JP5808767B2 - Multi-core fiber - Google Patents

Multi-core fiber Download PDF

Info

Publication number
JP5808767B2
JP5808767B2 JP2013037810A JP2013037810A JP5808767B2 JP 5808767 B2 JP5808767 B2 JP 5808767B2 JP 2013037810 A JP2013037810 A JP 2013037810A JP 2013037810 A JP2013037810 A JP 2013037810A JP 5808767 B2 JP5808767 B2 JP 5808767B2
Authority
JP
Japan
Prior art keywords
core
stress adjusting
stress
refractive index
cladding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013037810A
Other languages
Japanese (ja)
Other versions
JP2014164269A (en
Inventor
雄佑 佐々木
雄佑 佐々木
竹永 勝宏
勝宏 竹永
晋聖 齊藤
晋聖 齊藤
正則 小柴
正則 小柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Fujikura Ltd
Original Assignee
Hokkaido University NUC
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Fujikura Ltd filed Critical Hokkaido University NUC
Priority to JP2013037810A priority Critical patent/JP5808767B2/en
Priority to PCT/JP2014/053141 priority patent/WO2014132793A1/en
Publication of JP2014164269A publication Critical patent/JP2014164269A/en
Application granted granted Critical
Publication of JP5808767B2 publication Critical patent/JP5808767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02285Characterised by the polarisation mode dispersion [PMD] properties, e.g. for minimising PMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03627Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

本発明はマルチコアファイバに関し、クロストークを低減させる場合に好適なものである。   The present invention relates to a multi-core fiber and is suitable for reducing crosstalk.

現在、一般に普及している光ファイバ通信システムに用いられる光ファイバは、1本のコアの外周がクラッドにより囲まれた構造をしており、このコア内を光信号が伝搬することで情報が伝送される。そして、近年光ファイバ通信システムの普及に伴い、伝送される情報量が飛躍的に増大している。このような情報量の増大に伴い、光ファイバ通信システムにおいては、WDM(Wavelength Division Multiplexing)、PDM(Polarization
Division Multiplexing)あるいは多値変調が用いられることで、大容量の長距離光通信が行われている。一方、既存のシングルモードファイバを用いた通信システムでは伝送容量の限界があるといわれている。
An optical fiber used in a currently popular optical fiber communication system has a structure in which the outer periphery of one core is surrounded by a clad, and information is transmitted by propagation of an optical signal in the core. Is done. In recent years, with the spread of optical fiber communication systems, the amount of transmitted information has increased dramatically. As the amount of information increases, WDM (Wavelength Division Multiplexing), PDM (Polarization) are used in optical fiber communication systems.
(Division Multiplexing) or multilevel modulation is used, so that large-capacity long-distance optical communication is performed. On the other hand, it is said that there is a limit of transmission capacity in a communication system using an existing single mode fiber.

ところで、ファイバ1本あたりの伝送容量をさらに増やすため、複数のコアの外周が1つのクラッドにより囲まれたマルチコアファイバを用いて、それぞれのコアを伝搬する光により、複数の信号を伝送させることが知られている。   By the way, in order to further increase the transmission capacity per fiber, a plurality of signals can be transmitted by light propagating through each core using a multi-core fiber in which the outer circumferences of the plurality of cores are surrounded by one clad. Are known.

しかし、マルチコアファイバにおいては、コア同士のクロストークが生じる場合があり、マルチコアファイバを細径化すると、コア間距離が小さくなるため、このクロストークが更に生じ易くなる。従って、コア同士のクロストークが低減できるマルチコアファイバが求められている。   However, in a multi-core fiber, crosstalk between cores may occur. When the diameter of the multi-core fiber is reduced, the distance between the cores becomes smaller, and this crosstalk is more likely to occur. Accordingly, there is a need for a multi-core fiber that can reduce crosstalk between cores.

下記非特許文献1には、コア同士のクロストーク抑制するために、それぞれのコアの周囲にトレンチと呼ばれる低屈折率部を設けることが提案され、当該低屈折率部を設けることでクロストークが抑えられたことが確認されている。   Non-Patent Document 1 below proposes to provide a low refractive index portion called a trench around each core in order to suppress crosstalk between cores, and crosstalk can be prevented by providing the low refractive index portion. It has been confirmed that it was suppressed.

K. Takenaga et al., “Reduction of crosstalk by trench−assisted multi−core fiber,” OFC2011,OWJ4(2011)K. Takenaga et al. , “Reduction of cross-by-teach-assisted multi-core fiber,” OFC 2011, OWJ4 (2011)

ところが、マルチコアファイバの構造によっては、偏波モード分散(PMD:Polarization Mode Dispersion)が悪化する場合があるということが分かった。   However, it has been found that depending on the structure of the multi-core fiber, polarization mode dispersion (PMD) may deteriorate.

偏波モード分散が悪化した場合、マルチコアファイバの各コアを伝搬する信号に対し、パルスが広がるなど信号品質に影響を及ぼし、通信距離やビットレートへの制限が大きくなるという課題が生じる。   When the polarization mode dispersion deteriorates, the signal propagating through each core of the multi-core fiber affects the signal quality such as spreading of the pulse, resulting in a problem that the restriction on the communication distance and the bit rate is increased.

そこで、本発明は、偏波モード分散を小さくして、長距離で大容量伝送が可能なマルチコアファイバを提供することを目的とする。   Therefore, an object of the present invention is to provide a multi-core fiber that can reduce polarization mode dispersion and perform large-capacity transmission over a long distance.

本発明のマルチコアファイバは、クラッドと、前記クラッド内に設けられ、コアと、前記コアを囲む内側クラッド層と、前記内側クラッド層を囲むと共に前記クラッド及び前記内側クラッド層よりも平均屈折率が低い外側クラッド層とを有する複数のコア要素と、前記クラッド内に設けられ、前記クラッド及び前記内側クラッド層よりも平均屈折率が低い応力調整部とを備え、前記応力調整部は、各前記コア要素を伝搬する光において同じLPモードに属する偏波の実効屈折率の差が小さくなるように配置されることを特徴とするものである。   The multi-core fiber of the present invention is provided with a clad, an inner clad layer surrounding the core, the inner clad layer surrounding the core, and an average refractive index lower than the clad and the inner clad layer. A plurality of core elements having an outer cladding layer, and a stress adjusting section provided in the cladding and having an average refractive index lower than that of the cladding and the inner cladding layer. Are arranged so that the difference in effective refractive index of polarized waves belonging to the same LP mode is small.

このようなマルチコアファイバによれば、コア要素を伝搬する複数の偏波の実効屈折率の差である複屈折を抑えることができることが分かった。したがって、応力調整部を設けない場合に比べて、偏波モード分散を小さくすることができる。   It has been found that such a multi-core fiber can suppress birefringence, which is a difference in effective refractive index of a plurality of polarized waves propagating through a core element. Therefore, the polarization mode dispersion can be reduced as compared with the case where the stress adjusting unit is not provided.

以上のように、本発明によれば、偏波モード分散を小さくして、長距離で大容量通信可能なマルチコアファイバが提供される。   As described above, according to the present invention, it is possible to provide a multi-core fiber that can reduce polarization mode dispersion and perform large-capacity communication over a long distance.

