012
3 -9.51774e-005 7.23560e-007 -4.59835e-009 3.97938e-012
4 -9.57523e-005 4.91910e-007 -4.52703e-009 -2.09764e-011
7 2.58708e-005 2.16997e-007 -8.59927e-010 1.77646e-011

F INF X0.5 X1.0
D( 2) 3.6634 3.1543 2.9773
D( 8) 1.4347 14.9133 27.8814
D(15) 20.6097 20.6099 20.6101
F INF X0.5 X1.0
D (2) 3.6634 3.1543 2.9773
D (8) 1.4347 14.9133 27.8814
D (15) 20.6097 20.6099 20.6101

実施形態3のマクロレンズは、第1レンズ群を凸レンズ1枚として像側に非球面を配置している。非球面を用いることで第1レンズ群の構成を1枚として、コンパクト化を実現している。第2レンズ群は、物体側から負レンズ、負レンズと正レンズの接合レンズ、開口絞りとし、非球面を最も物体側の負レンズ両面と接合レンズの像側に配置している。第2レンズ群内で球面収差、コマ収差、像面湾曲を十分に補正でき、高い結像性能を得ている。   In the macro lens of Embodiment 3, the first lens group is a single convex lens and an aspheric surface is disposed on the image side. By using an aspherical surface, the configuration of the first lens unit is made one, and compactness is realized. The second lens group includes, from the object side, a negative lens, a cemented lens of a negative lens and a positive lens, and an aperture stop, and an aspheric surface is disposed on both the negative lens surface closest to the object side and the image side of the cemented lens. Spherical aberration, coma and field curvature can be sufficiently corrected in the second lens group, and high imaging performance is obtained.

第3レンズ群は、フォーカシング時に固定である。2つのレンズ成分に分割し、物体側の接合レンズを手振れ補正レンズ群としている。像側は凸レンズと凹レンズの2枚で構成している。凸レンズと凹レンズを配置にすることにより第3レンズ群の直径の増大を抑えている。   The third lens group is fixed during focusing. The lens is divided into two lens components, and a cemented lens on the object side is used as a camera shake correction lens group. The image side is composed of a convex lens and a concave lens. By arranging a convex lens and a concave lens, an increase in the diameter of the third lens group is suppressed.

物体距離無限遠から最短撮影距離状態への移動量は、第1レンズ群、第2レンズ群がそれぞれ、25.8mm、26.4mmである。手振れ補正レンズ群のカメラブレ0.3度補正相当の移動量は、物体距離無限遠状態で0.24mmである。   The amount of movement from the object distance infinity to the shortest shooting distance state is 25.8 mm and 26.4 mm for the first lens group and the second lens group, respectively. The amount of movement equivalent to a camera shake correction of 0.3 degrees in the camera shake correction lens group is 0.24 mm at an object distance infinite state.

(実施形態4)
f=43.74 Fno:2.91 ω=13.96
NS R D Nd Vd
1 16.1304 4.0000 1.61881 63.85
2 ASPH -82.6461 D( 2) 1.00000
3 ASPH -54.4126 0.8000 1.68893 31.16
4 ASPH 24.1128 1.3600 1.00000
5 STOP 0.0000 1.5000 1.00000
6 -80.1264 0.8000 1.56732 42.58
7 12.1832 4.0000 1.78590 44.20
8 ASPH -57.8880 D( 8) 1.00000
9 -270.4499 0.8000 1.65844 50.85
10 10.9571 1.6500 1.80610 33.27
11 16.5409 5.9951 1.00000
12 24.2870 4.0000 1.61800 63.39
13 -26.2952 2.1192 1.00000
14 -21.6332 0.6000 1.58144 40.89
15 -327.8849 D(15) 1.00000
(Embodiment 4)
f = 43.74 Fno: 2.91 ω = 13.96
NS RD Nd Vd
1 16.1304 4.0000 1.61881 63.85
2 ASPH -82.6461 D (2) 1.00000
3 ASPH -54.4126 0.8000 1.68893 31.16
4 ASPH 24.1128 1.3600 1.00000
5 STOP 0.0000 1.5000 1.00000
6 -80.1264 0.8000 1.56732 42.58
7 12.1832 4.0000 1.78590 44.20
8 ASPH -57.8880 D (8) 1.00000
9 -270.4499 0.8000 1.65844 50.85
10 10.9571 1.6500 1.80610 33.27
11 16.5409 5.9951 1.00000
12 24.2870 4.0000 1.61800 63.39
13 -26.2952 2.1192 1.00000
14 -21.6332 0.6000 1.58144 40.89
15 -327.8849 D (15) 1.00000

