JP5809786B2 - Geothermal heat pump system - Google Patents

Geothermal heat pump system Download PDF

Info

Publication number
JP5809786B2
JP5809786B2 JP2010187490A JP2010187490A JP5809786B2 JP 5809786 B2 JP5809786 B2 JP 5809786B2 JP 2010187490 A JP2010187490 A JP 2010187490A JP 2010187490 A JP2010187490 A JP 2010187490A JP 5809786 B2 JP5809786 B2 JP 5809786B2
Authority
JP
Japan
Prior art keywords
heat
heat pump
building
pile
underfloor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010187490A
Other languages
Japanese (ja)
Other versions
JP2012047360A (en
Inventor
相良 峰雄
峰雄 相良
晶三 岸井
晶三 岸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2010187490A priority Critical patent/JP5809786B2/en
Publication of JP2012047360A publication Critical patent/JP2012047360A/en
Application granted granted Critical
Publication of JP5809786B2 publication Critical patent/JP5809786B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Central Air Conditioning (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

本発明は、地熱と室内空気の熱とを熱交換する地熱利用型のヒートポンプシステムに関する。   The present invention relates to a geothermal heat pump system that exchanges heat between geothermal heat and indoor air.

従来、建物に設置され、地熱を利用するヒートポンプシステムが知られている(例えば特許文献1参照)。   Conventionally, a heat pump system that is installed in a building and uses geothermal heat is known (see, for example, Patent Document 1).

特開2003−35433号公報JP 2003-35433 A

近年、日本人口は減少しつつあるが、人口が都市に密集する傾向にあるため都市近郊の住宅事情は悪化し、建物周囲のスペースが十分に得られず、極力スペースを確保することが望まれている。   In recent years, the population of Japan has been decreasing, but since the population tends to be concentrated in the city, housing conditions in the suburbs of the city have deteriorated, and there is not enough space around the building, so it is desirable to secure as much space as possible. ing.

本発明は上記課題に鑑み、建物周囲のスペースをより確保することができるヒートポンプシステムを提供することを目的とする。   An object of this invention is to provide the heat pump system which can ensure the space around a building more in view of the said subject.

本発明に係る地熱利用型のヒートポンプシステムは、地中に埋設された採熱杭と、建物内を空調するためのヒートポンプの熱交換器を有したヒートポンプユニットと、前記熱交換器と前記採熱杭とを経由するように設けられた熱搬送流体の循環流路と、該循環流路に満たされた熱搬送流体と、該熱搬送流体を循環させるためのポンプと、を備え、前記循環により地盤と前記建物の室内空気との熱交換をする地熱利用型のヒートポンプシステムにおいて、前記ヒートポンプユニットは前記建物の床下空間に設置されていることを特徴とする。   The geothermal heat pump system according to the present invention includes a heat collection pile buried in the ground, a heat pump unit having a heat pump heat exchanger for air conditioning the building, the heat exchanger, and the heat collection. A heat transfer fluid circulation path provided so as to pass through the pile, a heat transfer fluid filled in the circulation path, and a pump for circulating the heat transfer fluid. In the heat pump system using geothermal heat for exchanging heat between the ground and the indoor air of the building, the heat pump unit is installed in an underfloor space of the building.

また、前記採熱杭は前記建物の構造杭でもあってもよく、前記採熱杭が埋設されている位置の地表面が断熱材で覆われていてもよい。   Moreover, the said heat collection pile may be a structural pile of the said building, and the ground surface of the position where the said heat collection pile is embed | buried may be covered with the heat insulating material.

ここで、「断熱材」とは、一般的な断熱材のみならず、断熱性を高める部材が含まれる。例えば、構造杭と採熱杭が兼用される場合に建物の基礎コンクリートも断熱材に含まれる。   Here, the “heat insulating material” includes not only a general heat insulating material but also a member that enhances heat insulating properties. For example, when a structural pile and a heat collecting pile are used together, the foundation concrete of a building is also included in the heat insulating material.

さらに、前記ヒートポンプシステムが寒冷地域に設けられる場合には、前記循環流路が地中の水道管まわりに設置されていてもよい。   Furthermore, when the heat pump system is provided in a cold region, the circulation channel may be installed around an underground water pipe.