第1実施形態におけるマルチコアファイバの長さ方向に垂直な断面を示す図である。It is a figure which shows the cross section perpendicular | vertical to the length direction of the multi-core fiber in 1st Embodiment. コア要素の様子を示す図である。It is a figure which shows the mode of a core element. 応力調整部の様子を示す図である。It is a figure which shows the mode of a stress adjustment part. 第2実施形態におけるマルチコアファイバの長さ方向に垂直な断面を示す図である。It is a figure which shows the cross section perpendicular | vertical to the length direction of the multi-core fiber in 2nd Embodiment. 第3実施形態におけるマルチコアファイバの長さ方向に垂直な断面を示す図である。It is a figure which shows the cross section perpendicular | vertical to the length direction of the multi-core fiber in 3rd Embodiment. 実施例1におけるPMDの測定結果を示すグラフである。3 is a graph showing the results of PMD measurement in Example 1. 実施例1におけるコア番号の割り当て状態を示す図である。It is a figure which shows the allocation state of the core number in Example 1. FIG. 比較例1におけるPMDの測定結果を示すグラフである。10 is a graph showing the results of PMD measurement in Comparative Example 1. 実施例1における所定のパラメータを変化させた場合における複屈折の変動の様子を示すグラフである。It is a graph which shows the mode of the fluctuation | variation of birefringence at the time of changing the predetermined parameter in Example 1. FIG. 実施例2におけるPMDの測定結果を示すグラフである。6 is a graph showing a PMD measurement result in Example 2. 実施例2におけるコア番号の割り当て状態を示す図である。It is a figure which shows the allocation state of the core number in Example 2. FIG. 比較例2におけるPMDの測定結果を示すグラフである。10 is a graph showing a PMD measurement result in Comparative Example 2. 実施例3におけるPMDの測定結果を示すグラフである。10 is a graph showing PMD measurement results in Example 3. 実施例3におけるコア番号の割り当て状態を示す図である。It is a figure which shows the allocation state of the core number in Example 3. FIG. 比較例3におけるPMDの測定結果を示すグラフである。10 is a graph showing PMD measurement results in Comparative Example 3. 実施例3における所定のパラメータを変化させた場合における複屈折の変動の様子を示すグラフである。It is a graph which shows the mode of the fluctuation | variation of birefringence when the predetermined parameter in Example 3 is changed.

(1)第1実施形態
本発明を実施するための第1実施形態について図面を参照しながら詳細に説明する。
(1) First Embodiment A first embodiment for carrying out the present invention will be described in detail with reference to the drawings.

図1は、第1実施形態におけるマルチコアファイバの長さ方向に垂直な断面を示す図である。図1に示すように、本実施形態におけるマルチコアファイバ1は、複数のコア要素10、複数の応力調整部15、クラッド20、クラッド20の外周面を被覆する内側保護層31、及び、内側保護層31の外周面を被覆する外側保護層32を主な構成要素として備える。   FIG. 1 is a view showing a cross section perpendicular to the length direction of a multi-core fiber in the first embodiment. As shown in FIG. 1, the multi-core fiber 1 according to the present embodiment includes a plurality of core elements 10, a plurality of stress adjusters 15, a clad 20, an inner protective layer 31 that covers the outer peripheral surface of the clad 20, and an inner protective layer. An outer protective layer 32 covering the outer peripheral surface of 31 is provided as a main component.

複数のコア要素10は、クラッド20内に配置されるロッド状の部材であり、それぞれ同じ構造とされる。図2は、コア要素10の様子を示す図である。具体的に図2(A)は、コア要素10におけるマルチコアファイバ1の長さ方向に垂直な断面を示す図であり、図2(B)はコア要素10における屈折率分布を示す図である。   The plurality of core elements 10 are rod-shaped members arranged in the clad 20 and have the same structure. FIG. 2 is a diagram illustrating a state of the core element 10. Specifically, FIG. 2A is a diagram showing a cross section perpendicular to the length direction of the multi-core fiber 1 in the core element 10, and FIG. 2B is a diagram showing a refractive index distribution in the core element 10.

図2(A)に示すように、各コア要素10は、コア11、コア11の外周面を囲む内側クラッド層12、及び、内側クラッド層12の外周面を囲む外側クラッド層13を有している。本実施形態では、コア11の直径、内側クラッド層12の外径、及び、外側クラッド層13の外径は、複数のコア要素10ごとに同程度とされる。   As shown in FIG. 2A, each core element 10 includes a core 11, an inner cladding layer 12 surrounding the outer peripheral surface of the core 11, and an outer cladding layer 13 surrounding the outer peripheral surface of the inner cladding layer 12. Yes. In the present embodiment, the diameter of the core 11, the outer diameter of the inner cladding layer 12, and the outer diameter of the outer cladding layer 13 are approximately the same for each of the plurality of core elements 10.

図2(B)に示すように、内側クラッド層12の平均屈折率n、及び、クラッド20の平均屈折率nは、コア11の平均屈折率nよりも低くされる。また、外側クラッド層13の平均屈折率nは、内側クラッド層12の平均屈折率n、及び、クラッド20の平均屈折率nよりもさらに低くされる。なお、内側クラッド層12の平均屈折率nとクラッド20の平均屈折率nとは、本実施形態では、同程度とされる。 As shown in FIG. 2B, the average refractive index n 2 of the inner cladding layer 12 and the average refractive index n 4 of the cladding 20 are set lower than the average refractive index n 1 of the core 11. Further, the average refractive index n 3 of the outer cladding layer 13 is made lower than the average refractive index n 2 of the inner cladding layer 12 and the average refractive index n 4 of the cladding 20. Here, the average refractive index n 4 of the average refractive index n 2 and the cladding 20 of the inner cladding layer 12, in this embodiment, are approximately equal.

このように屈折率の観点では、各コア要素10における内側クラッド層12とそれらコア要素10を覆うクラッド20との間に外側クラッド層13が溝として形成される。すなわち、各コア要素10における外側クラッド層13の平均屈折率nが内側クラッド層12の平均屈折率n及びクラッド20の平均屈折率nよりも小さくされることで、当該コア要素10がトレンチ構造を有している。 Thus, from the viewpoint of refractive index, the outer cladding layer 13 is formed as a groove between the inner cladding layer 12 in each core element 10 and the cladding 20 covering the core element 10. That is, by the average refractive index n 3 of the outer cladding layer 13 of each core element 10 is smaller than the average refractive index n 4 of the average refractive index n 2 and the cladding 20 of the inner cladding layer 12, is the core element 10 It has a trench structure.

したがって、各コア要素10ではコア11への光の閉じ込め効果が大きくなり、当該コア要素10から光が漏えいしづらくなる。この結果、本実施形態におけるマルチコアファイバ1では、互いに隣り合うコア要素10同士のクロストークが大幅に抑制されることとなる。   Therefore, the effect of confining light in the core 11 is increased in each core element 10, and it becomes difficult for light to leak from the core element 10. As a result, in the multi-core fiber 1 in the present embodiment, crosstalk between the core elements 10 adjacent to each other is significantly suppressed.

なお、図2(B)におけるΔはクラッド20に対するコア11の比屈折率差を示し、Δはクラッド20に対する外側クラッド層13の比屈折率差を示し、rはコア11の半径を示し、rはコア11の中心から内側クラッド層の外周面までの距離を示している。またrは、コア11の中心と、当該コア11を有するコア要素10に最も近いコア要素10又は応力調整部15の中心との間の距離の2分の1を示している。さらにWは、外側クラッド層13の幅(厚さ)を示している。 In FIG. 2B, Δ 1 indicates a relative refractive index difference of the core 11 with respect to the clad 20, Δ 2 indicates a relative refractive index difference of the outer cladding layer 13 with respect to the clad 20, and r 1 indicates a radius of the core 11. shows, r 2 represents the distance from the center of the core 11 to the outer peripheral surface of the inner cladding layer. The r 3 represents the center of the core 11, one-half of the distance between the center of the core element 10 or the stress controlled part 15 closest to the core element 10 having the core 11. Further, W indicates the width (thickness) of the outer cladding layer 13.

図1に示すように、本実施形態におけるコア要素10の数は12つとされ、クラッド20の中心軸の周りに6つのコア要素10が配置されるとともに、当該6つのコア要素10の外側にさらに6つのコア要素10が配置される。互いに隣接するコア要素同士の中心軸間の距離(以下、コア間距離という)Λ1はそれぞれ同じとされ、互いに隣接する3つのコア要素同士の中心軸を結ぶ断面形状は正三角形とされる。   As shown in FIG. 1, the number of core elements 10 in this embodiment is twelve, and six core elements 10 are arranged around the central axis of the clad 20, and further outside the six core elements 10. Six core elements 10 are arranged. The distance between the central axes of the core elements adjacent to each other (hereinafter referred to as the inter-core distance) Λ1 is the same, and the cross-sectional shape connecting the central axes of the three core elements adjacent to each other is an equilateral triangle.