ASPH A B C D
2 2.45873e-005 -1.49336e-008 6.24937e-010 -6.89511e-012
3 3.58502e-005 7.38036e-008 3.25807e-009 -6.77728e-011
4 1.14523e-006 -1.40015e-007 3.97737e-009 -1.04041e-010
8 6.05205e-005 2.70952e-007 2.45337e-009 -1.22641e-011
ASPH ABCD
2 2.45873e-005 -1.49336e-008 6.24937e-010 -6.89511e-012
3 3.58502e-005 7.38036e-008 3.25807e-009 -6.77728e-011
4 1.14523e-006 -1.40015e-007 3.97737e-009 -1.04041e-010
8 6.05205e-005 2.70952e-007 2.45337e-009 -1.22641e-011

F INF X0.5 X1.0
D( 2) 2.4499 1.9870 1.8975
D( 8) 0.9000 14.5748 27.4524
D(15) 19.1110 19.1109 19.1109
F INF X0.5 X1.0
D (2) 2.4499 1.9870 1.8975
D (8) 0.9000 14.5748 27.4524
D (15) 19.1110 19.1109 19.1109

実施形態4のマクロレンズは、第1レンズ群を凸レンズ1枚とし、像側に非球面を配置している。非球面を用いることで第1レンズ群の構成を1枚として、コンパクト化を実現している。第2レンズ群は、物体側から負レンズ、開口絞り、負レンズと正レンズの接合レンズとし、非球面を最も物体側の負レンズ両面と接合レンズの像側に配置している。第2レンズ群内で球面収差、コマ収差、像面湾曲を十分に補正でき、高い結像性能を得ている。   In the macro lens of Embodiment 4, the first lens group is a single convex lens, and an aspheric surface is disposed on the image side. By using an aspherical surface, the configuration of the first lens unit is made one, and compactness is realized. The second lens group includes a negative lens, an aperture stop, and a cemented lens of a negative lens and a positive lens from the object side, and an aspheric surface is disposed on both the negative lens surface on the most object side and the image side of the cemented lens. Spherical aberration, coma and field curvature can be sufficiently corrected in the second lens group, and high imaging performance is obtained.

第3レンズ群は、フォーカシング時固定である。2つのレンズ成分に分割し、物体側の接合レンズを手振れ補正レンズ群としている。第3レンズの像側は、凸レンズと凹レンズの2枚で構成している。凸レンズと凹レンズを配置にすることで、第3レンズ群の直径の増大を抑えている。   The third lens group is fixed during focusing. The lens is divided into two lens components, and a cemented lens on the object side is used as a camera shake correction lens group. The image side of the third lens is composed of a convex lens and a concave lens. By arranging the convex lens and the concave lens, an increase in the diameter of the third lens group is suppressed.

物体距離無限遠から最短撮影距離状態への移動量は、第1レンズ群、第2レンズ群がそれぞれ、26.0mm、26.6mmである。手振れ補正レンズ群のカメラブレ0.3度補正相当の移動量は、物体距離無限遠状態で0.23mmである。   The movement amounts from the object distance infinity to the shortest shooting distance state are 26.0 mm and 26.6 mm for the first lens group and the second lens group, respectively. The amount of camera shake correction lens group movement equivalent to camera shake correction of 0.3 degrees is 0.23 mm at an infinite object distance.