本発明によれば、ヒートポンプユニットが前記建物の床下空間に設置されているので、建物周囲のスペースをより確保することができる。また、前記採熱杭が前記建物の構造杭であれば、採熱杭の埋設が不要となる上に地中の埋設物が減る。   According to the present invention, since the heat pump unit is installed in the under-floor space of the building, a space around the building can be further secured. Moreover, if the said heat collecting pile is a structural pile of the said building, the burying of a heat collecting pile will become unnecessary and the underground buried object will decrease.

また、前記採熱杭が埋設されている位置の地表面が断熱材で覆われていれば、断熱材により外気と地中との断熱性が高まるため、採熱杭は外気温の影響を受けにくくなる。このため、エネルギーロスが少なく地熱利用効率が高まる。   In addition, if the ground surface at the position where the heat collecting pile is buried is covered with a heat insulating material, the heat insulating material enhances the heat insulation between the outside air and the ground, so the heat collecting pile is affected by the outside air temperature. It becomes difficult. For this reason, there is little energy loss and geothermal utilization efficiency increases.

さらに、前記ヒートポンプシステムが寒冷地域に設けられるものであって、前記循環流路が地中の水道管まわりに設置されていれば、水道管の凍結防止につながる。   Furthermore, if the heat pump system is provided in a cold region and the circulation channel is installed around the underground water pipe, the water pipe is prevented from freezing.

第1実施形態のヒートポンプシステムを有する建物の構成を説明する図である。It is a figure explaining the structure of the building which has the heat pump system of 1st Embodiment. 第2実施形態のヒートポンプシステムを有する建物の構成を説明する図である。It is a figure explaining the structure of the building which has the heat pump system of 2nd Embodiment. 第3実施形態のヒートポンプシステムを有する建物の構成を説明する図である。It is a figure explaining the structure of the building which has the heat pump system of 3rd Embodiment. 地熱利用型のヒートポンプシステムを説明する図である。It is a figure explaining the heat pump system of a geothermal utilization type.

以下、本発明の実施の形態を図1〜図4を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

本発明は、従来では庭などの建物の周囲に配置していたヒートポンプユニット(エアコンの室外機等)を建物の床下空間に配置することで、建物の外周スペースを有効活用することができる。また、ヒートポンプの熱交換の一部を、冷媒との温度差が外気よりある大地との間で行うことで、冷暖房の費用を軽減することができ、外気との熱交換用ファンも不要となる。   The present invention can effectively utilize the outer peripheral space of a building by arranging a heat pump unit (such as an outdoor unit of an air conditioner) that has been conventionally arranged around a building such as a garden in an underfloor space of the building. Also, by performing part of the heat exchange of the heat pump with the ground where the temperature difference from the refrigerant is from the outside air, the cost of air conditioning can be reduced, and a fan for heat exchange with the outside air becomes unnecessary. .

[第1実施形態]
第1実施形態の地熱利用型のヒートポンプシステム10は、図1および図4に示すように、建物1Aの床下空間R0に設置されたヒートポンプユニットHPと、建物1Aの構造杭として地中に埋設された採熱杭2と、ヒートポンプユニットHPと採熱杭2とを循環するように配管された循環流路としての不凍液管3と、不凍液管3に満たされた熱搬送流体としての不凍液と、不凍液を循環させるポンプP1と、ヒートポンプユニットHPからの冷媒と室内R1の空気とを熱交換する床下熱交換器HT等とを有している。
[First embodiment]
As shown in FIGS. 1 and 4, the geothermal heat pump system 10 of the first embodiment is embedded in the ground as a heat pump unit HP installed in the underfloor space R0 of the building 1A and a structural pile of the building 1A. The antifreeze liquid pipe 3 as a circulation flow path piped so as to circulate between the heat collecting pile 2, the heat pump unit HP and the heat collecting pile 2, the antifreeze liquid as the heat transfer fluid filled in the antifreeze liquid pipe 3, and the antifreeze liquid , And an underfloor heat exchanger HT for exchanging heat between the refrigerant from the heat pump unit HP and the air in the room R1.