マルチコアファイバ1の長さ方向に直交する断面では、クラッド20の中心を基準とする第1の正六角形の頂点と、内側として配置される6つのコア要素10の中心とは一致する状態とされる。また、クラッド20の中心を基準とする第1の正六角形よりも大きい第2の正六角形の頂点と、外側として配置される6つのコア要素10の中心とは一致する状態とされる。さらに、外側として配置される6つのコア要素10の各中心は、第1の正六角形における辺の中心を通る垂線上に位置される。なお、コア要素10の中心と、当該コア要素10におけるコア11の中心とは一致している。   In the cross section orthogonal to the length direction of the multi-core fiber 1, the apex of the first regular hexagon with respect to the center of the clad 20 and the centers of the six core elements 10 arranged as the inside are in a state of matching. . Further, the vertex of the second regular hexagon larger than the first regular hexagon with respect to the center of the clad 20 and the centers of the six core elements 10 arranged as the outside are in a state of matching. Furthermore, each center of the six core elements 10 arranged as the outside is located on a perpendicular passing through the center of the side in the first regular hexagon. In addition, the center of the core element 10 and the center of the core 11 in the core element 10 coincide with each other.

複数の応力調整部15は、PMDを小さくするためクラッド20内に配置されるロッド状の部材であり、それぞれ同じ構造とされる。図3は、応力調整部15の様子を示す図である。具体的に図3(A)は、応力調整部15におけるマルチコアファイバ1の長さ方向に垂直な断面を示す図であり、図3(B)は応力調整部15における屈折率分布を示す図である。   The plurality of stress adjusting portions 15 are rod-shaped members arranged in the clad 20 in order to reduce PMD, and have the same structure. FIG. 3 is a diagram illustrating a state of the stress adjusting unit 15. Specifically, FIG. 3A is a diagram showing a cross section perpendicular to the length direction of the multi-core fiber 1 in the stress adjusting unit 15, and FIG. 3B is a diagram showing a refractive index distribution in the stress adjusting unit 15. is there.

図3の(A)に示すように、各応力調整部15は、3層構造のコア要素10とは異なり、1層構造とされる。この応力調整部15の直径は、本実施形態の場合、コア要素10における内側クラッド層12の直径と同程度とされる。   As shown in FIG. 3A, each stress adjusting unit 15 has a single-layer structure, unlike the core element 10 having a three-layer structure. In the case of this embodiment, the diameter of the stress adjusting portion 15 is approximately the same as the diameter of the inner cladding layer 12 in the core element 10.

図3の(B)に示すように、応力調整部15の平均屈折率n5は、内側クラッド層12の平均屈折率n及びクラッド20の平均屈折率nよりも低く、外側クラッド層13の平均屈折率nよりも高くされる。 As shown in FIG. 3B, the average refractive index n 5 of the stress adjusting unit 15 is lower than the average refractive index n 2 of the inner cladding layer 12 and the average refractive index n 4 of the cladding 20, and the outer cladding layer 13. It is higher than the average refractive index n 3 of the.

なお、図3(B)におけるΔはクラッド20に対する応力調整部15の比屈折率差を示し、dは応力調整部15の半径を示している。またdは、応力調整部15の中心と、当該応力調整部15に最も近いコア要素10又は応力調整部15の中心との間の距離の2分の1を示している。 Note that Δ in FIG. 3B indicates the relative refractive index difference of the stress adjusting unit 15 with respect to the clad 20, and d 1 indicates the radius of the stress adjusting unit 15. D 2 indicates a half of the distance between the center of the stress adjusting unit 15 and the center of the core element 10 or the stress adjusting unit 15 closest to the stress adjusting unit 15.

図1に示すように、本実施形態における応力調整部15の数は7つとされ、クラッド20の中心に1つの応力調整部15が配置されるとともに、外側のコア要素10の周りに6つの応力調整部15が配置される。互いに隣接する応力調整部15の中心軸間の距離(以下、調整部間距離という)Λ2はそれぞれ同じとされ、互いに隣接する3つの応力調整部15の中心を結ぶ断面形状は正三角形とされる。いいかえると、応力調整部15は、クラッド20の中心を基準として回転対称となるように配置され、またコア要素10を中間として挟むように配置される。   As shown in FIG. 1, the number of the stress adjusting portions 15 in the present embodiment is seven, one stress adjusting portion 15 is arranged at the center of the clad 20, and six stresses around the outer core element 10. An adjustment unit 15 is arranged. The distance Λ2 between the central axes of the stress adjusting portions 15 adjacent to each other (hereinafter referred to as the distance between the adjusting portions) Λ2 is the same, and the cross-sectional shape connecting the centers of the three stress adjusting portions 15 adjacent to each other is an equilateral triangle. . In other words, the stress adjusting unit 15 is disposed so as to be rotationally symmetric with respect to the center of the clad 20 and is disposed so as to sandwich the core element 10 therebetween.

マルチコアファイバ1の長さ方向に直交する断面では、クラッド20の中心を基準とする正六角形の頂点と6つの応力調整部15の中心とは一致する状態とされる。なお、6つの応力調整部15の中心を頂点とする正六角形は、外側として配置される6つのコア要素10の中心を頂点とする正六角形を30°だけ回転させた状態と一致している。   In the cross section orthogonal to the length direction of the multi-core fiber 1, the apex of the regular hexagon with respect to the center of the clad 20 and the centers of the six stress adjusting portions 15 are in agreement. In addition, the regular hexagon which makes the center of the six stress adjustment parts 15 a vertex corresponds with the state which rotated the regular hexagon which makes the vertex the center of the six core elements 10 arrange | positioned as an outer side by 30 degrees.

このような応力調整部15は、例えば、フッ素等の屈折率を下げるドーパントが添加された石英で構成される。なお、コア11は、例えば、ゲルマニウム等の屈折率を上げるドーパントが添加された石英で構成され、内側クラッド層12及びクラッド20は、例えば、何らドーパントが添加されない純粋な石英で構成される。また、外側クラッド層13は、例えば、フッ素等の屈折率を下げるドーパントが添加された石英で構成され、内側保護層31及び外側保護層32は、例えば、互いに種類の異なる紫外線硬化樹脂等で構成される。   Such a stress adjusting unit 15 is made of, for example, quartz to which a dopant that lowers the refractive index, such as fluorine, is added. The core 11 is made of, for example, quartz to which a dopant that increases the refractive index, such as germanium, is added, and the inner cladding layer 12 and the cladding 20 are made of, for example, pure quartz to which no dopant is added. The outer cladding layer 13 is made of, for example, quartz to which a dopant that lowers the refractive index such as fluorine is added, and the inner protective layer 31 and the outer protective layer 32 are made of, for example, different types of ultraviolet curable resins. Is done.

以上のとおり、本実施形態では、複数の応力調整部15が、クラッド20の中心を基準として回転対称となるように配置され、またコア要素10を中間として挟むように配置される。   As described above, in the present embodiment, the plurality of stress adjusting portions 15 are arranged so as to be rotationally symmetric with respect to the center of the clad 20 and are arranged so as to sandwich the core element 10 therebetween.

このように配置した場合、コア要素10以外の領域において複屈折を抑えることができることが分かった。したがって、応力調整部15を設けない場合に比べて、偏波モード分散を小さくすることができる。こうして、偏波モード分散を小さくして、長距離で大容量伝送が可能なマルチコアファイバ1が提供される。   When arranged in this way, it was found that birefringence can be suppressed in regions other than the core element 10. Therefore, the polarization mode dispersion can be reduced as compared with the case where the stress adjusting unit 15 is not provided. In this way, the multi-core fiber 1 is provided that can reduce polarization mode dispersion and perform large-capacity transmission over a long distance.

(2)第2実施形態
次に、第2実施形態について図4を参照しながら詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、同一の参照符号を付して特に説明する場合を除き重複する説明は省略する。
(2) Second Embodiment Next, a second embodiment will be described in detail with reference to FIG. In addition, about the component which is the same as that of 1st Embodiment, or an equivalent component, the overlapping description is abbreviate | omitted except the case where it attaches | subjects the same referential mark and demonstrates especially.