(実施形態5)
f=46.27 Fno:2.88 ω=13.21°
NS R D Nd Vd
1 15.2561 4.0000 1.61881 63.85
2 ASPH -148.7837 D( 2) 1.00000
3 ASPH -60.4439 0.8000 1.68893 31.16
4 ASPH 17.5738 1.8600 1.00000
5 STOP 0.0000 1.0000 1.00000
6 205.1086 0.8000 1.56732 42.58
7 11.7018 4.0000 1.78590 44.20
8 ASPH -70.9257 D( 8) 1.00000
9 -2627.8020 0.8000 1.69627 34.78
10 11.5652 1.6500 1.92000 21.00
11 15.4684 6.6743 1.00000
12 24.2111 3.0000 1.60148 61.29
13 -259.0789 D(13) 1.00000
(Embodiment 5)
f = 46.27 Fno: 2.88 ω = 13.21 °
NS RD Nd Vd
1 15.2561 4.0000 1.61881 63.85
2 ASPH -148.7837 D (2) 1.00000
3 ASPH -60.4439 0.8000 1.68893 31.16
4 ASPH 17.5738 1.8600 1.00000
5 STOP 0.0000 1.0000 1.00000
6 205.1086 0.8000 1.56732 42.58
7 11.7018 4.0000 1.78590 44.20
8 ASPH -70.9257 D (8) 1.00000
9 -2627.8020 0.8000 1.69627 34.78
10 11.5652 1.6500 1.92000 21.00
11 15.4684 6.6743 1.00000
12 24.2111 3.0000 1.60148 61.29
13 -259.0789 D (13) 1.00000

ASPH A B C D
2 1.77501e-005 -1.56595e-009 1.62284e-010 -1.99869e-012
3 6.70991e-005 -2.07670e-007 4.82864e-009 -6.93229e-011
4 6.76633e-005 -8.57121e-008 1.23920e-008 -1.60522e-010
8 3.71641e-005 2.09841e-007 -5.11889e-009 7.79447e-011
ASPH ABCD
2 1.77501e-005 -1.56595e-009 1.62284e-010 -1.99869e-012
3 6.70991e-005 -2.07670e-007 4.82864e-009 -6.93229e-011
4 6.76633e-005 -8.57121e-008 1.23920e-008 -1.60522e-010
8 3.71641e-005 2.09841e-007 -5.11889e-009 7.79447e-011

F INF X0.5 X1.0
D( 2) 3.9474 3.5647 3.4965
D( 8) 0.9000 13.9862 26.4046
D(13) 21.2054 21.2054 21.2054
F INF X0.5 X1.0
D (2) 3.9474 3.5647 3.4965
D (8) 0.9000 13.9862 26.4046
D (13) 21.2054 21.2054 21.2054

(実施形態6)
f=45.55 Fno:2.84 ω=13.56
NS R D Nd Vd
1 17.3050 4.0000 1.61881 63.85
2 ASPH -42.5714 1.0000 1.00000
3 0.0000 D( 3) 1.00000
4 ASPH -23.1763 0.8000 1.68893 31.16
5 ASPH 38.4033 1.3600 1.00000
6 STOP 0.0000 1.5000 1.00000
7 -1267.9295 0.8000 1.56732 42.58
8 10.5809 4.0000 1.78590 44.20
9 ASPH -120.5115 D( 9) 1.00000
10 338.0892 0.8000 1.65844 50.85
11 9.5556 1.6500 1.80610 33.27
12 14.5533 D(12) 1.00000
13 24.3800 6.5000 1.61800 63.39
14 -23.8872 0.6000 1.58144 40.89
15 985.5828 D(15) 1.00000
(Embodiment 6)
f = 45.55 Fno: 2.84 ω = 13.56
NS RD Nd Vd
1 17.3050 4.0000 1.61881 63.85
2 ASPH -42.5714 1.0000 1.00000
3 0.0000 D (3) 1.00000
4 ASPH -23.1763 0.8000 1.68893 31.16
5 ASPH 38.4033 1.3600 1.00000
6 STOP 0.0000 1.5000 1.00000
7 -1267.9295 0.8000 1.56732 42.58
8 10.5809 4.0000 1.78590 44.20
9 ASPH -120.5115 D (9) 1.00000
10 338.0892 0.8000 1.65844 50.85
11 9.5556 1.6500 1.80610 33.27
12 14.5533 D (12) 1.00000
13 24.3800 6.5000 1.61800 63.39
14 -23.8872 0.6000 1.58144 40.89
15 985.5828 D (15) 1.00000

ASPH A B C D
2 3.43460e-005 1.40716e-007 -2.52911e-009 1.15366e-011
4 1.82072e-004 -1.04926e-006 -7.20587e-010 3.46468e-011
5 8.60324e-005 -1.04598e-006 4.62716e-010 -1.34102e-011
9 9.90729e-005 1.88242e-007 1.83435e-009 3.38984e-011
ASPH ABCD
2 3.43460e-005 1.40716e-007 -2.52911e-009 1.15366e-011
4 1.82072e-004 -1.04926e-006 -7.20587e-010 3.46468e-011
5 8.60324e-005 -1.04598e-006 4.62716e-010 -1.34102e-011
9 9.90729e-005 1.88242e-007 1.83435e-009 3.38984e-011