図1に示すように、採熱杭2、ヒートポンプユニットHPおよび床下熱交換器HTは、互いに近接配置されている。
<床下熱交換器>
床下熱交換器HTは、一般のエアコンでは室内機に相当し、ヒートポンプユニットHPと同様に建物1Aの床下空間R0に設けられている。床下熱交換器HTは、図4に示すように、筐体と、筐体中に回転可能に設けられたファン9と、第1熱交換器8E等とを有している。筐体にはヒートポンプユニットHPからの冷媒管4が入出し、筐体内の冷媒管4部分には第1熱交換器8Eが設けられている。
As shown in FIG. 1, the heat collecting pile 2, the heat pump unit HP, and the underfloor heat exchanger HT are arranged close to each other.
<Underfloor heat exchanger>
The underfloor heat exchanger HT corresponds to an indoor unit in a general air conditioner, and is provided in the underfloor space R0 of the building 1A like the heat pump unit HP. As shown in FIG. 4, the underfloor heat exchanger HT includes a housing, a fan 9 provided rotatably in the housing, a first heat exchanger 8E, and the like. A refrigerant pipe 4 from the heat pump unit HP enters and exits the casing, and a first heat exchanger 8E is provided in the refrigerant pipe 4 portion in the casing.

この筐体には室内R1からのエアーの取込口と排出口が設けられており、それぞれに接続された吸気ダクト5および給気ダクト6を介して室内R1と筐体内がエアー環流するように連通している。   This housing is provided with an intake port and an exhaust port for air from the room R1, so that the room R1 and the inside of the case circulate through the intake duct 5 and the air supply duct 6 connected to each. Communicate.

ファン9の回転により室内R1の空気が吸気ダクト5を介して筐体内へ取り込まれて、第1熱交換器8Eで熱交換された後、給気ダクト6を通じて室内R0に吹き出るようになっている。
<ヒートポンプユニット>
ヒートポンプユニットHPは、一般のエアコンでは室外機に相当し、建物1Aの床下空間R0に設けられている。ヒートポンプユニットHPは、エアコンでの熱交換サイクル(ヒートポンプ)の他の要素である、膨張弁8C、コンプレッサ8B、熱交換器としての第2熱交換器8D、切替スイッチ8Aを有し、これらは冷媒管4で接続されている(図4参照)。
The air in the room R1 is taken into the housing through the intake duct 5 by the rotation of the fan 9 and is heat-exchanged by the first heat exchanger 8E, and then blown out into the room R0 through the air supply duct 6. .
<Heat pump unit>
The heat pump unit HP corresponds to an outdoor unit in a general air conditioner, and is provided in the underfloor space R0 of the building 1A. The heat pump unit HP includes an expansion valve 8C, a compressor 8B, a second heat exchanger 8D as a heat exchanger, and a changeover switch 8A, which are other elements of a heat exchange cycle (heat pump) in an air conditioner. They are connected by a pipe 4 (see FIG. 4).

ヒートポンプユニットHPには採熱杭2からの不凍液管3が入出し、不凍液管3はヒートポンプユニットHP内で第2熱交換器8Dを経由するように配管され、不凍液が冷媒管4内の冷媒と熱交換可能となっている。   The antifreeze pipe 3 from the heat collecting pile 2 enters and exits the heat pump unit HP, and the antifreeze pipe 3 is piped through the second heat exchanger 8D in the heat pump unit HP, and the antifreeze liquid is separated from the refrigerant in the refrigerant pipe 4. Heat exchange is possible.

その一方で、ヒートポンプユニットHPから引き出された不凍液管3は、建物1Aの床下空間R0の床版内を通過し、建物1Aの構造杭(採熱杭2)内を巡るように配管されている。また、不凍液管3には不凍液を圧送するポンプP1(図4参照)が接続されている。
<熱の流れ>
図4に示すように、ヒートポンプユニットHPの切替スイッチ8Aにより熱交換サイクルの冷媒の循環方向(切り替えスイッチ〜コンプレッサ8B間以外)が逆となり、暖房と冷房の切り替えが行われる。そのため、第2熱交換器8Dでの冷媒と不凍液との熱交換(放熱・吸熱)も切り替えられる。
On the other hand, the antifreeze liquid pipe 3 drawn out from the heat pump unit HP passes through the floor slab of the underfloor space R0 of the building 1A and is piped so as to go around the structural pile (heat collecting pile 2) of the building 1A. . The antifreeze pipe 3 is connected to a pump P1 (see FIG. 4) that pumps the antifreeze liquid.
<Heat flow>
As shown in FIG. 4, the refrigerant switch direction (except between the changeover switch and the compressor 8B) in the heat exchange cycle is reversed by the changeover switch 8A of the heat pump unit HP, and switching between heating and cooling is performed. Therefore, heat exchange (heat radiation / heat absorption) between the refrigerant and the antifreeze liquid in the second heat exchanger 8D is also switched.