図4は、第2実施形態におけるマルチコアファイバの長さ方向に垂直な断面を示す図である。図4に示すように、本実施形態におけるマルチコアファイバ2は、コア要素10及び応力調整部15の配置位置を異なる配置位置とした点で、第1実施形態におけるマルチコアファイバ1と異なる。   FIG. 4 is a view showing a cross section perpendicular to the length direction of the multi-core fiber in the second embodiment. As shown in FIG. 4, the multi-core fiber 2 in the present embodiment is different from the multi-core fiber 1 in the first embodiment in that the arrangement positions of the core element 10 and the stress adjusting unit 15 are different.

具体的にコア要素10の数は12つとされ、クラッド20の中心軸の周りに、コア間距離が同程度となる状態で、12つのコア要素10が配置される。すなわち、マルチコアファイバ1の長さ方向に直交する断面では、クラッド20の中心を基準とする正六角形の頂点、及び、当該正六角形の辺の中点と、12つのコア要素10の中心とは一致する状態とされる。   Specifically, the number of core elements 10 is twelve, and twelve core elements 10 are arranged around the central axis of the clad 20 with the inter-core distances being approximately the same. That is, in the cross section orthogonal to the length direction of the multi-core fiber 1, the vertex of the regular hexagon with respect to the center of the clad 20, the midpoint of the side of the regular hexagon, and the centers of the 12 core elements 10 coincide. It is in a state to do.

一方、応力調整部15は7つとされ、クラッド20の中心に1つの応力調整部15が配置される。また、この1つの応力調整部15とコア要素10との間に、調整部間距離が同程度となる状態で、6つの応力調整部15が配置される。なお、応力調整部15のすべては、複数のコア要素10それぞれの内側に配置された状態にあり、隣接する3つの応力調整部15の中心を結ぶ断面形状は正三角形とされる。いいかえると、応力調整部15は、クラッド20の中心を基準として回転対称となるように配置される。   On the other hand, the number of stress adjusting portions 15 is seven, and one stress adjusting portion 15 is disposed at the center of the clad 20. Further, six stress adjusting portions 15 are arranged between the one stress adjusting portion 15 and the core element 10 in a state in which the distance between the adjusting portions is approximately the same. Note that all of the stress adjusting portions 15 are arranged inside each of the plurality of core elements 10, and the cross-sectional shape connecting the centers of the three adjacent stress adjusting portions 15 is an equilateral triangle. In other words, the stress adjusting unit 15 is arranged so as to be rotationally symmetric with respect to the center of the clad 20.

このように応力調整部15を配置した場合であっても、上記第1実施形態と同様に、コア要素10以外の領域において複屈折を抑えることができることが分かった。したがって、応力調整部15を設けない場合に比べて、偏波モード分散を小さくすることができる。こうして、偏波モード分散を小さくして、長距離で大容量伝送が可能なマルチコアファイバ2が提供される。   Thus, even when the stress adjusting unit 15 is arranged, it has been found that birefringence can be suppressed in a region other than the core element 10 as in the first embodiment. Therefore, the polarization mode dispersion can be reduced as compared with the case where the stress adjusting unit 15 is not provided. In this way, the multi-core fiber 2 that can reduce the polarization mode dispersion and transmit a large volume over a long distance is provided.

(3)第3実施形態
次に、第3実施形態について図5を参照しながら詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、同一の参照符号を付して特に説明する場合を除き重複する説明は省略する。
(3) Third Embodiment Next, a third embodiment will be described in detail with reference to FIG. In addition, about the component which is the same as that of 1st Embodiment, or an equivalent component, the overlapping description is abbreviate | omitted except the case where it attaches | subjects the same referential mark and demonstrates especially.

図5は、第3実施形態におけるマルチコアファイバの長さ方向に垂直な断面を示す図である。図5に示すように、本実施形態におけるマルチコアファイバ3は、コア要素10及び応力調整部15の配置位置を異なる配置位置とした点で、第1実施形態におけるマルチコアファイバ1と異なる。   FIG. 5 is a view showing a cross section perpendicular to the length direction of the multi-core fiber in the third embodiment. As shown in FIG. 5, the multi-core fiber 3 in the present embodiment is different from the multi-core fiber 1 in the first embodiment in that the arrangement positions of the core element 10 and the stress adjusting unit 15 are different arrangement positions.

具体的にコア要素10は12つとされ、クラッド20の中心軸の周りに、コア間距離が同程度となる状態で、12つのコア要素10が円環状に配置される。すなわち、マルチコアファイバ1の長さ方向に直交する断面では、クラッド20の中心を基準とする円周上に、12つのコア要素10の中心が位置される。   Specifically, the number of core elements 10 is twelve, and the twelve core elements 10 are arranged in an annular shape around the central axis of the clad 20 with the inter-core distances being approximately the same. That is, in the cross section orthogonal to the length direction of the multicore fiber 1, the centers of the twelve core elements 10 are positioned on the circumference with the center of the clad 20 as a reference.

一方、応力調整部15は1つとされ、クラッド20の中心軸と応力調整部15の中心軸とが一致する状態で、各コア要素10それぞれの内側に、クラッド20の中心を基準として回転対称となるように配置される。   On the other hand, the number of the stress adjusting portions 15 is one, and the center axis of the clad 20 and the central axis of the stress adjusting portion 15 coincide with each other, and the inside of each core element 10 is rotationally symmetric with respect to the center of the clad 20. It is arranged to become.

なお、上記第1実施形態における応力調整部15の直径はコア要素10における内側クラッド層12の直径と同程度とされたが、本実施形態における応力調整部15の直径はコア要素10の直径よりも大きくされる。   In addition, although the diameter of the stress adjustment part 15 in the said 1st Embodiment was made comparable as the diameter of the inner side cladding layer 12 in the core element 10, the diameter of the stress adjustment part 15 in this embodiment is from the diameter of the core element 10. Is also enlarged.

このように応力調整部15を配置した場合であっても、上記第1実施形態と同様に、コア要素10以外の領域において複屈折を抑えることができることが分かった。したがって、応力調整部15を設けない場合に比べて、偏波モード分散を小さくすることができる。こうして、偏波モード分散を小さくして、長距離で大容量伝送が可能なマルチコアファイバ3が提供される。   Thus, even when the stress adjusting unit 15 is arranged, it has been found that birefringence can be suppressed in a region other than the core element 10 as in the first embodiment. Therefore, the polarization mode dispersion can be reduced as compared with the case where the stress adjusting unit 15 is not provided. In this way, the multi-core fiber 3 is provided that can reduce the polarization mode dispersion and enable large-capacity transmission over a long distance.

(4)変形例
以上、第1実施形態〜第3実施形態が一例として説明されたが、本発明は上記実施形態に限定されるものではない。
(4) Modifications Although the first to third embodiments have been described above as examples, the present invention is not limited to the above embodiments.

例えば上記実施形態では、コア要素10の数が12つとされたが、11つ以下であっても、13つ以上であっても良い。要するに、2本以上であれば様々な数を適用することができる。また、クラッド20内におけるコア要素10の配置位置については上記実施形態以外を適用することができる。なお、コア要素10における各種パラメータ(n〜n、r〜r、Δ〜Δ)の値は適宜変更することができる。 For example, in the above embodiment, the number of core elements 10 is twelve, but may be eleven or less or thirteen or more. In short, various numbers can be applied as long as the number is two or more. Further, the arrangement position of the core element 10 in the clad 20 can be applied to other than the above embodiment. The values of various parameters (n 1 to n 3 , r 1 to r 3 , Δ 1 to Δ 2 ) in the core element 10 can be changed as appropriate.