F INF X0.5 X1.0
D( 3) 2.1730 1.8496 1.7479
D( 9) 0.9000 12.8532 24.3251
D(12) 12.5419 12.5419 12.5419
D(15) 14.6487 14.6487 14.6487
F INF X0.5 X1.0
D (3) 2.1730 1.8496 1.7479
D (9) 0.9000 12.8532 24.3251
D (12) 12.5419 12.5419 12.5419
D (15) 14.6487 14.6487 14.6487

実施形態6のマクロレンズは、第1レンズ群を凸レンズ1枚とし、像側に非球面を配置している。非球面を用いることで、第1レンズ群の構成を1枚としてコンパクト化を実現している。第2レンズ群は、物体側から負レンズ、開口絞り、負レンズと正レンズの接合レンズとし、非球面を最も物体側の負レンズ両面と接合レンズの像側に配置している。第2レンズ群内で球面収差、コマ収差、像面湾曲を十分に補正でき、高い結像性能を得ている。   In the macro lens of Embodiment 6, the first lens group is a single convex lens, and an aspheric surface is disposed on the image side. By using an aspherical surface, the first lens group has a single lens structure, and a compact design is realized. The second lens group includes a negative lens, an aperture stop, and a cemented lens of a negative lens and a positive lens from the object side, and an aspheric surface is disposed on both the negative lens surface on the most object side and the image side of the cemented lens. Spherical aberration, coma and field curvature can be sufficiently corrected in the second lens group, and high imaging performance is obtained.

第3レンズ群は、正の屈折力を有し、フォーカシング時は固定である。2つのレンズ成分に分割し、物体側の接合レンズを手振れ補正レンズ群としている。像側も接合レンズで構成している。   The third lens group has a positive refractive power and is fixed during focusing. The lens is divided into two lens components, and a cemented lens on the object side is used as a camera shake correction lens group. The image side is also composed of a cemented lens.

物体距離無限遠から最短撮影距離状態への移動量は、第1レンズ群、第2レンズ群がそれぞれ、23.0mm、23.4mmである。手振れ補正レンズ群のカメラブレ0.3度補正相当の移動量は、物体距離無限遠状態で0.26mmである。   The amount of movement from the object distance infinity to the shortest shooting distance state is 23.0 mm and 23.4 mm for the first lens group and the second lens group, respectively. The amount of movement equivalent to a camera shake correction of 0.3 degrees in the camera shake correction lens group is 0.26 mm when the object distance is infinite.

各実施形態の請求項記載の数式、及びその他諸値を表1に示す。
(表1)
[条件式、数値対応表]

Figure 0005818209
Table 1 shows mathematical formulas and other values described in the claims of each embodiment.
(Table 1)
[Conditional expressions, numerical correspondence table]
Figure 0005818209

S 絞り
V 手振れ補正レンズ群
1 第1レンズ群
2 第2レンズ群
3 第3レンズ群
S Aperture V Camera shake correction lens group 1 First lens group 2 Second lens group 3 Third lens group

Claims (7)