図1の矢印に示すように、ヒートポンプユニットHPと不凍液のポンプP1を稼動させて冷媒と不凍液の熱交換サイクルをさせると、夏季の冷房と冬季の暖房の場合のそれぞれで、以下のように熱交換される。   As shown by the arrows in FIG. 1, when the heat pump unit HP and the antifreeze liquid pump P1 are operated and the heat exchange cycle of the refrigerant and the antifreeze liquid is performed, the following heat is applied in each of the cooling in the summer and the heating in the winter. Exchanged.

夏季の冷房の場合、室内R1の空気の熱が第1熱交換器8Eで冷媒管4の冷媒に吸熱され、この冷媒がコンプレッサ8Bで圧縮された後、第2熱交換器8Dで不凍液へ放熱する。吸熱した不凍液がポンプP1の圧送により採熱杭2まで搬送され、採熱杭2内で地盤へ放熱して第2熱交換器8Dに戻ってくる。   In the case of cooling in summer, the heat of the air in the room R1 is absorbed by the refrigerant in the refrigerant pipe 4 by the first heat exchanger 8E, and after the refrigerant is compressed by the compressor 8B, the heat is radiated to the antifreeze by the second heat exchanger 8D. To do. The antifreezing liquid that has absorbed heat is conveyed to the heat collecting pile 2 by pumping the pump P1, radiates heat to the ground within the heat collecting pile 2, and returns to the second heat exchanger 8D.

冬季の暖房の場合、地熱が採熱杭2内で不凍液に吸熱され、吸熱した不凍液がポンプP1の圧送により第2熱交換器8Dまで搬送されてくる。第2熱交換器8Dでは、搬送された不凍液から膨張弁8Cを通過した低温・低圧の冷媒へ放熱し、冷媒が加温される。この冷媒はコンプレッサ8Bで圧縮され、冷媒圧縮により生じる熱とともに不凍液由来の熱は第1熱交換器8Eにて室内R1の空気へ放熱される。
以下、ヒートポンプシステム10により奏される効果を説明する。
In the case of heating in the winter season, geothermal heat is absorbed by the antifreeze liquid in the heat collecting pile 2, and the absorbed antifreeze liquid is conveyed to the second heat exchanger 8D by the pump P1. In the second heat exchanger 8D, heat is radiated from the conveyed antifreeze liquid to the low-temperature and low-pressure refrigerant that has passed through the expansion valve 8C, and the refrigerant is heated. This refrigerant is compressed by the compressor 8B, and the heat generated by the refrigerant compression and the heat derived from the antifreeze liquid are radiated to the air in the room R1 by the first heat exchanger 8E.
Hereinafter, the effect produced by the heat pump system 10 will be described.

ヒートポンプユニットHPが建物1Aの床下空間R0に収納されることで、建物1Aの周囲にヒートポンプユニットHPを置く必要がなく、建物1Aの周囲を広く有効に使うことができる。また、ヒートポンプユニットHPを床下空間R0に設置するので建物1Aの外に置くよりエネルギーロスが少ない。また、窓を介した室外機のファン9の音がなくなり騒音も減る。   By storing the heat pump unit HP in the underfloor space R0 of the building 1A, it is not necessary to place the heat pump unit HP around the building 1A, and the periphery of the building 1A can be used widely and effectively. In addition, since the heat pump unit HP is installed in the underfloor space R0, energy loss is less than when it is placed outside the building 1A. Also, the noise of the outdoor unit fan 9 through the window is eliminated and the noise is reduced.

採熱杭2、ヒートポンプユニットHPおよび床下熱交換器HTが互いに近接配置されているので、ヒートポンプシステム10の設置等の際の施工性が高まる。   Since the heat collecting pile 2, the heat pump unit HP, and the underfloor heat exchanger HT are arranged close to each other, the workability during installation of the heat pump system 10 and the like is improved.