また上記第1実施形態及び上記第2実施形態では応力調整部15の数が7つとされ、上記第3実施形態では応力調整部15の数が1つとされたが、1又は7つ以外の数を適用することができる。また、クラッド20内における応力調整部15の配置位置、あるいは、応力調整部15の大きさについては上記実施形態以外を適用することができる。また、応力調整部15における各種パラメータ(n、d〜d、Δ)の値は適宜変更することができる。
要するに、応力調整部15は、クラッド20及び内側クラッド層12よりも平均屈折率が低いものであり、各コア要素10を伝搬する光において同じLPモードに属する偏波の実効屈折率の差が、当該応力調整部15を設けない場合に比べて小さくなるようにクラッド20内に配置されれば良い。
具体的には、例えば、各コア要素10を伝搬する光においてLP01モードに属する偏波の実効屈折率との差が応力調整部15を設けない場合に比べて小さくなるようにする応力調整部15を設けることが挙げられる。別例として、各コア要素10を伝搬する光においてLP11モードに属する偏波の実効屈折率との差が応力調整部15を設けない場合に比べて小さくなるようにする応力調整部15を設けることが挙げられる。さらに別例として、各コア要素10を伝搬する光においてLP21モードに属する偏波の実効屈折率との差が応力調整部15を設けない場合に比べて小さくなるようにする応力調整部15を設けることが挙げられる。
なお、各コア要素10を伝搬する光においてLP01モードに属する偏波の実効屈折率の差が応力調整部15を設けない場合に比べて小さくなるようにする応力調整部15を設けることがより好ましい。
In the first embodiment and the second embodiment, the number of the stress adjusting portions 15 is seven. In the third embodiment, the number of the stress adjusting portions 15 is one. However, the number is not one or seven. Can be applied. Further, the arrangement position of the stress adjusting unit 15 in the clad 20 or the size of the stress adjusting unit 15 can be applied to other than the above embodiment. Further, values of various parameters in the stress controlled part 15 (n 5, d 1 ~d 2, Δ) may be changed as needed.
In short, the stress adjusting unit 15 has an average refractive index lower than that of the clad 20 and the inner clad layer 12, and the difference in effective refractive index of polarized waves belonging to the same LP mode in the light propagating through each core element 10 is What is necessary is just to arrange | position in the clad 20 so that it may become small compared with the case where the said stress adjustment part 15 is not provided.
Specifically, for example, the stress adjusting unit 15 that reduces the difference from the effective refractive index of polarized light belonging to the LP01 mode in the light propagating through each core element 10 as compared with the case where the stress adjusting unit 15 is not provided. For example. As another example, the stress adjusting unit 15 is provided so that the difference between the light propagating through each core element 10 and the effective refractive index of the polarized light belonging to the LP11 mode is smaller than the case where the stress adjusting unit 15 is not provided. Is mentioned. As another example, a stress adjusting unit 15 is provided so that the difference between the light propagating through each core element 10 and the effective refractive index of the polarized light belonging to the LP21 mode becomes smaller than when the stress adjusting unit 15 is not provided. Can be mentioned.
In addition, it is more preferable to provide the stress adjusting unit 15 so that the difference in effective refractive index of polarized light belonging to the LP01 mode in the light propagating through each core element 10 becomes smaller than the case where the stress adjusting unit 15 is not provided. .

また上記実施形態では、フッ素等の屈折率を下げるドーパントが添加された石英で応力調整部15が構成されたが、空孔で応力調整部15が構成されていても良い。   Moreover, in the said embodiment, although the stress adjustment part 15 was comprised with the quartz to which the dopant which reduces refractive indexes, such as a fluorine, was added, the stress adjustment part 15 may be comprised with the void | hole.

なお、上述のマルチコアファイバ1〜3における各構成要素、及び、当該構成要素間の関係は、上記実施形態及び変形例に示された内容以外に、適宜、本願目的を逸脱しない範囲で組み合わせ、省略、変更、周知技術の付加などをすることができる。   In addition, each component in the above-described multi-core fibers 1 to 3 and the relationship between the components are appropriately combined and omitted within the scope not departing from the purpose of the present application, in addition to the contents shown in the embodiment and the modification. , Modification, addition of well-known technology, etc. can be made.

以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the content of the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

<1−1>実施例1
上記第1実施形態のマルチコアファイバ1と同じ構造のマルチコアファイバを試作した。なお、コア要素10における各種パラメータは下記表1とした。また、クラッド20の中心に配置される1つの応力調整部15における各種パラメータは下記表2とし、当該1つの応力調整部15の周りに配置される6つ応力調整部15における各種パラメータは下記表3とした。
<1-1> Example 1
A multi-core fiber having the same structure as the multi-core fiber 1 of the first embodiment was prototyped. Various parameters in the core element 10 are shown in Table 1 below. Various parameters in one stress adjusting unit 15 arranged at the center of the clad 20 are shown in Table 2 below, and various parameters in the six stress adjusting units 15 arranged around the one stress adjusting unit 15 are shown in the following table. It was set to 3.

なお、下記表1における記号は、コア要素10における各種パラメータとして図2の(B)に示した記号と一致している。また、下記表2及び下記表3における記号は、応力調整部15における各種パラメータとして図3の(B)に示した記号と一致している。

Figure 0005808767
Figure 0005808767
Figure 0005808767
The symbols in Table 1 below are the same as the symbols shown in FIG. 2B as various parameters in the core element 10. The symbols in the following Table 2 and Table 3 are the same as those shown in FIG. 3B as various parameters in the stress adjusting unit 15.
Figure 0005808767
Figure 0005808767
Figure 0005808767

このように試作したマルチコアファイバの各コア11での波長1.55μm帯におけるPMDの測定結果を図6に示す。なお、PMDの測定結果としては、具体的には1529nm〜1625nmの範囲内で波長を変化させたときの平均値である。また、図6の横軸における「1」〜「12」のコア番号は、12つのコア要素10における各コア11に対し、図7に示すように割り当てたものである。図7における黒丸は、他のファイバと接続するためのマーカである。   FIG. 6 shows the measurement results of PMD in the wavelength 1.55 μm band in each core 11 of the multi-core fiber thus prototyped. The PMD measurement result is specifically an average value when the wavelength is changed within a range of 1529 nm to 1625 nm. Also, the core numbers “1” to “12” on the horizontal axis in FIG. 6 are assigned to the cores 11 in the twelve core elements 10 as shown in FIG. The black circles in FIG. 7 are markers for connecting to other fibers.

<1−2>比較例1
上記第1実施形態のマルチコアファイバ1における応力調整部15を省略し、当該応力調整部15以外の構成要素については上記実施例1と同じであるマルチコアファイバを試作した。
<1-2> Comparative Example 1
The stress adjusting section 15 in the multi-core fiber 1 of the first embodiment was omitted, and a multi-core fiber that was the same as that of the above-described Example 1 was manufactured for the components other than the stress adjusting section 15.

このマルチコアファイバの各コア11での波長1.55μm帯におけるPMDの測定結果を図8に示す。なお、PMDの測定結果としては、具体的には1529nm〜1625nmの範囲内で波長を変化させたときの平均値である。また、図8の横軸における「1」〜「12」のコア番号は、実施例1と同様に、図7に示すように割り当てており、マーカの位置については図8と同じ位置である。   FIG. 8 shows the measurement result of PMD in the wavelength 1.55 μm band in each core 11 of this multicore fiber. The PMD measurement result is specifically an average value when the wavelength is changed within a range of 1529 nm to 1625 nm. Also, the core numbers “1” to “12” on the horizontal axis in FIG. 8 are assigned as shown in FIG. 7 as in the first embodiment, and the marker positions are the same as those in FIG.

<1−3>対比
図6と図8との比較から、応力調整部15を設けた場合、当該応力調整部15を設けなかった場合に比べて、いずれのコア11でもPMDを良好にできることが分かった。
<1-3> Comparison From the comparison between FIG. 6 and FIG. 8, when the stress adjustment unit 15 is provided, PMD can be improved in any core 11 as compared with the case where the stress adjustment unit 15 is not provided. I understood.