物体側から像側へと順に、正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、正または負の屈折力を有する第3レンズからなり、前記第1レンズ群と前記第2レンズ群は、物体距離無限遠から最短撮影距離にかけて、それぞれ異なる移動量で物体側に移動し、前記第1レンズ群が1枚のレンズからなり、以下の条件式を満足するマクロレンズ。
|β| > 0.5 ・・・・・・・・・ ・(5)
β:最短撮影状態での撮影倍率
In order from the object side to the image side, the first lens group includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive or negative refractive power. And the second lens group move from the infinite object distance to the shortest shooting distance to the object side by different moving amounts, and the first lens group is composed of one lens, and satisfies the following conditional expression .
| Β |> 0.5 (5)
β: Shooting magnification in the shortest shooting state
以下の条件式を満足する請求項記載のマクロレンズ。
Nd<1.85 Vd>40 ・・・・・・・・・ ・(6)
Nd:第1レンズ群を構成するレンズのd線に対する屈折率
Vd:第1レンズ群を構成するレンズのd線に対するアッベ数
Macro lens according to claim 1, wherein the following conditional expression is satisfied.
Nd <1.85 Vd> 40 ・ ・ ・ ・ ・ ・ ・ ・ ・ (6)
Nd: Refractive index with respect to d-line of lenses constituting the first lens group
Vd: Abbe number for the d-line of the lenses constituting the first lens group
以下の条件式を満足する、請求項記載のマクロレンズ。
-1.25 <(r1+R2)/(r1-R2) < -0.47 ・・・・・・・(7)
r1:第1レンズ群中、最も物体側の凸レンズの物体側の曲率半径
r2:第1レンズ群中、最も物体側の凸レンズの像側の曲率半径
R2:第1レンズ群中、最も物体側の凸レンズの像側の曲率半径
The macro lens according to claim 2 , wherein the following conditional expression is satisfied.
-1.25 <(r1 + R2) / (r1-R2) <-0.47 (7)
r1: the radius of curvature of the object side convex lens closest to the object side in the first lens group
r2: radius of curvature of the image side of the most object side convex lens in the first lens group
R2: Image-side radius of curvature of the most object-side convex lens in the first lens group
以下の条件式を満足する請求項記載のマクロレンズ。
-20 < F3/F2 < 2.8
F2:第2レンズ群の焦点距離
F3:第3レンズ群の焦点距離
The macro lens according to claim 3 , wherein the following conditional expression is satisfied.
-20 <F3 / F2 <2.8
F2: Focal length of the second lens group
F3: Focal length of the third lens group
物体側から像側へと順に、正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、正または負の屈折力を有する第3レンズからなり、前記第1レンズ群と前記第2レンズ群は物体距離無限遠から最短撮影距離にかけて、それぞれ異なる移動量で物体側に移動し、前記第2レンズ群は少なくとも2枚の負レンズを有し、以下の条件式を満足するマクロレンズ。
|β|>0.5 ・・・・・・・・・・(8)
β:最短撮影状態での撮影倍率
5 <F/D < 30 ・・・・・・・・・・(9)
D:負レンズ同士の空気間隔
F:全系の焦点距離
In order from the object side to the image side, the first lens group includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive or negative refractive power. And the second lens group move to the object side with different moving amounts from the infinite object distance to the shortest shooting distance, and the second lens group has at least two negative lenses and satisfies the following conditional expression: Macro lens.
| Β |> 0.5 (8)
β: Shooting magnification in the shortest shooting state
5 <F / D <30 (9)
D: Air spacing between negative lenses
F: Focal length of the entire system
前記第1レンズ群が1枚のレンズからなり、以下の条件式を満足する、請求項記載のマクロレンズ。
-1.25 <(r1+R2)/(r1-R2 )< -0.47 ・・・・・・(10)
r1 :第1レンズ群中、最も物体側の凸レンズの物体側の曲率半径
r2 :第1レンズ群中、最も物体側の凸レンズの像側の曲率半径
R1:第1レンズ群中、最も物体側の凸レンズの物体側の曲率半径
R2:第1レンズ群中、最も物体側の凸レンズの像側の曲率半径
F :全系の焦点距離
The macro lens according to claim 5 , wherein the first lens group includes one lens and satisfies the following conditional expression.
-1.25 <(r1 + R2) / (r1-R2) <-0.47 (10)
r1: Object side radius of curvature of the most object side convex lens in the first lens unit
r2: radius of curvature on the image side of the most object side convex lens in the first lens group
R1: radius of curvature of the object side of the most object side convex lens in the first lens group
R2: Image-side radius of curvature of the most object-side convex lens in the first lens group
F: Focal length of the entire system
以下の条件式を満足する請求項記載のマクロレンズ。
-20 < F3/F2 < 2.8 ・・・・・・・・ ・・・(11) F2:第2レンズ群の焦点距離
F3:第3レンズ群の焦点距離
The macro lens according to claim 5 , wherein the following conditional expression is satisfied.
-20 <F3 / F2 <2.8 (11) F2: Focal length of the second lens group
F3: Focal length of the third lens group
JP2011280281A 2011-12-21 2011-12-21 Macro lens Active JP5818209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011280281A JP5818209B2 (en) 2011-12-21 2011-12-21 Macro lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011280281A JP5818209B2 (en) 2011-12-21 2011-12-21 Macro lens