建物1Aの構造杭と採熱杭が兼用されているので、別に採熱杭を設ける必要がなく、この点でも施工性が高まり、その設置費用と手間も省略できる。   Since the structural pile and the heat collecting pile of the building 1A are used together, it is not necessary to provide a separate heat collecting pile. In this respect, the workability is improved and the installation cost and labor can be omitted.

不凍液は搬送中に不凍液管の壁を介して配管周りの土や建築物等と意図しない熱交換をするためエネルギーロスが生じるが、上述のように採熱杭2、ヒートポンプユニットHPおよび床下熱交換器HTが互いに近接配置されていることから、不凍液の搬送距離が短くて済み、エネルギーロスが少なくなる。   The antifreeze will cause energy loss due to unintentional heat exchange with the soil and buildings around the pipe through the wall of the antifreeze pipe during transportation, but as mentioned above, the heat collecting pile 2, the heat pump unit HP and the underfloor heat exchange. Since the containers HT are arranged close to each other, the transport distance of the antifreeze liquid can be shortened and energy loss is reduced.

また、採熱杭2が構造杭として建物1Aの直下に埋設されていることから、採熱杭2を建物1Aの外郭に埋設するよりも不凍液の搬送距離が短くて済み、その分エネルギーロスが少なくなる。   In addition, since the heat collection pile 2 is buried as a structural pile directly under the building 1A, the transport distance of the antifreeze liquid can be shorter than that of the heat collection pile 2 buried in the outer wall of the building 1A, and the energy loss is correspondingly reduced. Less.

不凍液管3が建物1Aの床下空間R0の床版中を通過するように設けられているので、建物1Aの内外の断熱効果が高まる。また、床版が断熱材としても機能する。   Since the antifreeze pipe 3 is provided so as to pass through the floor slab of the underfloor space R0 of the building 1A, the heat insulating effect inside and outside the building 1A is enhanced. The floor slab also functions as a heat insulating material.

第1実施形態は、本発明から逸脱しない限り例えば以下のように変更することができる。   For example, the first embodiment can be modified as follows without departing from the present invention.

床下熱交換器HTで床暖房の熱媒体(水等)を加熱・冷却するように構成してもよい。これにより、冬の床暖房の効率化だけでなく夏季にも床冷却をおこなうことができる。   You may comprise so that the heat medium (water etc.) of floor heating may be heated and cooled with the underfloor heat exchanger HT. Thereby, floor cooling can be performed not only in winter floor heating but also in summer.

また、床下熱交換器HTに接続した吸気ダクト5や給気ダクト6を取り除いて、床下空間R0の空気を加熱又は冷却してもよい。これにより、床暖房や床冷却に近い効果を得ることができる。また、冬季の加熱では床下空間R0の結露等が防止され、カビ発生防止効果が得られ、調湿剤の使用量も少なくてすむ。   Further, the air in the underfloor space R0 may be heated or cooled by removing the intake duct 5 and the air supply duct 6 connected to the underfloor heat exchanger HT. Thereby, the effect close to floor heating or floor cooling can be acquired. Further, in the heating in winter, condensation or the like in the underfloor space R0 is prevented, an effect of preventing mold generation is obtained, and the use amount of the humidity control agent can be reduced.

図1に示す、建物1Aの床下空間R0の床版中を通過する不凍液管3のうち、建物1Aのより外側の不凍液管3をヒートポンプユニットHPから採熱杭2へと向かう往路、内側の不凍液管3を採熱杭2からの復路としてもよい。   Out of the antifreeze pipe 3 passing through the floor slab of the underfloor space R0 of the building 1A shown in FIG. 1, the antifreeze pipe 3 on the outer side of the building 1A goes from the heat pump unit HP to the heat collecting pile 2, and the antifreeze inside. The pipe 3 may be a return path from the heat collecting pile 2.

これにより、床下空間R0と不凍液管(復路)3との間で起こる熱交換、つまり本来であればヒートロスとなる熱交換をも床下空間R0の冷却や加熱に用いることが出来る。この場合、不凍液管3の往路と復路との間に断熱材を設けることが好ましい。   As a result, heat exchange that occurs between the underfloor space R0 and the antifreeze pipe (return path) 3, that is, heat exchange that would otherwise be heat loss, can be used for cooling and heating the underfloor space R0. In this case, it is preferable to provide a heat insulating material between the forward path and the return path of the antifreeze liquid pipe 3.