なお、実施例1におけるコア要素10を伝搬するLP01モードの複屈折を計算したところ、コア番号が奇数の場合は8.9×10−7であり、コア番号が偶数の場合は4.2×10−8であった。また比較例1におけるコア要素10を伝搬するLP01モードの複屈折を計算したところ、コア番号が奇数の場合は2.0×10−6であり、コア番号が偶数の場合は2.6×10−6であった。これら計算結果から、応力調整部15がある場合、当該応力調整部15がない場合に比べて、複屈折を大幅に低減できることが分かった。 When birefringence of the LP01 mode propagating through the core element 10 in Example 1 was calculated, it was 8.9 × 10 −7 when the core number was an odd number, and 4.2 × when the core number was an even number. 10-8 . Further, when the birefringence of the LP01 mode propagating through the core element 10 in Comparative Example 1 was calculated, it was 2.0 × 10 −6 when the core number was an odd number, and 2.6 × 10 6 when the core number was an even number. -6 . From these calculation results, it was found that the birefringence can be significantly reduced when the stress adjusting unit 15 is provided, compared to the case where the stress adjusting unit 15 is not provided.

なお、複屈折の計算は、次のように計算している。すなわち、温度を1000℃変化させたときの応力調整部15の熱膨張係数を計測し、その計測結果から応力変化を参考文献1にしたがって算出した。そして、参考文献2に示される数値解析を用いて、波長1.55μm帯における複屈折を導出した。なお、参考文献1は岡本勝就 著 「光導路の基礎」pp.250〜pp.252 コロナ社であり、参考文献2はK. Okamoto, et al., ”Stress
analysis of optical fibers by a finite element method”
IEEE J. Quantum Electron, vol. QE-17, pp.2123-2129, 1981である。
The birefringence is calculated as follows. That is, the thermal expansion coefficient of the stress adjusting unit 15 when the temperature was changed by 1000 ° C. was measured, and the stress change was calculated according to Reference 1 from the measurement result. Then, the birefringence in the 1.55 μm wavelength band was derived using the numerical analysis shown in Reference Document 2. Reference 1 is Koji Okamoto, “Basics of Light Paths” pp. 250-252 Corona, and Reference 2 is K. Okamoto, et al., “Stress
analysis of optical fibers by a finite element method ”
IEEE J. Quantum Electron, vol. QE-17, pp.2123-2129, 1981.

ところで、実施例1における上記表1の各種パラメータと、上記表2のd/d及びΔ以外の各種パラメータとを固定し、当該d/d及びΔのパラメータを変化させたときの複屈折の計算結果を図9に示す。 By the way, when various parameters in Table 1 in Example 1 and various parameters other than d 2 / d 1 and Δ in Table 2 are fixed, the parameters of d 2 / d 1 and Δ are changed. The calculation result of birefringence is shown in FIG.

なお、この図9における横軸が0のときは応力調整部15を設けなかった場合に相当する。また、図9におけるグラフ右側に記載されている「内側」とは、内側として配置されるコア要素10のコア11(コア番号1〜7のコア11)を意味し、当該グラフ右側に記載されている「外側」とは、外側として配置されるコア要素10のコア11(コア番号8〜12のコア11)を意味する。   In addition, when the horizontal axis in FIG. 9 is 0, this corresponds to the case where the stress adjusting unit 15 is not provided. Further, “inside” described on the right side of the graph in FIG. 9 means the core 11 (core 11 of core numbers 1 to 7) of the core element 10 arranged as the inside, and is described on the right side of the graph. The “outside” means the core 11 of the core element 10 (core 11 having core numbers 8 to 12) arranged as the outside.

図9に示すように、応力調整部15を設けない場合よりも複屈折を下げるためには、d/dを2以上とすることが好ましいことが分かった。また、Δを−0.2%〜−0.4%の範囲内とすることが好ましいことが分かった。 As shown in FIG. 9, it was found that d 2 / d 1 is preferably 2 or more in order to lower the birefringence as compared with the case where the stress adjusting unit 15 is not provided. It was also found that Δ is preferably in the range of −0.2% to −0.4%.

<2−1>実施例2
上記第2実施形態のマルチコアファイバ2と同じ構造のマルチコアファイバを試作した。なお、コア要素10における各種パラメータは下記表4とした。また、応力調整部15における各種パラメータは下記表5とした。
<2-1> Example 2
A multi-core fiber having the same structure as the multi-core fiber 2 of the second embodiment was prototyped. Various parameters in the core element 10 are shown in Table 4 below. Various parameters in the stress adjusting unit 15 are shown in Table 5 below.

なお、下記表4における記号は、コア要素10における各種パラメータとして図2の(B)に示した記号と一致している。また、下記表5における記号は、応力調整部15における各種パラメータとして図3の(B)に示した記号と一致している。

Figure 0005808767
Figure 0005808767
The symbols in Table 4 below are the same as the symbols shown in FIG. 2B as various parameters in the core element 10. Further, the symbols in Table 5 below are the same as those shown in FIG. 3B as various parameters in the stress adjusting unit 15.
Figure 0005808767
Figure 0005808767

このように試作したマルチコアファイバの各コア11での波長1.55μm帯におけるを図10に示す。なお、PMDの測定結果としては、具体的には1529nm〜1625nmの範囲内で波長を変化させたときの平均値である。また、図10の横軸における「1」〜「12」のコア番号は、12つのコア要素10における各コア11に対し、図11に示すように割り当てたものである。図10における黒丸は、他のファイバと接続するためのマーカである。   FIG. 10 shows a wavelength of 1.55 μm band of each core 11 of the prototyped multi-core fiber. The PMD measurement result is specifically an average value when the wavelength is changed within a range of 1529 nm to 1625 nm. Also, the core numbers “1” to “12” on the horizontal axis in FIG. 10 are assigned to the cores 11 in the twelve core elements 10 as shown in FIG. The black circles in FIG. 10 are markers for connecting to other fibers.

<2−2>比較例2
上記第2実施形態のマルチコアファイバ2における応力調整部15を省略し、当該応力調整部15以外の構成要素については上記実施例2と同じであるマルチコアファイバを試作した。
<2-2> Comparative example 2
The stress adjusting unit 15 in the multi-core fiber 2 of the second embodiment is omitted, and the multi-core fiber that is the same as that of the above-described Example 2 is manufactured for the components other than the stress adjusting unit 15.

このマルチコアファイバの各コア11での波長1.55μm帯におけるPMDの測定結果を図12に示す。なお、PMDの測定結果としては、具体的には1529nm〜1625nmの範囲内で波長を変化させたときの平均値である。また、図12の横軸における「1」〜「12」のコア番号は、実施例2と同様に、図11に示すように割り当てており、マーカの位置については図11と同じ位置である。   FIG. 12 shows the measurement results of PMD in the wavelength 1.55 μm band at each core 11 of this multicore fiber. The PMD measurement result is specifically an average value when the wavelength is changed within a range of 1529 nm to 1625 nm. Also, the core numbers “1” to “12” on the horizontal axis in FIG. 12 are assigned as shown in FIG. 11 as in the second embodiment, and the marker positions are the same as those in FIG.

<2−3>対比
図10と図12との比較から、応力調整部15を設けた場合、当該応力調整部15を設けなかった場合に比べて、いずれのコア11でもPMDを良好にできることが分かった。
<2-3> Comparison From the comparison between FIG. 10 and FIG. 12, when the stress adjustment unit 15 is provided, PMD can be improved in any core 11 as compared with the case where the stress adjustment unit 15 is not provided. I understood.

なお、実施例2におけるコア要素10を伝搬するLP01モードの複屈折を計算したところ、コア番号が奇数の場合の複屈折は1.44×10−6であり、コア番号が偶数の場合は7.1×10−7であった。また、比較例2におけるコア要素10を伝搬するLP01モードの複屈折を計算したところ、コア番号が奇数の場合は4.5×10−6であり、コア番号が偶数の場合は8.7×10−6であった。これら計算結果から、応力調整部15がある場合、当該応力調整部15がない場合に比べて、複屈折を大幅に低減できることが分かった。 When birefringence of the LP01 mode propagating through the core element 10 in Example 2 was calculated, the birefringence when the core number is odd is 1.44 × 10 −6 , and 7 when the core number is even. 1 × 10 −7 . Further, when the birefringence of the LP01 mode propagating through the core element 10 in Comparative Example 2 was calculated, it was 4.5 × 10 −6 when the core number was an odd number, and 8.7 × when the core number was an even number. 10 −6 . From these calculation results, it was found that the birefringence can be significantly reduced when the stress adjusting unit 15 is provided, compared to the case where the stress adjusting unit 15 is not provided.