Publications (2)

Publication Number Publication Date
JP2013130723A JP2013130723A (en) 2013-07-04
JP5818209B2 true JP5818209B2 (en) 2015-11-18

Family

ID=48908316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011280281A Active JP5818209B2 (en) 2011-12-21 2011-12-21 Macro lens

Country Status (1)

Country Link
JP (1) JP5818209B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI595261B (en) 2016-02-04 2017-08-11 大立光電股份有限公司 Photographing optical lens assembly, image capturing device and electronic device
TWI640811B (en) 2017-06-16 2018-11-11 大立光電股份有限公司 Photographing lens assembly, image capturing unit and electronic device
TWI651565B (en) 2018-02-22 2019-02-21 Largan Precision Co.,Ltd. Optical imaging lens assembly, image capturing unit and electronic device
JP6463591B1 (en) * 2018-07-20 2019-02-06 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd Imaging lens
JP6460506B1 (en) * 2018-07-20 2019-01-30 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd Imaging lens
CN108919467B (en) * 2018-09-21 2023-06-13 广东奥普特科技股份有限公司 Lens device capable of performing multi-view shooting
JP7179627B2 (en) * 2019-01-17 2022-11-29 キヤノン株式会社 Optical system and imaging device having the same
WO2021220579A1 (en) * 2020-05-01 2021-11-04 株式会社ニコン Optical system, optical device, and method for manufacturing optical system
KR102609160B1 (en) * 2020-09-24 2023-12-05 삼성전기주식회사 Optical Imaging System
CN111929856B (en) * 2020-10-13 2020-12-18 常州市瑞泰光电有限公司 Image pickup optical lens
TWI800961B (en) 2021-10-25 2023-05-01 佳凌科技股份有限公司 Optical Imaging Lens
KR20230162717A (en) * 2022-05-05 2023-11-28 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 Optical system, and imaging device having optical system
CN114994885B (en) * 2022-06-17 2023-09-01 湖南长步道光学科技有限公司 Full-frame optical system with micro-distance function and movie lens

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03116008A (en) * 1989-09-29 1991-05-17 Canon Inc Photographic lens utilizing floating
JP2002090622A (en) * 2000-09-20 2002-03-27 Cosina Co Ltd Middle telephotographic macrolens
JP2007271752A (en) * 2006-03-30 2007-10-18 Nikon Corp Macro lens, optical device and focusing method for macro lens
JP5277625B2 (en) * 2007-12-13 2013-08-28 株式会社ニコン Macro lens, optical device, macro lens focusing method, macro lens vibration isolation method

Also Published As

Publication number Publication date
JP2013130723A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5818209B2 (en) Macro lens
CN111913274B (en) Imaging optical system and imaging device
JP5616539B2 (en) Ultra wide-angle lens and imaging device
JP5890065B2 (en) Zoom lens and imaging device
JP2005352060A (en) Small-size wide-angle lens with large aperture and camera equipped with same
JP2010181634A (en) Macro lens
JP5217693B2 (en) Lens system and optical device
JP5217832B2 (en) Lens system and optical device
JP6847067B2 (en) Imaging lens and imaging device
JP5974101B2 (en) Wide angle lens and imaging device
JP6219183B2 (en) Imaging lens and imaging apparatus
JP6546076B2 (en) Wide-angle lens and imaging device
JP2016045314A (en) Rear conversion lens
JP5217694B2 (en) Lens system and optical device
JP2014098795A (en) Variable power optical system, optical device, and method for manufacturing the variable power optical system
JP5783375B2 (en) Macro lens
US8593740B2 (en) Retrofocus-type wide angle lens and camera including the lens
JP5078498B2 (en) Zoom lens and imaging apparatus having the same
JP6665615B2 (en) Large aperture telephoto lens
JP6698339B2 (en) Optical system and imaging device
JP6320904B2 (en) Imaging lens and imaging apparatus
JP2005173275A (en) Super-wide angle lens
JP6549477B2 (en) Wide-angle lens and imaging device
JP6625425B2 (en) Optical system and imaging device
JP6774537B2 (en) Wide-angle lens and imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150918

R150 Certificate of patent or registration of utility model

Ref document number: 5818209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250