また、採熱杭2を地下水汲み上げ用の採水管として、汲み上げた地下水を熱搬送流体として冷媒と熱交換し、熱交換後の地下水を地下水脈に還水してもよい。
[第2実施形態]
図2に、第2実施形態のヒートポンプシステム20を示す。
Alternatively, the heat collecting pile 2 may be used as a water sampling pipe for pumping up groundwater, the groundwater pumped up as heat transfer fluid may be heat exchanged with the refrigerant, and the groundwater after heat exchange may be returned to the groundwater vein.
[Second Embodiment]
In FIG. 2, the heat pump system 20 of 2nd Embodiment is shown.

ヒートポンプシステム20は、ヒートポンプユニットHP、採熱杭2A、床下熱交換器HTおよび不凍液管3等を有し、採熱杭2Aは建物1Bの外郭に埋設されている。   The heat pump system 20 includes a heat pump unit HP, a heat collecting pile 2A, an underfloor heat exchanger HT, an antifreeze liquid pipe 3, and the like, and the heat collecting pile 2A is embedded in the outer wall of the building 1B.

ヒートポンプシステム20によれば、既に建築済みのような場合に、採熱杭2Aを建物1Bの外郭に埋設することで、建物1Bにヒートポンプシステム20を設けることができる。   According to the heat pump system 20, when the building has already been constructed, the heat pump system 20 can be provided in the building 1B by burying the heat collecting pile 2A in the outer shell of the building 1B.

また、第1実施形態の効果(採熱杭2と構造杭が兼用されていることによる効果を除く)と同様の効果が得られる。   Moreover, the effect similar to the effect of 1st Embodiment (except the effect by the heat-collecting pile 2 and the structural pile being combined) is acquired.

第2実施形態は、本発明から逸脱しない限り例えば以下のように変更することができる。   For example, the second embodiment can be modified as follows without departing from the present invention.

建物1Bが所在する地域が寒冷地の場合に、採熱杭2Aや不凍液管3を水道管周りに設置することで、その凍結防止を図ることが出来る。
[第3実施形態]
図3に、第3実施形態のヒートポンプシステム30を示す。
When the area where the building 1B is located is a cold region, it is possible to prevent freezing by installing the heat collecting pile 2A and the antifreeze liquid pipe 3 around the water pipe.
[Third embodiment]
In FIG. 3, the heat pump system 30 of 3rd Embodiment is shown.

ヒートポンプシステム30は、ヒートポンプユニットHP、採熱杭2A、床下熱交換器HTおよび不凍液管3等を有し、床下空間R0の壁面は断熱材7で覆われている。また、採熱杭2Aは建物1Bの外郭に埋設され、この採熱杭2Aと不凍液管3が埋設されている位置の地表面Sの部分が断熱材7で覆われている。   The heat pump system 30 includes a heat pump unit HP, a heat collecting pile 2A, an underfloor heat exchanger HT, an antifreeze liquid pipe 3, and the like, and a wall surface of the underfloor space R0 is covered with a heat insulating material 7. Further, the heat collecting pile 2A is buried in the outer wall of the building 1B, and the portion of the ground surface S where the heat collecting pile 2A and the antifreeze pipe 3 are buried is covered with a heat insulating material 7.

ヒートポンプシステム30によれば、以下の効果が得られる。   According to the heat pump system 30, the following effects can be obtained.

上記した地表面Sの部分が断熱材7で覆われていることにより、外気と地中との断熱性が高まり、採熱杭2Aや不凍液管3は外気温の影響を受けにくくなる。このため、エネルギーロスが少なく、地熱利用効率が高まる。   Since the above-described portion of the ground surface S is covered with the heat insulating material 7, the heat insulating property between the outside air and the ground is increased, and the heat collecting pile 2A and the antifreeze liquid pipe 3 are not easily affected by the outside air temperature. For this reason, there is little energy loss and geothermal utilization efficiency increases.