<3−1>実施例3
上記第3実施形態のマルチコアファイバ3と同じ構造のマルチコアファイバを試作した。なお、コア要素10における各種パラメータは下記表6とした。また、応力調整部15における各種パラメータは下記表7とした。
<3-1> Example 3
A multi-core fiber having the same structure as the multi-core fiber 3 of the third embodiment was prototyped. Various parameters in the core element 10 are shown in Table 6 below. Various parameters in the stress adjusting unit 15 are shown in Table 7 below.

なお、下記表6における記号は、コア要素10における各種パラメータとして図2の(B)に示した記号と一致している。また、下記表7における記号は、応力調整部15における各種パラメータとして図3の(B)に示した記号と一致している。

Figure 0005808767
Figure 0005808767
The symbols in Table 6 below are the same as the symbols shown in FIG. 2B as various parameters in the core element 10. Further, the symbols in the following Table 7 coincide with the symbols shown in FIG. 3B as various parameters in the stress adjusting unit 15.
Figure 0005808767
Figure 0005808767

このように試作したマルチコアファイバの各コア11での波長1.55μm帯におけるPMDの測定結果を図13に示す。なお、PMDの測定結果としては、具体的には1529nm〜1625nmの範囲内で波長を変化させたときの平均値である。また、図13の横軸における「1」〜「12」のコア番号は、12つのコア要素10における各コア11に対し、図14に示すように割り当てたものである。図14における黒丸は、他のファイバと接続するためのマーカである。   FIG. 13 shows the PMD measurement results in the wavelength 1.55 μm band of each core 11 of the multi-core fiber manufactured in this way. The PMD measurement result is specifically an average value when the wavelength is changed within a range of 1529 nm to 1625 nm. Also, the core numbers “1” to “12” on the horizontal axis in FIG. 13 are assigned to the cores 11 in the twelve core elements 10 as shown in FIG. A black circle in FIG. 14 is a marker for connecting to another fiber.

<3−2>比較例3
上記第3実施形態のマルチコアファイバ3における応力調整部15以外の構成要素については上記実施例3と同じであるマルチコアファイバを試作した。本比較例の応力調整部15における各種パラメータは下記表8とした。

Figure 0005808767
<3-2> Comparative Example 3
The multi-core fiber which is the same as that of the above-mentioned Example 3 was made as a prototype for the components other than the stress adjusting unit 15 in the multi-core fiber 3 of the third embodiment. Various parameters in the stress adjusting unit 15 of this comparative example are shown in Table 8 below.
Figure 0005808767

このマルチコアファイバの各コア11での波長1.55μm帯におけるPMDの測定結果を図15に示す。なお、PMDの測定結果としては、具体的には1529nm〜1625nmの範囲内で波長を変化させたときの平均値である。また、図15の横軸における「1」〜「12」のコア番号は、実施例3と同様に、図14に示すように割り当てており、マーカの位置については図14と同じ位置である。   FIG. 15 shows the PMD measurement results in the wavelength 1.55 μm band at each core 11 of the multi-core fiber. The PMD measurement result is specifically an average value when the wavelength is changed within a range of 1529 nm to 1625 nm. Also, the core numbers “1” to “12” on the horizontal axis in FIG. 15 are assigned as shown in FIG. 14 as in the third embodiment, and the positions of the markers are the same as those in FIG.

<3−3>対比
図13と図15との比較から、応力調整部15におけるd/d及びΔが大きいほうがいずれのコア11でもPMDを良好にできることが分かった。
<3-3> Comparison From the comparison between FIG. 13 and FIG. 15, it was found that PMD can be improved in any core 11 when d 2 / d 1 and Δ in the stress adjusting unit 15 are larger.

なお、実施例3におけるコア要素10を伝搬するLP01モードの複屈折を計算したところ、すべてのコア番号における複屈折は9.08.9×10−7であった。また、比較例3におけるコア要素10を伝搬するLP01モードの複屈折を計算したところ、すべてのコア番号における複屈折は2.61×10−5であった。これら計算結果から、応力調整部15におけるd/d及びΔが大きいほうが複屈折を大幅に低減できることが分かった。 When birefringence of the LP01 mode propagating through the core element 10 in Example 3 was calculated, the birefringence at all core numbers was 9.08.9 × 10 −7 . When birefringence of the LP01 mode propagating through the core element 10 in Comparative Example 3 was calculated, the birefringence at all core numbers was 2.61 × 10 −5 . From these calculation results, it was found that the larger the d 2 / d 1 and Δ in the stress adjusting portion 15, the more the birefringence can be reduced.

ところで、実施例3における上記表6の各種パラメータと、上記表7のd/d及びΔ以外の各種パラメータとを固定し、当該d/d及びΔのパラメータを変化させたときの複屈折の計算結果を図16に示す。なお、この図16における横軸が0のときは応力調整部15を設けなかった場合に相当する。 By the way, when various parameters in Table 6 in Example 3 and various parameters other than d 2 / d 1 and Δ in Table 7 are fixed, the parameters of d 2 / d 1 and Δ are changed. The calculation result of birefringence is shown in FIG. In addition, when the horizontal axis in FIG. 16 is 0, this corresponds to the case where the stress adjusting unit 15 is not provided.

図16に示すように、d/dが2よりも小さい場合にはΔを0〜0.1%とし、d/dが2である場合にはΔを0〜−0.2%とすれば複屈折を抑えることができることが分かった。また、d/dが2よりも大きい場合にはΔがどのような値であっても安定して複屈折を抑えることができることが分かった。 As shown in FIG. 16, Δ is 0 to 0.1% when d 2 / d 1 is smaller than 2, and Δ is 0 to −0.2 when d 2 / d 1 is 2. It was found that birefringence can be suppressed by setting%. It was also found that when d 2 / d 1 is greater than 2, birefringence can be stably suppressed regardless of the value of Δ.

本発明に係るマルチコアファイバは、光ファイバを取り扱う分野において利用可能性がある。   The multi-core fiber according to the present invention can be used in the field of handling optical fibers.

1〜3・・・マルチコアファイバ
10・・・コア要素
11・・・コア
12・・・内側クラッド層
13・・・外側クラッド層
15・・・応力調整部
20・・・クラッド
31・・・内側保護層
32・・・外側保護層
DESCRIPTION OF SYMBOLS 1-3 ... Multi-core fiber 10 ... Core element 11 ... Core 12 ... Inner cladding layer 13 ... Outer cladding layer 15 ... Stress adjustment part 20 ... Cladding 31 ... Inner Protective layer 32 ... Outer protective layer

Claims (6)