ヒートポンプユニットHPと床下熱交換器HTが設置された床下空間R0の壁面が断熱材7で覆われていることにより、床下空間R0における上記エネルギーロスが少なくなる。また、不凍液との熱交換により温度変化した床下空間R0状態(温度等)が維持されやすくなる。   When the wall surface of the underfloor space R0 where the heat pump unit HP and the underfloor heat exchanger HT are installed is covered with the heat insulating material 7, the energy loss in the underfloor space R0 is reduced. In addition, the underfloor space R0 state (temperature, etc.) whose temperature has changed due to heat exchange with the antifreeze liquid is easily maintained.

以上、本発明に係るヒートポンプシステム10,20,30について実施の形態に基づいて説明してきたが、第1〜3実施形態に限定されず、本発明に逸脱しない限り変更することができる。   As mentioned above, although heat pump system 10,20,30 which concerns on this invention has been demonstrated based on embodiment, it is not limited to 1st-3rd embodiment, It can change unless it deviates from this invention.

10,20,30・・・ヒートポンプシステム
1A,1B・・・建物
2,2A・・・採熱杭
3・・・不凍液管(循環流路)
4・・・冷媒管
5・・・吸気ダクト
6・・・給気ダクト
7・・・断熱材
8A・・・切替スイッチ
8D・・・第2熱交換器(熱交換器)
8B・・・コンプレッサ
8C・・・膨張弁
8E・・・第1熱交換器
9・・・ファン
HT・・・床下熱交換器
HP・・・ヒートポンプユニット
R0・・・床下空間
R1・・・室内
S・・・地表面
P1・・・ポンプ
10, 20, 30 ... heat pump system 1A, 1B ... building 2, 2A ... heat collecting pile 3 ... antifreeze liquid pipe (circulation flow path)
4 ... refrigerant pipe 5 ... intake duct 6 ... air supply duct 7 ... heat insulating material 8A ... changeover switch 8D ... second heat exchanger (heat exchanger)
8B ... Compressor 8C ... Expansion valve 8E ... First heat exchanger 9 ... Fan HT ... Underfloor heat exchanger HP ... Heat pump unit R0 ... Underfloor space R1 ... Indoor S ... Ground surface P1 ... Pump

Claims (4)

地中に埋設された採熱杭と、建物内を空調するためのヒートポンプの熱交換器を有したヒートポンプユニットと、前記熱交換器と前記採熱杭とを経由するように設けられた熱搬送流体の循環流路と、該循環流路に満たされた熱搬送流体と、該熱搬送流体を循環させるためのポンプと、を備え、前記循環により地盤と前記建物の室内空気との熱交換をする地熱利用型のヒートポンプシステムにおいて、
前記ポンプが内蔵された前記ヒートポンプユニットは前記建物の床下空間に設置されているとともに、
前記採熱杭が前記建物の構造杭としての機能を兼ね備えており、
前記採熱杭内には、前記循環流路の往路及び復路が配設されており、
前記循環流路の往路及び復路は共に、前記床下空間の床版中を通って前記ヒートポンプユニットと接続されており、
前記ヒートポンプユニットに接続された床下熱交換器も、前記床下空間に設置されており、
前記床下熱交換器は、前記床下空間内の空気を加熱又は冷却する床下空調が可能であることを特徴とする地熱利用型のヒートポンプシステム。
Heat transfer provided so as to pass through the heat collecting pile buried in the ground, a heat pump unit having a heat pump heat exchanger for air conditioning the building, and the heat exchanger and the heat collecting pile A fluid circulation channel, a heat carrier fluid filled in the circulation channel, and a pump for circulating the heat carrier fluid, and exchanging heat between the ground and the indoor air of the building by the circulation. In geothermal heat pump system
The heat pump unit with the built-in pump is installed in a space under the floor of the building,
The heat collection pile has a function as a structural pile of the building,
In the heat collecting pile, an outward path and a return path of the circulation flow path are disposed,
Both the forward path and the return path of the circulation channel are connected to the heat pump unit through the floor slab of the underfloor space ,
The underfloor heat exchanger connected to the heat pump unit is also installed in the underfloor space,
The underfloor heat exchanger is capable of underfloor air conditioning that heats or cools the air in the underfloor space .
前記循環流路の往路と復路との間には、断熱材が設けられていることを特徴とする請求項1に記載の地熱利用型のヒートポンプシステム。   2. The geothermal heat pump system according to claim 1, wherein a heat insulating material is provided between the forward path and the return path of the circulation flow path. 前記採熱杭が埋設されている位置の地表面部分が断熱材で覆われていることを特徴とする請求項1又は2に記載の地熱利用型のヒートポンプシステム。   The ground heat utilization type heat pump system according to claim 1 or 2, wherein a ground surface portion where the heat collecting pile is buried is covered with a heat insulating material. 前記循環流路が地中の水道管まわりに設置されることを特徴とする請求項1〜3いずれか1項に記載の地熱利用型のヒートポンプシステム。   The geothermal heat-use type heat pump system according to any one of claims 1 to 3, wherein the circulation channel is installed around an underground water pipe.
JP2010187490A 2010-08-24 2010-08-24 Geothermal heat pump system Active JP5809786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010187490A JP5809786B2 (en) 2010-08-24 2010-08-24 Geothermal heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010187490A JP5809786B2 (en) 2010-08-24 2010-08-24 Geothermal heat pump system