クラッドと、
前記クラッド内に設けられ、コアと、前記コアを囲む内側クラッド層と、前記内側クラッド層を囲むと共に前記クラッド及び前記内側クラッド層よりも平均屈折率が低い外側クラッド層とを有する複数のコア要素と、
前記クラッド内に設けられ、前記クラッド及び前記内側クラッド層よりも平均屈折率が低い応力調整部と
を備え、
前記応力調整部は、各前記コア要素を伝搬する光において同じLPモードに属する偏波の実効屈折率の差が前記応力調整部を設けない場合に比べて小さくなるよう、前記クラッドの中心を基準として回転対称であって、かつ、互いに隣接する2つの応力調整部が前記コア要素を中間として挟むように配置される
ことを特徴とするマルチコアファイバ。
Clad,
A plurality of core elements provided in the cladding and having a core, an inner cladding layer surrounding the core, and an outer cladding layer surrounding the inner cladding layer and having an average refractive index lower than that of the cladding and the inner cladding layer When,
A stress adjusting portion provided in the cladding, having a lower average refractive index than the cladding and the inner cladding layer;
The stress adjusting unit is based on the center of the clad so that the difference in effective refractive index of polarized light belonging to the same LP mode in the light propagating through each core element is smaller than in the case where the stress adjusting unit is not provided. The multi-core fiber is characterized in that two stress adjusting portions which are rotationally symmetric and are adjacent to each other are disposed so as to sandwich the core element therebetween .
クラッドと、
前記クラッド内に設けられ、コアと、前記コアを囲む内側クラッド層と、前記内側クラッド層を囲むと共に前記クラッド及び前記内側クラッド層よりも平均屈折率が低い外側クラッド層とを有する複数のコア要素と、
前記クラッド内に設けられ、前記クラッド及び前記内側クラッド層よりも平均屈折率が低い応力調整部と
を備え、
前記応力調整部は、各前記コア要素を伝搬する光において同じLPモードに属する偏波の実効屈折率の差が前記応力調整部を設けない場合に比べて小さくなるよう、前記クラッドの中心を基準として回転対称であって、かつ、前記クラッドの中心軸と前記応力調整部の中心軸とが一致する状態で、各前記コア要素の内側に配置される
ことを特徴とするマルチコアファイバ。
Clad,
A plurality of core elements provided in the cladding and having a core, an inner cladding layer surrounding the core, and an outer cladding layer surrounding the inner cladding layer and having an average refractive index lower than that of the cladding and the inner cladding layer When,
A stress adjusting portion provided in the cladding, having a lower average refractive index than the cladding and the inner cladding layer;
The stress adjusting unit is based on the center of the clad so that the difference in effective refractive index of polarized light belonging to the same LP mode in the light propagating through each core element is smaller than in the case where the stress adjusting unit is not provided. The multi-core fiber is arranged inside each of the core elements so as to be rotationally symmetric and in a state where the center axis of the clad coincides with the center axis of the stress adjusting portion .
前記応力調整部は、フッ素ドーパントが添加された石英で構成される
ことを特徴とする請求項1または請求項に記載のマルチコアファイバ。
It said stress adjusting portion is a multi-core fiber according to claim 1 or claim 2, characterized in that it is composed of quartz with fluorine dopant is added.
前記クラッドに対する前記応力調整部の比屈折率差は、−0.2%〜−0.4%の範囲内とされる
ことを特徴とする請求項1〜請求項いずれか1項に記載のマルチコアファイバ。
The relative refractive index difference of the stress adjusting portion with respect to the clad is in a range of -0.2% to -0.4%, according to any one of claims 1 to 3 . Multi-core fiber.
前記応力調整部の半径をdとし、前記応力調整部の中心と、当該応力調整部に最も近い前記コア要素又は前記応力調整部の中心との間の距離の2分の1をdとした場合、d/dは2よりも大きくされる
ことを特徴とする請求項1〜請求項いずれか1項に記載のマルチコアファイバ。
The radius of the stress adjustment part is d 1, and a half of the distance between the center of the stress adjustment part and the core element or the center of the stress adjustment part closest to the stress adjustment part is d 2 If you, d 2 / d 1 is the multi-core fiber of claim 1 to claim 4 any one, characterized in that the greater than 2.
前記応力調整部は、空孔とされる
ことを特徴とする請求項1〜請求項いずれか1項に記載のマルチコアファイバ。
The multi-core fiber according to any one of claims 1 to 5 , wherein the stress adjusting portion is a hole.
JP2013037810A 2013-02-27 2013-02-27 Multi-core fiber Active JP5808767B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013037810A JP5808767B2 (en) 2013-02-27 2013-02-27 Multi-core fiber
PCT/JP2014/053141 WO2014132793A1 (en) 2013-02-27 2014-02-12 Multi-core fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013037810A JP5808767B2 (en) 2013-02-27 2013-02-27 Multi-core fiber

Publications (2)

Publication Number Publication Date
JP2014164269A JP2014164269A (en) 2014-09-08
JP5808767B2 true JP5808767B2 (en) 2015-11-10

Family

ID=51428066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013037810A Active JP5808767B2 (en) 2013-02-27 2013-02-27 Multi-core fiber

Country Status (2)

Country Link
JP (1) JP5808767B2 (en)
WO (1) WO2014132793A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6050847B2 (en) * 2015-02-12 2016-12-21 株式会社フジクラ Multi-core fiber
CN110261955A (en) * 2019-06-20 2019-09-20 长飞光纤光缆股份有限公司 A kind of polarization-maintaining multi-core optical fiber
CN110261956B (en) * 2019-06-20 2021-02-26 长飞光纤光缆股份有限公司 Array type polarization-maintaining multi-core optical fiber
CN112198586B (en) * 2020-09-25 2021-11-19 北京邮电大学 Multi-core optical fiber
CN113568091A (en) * 2021-08-06 2021-10-29 华中科技大学 Axial polarization maintaining multi-core optical fiber
CN115685439A (en) * 2022-10-11 2023-02-03 江苏亨通光导新材料有限公司 Coupling type multi-core optical fiber and preparation method thereof
CN115712167B (en) * 2022-10-21 2023-06-20 武汉长盈通光电技术股份有限公司 Fiber core composite polarization maintaining fiber and manufacturing method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277667A (en) * 2001-03-14 2002-09-25 Sumitomo Electric Ind Ltd Optical fiber
JP3910486B2 (en) * 2002-05-17 2007-04-25 株式会社フジクラ Optical fiber and optical transmission line
WO2006098471A1 (en) * 2005-03-18 2006-09-21 The Furukawa Electric Co., Ltd. Optical fiber and waveguide
JP5065007B2 (en) * 2005-03-18 2012-10-31 古河電気工業株式会社 Optical fiber and waveguide
JP5347989B2 (en) * 2010-01-21 2013-11-20 住友電気工業株式会社 Multi-core optical fiber
WO2011114795A1 (en) * 2010-03-16 2011-09-22 古河電気工業株式会社 Multi-core optical fibre and production method for same
JP5855351B2 (en) * 2010-11-08 2016-02-09 株式会社フジクラ Multi-core fiber
JP5771025B2 (en) * 2011-02-28 2015-08-26 株式会社フジクラ Multi-core fiber
CN103415795B (en) * 2011-03-02 2014-12-10 株式会社藤仓 Multicore fiber
JP2013020207A (en) * 2011-07-14 2013-01-31 Hitachi Cable Ltd Multi-core fiber
JP5522696B2 (en) * 2011-10-13 2014-06-18 日本電信電話株式会社 4-core single-mode optical fiber and optical cable

Also Published As

Publication number Publication date
JP2014164269A (en) 2014-09-08
WO2014132793A1 (en) 2014-09-04

Similar Documents

Publication Publication Date Title
JP5808767B2 (en) Multi-core fiber
JP6177994B2 (en) Multi-core fiber
US8737793B2 (en) Multi-core optical fiber and method of manufacturing the same
JP5324012B2 (en) Multi-core optical fiber and optical transmission system
JP6532748B2 (en) Multicore fiber
JP5855351B2 (en) Multi-core fiber
US9529144B2 (en) Multicore fiber
JP2010055028A (en) Multi-core holey fiber and optical transmission system
JP5468711B2 (en) Multi-core fiber
JP5860024B2 (en) Multi-core fiber
JP5771025B2 (en) Multi-core fiber
JP6265960B2 (en) Optical fiber and optical transmission system
JP2014010266A (en) Multi-core fiber
WO2016190228A1 (en) Multi-core fiber
JPWO2014133057A1 (en) Multi-core fiber
US9541704B2 (en) Multi-core optical fiber and multi-core optical fiber cable
WO2017130487A1 (en) Multicore fiber
JP6236638B2 (en) Multi-core fiber and optical cable
JP6192442B2 (en) Coupled multi-core fiber
JP6096268B2 (en) Multi-core fiber
JP2008209654A (en) Optical communication system
JP2014098832A (en) Hybrid multiple core fiber

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150909

R150 Certificate of patent or registration of utility model

Ref document number: 5808767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250