Publications (2)

Publication Number Publication Date
JP2012047360A JP2012047360A (en) 2012-03-08
JP5809786B2 true JP5809786B2 (en) 2015-11-11

Family

ID=45902451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010187490A Active JP5809786B2 (en) 2010-08-24 2010-08-24 Geothermal heat pump system

Country Status (1)

Country Link
JP (1) JP5809786B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9897347B2 (en) * 2013-03-15 2018-02-20 Thomas Scott Breidenbach Screw-in geothermal heat exchanger systems and methods
JP6783610B2 (en) * 2016-09-30 2020-11-11 大和ハウス工業株式会社 Indoor cooling device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59122854A (en) * 1982-12-29 1984-07-16 Misawa Homes Co Ltd Heat exchanger
JPS61193170U (en) * 1985-05-21 1986-12-01
JP4038729B2 (en) * 2004-01-26 2008-01-30 庄司建設株式会社 Residential air conditioning system using groundwater
JP2006052924A (en) * 2004-08-09 2006-02-23 Tetsuo Murai Method for artificially preparing constant temperature layer in underground shallow part
JP5103070B2 (en) * 2007-06-28 2012-12-19 応用開発株式会社 Support pile system for heat exchange for residential and architectural use using geothermal heat

Also Published As

Publication number Publication date
JP2012047360A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
KR100998483B1 (en) Module multi type air conditioning and heating system using geothermal heat pump
JP2006125769A (en) Heat pump cycle device
JP2009250581A (en) Heating and cooling system using underground heat
JP2007183023A (en) Heating/cooling method and device utilizing geothermal heat
CN103842730A (en) Building built-in air conditioner
US8555666B1 (en) Single package, indoor air-sourced, basement heat pump for home heating and air conditioning
JP2012184912A (en) Air conditioning device using underground heat
JP2012172966A (en) Earth solar zero-energy house
JP2011141073A (en) Device and method of improving efficiency of air conditioning device
CN102589071A (en) Super-heat-conduction-transmission cooling and heating device
CN103307674B (en) Air source heat pump is in conjunction with the heat pump type air conditioning system of little temperature difference heat exchange end
KR100976613B1 (en) heating and cooling system and using a subsurface heat source
KR101021964B1 (en) heating and cooling system and using a heat pump
JP6087497B2 (en) Ground heat utilization system using garage
JP5809786B2 (en) Geothermal heat pump system
JP2012057836A (en) Underground heat exchanger and heat pump using the same
JP5351210B2 (en) Thermal storage air conditioning system
JP6120317B2 (en) Building air conditioning system using geothermal and heat pumps
JP5701583B2 (en) Air conditioning system
JP2006145059A (en) Hybrid type underground heat utilization heat pump device and its operating method
JP2006010137A (en) Heat pump system
JP2012078080A (en) Underground heat exchanger and heat pump utilizing the same
JP5833064B2 (en) Thermal storage air conditioning system
JP6781560B2 (en) Ventilator
JP5806574B2 (en) Building heat utilization structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140811

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20141003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150716

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150914

R151 Written notification of patent or utility model registration

Ref document number: 5809786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151